Semi-simple degree of symmetry and maps of degree one into a product of 2 -spheres

By Tsuyoshi Watabe

(Received June 5, 1982)
(Revised Oct. 4, 1982)

Introduction.

Recently many authors have shown that if a smooth closed manifold M admits a continuous map of degree one into a product of 1 -spheres, then the compact connected Lie group which acts on M smoothly and almost effectively is a torus ([5], [9], [11]). The present note is motivated by this result. In this note, we shall study the semi-simple degree of symmetry of a manifold which admits a continuous map of degree one into a product of 2 -spheres. Here the semi-simple degree of symmetry of a manifold is, by definition, the maximum dimension of the compact connected semi-simple Lie group which acts on the manifold smoothly and almost effectively.

We shall prove the following
Theorem A. Let M be a simply connected closed $2 m$-dimensional topological manifold which admits a continuous map of degree one into a product of 2 -spheres. Then $S O(3)$ or $S U(2)$ is only the compact connected simple Lie group which acts on M continuously and almost effectively. Therefore if a compact connected Lie group G acts on M continuously and almost effectively, then G is locally isomorphic to $T^{s} \times S U(2) \times \cdots \times S U(2)$.

A typical example of M of Theorem A is a connected sum of $S^{2} \times \cdots \times S^{2}$ (m-times) and a $2 m$-dimensional manifold. As for the connected sum, we shall obtain the following

Theorem B. Let M be as in Theorem A and N a simply connected closed $2 m$-dimensional topological manifold which is not a rational homology sphere. Then the connected sum $X=M \# N$ does not admit any action of $\operatorname{SU}(2)$.

Remark 1. As a corollary to Theorem B, we have the following
Proposition. Let N be as in Theorem B. Then the semi-simple degree of symmetry of ($S^{2} \times \cdots \times S^{2}$) \# N is zero.

REmARK 2. Since the connected sum $M=\left(S^{2} \times \cdots \times S^{2}\right) \# \Sigma^{2 m}\left(\Sigma^{2 m}: 2 m\right.$-dimensional homotopy sphere) is homeomorphic to $S^{2} \times \cdots \times S^{2}$, it admits a continuous action of $S U(2)$. But it does not necessarily admit a smooth action of $\operatorname{SU}(2)$.

In fact, if M admits a smooth action of $S U(2)$, then M admits a Riemannian metric of strictly positive scalar curvature ([7]). On the other hand, Hitchen has proved that if a Spin manifold admits a Riemannian metric of strictly positive scalar curvature, then the invariant α defined in [8] is zero. It is known that there is a homotopy sphere $\sum_{0}^{n}(n=1,2 \bmod 8)$ with $\alpha\left(\sum_{0}^{n}\right) \neq 0$ (see [6], [8]). Consider the manifold $M=\left(S^{2} \times \cdots \times S^{2}\right) \# \Sigma_{0}^{2 m}(m=4 k+1)$. Since $\alpha(M) \neq 0, M$ does not admit any smooth action of $S U(2)$.

The author would like to thank the referee for his valuable suggestions.
In this note, we shall restrict ourselves to continuous and almost effective actions and use the following notation.
\boldsymbol{Q} : the field of rational numbers
$H^{*}(X)$: the cohomology ring of X with coefficient \boldsymbol{Q}
T^{s} and $T: s$-dimensional torus and 1-dimensional torus, respectively
$S U(n)(S O(n), S p(n))$: the group of all $n \times n$ special unitary (special orthogonal, symplectic, respectively) matrices
X^{*} : the orbit space of X under the action of a compact connected Lie group on X.

1. Preliminaries.

In this section, we recall some basic facts about the Leray spectral sequence of the orbit map.

Let G be a compact connected Lie group and act on a compact connected space X. Let $\pi: X \rightarrow X^{*}$ be the orbit map and $\left\{E_{r}^{p, q}, d_{r}\right\}$ be the Leray spectral sequence of the map π. Then we have $E_{2}^{p, q}=H^{p}\left(X^{*}: H^{q}(\pi)\right.$), where $H^{q}(\pi)$ is the sheaf generated by the presheaf $U^{*} \rightarrow H^{q}\left(\pi^{-1}\left(U^{*}\right)\right)$ for open set U^{*} in X^{*} (see [2]). Recall the stalk of $H^{q}(\pi)$ at $x^{*} \in X^{*}$ is $H^{q}(G(x))$, where $\pi(x)=x^{*}$, and the edge homomorphism $e: H^{q}(X) \rightarrow E_{2}^{0, q}$ is given by $e(a)\left(x^{*}\right)=$ the image of a by the homomorphism $H^{q}(X) \rightarrow H^{q}(G(x))$ induced by the inclusion $G(x) \rightarrow X$ (see [2] for details).

We have the following
Proposition 1 (see [4]). Let k be the dimension of a principal orbit. If the action has a singular orbit, then the edge homomorphism $e: H^{k}(X) \rightarrow E_{2}^{0, k}$ is trivial. In particular, we have $E_{\infty}^{0, k}=0$.

Proof. The first part follows from the existence of a slice and the connectedness of X. Note that the edge homomorphism is factored as follows; $H^{k}(X) \xrightarrow{\alpha} E_{\infty}^{0, k} \xrightarrow{\beta} E_{2}^{0, k}$. Since α is surjective and β is injective, we have $E_{\infty}^{0, k}$ $=0$. This completes the proof of Proposition 1.

We have the following Propositions which are useful for the proof of Theorems A and B.

Proposition 2. Let M be a closed $2 m$-dimensional topological manifold such that there are m elements $w_{1}, w_{2}, \cdots, w_{m}$ in $H^{2}(M)$ with the cup product $w_{1} \cup \cdots$ $\cup_{w_{m}} \neq 0$. Assume the group $S U(2)$ acts on M with a torus T as a principal isotropy subgroup. Then there is no singular orbit.

Proof. Assume the contrary. Then it follows from Proposition 1 that $E_{\infty}^{0,2}$ $=0$, where $\left\{E_{r}^{p, q}, d_{r}\right\}$ is the Leray spectral sequence of the orbit map $\pi: M \rightarrow M^{*}$. Since $H^{1}(S U(2)(x))=0$ for every point x in M, we have $H^{2}\left(M^{*}\right)=E_{\infty}^{2,0}=H^{2}(M)$. Note that this isomorphism is induced by the orbit map. Hence $w_{i}=\pi^{*}\left(w_{i}^{\prime}\right)$ for $i=1, \cdots, m$, where w_{i}^{\prime} is an element of $H^{2}\left(M^{*}\right)$. Thus we have $w_{1} \cup \cdots \cup w_{m}=$ $\pi^{*}\left(w_{1}^{\prime} \cup \cdots \cup w_{m}^{\prime}\right)=0$, which is a contradiction. This completes the proof of Proposition 2.

Proposition 3. Let M be as in Proposition 2. Assume the group $S U(2)$ acts on M with a finite principal isotropy subgroup and a singular orbit. Then there is a point in M whose isotropy subgroup is a torus.

Proof. Assume the contrary. Since $H^{i}(S U(2)(x))=0$ for $i=1,2$ for every point x in M, it is easy to see that $H^{2}(M)=H^{2}\left(M^{*}\right)$ via the orbit map. The same argument as in Proposition 2 shows that this is impossible. This completes the proof of Proposition 3.

Proposition 4. Let M be a closed $3 m$-dimensional topological manifold such that there are m elements $w_{1}, w_{2}, \cdots, w_{m}$ in $H^{3}(M)$ with $w_{1} \cup \cdots \cup w_{m} \neq 0$. Assume the group $S U(2)$ acts on M with a finite principal isotropy subgroup and a singular orbit. Then there is a point x in M whose isotropy subgroup is a torus.

Since the proof is similar to that of Proposition 3, we shall omit it.
Proposition 5. Let M be as in Proposition 4. Assume M is simply connected and the group $S U(3)$ acts on M with a finite principal isotropy subgroup. Then there is a singular orbit.

Proof. Assume the contrary. Since M is simply connected, it follows from a result in [3] (Theorem 1 in [3]) that the Leray sheaf of the orbit map is trivial, which means that $H^{0}\left(M^{*}: H^{3}(\pi)\right)=\boldsymbol{Q}$ and hence $\operatorname{dim} E_{\infty}^{0,3} \leqq 1$. It follows from the fact $H^{i}(\operatorname{SU}(3)(x))=0$ for $i=1,2$ that we have the following exact sequence;

$$
0 \longrightarrow E_{\infty}^{3,0} \longrightarrow H^{3}(M) \longrightarrow E_{\infty}^{0,3} \longrightarrow 0 .
$$

Note that $E_{\infty}^{3,0}=H^{3}\left(M^{*}\right)$. Since $\operatorname{dim} E_{\infty}^{0,3} \leqq 1$, there are elements $w_{1}^{\prime}, \cdots, w_{m}^{\prime}$ in $H^{3}(M)$ such that $w_{1}^{\prime} \cup \cdots \cup w_{m}^{\prime} \neq 0$ and $w_{1}^{\prime}, \cdots, w_{m-1}^{\prime}$ are in $E_{a}^{3,0}$. Since $\operatorname{dim} M^{*}$ $=\operatorname{dim} M-8$, we have $w_{1}^{\prime} \cup \cdots \cup w_{m-1}^{\prime}=0$, which is a contradiction. This completes the proof of Proposition 5.

2. Proof of Theorem \mathbf{A}.

Let M be a closed $2 m$-dimensional topological manifold with a map of degree one into a product of 2 -spheres $S^{2} \times \cdots \times S^{2}$ (m-times). We shall construct a principal T^{m}-bundle \tilde{M} over M as follows. Put

$$
N_{i}=\underset{i \text {-times }}{S^{3} \times \cdots \times S^{3} \times \underset{(m-i) \text {-times }}{S^{2} \times \cdots \times S^{2}} \quad(i=0,1, \cdots, m)}
$$

Consider N_{i+1} as a principal T-bundle over $N_{i}(i=0, \cdots, m-1)$. Let M_{1} be the pull-back of the bundle $N_{1} \rightarrow N_{0}$ by the given map $f: M \rightarrow N_{0}$ of degree one and $f_{1}: M_{1} \rightarrow N_{1}$ the bundle map covering f. It is easy to see that f_{1} is a map of degree one. Inductively we can construct a sequence of manifolds $M_{0}=M, M_{1}$, $\cdots, M_{m}=\tilde{M}$ and a sequence of maps $f_{0}=f, f_{1}, \cdots, f_{m}=\tilde{f}$ such that $f_{i}: M_{i} \rightarrow N_{i}$ is a map of degree one and $p_{i}: M_{i} \rightarrow M_{i-1}$ is a principal T-bundle which is the pull-back of $N_{i} \rightarrow N_{i-1}$ by the map f_{i-1} for $i=1, \cdots, m$.

Let $\left\{a_{i 1}, \cdots, a_{i i}\right\}$ and $\left\{b_{i 1}, \cdots, b_{i m-i}\right\}$ be the natural basis of $H^{3}\left(N_{i}\right)$ and $H^{2}\left(N_{i}\right)$, respectively and put $\bar{a}_{i j}=f_{i}^{*}\left(a_{i j}\right), \bar{b}_{i j}=f_{i}^{*}\left(b_{i j}\right)$.

It follows from a result in [10] (Theorem 4.1 in [10]) that the action of a simply connected compact semi-simple Lie group on M_{i} can be lifted over M_{i+1} ($i=0,1, \cdots, m-1$).

Now we shall prove the following Propositions which are basic for the proof of Theorems A and B.

Proposition 6. Let M be a simply connected closed $2 m$-dimensional topological manifold with a map of degree one into a product of 2 -spheres. Assume M admits an action of $\operatorname{SU}(2)$. Then the lifting of the action over \tilde{M} is almost free; in other words, all isotropy subgroups are finite.

Proof. Put $G=S U(2)$. Let $\phi: G \times M \rightarrow M$ be the given action and ϕ_{i} the lifting of ϕ over M_{i}. Put $\phi_{m}=\tilde{\phi}$. Let H_{ϕ} or $H_{\phi_{i}}$ be a principal isotropy subgroup of ϕ or ϕ_{i}, respectively.

We shall first prove that $H_{\tilde{\phi}}$ is finite. Assume the contrary. If $\tilde{\phi}$ has a singular orbit, i.e. a fixed point, then ϕ has also a fixed point. This contradicts Proposition 2. If $\tilde{\phi}$ has no singular orbit, it can be proved that $\tilde{\phi}$ has a unique orbit S^{2} and \tilde{M} is equivariantly homeomorphic to $S^{2} \times \tilde{M}^{*}$, which is easily seen to be a contradiction. In fact, assume that there is a point \tilde{x} in \tilde{M} such that $G_{\hat{x}}=N_{T}\left(N_{T}=\right.$ the normalizer of $\left.T\right)$. It follows from the arguments in [1] (Lemma 2.4 and Theorem 2.6 in [1]) that there is a map $\alpha: \tilde{M} \rightarrow G / N_{T}$ such that $\alpha^{*}: H^{*}\left(G / N_{T}: A\right) \rightarrow H^{*}(\tilde{M}: A)$ is injective for any coefficient group A. Since $H^{1}\left(G / N_{T}: \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$ and $H^{1}\left(\tilde{M}: \boldsymbol{Z}_{2}\right)=0$, this is impossible. Hence the orbit map $\tilde{\pi}: \tilde{M}^{\prime} \rightarrow \tilde{M}^{*}$ is a fibre bundle with S^{2} as fibre and N_{T} / T as the structure group. Since \tilde{M}^{*} is simply connected we have $\tilde{M}=S^{2} \times \tilde{M}^{*}$. Thus we have proved that $H_{\tilde{\phi}}$ is finite.

Next we shall prove that $\tilde{\phi}$ has no singular orbit. We consider the following two cases separately.

1. H_{ϕ} is positive dimensional.
2. H_{ϕ} is a finite group.

Case 1: It follows from Proposition 2 that there is no fixed point of ϕ. Since M is simply connected, the same arguments as before show that ϕ has no orbit of type N_{T} and M is equivariantly homeomorphic to $S^{2} \times M^{*}$.

It is clear that there is an index j, say $j=1$, such that $w=f^{*}\left(b_{01}\right)$ is not in $\operatorname{Im} \pi^{*}$. We may assume that w corresponds to a generator of $H^{2}\left(S^{2}\right)$. Then the homomorphism $i_{x}^{*}: H^{2}(M) \rightarrow H^{2}(G(x))$ induced by the inclusion sends w to a generator of $H^{2}(G(x))$ for every point x in M. Hence we have $i_{x}^{*}\left(\bar{b}_{01}\right) \neq 0$ for every point x in M and $p_{1}: p_{1}^{-1}(G(x)) \rightarrow G(x)$ is a non-trivial T-bundle for every point x in M. This means that $p_{1}^{-1}(G(x))=G\left(x_{1}\right)$ for every point x_{1} in $p_{1}^{-1}(x)$ and hence ϕ_{1} has no singular orbit. Thus $\tilde{\phi}$ has no singular orbit.

Case 2: Assume that $\tilde{\phi}$ has a singular orbit. Then ϕ has also a singular orbit. It follows from Proposition 3 that ϕ has an orbit of type T.

Lemma 1. There is a point x in M such that the homomorphism $i_{x}^{*} f^{*}: H^{2}\left(N_{0}\right)$ $\rightarrow H^{2}(G(x))$ is not zero.

Proof. Assume that $i_{x}^{*} f *$ is trivial for every point x in M. Then we have $e(a)\left(x^{*}\right)=i^{*}(a)=0$ for every element a in $\operatorname{Im} f^{*}$, where $e: H^{2}(M) \rightarrow E_{2}^{0,2}$ is the edge homomorphism of the Leray spectral sequence of the orbit map for ϕ. This implies that $\operatorname{Im} f^{*}$ is contained in $\operatorname{Ker}\left\{H^{2}(M) \rightarrow E_{\infty}^{0,2}\right\}$ and hence $\operatorname{Im} f^{*}$ is contained in $\operatorname{Im}\left\{E_{\infty}^{2,0} \rightarrow H^{2}(M)\right\}=\operatorname{Im} \pi^{*}$, where $\pi: M \rightarrow M^{*}$ is the orbit map. This is easily seen to be a contradiction. This completes the proof of Lemma 1.

Fix a point x in M such that $i_{x}^{*} f^{*}$ is not zero. We may assume $i_{x}^{*} f^{*}\left(b_{01}\right) \neq 0$. Consider the lifting ϕ_{1}. Choose a point x_{1} of M_{1} such that $p_{1}\left(x_{1}\right)=x$. Then we have the following

Lemma 2. The inclusion $i_{x_{1}}: G\left(x_{1}\right) \rightarrow M_{1}$ induces non-trivial homomorphism $i_{x_{1}}^{*}: H^{3}\left(M_{1}\right) \rightarrow H^{3}\left(G\left(x_{1}\right)\right)$.

Proof. It follows from the assumption that $p^{-1}(G(x))=G\left(x_{1}\right)$. Then Lemma follows from the following commutative diagram;

where the horizontal sequences are Gysin sequences. This completes the proof of Lemma 2.

It follows from the assumption that ϕ_{1} has also a singular orbit. Then it follows from Proposition 1 that the edge homomorphism $e_{1}: H^{3}\left(M_{1}\right) \rightarrow E_{2}^{0,3}$ of the Leray spectral sequence of the orbit map $M_{1} \rightarrow M_{1}^{*}$ is trivial. This means that the homomorphism $i_{y}^{*}: H^{3}\left(M_{1}\right) \rightarrow H^{3}(G(y))$ induced by the inclusion must be trivial for every point y in M_{1}. This contradicts Lemma 2. This contradiction shows that $\tilde{\phi}$ has no singular orbit. This completes the proof of Proposition 6,

Now we have the following
Proposition 7. Let M be as in Proposition 6. Then the Leray spectral sequence of the orbit map $\tilde{M} \rightarrow \tilde{M}^{*}$ collapses and $H^{*}(\tilde{M})$ is isomorphic to $H^{*}\left(\tilde{M}^{*}\right)$ $\otimes H^{*}\left(S^{3}\right)$ as algebras.

Proof. Since the action $\tilde{\phi}$ is almost free, it follows from a result in [3] (Theorem 1 in [3]) that the second term of the spectral sequence is given by $E_{2}^{p, q}=H^{p}\left(\tilde{M}^{*}\right) \otimes H^{q}\left(S^{3}\right)$. The edge homomorphism $e: H^{3}(\tilde{M}) \rightarrow E_{2}^{0,3}$ is proved to be surjective. In fact, assume the contrary. Then we have $E_{\infty}^{0,3}=0$, because $\operatorname{dim} E_{2}^{0,3}=1$ and hence $H^{3}\left(\tilde{M}^{*}\right)=H^{3}(\tilde{M})$ via the orbit map, which is easily proved to be a contradiction. Thus the spectral sequence collapses. It follows from the arguments of the Leray-Hirsch Theorem that $H^{*}(\tilde{M})$ is isomorphic to $H^{*}\left(\tilde{M}^{*}\right) \otimes$ $H^{*}\left(S^{3}\right)$ as algebras, which completes the proof of Proposition 7.

Now we shall prove Theorem A. It is sufficient to show that $S U(3)$ and $S p(2)$ can not act on M non-trivially. Since the arguments for $S U(3)$ and $S p(2)$ are completely parallel, we shall consider only the case of $S U(3)$.

Assume $G=S U(3)$ acts on M non-trivially. Denote this action by ψ. Let ϕ be an action of a subgroup K which is locally isomorphic to $\operatorname{SU}(2)$ obtained from the restriction of ψ and ψ_{i}, ϕ_{i} the lifting of ψ, ϕ over M_{i}, respectively. Put $\tilde{\psi}=\psi_{m}$ and $\tilde{\phi}=\phi_{m}$.

It follows from Proposition 6 that $\tilde{\phi}$ is almost free for any subgroup K, and hence the identity component of any isotropy subgroup is the identity or a torus which is not contained in a subgroup locally isomorphic to $\operatorname{SU}(2)$.

We have the following several observations.
(1) Consider the action $\tilde{\phi}$. It follows from Proposition 7 that $H^{*}(\tilde{M})$ is isomorphic to $H^{*}\left(\tilde{M}^{*}\right) \otimes H^{*}\left(S^{3}\right)$. It is easy to see that there is an index h, say $h=1$, such that $\tilde{f}^{*}\left(a_{m 1}\right)$ is not contained in $H^{*}\left(\tilde{M}^{*}\right)$. We may assume that $\tilde{w}=$ $\tilde{f} *\left(a_{m_{1}}\right)$ corresponds to a generator of $H^{3}\left(S^{3}\right)$. Then the homomorphism $i_{\tilde{x}}^{*}: H^{3}(\tilde{M})$ $\rightarrow H^{3}(K(\tilde{x}))$ induced by the inclusion $i_{\tilde{x}}$ sends \tilde{w} to a generator of $H^{3}(K(\tilde{x}))$ for every point \tilde{x} in \tilde{M}.
(2) The homomorphism $j_{\tilde{x}}^{*}: H^{3}(\tilde{M}) \rightarrow H^{3}(G(\tilde{x}))$ induced by the inclusion $j_{\tilde{x}}$ sends \tilde{w} to a non-zero element of $H^{3}(G(\tilde{x}))$ for every point \tilde{x} in \tilde{M}.

This follows from (1) and the following commutative diagram;

where $k: K(\tilde{x}) \rightarrow G(\tilde{x})$ is the natural map.
(3) The possible type of the rational cohomology ring of orbit of the action $\tilde{\phi}$ is that of $S^{3} \times S^{5}$. In other words, the action $\tilde{\phi}$ has no singular orbit.

This follows from (2) and the following Proposition for which the author is indebted to the referee.

PROPOSITION 8. Let U be a closed subgroup of $S U(3)$. If U is positive dimensional, then we have $H^{3}(S U(3) / U)=0$.

Proof. We may assume that U is connected. For the proof of the Proposition, it is sufficient to show the followings;
(i) $H^{*}(S U(3) / N(S U(2))) \cong H^{*}\left(C P^{2}\right)$, where $N(S U(2))$ is the normalizer of $S U(2)$ in $S U(3)$ and $C P^{2}$ is the 2 -dimensional complex projective space.
(ii) $H^{*}(S U(3) / S U(2)) \cong H^{*}\left(S^{5}\right)$
(iii) $H^{*}(S U(3) / S O(3)) \cong H^{*}\left(S^{5}\right)$
(iv) $H^{*}\left(S U(3) / T^{2}\right) \cong Q\left[u_{1}, u_{2}\right] /\left(u_{1}^{3}, u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right) \quad\left(\operatorname{deg} u_{1}=\operatorname{deg} u_{2}=2\right)$
and
(v) $H^{*}(S U(3) / T) \cong H^{*}\left(S^{2} \times S^{5}\right)$,
where the notation "§" means "isomorphic as rings".
(i) and (ii) are well known. (iii) follows from the fact $H^{*}(U(3) / S O(3)) \cong$ $H^{*}\left(S^{1} \times S^{5}\right)$. We shall prove (iv). Let S be the standard maximal torus of $S U(3)$. Then we can identify $S U(3) / S$ with the hypersurface $H_{2,2}^{\prime}$ in $C P^{2} \times C P^{2}$;

$$
H_{2,2}^{\prime}=\left\{\left[x_{1}, x_{2}, x_{3}\right] \times\left[y_{1}, y_{2}, y_{3}\right] ; x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+x_{3} \bar{y}_{3}=0\right\}
$$

Let $\pi_{i}: H_{2,2}^{\prime} \rightarrow C P^{2} \times C P^{2} \rightarrow C P^{2}$ be the projection to the i-th component, γ the canonical complex line bundle over $C P^{2}$ and $c_{1}=c_{1}(\gamma)$ the first Chern class of γ. Define $u_{i}=\pi_{i}^{*}\left(c_{1}\right)$ for $i=1,2$. Then we have $H^{*}(S U(3) / S: \boldsymbol{Z})=\boldsymbol{Z}\left[u_{1}, u_{2}\right] /$ ($u_{1}^{3}, u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}$), which implies (iv). In fact, let ζ be the complex 2-plane bundle over $C P^{2}$ defined by

$$
E(\zeta)=\left\{[x] \times y \in C P^{2} \times C^{3} ; x \text { and } y \text { are orthogonal }\right\}
$$

Note that $H_{2,2}^{\prime}$ is the associated projective bundle $C P(\zeta)$ of ζ. Then $\zeta \oplus \gamma$ is trivial and hence the total Chern class $c(\zeta)=1-c_{1}+c_{1}^{2}$. Let $\hat{\zeta}$ be the canonical complex line bundle over $H_{2,2}^{\prime}$. Then it is easy to see that $c_{1}(\hat{\zeta})=\pi_{2}^{*}\left(c_{1}\right)=u_{2}$. Now we have an isomorphism;

$$
H^{*}\left(H_{2,2}^{\prime}: \boldsymbol{Z}\right)=H^{*}\left(C P^{2}: \boldsymbol{Z}\right)[t] /\left(c_{2}(\zeta)-c_{1}(\zeta) t+t^{2}\right)
$$

under which $c_{1}(\hat{\zeta})$ is mapped to t. This induces an isomorphism;

$$
H^{*}\left(H_{2,2}^{\prime}: \boldsymbol{Z}\right)=\boldsymbol{Z}\left[u_{1}, u_{2}\right] /\left(u_{1}^{3}, u_{1}^{2}+u_{1} u_{2}+u_{2}^{2}\right),
$$

as desired.
Now we shall prove (v). We use the same notations as above. It is clear that every 1-dimensional toral subgroup of $S U(3)$ is conjugate to the subgroup $D(a, b)$ defined as follows;

$$
D(a, b)=\left\{\left(\begin{array}{ccc}
z^{a} & & \\
& z^{b} & \\
& & \bar{z}^{a+b}
\end{array}\right) ; a, b \in \boldsymbol{Z}, \quad z \in \boldsymbol{C},|z|=1\right\} .
$$

We may assume $a \geqq b \geqq 0$ and a, b are relatively prime. Consider the principal bundle $\pi: S U(3) / D(a, b) \rightarrow S U(3) / S$. First assume $b \neq 0$. Let i_{1} and i_{2} be monomorphisms $S U(2) \rightarrow S U(3)$ defined as follows;

$$
i_{1}\left(\begin{array}{ll}
x & y \\
u & v
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & x & y \\
0 & u & v
\end{array}\right) \text { and } i_{2}\left(\begin{array}{ll}
x & y \\
u & v
\end{array}\right)=\left(\begin{array}{lll}
x & 0 & y \\
0 & 1 & 0 \\
u & 0 & v
\end{array}\right)
$$

respectively and put $T^{\prime}=i_{1}^{-1}(S), T^{\prime \prime}=i_{2}^{-1}(S)$. Then we have the following commutative diagram;

where \bar{i}_{1}, \bar{i}_{2} are bundle maps and $\pi^{\prime}, \pi^{\prime \prime}$ are projections. It follows from the above diagram and the definition of u_{i} that the Euler class e of π is given by $e=b u_{1}+a u_{2}$. Hence the homomorphism $\theta: H^{2}(S U(3) / S: \boldsymbol{Z}) \rightarrow H^{4}(S U(3) / S: \boldsymbol{Z})$ defined by $\theta(c)=c \cdot e$ is injective. It follows from the Gysin sequence of π with rational coefficient that $H^{*}(S U(3) / T)=H^{*}\left(S^{2} \times S^{5}\right)$. If $b=0$, then the bundle π may be assumed to be reduced to the fibering $S^{2} \rightarrow S U(3) / T \rightarrow S^{5}$, which means the conclusion. This completes the proof of Proposition 8,

It is clear that the observation (3) contradicts Proposition 5. This completes the proof of Theorem A.

3. Proof of Theorem B.

Let $g: M \rightarrow S^{2} \times S^{2} \times \cdots \times S^{2}$ (m-times) be a map of degree one and $c: X=$ $M \# N \rightarrow M$ the collapsing map. Then the composition $g{ }^{\circ} c$ has degree one. As before, we can construct a T^{m}-bundle \tilde{X} over X and a map $\tilde{f}: \tilde{X} \rightarrow S^{3} \times S^{3} \times \cdots \times S^{3}$ of degree one. We have the following diagram of fibre bundles and bundle maps;
(\#)

where \tilde{M} is the T^{m}-bundle over M constructed from g and $\tilde{f}=\tilde{g} \circ \tilde{c}$.
We have the following observations.
(1) \tilde{X} is homeomorphic to the space

$$
\left(\tilde{M}-\operatorname{int} D^{2 m} \times T^{m}\right) \underset{S^{2 m-1} \times T^{m}}{\cup}\left(N-\operatorname{int} D^{2 m}\right) \times T^{m} .
$$

(2) Consider the following commutative diagram;

Here the vertical and horizontal sequences are exact, and q and r are the collapsing maps: $\tilde{X} \rightarrow \tilde{X} / \tilde{M}-\operatorname{int} D^{2 m} \times T^{m}$ and $\tilde{X} \rightarrow \tilde{X} /\left(N-\operatorname{int} D^{2 m}\right) \times T^{m}$, respectively and the other maps are the inclusions. Then it follows from the diagram (\#) that $\operatorname{Im} f^{*}$ is contained in $\operatorname{Im} r^{*}=\operatorname{Ker} i_{0}^{*}$.

The observations (1) and (2) are direct consequences of the definition of \tilde{X}.
(3) Let $r=\min \left\{r^{\prime}: H^{r^{\prime}}(N) \neq 0\right\}$. Since N is not a rational homology sphere and simply connected, we have $1 \leqq r \leqq m$. Choose elements $a^{\prime} \in H^{r}(N)$ and $b^{\prime} \in$ $H^{2 m-r}(N)$ such that $a^{\prime} \cup b^{\prime} \neq 0$. Since $a^{\prime} \times\left[T^{m}\right] \in H^{m+r}\left(\left(N-\right.\right.$ int $\left.\left.D^{2 m}\right) \times T^{m}\right)$ and $b^{\prime} \times 1 \in H^{2 m-r}\left(\left(N-\operatorname{int} D^{2 m}\right) \times T^{m}\right)$ are in $\operatorname{Ker} i_{3}^{*}$, there exist a and b in $H^{*}(\tilde{X})$ such that $i_{0}^{*}(a)=a^{\prime} \times\left[T^{m}\right]$ and $i_{0}^{*}(b)=b^{\prime} \times 1$. Then we have $a \cup b \neq 0$.

In fact, consider the space $Y=\tilde{X} / \tilde{M}-\operatorname{int} D^{2 m} \times T^{m}$ obtained from collapsing $\tilde{M}-$ int $D^{2 m} \times T^{m}$ to a point. It is clear that Y is homeomorphic to the space $\left(N-\operatorname{int} D^{2 m}\right) \times T^{m} / S^{2 m-1} \times T^{m}$. Let c and d be elements of $H^{*}(Y)$ corresponding to $a^{\prime} \times\left[T^{m}\right]$ and $b^{\prime} \times 1$ via the isomorphism $H^{*}(Y)=H^{*}\left(\left(N-\operatorname{int} D^{2 m}\right) \times T^{m}, S^{2 m-1}\right.$ $\times T^{m}$), respectively. It is clear that $c \cup d \neq 0$ and $q^{*}(c)=a$ and $q^{*}(d)=b$, which implies $a \cup b=q^{*}(c \cup d) \neq 0$, because q is a map of degree one. This completes the proof of the observation (3).

Now assume $G=S U(2)$ acts on X. Then it follows from Propositions 6 and 7 that $H^{*}(\tilde{X})$ is isomorphic to $H^{*}\left(\tilde{X}^{*}\right) \otimes H^{*}\left(S^{3}\right)$. It is easy to see that there is an element \tilde{w} in $H^{3}(\tilde{X})$ such that \tilde{w} is contained in $\operatorname{Im} \tilde{f}^{*}$, but not in $\operatorname{Im} \tilde{\pi}^{*}$, where $\tilde{\pi}: \tilde{X} \rightarrow \tilde{X}^{*}$ is the orbit map. It follows from (2) that $i_{0}^{*}(\tilde{w})=0$. Since $H^{*}(\tilde{X})=$
$H^{*}\left(\tilde{X}^{*}\right)+\tilde{w} H^{*}\left(\tilde{X}^{*}\right)$ and $i_{0}^{*}(\tilde{w})=0, a$ and b can be chosen in $\operatorname{Im} \tilde{\pi}^{*}$; in other words, $a=\tilde{\pi}^{*}\left(a^{\prime \prime}\right)$ and $b=\tilde{\pi}^{*}\left(b^{\prime \prime}\right)$ where $a^{\prime \prime}$ and $b^{\prime \prime}$ are in $H^{*}\left(\tilde{X}^{*}\right)$. This implies that $a \cup b=\tilde{\pi}^{*}\left(a^{\prime \prime} \cup b^{\prime \prime}\right)=0$, which is a contradiction. Thus we have completed the proof of Theorem B.

References

[1] A. Borel, Seminar on Transformation Groups, Ann. of Math. Studies, 46, Princeton Univ. Press, 1960.
[2] G. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967.
[3] P.E. Conner, Orbits of uniform dimension, Michigan Math. J., 6(1958), 25-32.
[4] D. Burghelea and R. Schultz, On the semi-simple degree of symmetry, Bull. Soc. Math. France, 103 (1975), 431-440.
[5] H. Donnelly and R. Schultz, Compact group actions and maps into aspherical manifolds, preprint.
[6] N. Hitchen, Harmonic spinors, Advances in Math., 14(1974), 1-55
[7] B. Lawson, Jr. and S. T. Yau, Scalar curvature, non-abelian group actions and the degree of symmetry of exotic spheres, Comm. Math. Helv., 49 (1974), 232-244.
[8] J. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology, a Symposium in Honor of M. Morse, Princeton Univ. Press, 1965, 55-62.
[9] R. Schoen and S. T. Yau, Compact group actions and the topology of manifolds with non-positive curvature, Topology, 18(1979), 361-380.
[10] T.E. Stewart, Lifting group actions in fibre bundles, Ann. of Math., 74(1961), 192-198.
[11] R. Washiyama and T. Watabe, On the degree of symmetry of a certain manifold, J. Math. Soc. Japan, 35 (1983), 53-58.

Tsuyoshi Watabe
Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-21, Japan

