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Introduction.

Recently many authors have shown that if a smooth closed manifold $M$

admits a continuous map of degree one into a product of l-spheres, then the
compact connected Lie group which acts on $M$ smoothly and almost effectively
is a torus ([5], [9], [11]). The present note is motivated by this result. In this
note, we shall study the semi-simple degree of symmetry of a manifold which
admits a continuous map of degree one into a product of 2-spheres. Here the
semi-simple degree of symmetry of a manifold is, by definition, the maximum
dimension of the compact connected semi-simple Lie group which acts on the
manifold smoothly and almost effectively.

We shall prove the following
THEOREM A. Let $M$ be a simply connected closed $2m$-dimensional topological

manifold which admits a continuous map of degree one into a product of 2-spheres.
Then SO(3) or $SU(2)$ is only the compact connected $\alpha mple$ Lie group which acts
on $M$ continuously and almost effectively. Therefore if a compact connected Lie
group $G$ acts on $M$ cmtinuously and almost effectively, then $G$ is locally isomorphic
to $T^{s}\cross SU(2)\cross\cdots\cross SU(2)$ .

A typical example of $M$ of Theorem A is a connected sum of $S^{2}\cross\cdots\cross S^{2}$

(m-times) and a $2m$-dimensional manifold. As for the connected sum, we shall
obtain the following

THEOREM B. Let $M$ be as in Theorem A and $N$ a $\alpha mply$ connected closed
$2m$-dimenstonal topological manifold which is not a rational homology sphere. Then
the connected sum $X=M\# N$ does not admit any action of $SU(2)$ .

REMARK 1. As a corollary to Theorem $B$ , we have the following
PROPOSITION. Let $N$ be as in Theorem B. Then the semi-simple degree of

symmetry of $(S^{2}\cross\cdots\cross S^{2})\# N$ is zero.
REMARK 2. Since the connected sum $M=(S^{2}\cross\cdots\cross S^{2})\#\Sigma 2m(\Sigma 2m:$ $2m$-dimen-

sional homotopy sphere) is homeomorphic to $S^{2}\cross\cdots\cross S^{2}$ , it admits a continuous
action of $SU(2)$ . But it does not necessarily admit a smooth action of $SU(2)$ .
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In fact, if $M$ admits a smooth action of $SU(2)$ , then $M$ admits a Riemannian
metric of strictly positive scalar curvature ([7]). On the other hand, Hitchen has
proved that if a Spin manifold admits a Riemannian metric of strictly positive
scalar curvature, then the invariant $\alpha$ defined in [8] is zero. It is known that
there is a homotopy sphere $\Sigma_{0}^{n}$ ($n=1,2$ mod 8) with $\alpha(\Sigma_{0}^{n})\neq 0$ (see [6], [8]).

Consider the manifold $M=(S^{2}\cross\cdots\cross S^{2})\#\Sigma_{0}2m(m=4k+1)$ . Since $\alpha(M)\neq 0,$ $M$

does not admit any smooth action of $SU(2)$ .
The author would like to thank the referee for his valuable suggestions.
In this note, we shall restrict ourselves to continuous and almost effective

actions and use the following notation.
$Q$ : the field of rational numbers
$H^{*}(X)$ : the cohomology ring of $X$ with coefficient $Q$

$T^{s}$ and $T$ : s-dimensional torus and l-dimensional torus, respectively
$SU(n)(SO(n), Sp(n))$ : the group of all $n\cross n$ special unitary (special orthogonal,

symplectic, respectively) matrices
$x*:$ the orbit space of $X$ under the action of a compact connected Lie group

on $X$.

1. Preliminaries.

In this section, we recall some basic facts about the Leray spectral sequence
of the orbit map.

Let $G$ be a compact connected Lie group and act on a compact connected
space $X$. Let $\pi;Xarrow X^{*}$ be the orbit map and $\{E_{r}^{p.q}, d_{r}\}$ be the Leray spectral
sequence of the map $\pi$ . Then we have $E_{2}^{p.q}=H^{p}(X^{*} : H^{q}(\pi))$ , where $H^{q}(\pi)$ is
the sheaf generated by the presheaf $U^{*}arrow H^{q}(\pi^{-1}(U^{*}))$ for open set $U^{*}$ in $x*$

(see [2]). Recall the stalk of $H^{q}(\pi)$ at $x^{*}\in X^{*}$ is $H^{q}(G(x))$ , where $\pi(x)=x^{*}$ , and
the edge homomorphism $e:H^{q}(X)arrow E_{2}^{0.q}$ is given by $e(a)(x^{*})=the$ image of $a$ by
the homomorphism $H^{q}(X)arrow H^{q}(G(x))$ induced by the inclusion $G(x)arrow X$ (see [2]

for details).

We have the following
PROPOSITION 1 (see [4]). Let $k$ be the dimension of a Principal orbit. If the

action has a singular orbit, then the edge homomorphism $e:H^{k}(X)arrow E_{2}^{0,k}$ is trivial.
In partjcular, we have $E_{\infty}^{0.k}=0$ .

PROOF. The first part follows from the existence of a slice and the con-
nectedness of $X$. Note that the edge homomorphism is factored as follows;
$H^{k}(X)arrow^{\alpha}E_{\infty}^{0,k}arrow^{\beta}E_{2}^{0.k}$ . Since $\alpha$ is surjective and $\beta$ is injective, we have $E_{\infty}^{0,k}$

$=0$ . This completes the proof of Proposition 1.
We have the following Propositions which are useful for the proof of Theo-

rems A and B.
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PROPOSITION 2. Let $M$ be a closed $2m$-dimensional topological manifold such
that there are $m$ elements $w_{1},$ $w_{2},$

$\cdots$ , $w_{m}$ in $H^{2}(M)$ with the cup product $w_{1}\cup\ldots$

$\cup w_{m}\neq 0$ . Assume the group $SU(2)$ acts on $M$ with a torus $T$ as a principal iso-
tropy subgroup. Then there is no singular orbit.

PROOF. Assume the contrary. Then it follows from Proposition 1 that $E_{\infty}^{0,2}$

$=0$ , where $\{E_{r}^{p,q}, d_{r}\}$ is the Leray spectral sequence of the orbit map $\pi;Marrow M^{*}$ .
Since $H^{1}(SU(2)(x))=0$ for every point $x$ in $M$, we have $H^{2}(M^{*})=E_{\infty}^{2.0}=H^{2}(M)$ .
Note that this isomorphism is induced by the orbit map. Hence $w_{i}=\pi^{*}(w_{i}’)$ for
$i=1,$ $\cdots$ , $m$ , where $w_{i}’$ is an element of $H^{2}(M^{*})$ . Thus we have $w_{1}\cup$ $\cup w_{m}=$

$\pi^{*}(w_{1}’\cup\cdots\cup w_{m}’)=0$ , which is a contradiction. This completes the proof of
Proposition 2.

PROPOSITION 3. Let $M$ be as in Proposition2. Assume the group $SU(2)$

acts on $M$ with a finite prjncipal isotropy subgroup and a singular orbit. Then
there is a Point in $M$ whose isotropy subgroup is a torus.

PROOF. Assume the contrary. Since $H^{i}(SU(2)(x))=0$ for $i=1,2$ for every
point $x$ in $M$, it is easy to see that $H^{2}(M)=H^{2}(M^{*})$ via the orbit map. The
same argument as in Proposition 2 shows that this is impossible. This completes
the proof of Proposition 3.

PROPOSITION 4. Let $M$ be a closed $3m$-dimenstonal topological manifold such
that there are $m$ elements $w_{1},$ $w_{2},$

$\cdots$ , $w_{m}$ in $H^{3}(M)$ with $w_{1}\cup\cdots\cup w_{m}\neq 0$ . Assume
the group $SU(2)$ acts on $M$ with a finite prjncipal isotropy subgroup and a singular
orbit. Then there is a point $x$ in $M$ whose isotropy subgroup is a torus.

Since the proof is similar to that of Proposition 3, we shall omit it.
PROPOSITION 5. Let $M$ be as in Proposition4. Assume $M$ is simply connected

and the group $SU(3)$ acts on $M$ with a finite prjncipal isotropy subgroup. Then
there is a singular orbit.

PROOF. Assume the contrary. Since $M$ is simply connected, it follows from
a result in [3] (Theorem 1 in [3]) that the Leray sheaf of the orbit map is
trivial, which means that $H^{0}(M^{*} : H^{3}(\pi))=Q$ and hence dim $E_{\infty}^{0,3}\leqq 1$ . It follows
from the fact $H^{i}(SU(3)(x))=0$ for $i=1,2$ that we have the following exact
sequence;

$0arrow E_{\infty}^{3.0}arrow H^{3}(M)arrow E_{\infty}^{0.3}arrow 0$ .
Note that $E_{\infty}^{3.0}=H^{3}(M^{*})$ . Since dim $E_{\infty}^{0,3}\leqq 1$ , there are elements $w_{1}’,$ $\cdots$ , $w_{m}’$ in
$H^{3}(M)$ such that $w_{1}’U\cdots\cup w_{m}’\neq 0$ and $w_{1}’,$ $\cdots$ , $w_{m-1}’$ are in $E_{\infty}^{3,0}$ . Since dimM*
$=\dim M-8$ , we have $w_{1}’\cup\cdots\cup w_{m-1}’=0$ , which is a contradiction. This completes
the proof of Proposition 5.
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2. Proof of Theorem A.

Let $M$ be a closed $2m$-dimensional topological manifold with a map of degree
one into a product of 2-spheres $S^{2}\cross\cdots\cross S^{2}$ (m-times). We shall construct a
principal $T^{m}$-bundle $\tilde{M}$ over $M$ as follows. Put

$N_{i}=S^{3}\cross\cdots\cross S^{3}\cross S^{2}\cross\cdots\cross S^{2}i- times(m- i)- times$ $(i=0,1, \cdots m)$ .

Consider $N_{i+1}$ as a principal T-bundle over $N_{i}$ $(i=0, \cdots , m-1)$ . Let $M_{1}$ be the
pull-back of the bundle $N_{1}arrow N_{0}$ by the given map $f$ : $Marrow N_{0}$ of degree one and
$f_{1}$ : $M_{1}arrow N_{1}$ the bundle map covering $f$ . It is easy to see that $f_{1}$ is a map of
degree one. Inductively we can construct a sequence of manifolds $M_{0}=M,$ $M_{1}$ ,

, $M_{m}=\tilde{M}$ and a sequence of maps $f_{0}=f,$ $f_{1},$ $\cdots$ , $f_{m}=f$ such that $f_{i}$ : $M_{i}arrow N_{i}$

is a map of degree one and $p_{i}$ : $M_{i}arrow M_{i-1}$ is a principal T-bundle which is the
pull-back of $N_{i}arrow N_{i-1}$ by the map $f_{i-1}$ for $i=1,$ $\cdots$ , $m$ .

Let $\{a_{i1}, \cdots , a_{ii}\}$ and $\{b_{i1}, \cdots , b_{im-i}\}$ be the natural basis of $H^{3}(N_{i})$ and
$H^{2}(N_{i})$ , respectively and put $\overline{a}_{ij}=f_{i}^{*}(a_{ij}),\overline{b}_{ij}=f_{i}^{*}(b_{ij})$ .

It follows from a result in [10] (Theorem 4.1 in [10]) that the action of a
simply connected compact semi-simple Lie group on $M_{i}$ can be lifted over $M_{i+1}$

$(i=0,1, \cdots m-1)$ .
Now we shall prove the following Propositions which are basic for the proof

of Theorems A and B.
PROPOSITION 6. Let $M$ be a simPly connected closed $2m$-dimensional topological

manifold with a map of degree one into a product of 2-spheres. Assume $M$ admits
an action of $SU(2)$ . Then the lifting of the action over $\tilde{M}$ is almost free; $in$

other words, all isotropy subgroups are finite.
PROOF. Put $G=SU(2)$ . Let $\phi:G\cross Marrow M$ be the given action and $\phi_{i}$ the

lifting of $\phi$ over $M_{i}$ . Put $\phi_{m}=\tilde{\phi}$ . Let $H_{\phi}$ or $H_{\phi_{i}}$ be a principal isotropy sub-
group of $\phi$ or $\phi_{i}$ , respectively.

We shall first prove that $H_{\phi}^{\sim}$ is finite. Assume the contrary. If $\phi$ has a
singular orbit, $i.e$ . a fixed point, then $\phi$ has also a fixed point. This contradicts
Proposition 2. If $\hat{\phi}$ has no singular orbit, it can be proved that $\emptyset$ has a unique
orbit $S^{2}$ and $\tilde{M}$ is equivariantly homeomorphic to $S^{2}\cross\tilde{M}^{*}$ , which is easily seen
to be a contradiction. In fact, assume that there is a point $\tilde{x}$ in $\tilde{M}$ such that
$G_{\tilde{x}}=N_{T}$ ($N_{T}=the$ normalizer of $T$ ). It follows from the arguments in [1] (Lemma

2.4 and Theorem 2.6 in [1]) that there is a map $\alpha;\tilde{M}arrow G/N_{T}$ such that
$\alpha^{*}:$ $H^{*}(G/N_{T} : A)arrow H^{*}(\tilde{M} : A)$ is injective for any coefficient group $A$ . Since
$H^{1}(G/N_{T} : Z_{2})=Z_{2}$ and $H^{1}(\tilde{M} : Z_{2})=0$, this is impossible. Hence the orbit map
$\tilde{\pi}$ : $\tilde{M}arrow\tilde{M}^{*}$ is a fibre bundle with $S^{2}$ as fibre and $N_{T}/T$ as the structure group.
Since $\tilde{M}^{*}$ is simply connected we have $\tilde{M}=S^{2}\cross\tilde{M}^{*}$ . Thus we have proved that
$H_{\tilde{\phi}}$ is finite.
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Next we shall prove that $\phi$ has no singular orbit. We consider the following
two cases separately.

1. $H_{\phi}$ is positive dimensional.
2. $H_{\phi}$ is a finite group.
Case 1: It follows from Proposition 2 that there is no fixed point of $\phi$ .

Since $M$ is simply connected, the same arguments as before show that $\phi$ has no
orbit of type $N_{T}$ and $M$ is equivariantly homeomorphic to $S^{2}\cross M^{*}$ .

It is clear that there is an index $j$ , say $j=1$ , such that $w=f^{*}(b_{01})$ is not in
${\rm Im}\pi^{*}$ . We may assume that $w$ corresponds to a generator of $H^{2}(S^{2})$ . Then the
homomorphism $i_{x}^{*}$ : $H^{2}(M)arrow H^{2}(G(x))$ induced by the inclusion sends $w$ to a
generator of $H^{2}(G(x))$ for every point $x$ in $M$. Hence we have $i_{x}^{*}(\overline{b}_{01})\neq 0$ for
every point $x$ in $M$ and $p_{1}$ : $p_{1}^{-1}(G(x))arrow G(x)$ is a non-trivial T-bundle for every
point $x$ in $M$. This means that $p_{1}^{-1}(G(x))=G(x_{1})$ for every point $x_{1}$ in $p_{1}^{-1}(x)$

and hence $\phi_{1}$ has no singular orbit. Thus $\hat{\phi}$ has no singular orbit.
Case 2: Assume that $\phi$ has a singular orbit. Then $\phi$ has also a singular

orbit. It follows from Proposition 3 that $\phi$ has an orbit of type $T$ .
LEMMA 1. There is a Point $x$ in Msuch that the homomorphism $i_{x}^{*}f^{*}:$ $H^{2}(N_{0})$

$arrow H^{2}(G(x))$ is not zero.
PROOF. Assume that $i_{x}^{*}f^{*}$ is trivial for every point $x$ in $M$. Then we have

$e(a)(x^{*})=i^{*}(a)=0$ for every element $a$ in ${\rm Im} f^{*}$ , where $e:H^{2}(M)arrow E_{2}^{0,2}$ is the
edge homomorphism of the Leray spectral sequence of the orbit map for $\phi$ .
This implies that ${\rm Im} f^{*}$ is contained in Ker $\{H^{2}(M)arrow E_{\infty}^{0.2}\}$ and hence ${\rm Im} f^{*}$ is
contained in ${\rm Im}\{E_{\infty}^{2.0}arrow H^{2}(M)\}={\rm Im}\pi^{*}$ , where $\pi$ : $Marrow M^{*}$ is the orbit map. This
is easily seen to be a contradiction. This completes the proof of Lemma 1.

Fix a point $x$ in $M$ such that $i_{x}^{*}f^{*}$ is not zero. We may assume $i_{x}^{*}f^{*}(b_{01})\neq 0$ .
Consider the lifting $\phi_{1}$ . Choose a point $x_{1}$ of $M_{1}$ such that $p_{1}(x_{1})=x$ . Then we
have the following

LEMMA 2. The inclusion $i_{x_{1}}$ : $G(x_{1})arrow M_{1}$ induces non-trivial homomorphism
$i_{x_{1}}^{*}$ : $H^{3}(M_{1})arrow H^{3}(G(x_{1}))$ .

PROOF. It follows from the assumption that $p^{-1}(G(x))=G(x_{1})$ . Then Lemma
follows from the following commutative diagram;

$-H^{3}(N_{0})-H^{3}(N_{1})-\approx H^{2}(N_{0})arrow$

$\downarrow f^{*}$ $\downarrow f_{1}^{*}$ $\downarrow f^{*}$

$-H^{3}(M)-H^{3}(M_{1})-H^{2}(M)-$
$\downarrow i_{x}^{*}$ $|i_{x_{1}}^{*}$ $\downarrow i_{x}^{*}$

$arrow H^{3}(G(x))arrow H^{3}(G(x_{1}))arrow H^{2}(G(x))-$

where the horizontal sequences are Gysin sequences. This completes the proof
of Lemma 2.
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It follows from the assumption that $\phi_{1}$ has also a singular orbit. Then it
follows from Proposition 1 that the edge homomorphism $e_{1}$ : $H^{3}(M_{1})arrow E_{2}^{0}$

, ’ of the
Leray spectral sequence of the orbit map $M_{1}arrow M_{1}^{*}$ is trivial. This means that
the homomorphism $i_{y}^{*}$ : $H^{3}(M_{1})arrow H^{3}(G(y))$ induced by the inclusion must be $tr_{1^{l}}via1$

for every point $y$ in $M_{1}$ . This contradicts Lemma 2. This contradiction shows
that $\tilde{\phi}$ has no singular orbit. This completes the proof of Proposition 6.

Now we have the following
PROPOSITION 7. Let $M$ be as in $Propo\alpha tion6$ . Then the Leray spectral

sequence of the orbit map $\tilde{M}arrow\tilde{M}^{*}$ collaPses and $H^{*}(\tilde{M})$ is isomorphic to $H^{*}(\tilde{M}^{*})$

$\otimes H^{*}(S^{3})$ as algebras.
PROOF. Since the action $\tilde{\phi}$ is almost free, it follows from a result in [3]

(Theorem 1 in [3]) that the second term of the spectral sequence is given by
$E_{2}^{p,q}=H^{p}(\tilde{M}^{*})\otimes H^{q}(S^{3})$ . The edge homomorphism $e:H^{3}(\tilde{M})arrow E_{2}^{0}$ , ’ is proved to
be surjective. In fact, assume the contrary. Then we have $E_{\infty}^{0.3}=0$ , because
$\dim E_{2}^{0.3}=1$ and hence $H^{3}(\tilde{M}^{*})=H^{3}(\tilde{M})$ via the orbit map, which is easily proved
to be a contradiction. Thus the spectral sequence collapses. It follows from the
arguments of the Leray-Hirsch Theorem that $H^{*}(\tilde{M})$ is isomorphic to $H^{*}(\tilde{M}^{*})\otimes$

$H^{*}(S^{3})$ as algebras, which completes the proof of Proposition 7.
Now we shall prove Theorem A. It is sufficient to show that $SU(3)$ and

$Sp(2)$ can not act on $M$ non-trivially. Since the arguments for $SU(3)$ and $Sp(2)$

are completely parallel, we shall consider only the case of $SU(3)$ .
Assume $G=SU(3)$ acts on $M$ non-trivially. Denote this action by $\psi$ . Let $\phi$

be an action of a subgroup $K$ which is locally isomorphic to $SU(2)$ obtained from
the restriction of $\psi$ and $\psi_{i},$ $\phi_{l}$ the lifting of $\psi,$ $\phi$ over $M_{i}$ , respectively. Put
$\tilde{\psi}=\psi_{m}$ and $\emptyset=\phi_{m}$ .

It follows from Proposition 6 that $\tilde{\phi}$ is almost free for any subgroup $K$, and
hence the identity component of any isotropy subgroup is the identity or a torus
which is not contained in a subgroup locally isomorphic to $SU(2)$ .

We have the following several observations.
(1) Consider the action $\phi$ . It follows from Proposition 7 that $H^{*}(\tilde{M})$ is

isomorphic to $H^{*}(\tilde{M}^{*})\otimes H^{*}(S^{3})$ . It is easy to see that there is an index $h$ , say
$h=1$ , such that $\tilde{f}^{*}(a_{m1})$ is not contained in $H^{*}(\tilde{M}^{*})$ . We may assume that $\tilde{w}=$

$\tilde{f}^{*}(a_{m1})$ corresponds to a generator of $H^{3}(S^{3})$ . Then the homomorphism $i_{\tilde{x}}^{*}$ : $H^{3}(\tilde{M})$

$arrow H^{3}(K(\tilde{x}))$ induced by the inclusion $i_{\tilde{x}}$ sends $\tilde{w}$ to a generator of $H^{3}(K(\tilde{x}))$ for
every point fi in $\tilde{M}$.

(2) The homomorphism $j_{\tilde{x}}^{*}$ : $H^{3}(\tilde{M})arrow H^{3}(G(\tilde{x}))$ induced by the inclusion $j_{\tilde{x}}$

sends $\tilde{w}$ to a non-zero element of $H^{3}(G(\tilde{x}))$ for every point $\tilde{x}$ in $\tilde{M}$.
This follows from (1) and the following commutative diagram;
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$H^{3}(\tilde{M})\underline{i_{\tilde{x}}^{*}}H^{3}(K(\tilde{x}))$

$j_{\tilde{x}}^{*}\searrow$ $\nearrow k^{*}$

$H^{3}(G(\tilde{x}))$

where $k:K(\tilde{x})arrow G(\tilde{x})$ is the natural map.
(3) The possible type of the rational cohomology ring of orbit of the action

$\tilde{\phi}$ is that of $S^{s}\cross S^{6}$ . In other words, the action $\tilde{\phi}$ has no singular orbit.
This follows from (2) and the following Proposition for which the author is

indebted to the referee.
PROPOSITION 8. Let $U$ be a closed subgroup of $SU(3)$ . If $U$ is $po\alpha tive$

dimenstonal, then we have $H^{3}(SU(3)/U)=0$ .
PROOF. We may assume that $U$ is connected. For the proof of the Prop-

osition, it is sufficient to show the followings;
(i) $H^{*}(SU(3)/N(SU(2)))\cong H^{*}(CP^{2})$ , where $N(SU(2))$ is the normalizer of

$SU(2)$ in $SU(3)$ and $CP^{2}$ is the 2-dimensional complex projective space.
(ii) $H^{*}(SU(3)/SU(2))\cong H^{*}(S^{5})$

(iii) $H^{*}(SU(3)/SO(3))\cong H^{*}(S^{6})$

(iv) $H^{*}(SU(3)/T^{2})\cong Q[u_{1}, u_{2}]/(u_{1}^{3}, u_{1}^{2}+u_{1}u_{2}+u_{2}^{2})$ $(\deg u_{1}=\deg u_{2}=2)$

and
(v) $H^{*}(SU(3)/T)\cong H^{*}(S^{2}\cross S^{5})$ ,

where the notation $"\cong$ means “isomorphic as rings”.
(i) and (ii) are well known. (iii) follows from the fact $H^{*}(U(3)/SO(3))\cong$

$H^{*}(S^{1}\cross S^{6})$ . We shall prove (iv). Let $S$ be the standard maximal torus of $SU(3)$ .
Then we can identify $SU(3)/S$ with the hypersurface $H_{2,8}’$ in $CP^{2}\cross CP^{2}$ ;

$H_{2.2}’=\{[x_{1}, X_{2}, x_{3}]\cross[y_{1}, y_{2}, y_{s}];x_{1}\overline{y}_{1}+x_{2}\overline{y}_{2}+x_{3}\overline{y}_{3}=0\}$ .
Let $\pi_{i}$ : $H_{2.2}’arrow CP^{2}\cross CP^{2}arrow CP^{2}$ be the projection to the i-th component, $\gamma$ the
canonical complex line bundle over $CP^{2}$ and $c_{1}=c_{1}(\gamma)$ the first Chern class of $\gamma$ .
Define $\nu_{i}=\pi_{i}^{*}(c_{1})$ for $i=1,2$ . Then we have $H^{*}(SU(3)/S:Z)=Z[u_{1}, u_{2}]/$

$(u_{1}^{3}, u_{1}^{2}+u_{1}u_{2}+u_{2}^{2})$ , which implies (iv). In fact, let $\zeta$ be the complex 2-plane
bundle over $CP^{2}$ defined by

$E(\zeta)=$ { $[x]\cross y\in CP^{2}\cross C^{3}$ ; $x$ and $y$ are orthogonal}.

Note that $H_{2.8}’$ is the associated projective bundle $CP(\zeta)$ of $\zeta$ . Then $\zeta\oplus\gamma$ is
trivial and hence the total Chern class $c(\zeta)=1-c_{1}+c_{1}^{2}$ . Let $\hat{\zeta}$ be the canonical
complex line bundle over $H_{2.2}’$ . Then it is easy to see that $c_{1}(\hat{\zeta})=\pi_{2}^{*}(c_{1})=u_{2}$ .
Now we have an isomorphism;

$H^{*}(H_{2,2}’ : Z)=H^{*}(CP^{2} : Z)[t]/(c_{2}(\zeta)-c_{1}(\zeta)t+t^{2})$ ,

under which $c_{1}(\hat{\zeta})$ is mapped to $t$ . This induces an isomorphism;
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$H^{*}(H_{2}’, , : Z)=Z[u_{1}, u_{2}]/(u_{1}^{3}, u_{1}^{2}+u_{1}u_{2}+u_{2}^{2})$ ,

as desired.
Now we shall prove (v). We use the same notations as above. It is clear

that every l-dimensional toral subgroup of $SU(3)$ is conjugate to the subgroup
$D(a, b)$ dePned as follows;

$D(a, b)=\{(\begin{array}{lll}z^{a} z^{b} \overline{z}^{a+b}\end{array})$ ; $a,$ $b\in Z,$ $z\in C,$ $|z|=1\}$ .

We may assume $a\geqq b\geqq 0$ and $a,$
$b$ are relatively prime. Consider the principal

bundle $\pi$ : $SU(3)/D(a, b)arrow SU(3)/S$ . First assume $b\neq 0$ . Let $i_{1}$ and $j_{2}$ be mono-
morphisms $SU(2)arrow SU(3)$ dePned as follows;

$i_{1}(\begin{array}{ll}x yu v\end{array})=(\begin{array}{lll}1 0 00 x y0 u v\end{array})$ and $j_{2}(\begin{array}{ll}x yu v\end{array})=(\begin{array}{lll}x 0 y0 1 0u 0 v\end{array})$

respectively and put $T’=i_{1}^{-1}(S),$ $T’=i_{2}^{-1}(S)$ . Then we have the following com-
mutative diagram;

$SU(3)/Z_{a}arrow^{\overline i_{1}}SU(3)/D(a, b)arrow^{\overline i_{2}}SU(3)/Z_{b}$

$\downarrow\pi’$ $\downarrow\pi$ $\downarrow\pi’$

$SU(2)/T’\underline{i_{1}}SU(3)/S\underline{i_{2}}SU(2)/T’’$

where $\iota_{1},$ $\iota_{2}$ are bundle maps and $\pi’,$ $\pi’’$ are projections. It follows from the
above diagram and the definition of $u_{i}$ that the Euler class $e$ of $\pi$ is given by
$e=bu_{1}+au_{2}$ . Hence the homomorphism $\theta$ : $H^{2}(SU(3)/S:Z)arrow H^{4}(SU(3)/S:Z)$

defined by $\theta(c)=c\cdot e$ is injective. It follows from the Gysin sequence of $\pi$ with
rational coefficient that $H^{*}(SU(3)/T)=H^{*}(S^{2}\cross S^{5})$ . If $b=0$ , then the bundle $\pi$

may be assumed to be reduced to the fibering $S^{2}arrow SU(3)/Tarrow S^{5}$ , which means
the conclusion. This completes the proof of Proposition 8.

It is clear that the observation (3) contradicts Proposition 5. This completes
the proof of Theorem A.

3. Proof of Theorem B.

Let $g:Marrow S^{2}\cross S^{2}\cross\cdots\cross S^{2}$ (m-times) be a map of degree one and $c:X=$

$M\# Narrow M$ the collapsing map. Then the composition $g\circ c$ has degree one. As
before, we can construct a $T^{m}$-bundle $\tilde{X}$ over $X$ and a map $f;\tilde{X}arrow S^{3}\cross S^{3}\cross\cdots\cross S^{3}$

of degree one. We have the following diagram of fibre bundles and bundle maps;
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$(\#)$

$\tilde{p}\tilde{|}Xarrow\tilde{M}\tilde{c}|arrow S^{3}\cross S^{3}\cross\tilde{g}\downarrow\ldots\cross S^{3}$

$XM\overline{c}arrow S^{2}\cross S^{2}\cross g\ldots\cross S^{2}$

where $\tilde{M}$ is the $T^{m}$ -bundle over $M$ constructed from $g$ and $f=\tilde{g}\circ\tilde{c}$ .
We have the following observations.
(1) $\tilde{X}$ is homeomorphic to the space

( $\tilde{M}$ -int $D^{2m}\cross T^{m}$ ) $\cup$ ($N-S^{2m-1\cross T^{m}}$ int $D^{2m}$ ) $\cross T^{m}$

(2) Consider the following commutative diagram;

Here the vertical and horizontal sequences are exact, and $q$ and $r$ are the
collapsing maps: $\tilde{X}arrow\tilde{X}/\tilde{M}-intD^{2m}\cross T^{m}$ and $\tilde{X}arrow\tilde{X}/(N-intD^{2m})\cross T^{m}$ , respec-
tively and the other maps are the inclusions. Then it follows from the diagram
$(\#)$ that ${\rm Im} f^{*}$ is contained in ${\rm Im} r^{*}=Keri_{0}^{*}$ .

The observations (1) and (2) are direct consequences of the definition of $\tilde{X}$ .
(3) Let $r= \min\{r’ : H^{r’}(N)\neq 0\}$ . Since $N$ is not a rational homology sphere

and simply connected, we have $1\leqq r\leqq m$ . Choose elements $a’\in H^{r}(N)$ and $b’\in$

$H^{2m- r}(N)$ such that $a’\cup b’\neq 0$ . Since $a’\cross[T^{m}]\in H^{m+r}((N-intD^{2m})\cross T^{m})$ and
$b’\cross 1\in H^{2m-r}$(($N-$ int $D^{2m})\cross T^{m}$ ) are in Ker $i_{3}^{*}$ , there exist $a$ and $b$ in $H^{*}(\tilde{X})$ such
that $i_{0}^{*}(a)=a’\cross[T^{m}]$ and $i_{0}^{*}(b)=b’\cross 1$ . Then we have $a\cup b\neq 0$ .

In fact, consider the space $Y=\tilde{X}/\tilde{M}$–int $D^{2m}\cross T^{m}$ obtained from collapsing
$\tilde{M}-intD^{2m}\cross T^{m}$ to a point. It is clear that $Y$ is homeomorphic to the space
$(N-intD^{2m})\cross T^{m}/S^{2m-1}\cross T^{m}$ . Let $c$ and $d$ be elements of $H^{*}(Y)$ corresponding
to $a’\cross[T^{m}]$ and $b’\cross 1$ via the isomorphism $H^{*}(Y)=H^{*}$ (($N-$ int $D^{2m}$ ) $\cross T^{m},$ $S^{2m-1}$

$\cross T^{m})$ , respectively. It is clear that $c\cup d\neq 0$ and $q^{*}(c)=a$ and $q^{*}(d)=b$ , which
implies $a\cup b=q^{*}(c\cup d)\neq 0$ , because $q$ is a map of degree one. This completes
the proof of the observation (3).

Now assume $G=SU(2)$ acts on $X$. Then it follows from Propositions 6 and
7 that $H^{*}(\tilde{X})$ is isomorphic to $H^{*}(\tilde{X}^{*})\otimes H^{*}(S^{3})$ . It is easy to see that there is an
element $\tilde{w}$ in $H^{3}(\tilde{X})$ such that $\tilde{w}$ is contained in ${\rm Im} f*$ , but not in ${\rm Im}\tilde{\pi}^{*}$ , where
$\tilde{\pi}$ : $Xarrow\tilde{X}^{*}$ is the orbit map. It follows from (2) that $i_{0}^{*}(\tilde{w})=0$ . Since $H^{*}(\tilde{X})=$
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$H^{*}(\tilde{X}^{*})+\tilde{w}H^{*}(\tilde{X}^{*})$ and $i_{0}^{*}(\tilde{w})=0,$ $a$ and $b$ can be chosen in ${\rm Im}\tilde{\pi}^{*};$ in other words,
$a=\tilde{\pi}^{*}(a’’)$ and $b=\tilde{\pi}^{*}(b’’)$ where $a’’$ and $b’’$ are in $H^{*}(\tilde{X}^{*})$ . This implies that
$a\cup b=\tilde{\pi}^{*}(a’’\cup b’’)=0$ , which is a contradiction. Thus we have completed the
proof of Theorem B.
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