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1. Introduction.

In 1966, D. Scott and R. Solovay reformulated the theory of P.J. Cohen’s
forcing in terms of Boolean valued models and they also introduced Boolean valued
analysis as an application of Boolean valued model theory to analysis. Recently,
G. Takeuti developed the Boolean valued analysis extensively in connection with
operator theory, harmonic analysis and operator algebras [6], [7J, [8], [9] [10].

In this paper, we study Boolean valued analysis of Hilbert space theory.
Let # be a commutative W*-algebra and # the complete Boolean algebra of
projections in M. We construct an embedding H—H of any non-degenerate
normal *-representation of % on a Hilbert space H, which we call a normal K-
module H in this paper, in Scott-Solovay’s Boolean valued model V% of set
theory as a Hilbert space Hin V® and study functorial properties of this em-
bedding. We prove that this embedding is an equivalence between the category
of normal #-modules and the category of Hilbert spaces in V® and that the
multiplicity function of a normal #-module H coincides with the dimension of
Hin V®, which is a cardinal in V®. Thus the Hahn-Hellinger spectral
multiplicity theory can be reduced to the Boolean valued interpretation of the
simple statement that two Hilbert spaces are isomorphic if and only if they have
the same dimension. These results also shed some lights on Takeuti’s transfer
theorem of von Neumann algebras to factors in V¥’ [10], where he constructed
Hilbert spaces in V¥ by enlarging original Hilbert spaces. In particular, our
results improve his machinery in the point that we need not enlarge original
Hilbert spaces in order to obtain Hilbert spaces in V‘®’; only we have to do is
to change the truth value of the equality between vectors.

In Section 2, we give necessary preliminaries. In Section 3, it is shown that
L?-spaces on the spectrum of ¥ is the complex numbers in V%’, Later develop-
ment depends much on this fact. In Section 4, we construct the embedding
H—H. In Section 5, we prove its functorial properties. In Section 6, the con-
nection with multiplicity theory is established.

The author wishes to express his gratitude to Professor G. Takeuti for the
use of his results appearing in his preprint.
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2. Preliminaries.

Let % be an abelian W*-algebra, i. e. a commutative C*-algebra which is a
dual space as a Banach space, or equivalently which admits a faithful representa-
tion as a von Neumann algebra on a Hilbert space. For the basic theorems and
terminology of the theory of operator algebras, we refer the reader to Sakai [4]
and Takesaki [5]. Let @ be the set of projections in #. Then @ is a com-
plete Boolean algebra by defining the Boolean operations as b;V by;=b;+b,—b,b,,
biN\b,=bb, and 7b=1—b, whose maximum element is the unit 1 of # and
whose minimum element is 0 of .

Scott-Solovay’s Boolean valued model V¥ of set theory is defined in the
following way [11; p.59, p.121]. For an ordinal a, we define V& by trans-
finite induction as follows:

(1) v =g,
@ V& ={ulu:9u)—® and Du)SV},
3) V@ =\, VEP, for a limit ordinal a.

Then we define VP =\,c0,V ¥, where On is the class of all ordinal numbers.
For u, veV®, the truth values [u=v] and [u=v] are defined as functions
from V& XV to 4 satisfying the following properties:

(1) [uevl=supyeowm@MALu=y]),

2) [u=v]=infrcow(u(x)=[xev]) Ainfycnw@(y)=[yEul).
We also use A, V, 7 and = as logical connectives. Let ¢ be a formula in set
theory with predicate symbols € and =. If ¢ contains no free variables and
all the constants in ¢ are members in V®, we define the truth value [@] of
¢ by the following recursive rules.

(1) [7¢1=714¢],

2) [ AP1=[: N[ -],

3 [1Ve1=[1VIg.]1,

4) [Vxé(x)]=infyer@[o(u)],

(6) [Fxg(x)]=supuer®[d(u)].
The basic theorem of Scott-Solovay’s Boolean valued model theory is the follow-
ing [11].

THEOREM 2.1. If ¢ is a theorem of ZFC, then [¢1=1 is also a theorem of
ZFC.

The original universe V of ZFC can be embedded in V% by the following
operation ~ defined by the -recursion: qu yeV, 9(¥)={x|x=y} and y is a
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constant function whose value is 1 in 8. A family {b.} of elements of @ is
called a partition of unity if sup,b,=1 and b, Abg=0 for any a#8. Let {b.}
be a partition of unity and let {u,} be a family of ®-valued sets in V®. Then
there is an element u€V‘® such that [u=u.]=b, for any a. Moreover if
there is another u’ such that [u’'=u,]=b, for any « then [u=u’]=1. We
denote this u by D uebe Or ub+usbos+ -+ +uzb, if =1, 2, ---, n.

Let ¢(x) be a formula with only x as a free variable and such that there is
2, €V with [¢(ve)]=1. Let X={x|d(x)}. We define the interpretation X¥
of X with respect to V® as X®={uesV®|[4(u)]=1}. Then it is known
[6; p. 14] that

[VxeXg(x)]=inf,cx®[P(u)],

[Fx e XP(x)]=supuex®[P(u)] .

If X is a set, by choosing a representative from an equivalence class {veV®|
[u=v]=1}, we can consider X‘® as a set [6; p. 14, Remark]. Then we have
XPx{1}eV® and that [ X=X x {1}]=1.

Our special interest of this paper is the following situation. A lot of estab-
lished notions in functional analysis are concerned with bounded objects such
as Banach spaces of bounded functions or integrable functions and Banach alge-
bras of bounded operators. Nevertheless X is in general larger than such
spaces. Thus it is important to find a well known bounded object ¥ which is
considered as a subset of X‘® such that [Y X {1} =X]=1. In this case we have
again

[Vx e Xg(x)|=infuer[P(u)],
[ax = Xg[)(X)]] :SupuEYﬂ:gb(u)] ’

by [11; Theorem 13.13, p. 125].

Let d2V®, A function g: d—V™® is called extensional if for any x, x
ed, [x=x"1=[glx)=g(x)]. A B-valued set usV“® is called definite if for any
x€Du), u(x)=1 and called separated if [x=y]=1 implies that x=1y for any
x, veD(u). Then the following theorem is known [11].

THEOREM 2.2. Let u, veV*® be definite. Then there is a bijective corre-
spondence between B-valued sets f such that [f: u—v]=1 and extensional maps
g: Du)-v® where v ={u|[ucsvl=1}. The correspondence is given by the
relation [ f(x)=g(x)]=1 for any x&D(u).

Now we have a characterization of extensional maps.

THEOREM 2.3. Let u, veV® be definite and separated, and let g: D(u)—
D). Then g is extensional if and only if g(xb+y(7b)=g(x)b+g(y}7b) for
any x, yeD(u), be B8.

PROOF. Let x, yeD(u) and be B. Suppose that g is extensional. Then by

’
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[Theorem 2.2, there is some f<V® such that [f: u—v]=1 and that [ f(x)=g(x)]
=1 for any x€9D(u). Then we have b<[xb+y(7b)=x]1=[f(xb+y(7b)=f(x)].
Similarly, we have 7b=<[f(xb-+y(7b)=/f(y)]. It follows that [f(xb+y(7b))=
F(x)b+ f(y)(7b)]=1 so that g(xb+ y(7 b))=g(x)b+g(y)(7b). Conversely, suppose
that g(xb+y(7b)=g(x)b+g(y)(7b) and that b=[x=y]. Then we have b=
[x=xb+y(7b)] and that b=<[x=y]ALx=xb+y(7b)]<[y=xb+y(7b)]. Thus
we have [y=xb+y(7b)]=1 so that g(y)=g(x)b+g(y)(7b). Therefore we have
b=[g(y)=g(x)]. QED

For further results and terminology of Scott-Solovay’s Boolean valued model
theory, we shall refer the reader to Takeuti and Zaring [11].

Now we can construct the set @ of rational numbers in the model V% as
in [6; p. 11], and we have I[Q:Q]]:l. We define a real number to be the
lower half line without the end point of a Dedekind cut. Therefore the formal
definition of ‘a is a real number’ is expressed by

aSQANIscQ(sca)NIs=Q(sE a)
NAVsEQ(sca & Ft=Q(s<INI=a)).

We define R® to be the interpretation of the set R of real numbers in V®
and C® to be the interpretation of the set C of complex numbers in V¥, i.e.

R®={ucsV®|[u is a real number]=1},
CPO={ucV®|[u is a complex number]=1}.

For further information about Boolean valued analysis in the case @ is a pro-
jection algebra or & is a measure algebra, we shall refer the reader to Takeuti
6]

By a (left) normal M-module H we will mean the Hilbert space H of a non-
degenerate normal *-representation of % with the corresponding action of .
Usually we write the action of a normal #-module H as n(a)s for ac M, E=H.
If H and K are normal -modules then we will denote by Hom(H, K) the
Banach space of bounded #-module maps from H to K, in other words the
space of all intertwining operators between the representations of <% on H and
K. We say that U=Hom(H, K) is a unitary M-module map if U is a unitary
transformation from H onto K. Two normal #-modules H and K are called
unitarily equivalent if there is a unitary #-module map U=Hom(H, K). The
classification of all normal #-modules up to unitary equivalence is carried out
by the multiplicity theory. In the present context, the multiplicity function of a
normal M-module is the function m from the class of all cardinals to @ such
that if e+ B then m(a)m(B)=0 and that sup,m(a)=1. Then to any normal -
module H corresponds a unique multiplicity function m such that z(m(a))H has
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a uniform multiplicity « if a«+0 and that H is the direct sum of all z(m(a))H’s.
In this case, there is a family {v,} of localizable measures on the spectrum £ of
M with disjoint supports £, such that [£2,]=m(a) and that

H=35L% 2, vo)Q1¥a)

as unitary equivalence of normal #-modules. Thus for any multiplicity function
m there is a normal #-module H whose multiplicity function is m and two
normal H-modules are unitarily equivalent if and only if they have the same
multiplicity function. For the more detail, see [1], in particular [1; Theorem
64.5, p. 102].

3. Real and complex numbers in the model.

In order to obtain convenient representations of real numbers and complex
numbers in V¢®, consider the spectrum £ of #. By the Gelfand representation
theorem % is isomorphic to the commutative C*-algebra C(£) of all continuous
functions on Q. Since M is a W*-algebra, 2 is a hyperstonean space, i.e. £ is
a compact Hausdorff space such that the closure of every open set is open and
that it admits sufficiently many positive normal measures [5; Theorem 1.18, p.
109]. Then & is isomorphic to the Boolean algebra of clopen subsets of £ by
the obvious correspondence between projections in C(£2) and clopen subsets of
Q. Thus 2 is identical with the Stone representation space of the Boolean
algebra B on account of the uniqueness of the Stone representation space among
totally disconnected compact Hausdorff spaces. In the hyperstonean space £,
every regular open set is clopen and every meager set is nowhere dense [5; p.
108]. Let S be the Borel o-field of 2 and let 4 be the o-ideal of meager (or
nowhere dense) Borel subsets of £. Then the countable suprema and countable
infima in the quotient Boolean algebra &/J4 are inherited from those in S and by
Loomis’ theorem [2; Theorem 13, p. 102] & is ¢-isomorphic to S/4. In the
sequel, we denote by [S] for any S in S the corresponding element in 3 by
the g-isomorphism #=S/9. By the similar argument as in [6; pp. 53-54], we
can show that there is a correspondence between R‘® and the set Bg({2) of all
real Borel functions on 2 such that ueV® corresponds to f < Bg(£2) if and only
if [Feul=[{wsR|r<f(w)}] for any r=Q. This correspondence between R‘®
and Bg(f2) is one-to-one in the following sense: If f and g in Bg(Q) correspond
to the same =R then f and g are equal except on a nowhere dense set,
i.e. {wel]|f(w)#g(w)} is nowhere dense. If u and vin R“® correspond to the
~same f<Bgp(f2), then [u=v]=1. Further properties of this correspondence can
be shown analogously as in [6; Chapter 2, §2]. Now it is straightforward that
the above correspondence can be extended to the analogous correspondence be-
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tween C® and the set B(£2) of all (complex) Borel functions on 2 by the rela-
tion C(.@):R(Q)_{_Z‘R(Q).

Let {u,} be a maximal family of positive normal measures on £ with dis-
joint supports I,. Put I'=\U,[, and p=3,p.. Then I'is a dense open subset
of 2 and p is a positive Radon measure on /' such that C(2), as well as ¥, is
isomorphic to the algebra L>(I] ) of all essentially bounded p-measurable func-
tions on /' by the unique continuous extension to £ of bounded continuous repre-
sentatives in L=([ p) [5; Theorem 1.18, p. 109]. Since a subset S of 2 is no-
where dense if and only if x£,(S)=0 for any ta [5; Proposition 1.15, p. 108] and
since £2—1" is nowhere dense, the correspondence between C‘®’ and B(2) can
be modified as the correspondence between C® and the set L(I} y) of p-meas-
urable functions on " such that if f and g in L([} w) correspond to u and v in
C® then {wel'|flw)#g(w)} is p-null if and only if [u=v]=1. In the sequel,
we shall identify C*® and L([, ) by the above correspondence, and hence we
shall regard L=(I, p) and L?(I, p) as subsets of C® where L?(I, p) is the
space of the p-th power p-integrable functions on I” for 1=<p<co.

Now we have the following.

THEOREM 3.1. We have [C=L?(I;, p)x {1} =1 for 1=<p=co.

PrOOF. Since the family {g,} of finite measures has disjoint supports {/,},
we have a partition {[/,]} of unity of ®. Then by [6; Proposition 2.7] we can
assume that g is a finite measure. Then we have LI, p)S L?([; p) for 1=<p
<co so that we have only to show the case p=oo. Let f be an element in
C®. For n=0, 1,2, .-, put bp,=[{wel|n<|f(w)|<n+1}]. Then {b,} is a
partition of unity in 8. For any n, define a function g, in L[] p) by g,(w)
=f(w) if n=]flw)|<n+1 and by g.(@)=0 otherwise. Then we have

[fel=I;, Wx {1} ]=supzer=cr, m[f=g]
z[f=g:.]=[{wel'| flw=g ()} 1=b,,
for every n. Thus we have [fe L=(, p)X {1}]=1 and consequently
[CS L™, @)% {1} ]=inf ec[ fe LT, p)x {1} ]=L.

Since [L=(I; p)X {1} SC]=1 is obvious, we complete the proof. QED

The above theorem has the following technical usefulness. Let ¢(x) be a
formula with only x as a free variable. It is known [11; Theorem 13.13, p. 125]
that for any usV®

[Vxeug(x)]=infre 0w (u(x) = [$(x)]) .
Then by the above theorem, we have

[VxeCo(x)]=[(Vx L*([; )X {1})¢(x)]=infzer?r, wlo(x)],
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since if u=L?, p)x {1} then Dw)=L?(; p) and u(x)=1 for all x=D(w).
Similarly, we have

[FxeCo(x)]=supzer?r, m[P(x)] .

Furthermore, by the maximum principle [11; Theorem 16.2, p. 148], if
Supzer?r, »l@(x)]=1 then there is some x< L([; p) such that [¢(x)]=1. This
fact will be seen as a useful technique in analysis, if we can clarify the meaning
of [4(x)]=1.

In the following sections, we identify two functions on I” which are equal
almost everywhere and also identify two elements ¥ and v in C“® such that
[u=v]l=1. Formally, this can be justified by regarding L(/; p) as the quotient
space of all p-measurable functions by the set of all g-null functions and by
extracting one element from {u|[x#=v]=1} by a method mentioned in [6; p. 14].
Thus we can say that f=g if and only if u=v when f and g in L([] p) cor-
respond to u and v in C*® respectively, and so we shall again identify L(I, p)

and C®. We shall also identify # and L*(I, p) by the correspondence men-
tioned above.

4. The construction of Hilbert spaces in the model.

Let <H, > be a normal #-module. Then n(#) is a von Neumann algebra
on H. For any &, 5 in H, the function B—(x([B1)§|7) on S is a finite signed
measure absolutely continuous with respect to g, so that by the Radon-Nikodym
theorem there is a p-integrable function F(§, ) on I' uniquely up to almost
everywhere such that

(n(a)é| n)zgra(w)F(E, n()udw),

for every a in L>(I;, ). Then it is easy to see that for any a, be L=(I; p) and
E; 77} CEH,

(F1) F(z(a)§+nb)y, O@=a@F ¢ O@)+b@F(y, D) a. e,

(F2) F(§ pw)=F(y, §w) a.e,
(F3) F(, &w)=0 a.e.,
(F4) &£=0 if and only if F(, &)w)=0 a.e.

Roughly speaking, this shows that F has the properties similar to the inner
product if we consider C‘® as the scalars. Now we proceed to construct a
Hilbert space in V® by embedding H and F into V¢,

For this purpose we use the following lemmas analogous with the Schwarz
inequality and with the Riesz representation theorem.

LEMMA 4.1. For any & n<H, we have
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@) FE n)|=FE, §w)?*F(y, !’ a.e.,

@2) FE—n, E—w)'*=F(¢, Ew)'*+F(y, nw?'* a.e.

PROOF. Let ¢t be a real number. Define a bounded p-measurable function a
on I' by the relation a(w)=t|F (¢, p)w)|/FE, pw), if F¢, n)(@+0and alw)=t,
if F(§, n)Xw)=0. Put B={wel'|F(¢, 7)) +0}. Then since F(r(a)s+7, n(a)é
+7)(@)=0 a. e., the routine computations leads that

F&, @ +2|F (€, n)o)|t+F(n, 7)w)=0

almost everywhere on B. Thus the relation (1) follows immediately. Now the
relation (2) follows from the routine computations using the relation (1). QED
LEMMA 4.2. Let G: H-L(I, p) be a function with the following properties:
(1) For any ac L>(I, u) and £ H, G(z(a)f)w)=a(@)GE)w) a.e.
(2) For any & neH, GE+n)0)=GE)(w)+G(n)w) a.e.
(3) There is some g L¥I, p) such that for any §€H.

[GE ()| =gw)F (&, )" a.e.

Then therve is some {=H such that for any é=H,

GE)(@=F(, Ow) a.e.

PROOF. Since F(£, §)e LY(I, u), by the condition (3) we have G(£)e LY, p).
Define a function ¢: H—C by the relation

5@ = GO uds),

for any é=H. Then ¢ is a linear functional on H. Let gL/, p) be as in
(3). Then we have

9@I=] 16@@] udo)=| g@FE O udo)

1/2

A

() g@rudon) ([ 7 & S@pde))

Thus ¢ is bounded and hence by the Riesz representation theorem there is some
{=H such that for any é€H, ¢(&)=(£]0). Then we have for any a< L[] p),

[ a@Gc@Wuin=] cr@dwudw)

=4(x(@8)=(z(@E|0=| a@F( D@pdo).
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Therefore we have GE)(w)=F (&, {)(w) a.e. for any é€H. QED
THEOREM 4.3. For any £ H, define a B-valued set £V ® by the relation

2@ ={¢|6€H} and Ef)=[FE—n, &—n)=0],
for any neH. Let HeV® be a B-valued set such that
H={|1ecHy x {1}.

Then H is a Hilbert space in V9 with addition E+7=(+n)", scalar multiplica-
tion aé=(x(a)€)” and inner product (E|7)=F(&, n)~. Precisely, there are B-valued
sets A, S, and I€V® such that

[A: HxH-AAS: CxH-HNI : HxH-C
NCH, A, S, I> is a Hilbert space with addition A,

scalar multiplication S and inner product I]=1,

and that for any & n<H and as M,

[AE, 7)=E+9"AS, §=x(@E) NIE, 7)=FE, pl=L1.

The correspondence E—& is bijective in the sense that &= if and only if [E=7]
=1 for any &, n=H.

PROOF. Since the addition on H is an internal operation, it is easy to see
that [<H, 4> is an abelian group]=1 and that [§L5=(E+7) ]=1 for any & 7
H. In the sequel, we shall also write {:'—Hﬁ instead of é—T—ﬁ and identify HxH
with (Hx H)". Since the function (& #)—F(, 5) on 9(H)XDH) into C® is
obviously extensional, it follows from Theorem 2.2 that there is some [,V ®
such that [I,: Hx H-C]=1 and that [I,(§, #)=F(& 7)]=1 for any & p<H.
Now, it is obvious that I, inherits the properties (F1)-(F3) of F. Let NeV®
be such that N={= H|I,(& &=0} x {1}. By the relation (2) of Lemma 4.1, for
any &, n€H,

Lol FE, SH)=0 IN[{wel'|F(y, 7)=0}]

<=[{wel'|FE—r, E—n)lw)=0}].
Thus we have

[Vu, Ywe H (Io(u, w)=0AIv, v)=0= I,(u—v, u—v)=0)]=1,
so that [N is a subgroup of H]=1. Therefore we have

[(H/N is an abelian group)

v

AVu, Yve H(u+N=v+Ne I (u—v, u—v)=0)]=1.

Next we shall define a scalar multiplication on H/N. For any a, be M and &,
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neH we have that

[a=b][E+N=4+N]
=[a=b][IE~7, E—7)=0]
=[a=bI[F(§—7, §é—n)=0]
=[a=bllF (& §—F& n—F(zy, §+F(y, n)=0]
=[aa*F(, §)—ab*F(§, n)—ba*F(y, §)+bb*F(y, n)=0]
=[F(z(a), n(a)§)—F(z(a)§, n(b)n)

—F (z(b)y, n(a)§)+F(zb)y, xb)y)=0]

=[F(r(a)§—n(b)y, n(a)§—nr(b)n)=0]
=[(x(a)8)"+N=(z()n)"+NT.

Since [C=M X {1}]=1 by Theorem 3.1, we can conclude that there is some
SeV® such that [S: Cx H/N—H/N]=1 and that [S(a, é+N)=(z(a)§)"+N]=1
for any a= M and £ H, by the argument similar to the proof of [11; Theorem
16.8, p.151]. Then it is easy to see that S has the properties of scalar multi-
plication on H/N in V®. Denote by A and I the quotient maps +/N and I,/N
in V® induced from - and I,. Then we can now easily check that

[<H/N, A, S, I> is a pre-Hilbert space with addition A,

scalar multiplication S and inner product I]=1.

In the following, we shall also write u--v and au instead of A(u, v) and S(a, u),
respectively. Next we shall show the completeness of H/S. For this pur-
pose, we use a theorem in ZFC such that every pre-Hilbert space which satisfies
the Riesz representation theorem is a Hilbert space. Suppose that [ f is a bounded
linear functional in H/N]=1. Then it is easy to see that there is some geV®
such that [g: H—~C]=1 and that [g(&)=fE+N)]=1 for any £H. Then by
there is a function G: H—C® such that [G(&)=f(E+N)]=1 for
any £ H, Then for any a9 and §=H, we have [G(z(a)f)=f((x(a)s)"+N)
=f(aE+N)=afE+N)=aG®]=1, whence G(r(a)f)w)=a(@)GE)w) a.e. for
any asL>([, p) and £=H. Similarly, we have G(é+9)(w)=GE)w)+G(n)(w)
a.e. for any & peH. Since [f is bounded]=1, we have [3heC, Vueﬁ/N,
[ f(w)| =hI(u, u)**]=1, so that there is some A< L([] p) such that for any € H,
[GE)w)| =h(w)F (&, §)w)'/? a. e. By the similar argument as in the proof of Theo-
rem 3.1, we can show that there is a partition {B.} of I" such that Xz 2 is in
LA, p), for any a. Let G.: H—L(I, p) be such that
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Go(E)@)=Xp (@) h(@)G(E)w) .

Then it is easy to see that G, satisfies the assumptions of Thus
there is a vector {,=H such that

Ga(E)(w):F(S; Ca)(w) a. €.

and hence we have that

[Bol=[H{oel'| GE)Nw)=F ¢, L) w)}]
=[fE+N)=IE+N, L.+N)],
for any « and é=H. It follows that
[3yeH, VxeH f(x+N)=I(x+N, y+N)]

>sup[VxeH f(x+N)=I(x+N, E4N)]
=sup,infeex[ fE+N)=IE+N, {,+N)]
Zsup.[B.]=1.

Therefore we have that
[JveH/N, YucH/N f(u)=I(u, v)]=1.

This concludes that [H/N is a Hilbert space]=1. Since it is easy to check that
&=y if and only if I[é—{—N:ﬁ—l—N 1=1, in order to complete the proof we have
only to show that [E=&+N]=1 for any £=H and that [H=H/N]=1. Since
D(E)=9(H), any £ is extensional. For any &= H, we have that

[ESé+N]=[Vucé(ucé+N)]
=infyeo@&u) = [ucé+N]
=inf,enf(3) = [+ N=E+N]
=inf,ex[F(E—7, E—n)=01= [F(p—&, n—&=0]

=1,
andfthat
[E+NSél=[Vucé+Nuecd)]

=VueHI(u—§ u—&=0= uch)]
=inf,ex[F(n—&, n—8=0]= [5<£]
=inf,cx[F(y—& 1—8)=01= &%)
=1.
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Thus we have [[ézé—i—N]]:l for any £=H. From this, we can verify that
[A=H/N]=1 by routine computations. QED

DEFINITION 4.4. Let H be a normal #-module. The Hilbert space Hin
V@ constructed by Theorem 4.3 is called the Boolean embedding of H in V&,

5. Interpretation of Hilbert spaces in V%,

Let X be a Hilbert space in V9, i.e. [X is a Hilbert space]=1. Denote
by (-|+)s the inner product on X in V® and by ||-|s the norm on X in V%,
Let X‘® be the interpretation of X, i.e. X®={{cV®|[£=X]=1}, where £ is
some representative from {yeV®|[=y]=1}. Let § p=X®. Then (§|7n)s
eC?® and |£]g=C®. By the identification C*® = L(I, p), (€194 and €] s
can be identified with p-measurable functions (§|7)s(w) and ||&]| a(w) on I” respec-
tively and we have [&]g(w)?*=(£|6)s(w) a.e. Thus X® is an L(I, p)-module
with L(I, p)-valued inner product. Now let

X ={cXP||&lgc LU, p)}.
Then it is shown in Takeuti that X{® is a normal #-module by defining
the scalar multiplication af=d&, the inner product <§|n)zgr<s|n)g(w)ﬂ(dw) and

the action n(a)é=aé& for any & nX{®, acC, ac M.

THEOREM 5.1. Let X be a Hilbert space in V®. Then we have [ X{% X {1}
=X]1=1. ,

PROOF. Let £ X‘®, Then it is easy to see that there is a partition {B,}
of I" such that |[[B.Jéllgs L¥I, p) for every . Thus it follows from the piece-
wise argument as in the proof of that [X® x {1} = X{® x {1} ]=L1.
Thus the conclusion follows immediately. QED

Let X and Y be two Hilbert spaces in V‘®. Let f be a mapping from X
into Y in V®, ie. [f:X—>Y]=1. Then there corresponds a unique exten-
sional map ¥ : XY guch that [f“®(&)=f(&)]=1 for every E€ X‘®. Let

LOX, Y)={f®]| [f is a bounded linear map from X into Y]=1}.

THEOREM 5.2. Let T be a map from X® into Y®. Then Te LD (X,Y)
if and only if T satisfies the following conditions (L1)-(L2).

(L1) T is an HM-module map.

(L2) There is some a< L(I, p) such that for every §€ X%

I1TE| s(w)=< alw)|é) s(w) a.e.

PrROOF. The necessity of the conditions (L1)-(L2) is obvious. We prove
sufficiency. Let & neX® and let be 8. Since BS M, we can consider that
be M=C?®. Then we have [b=1]=b so that b=[b=1]=[bs+(1—b)n=£].
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Similarly, we have 7b=[bé+(1—-b)p=x]. It follows that [b6+(1—b)p=
Eb+7n(7b)]=1 with respect to the partition {b, b} of unity. Since T is an
M-module map, we have T(b&+(1—b)n)=bT(E)+(1—b)T(p). Thus by
2.3, T is extensional, and hence there is some f€V® such that [f: X—>Y]=1
and that f“®=T. Since [#X {1} =C]=1 and since [X{? X {1} =X]=1, it is
easy to see that (L1) implies the linearity of f in V¢ and that (L2) implies the
boundedness of f in V®. QED

Let f®eL®(X,Y) and let |fls=R“® be the bound of f in V. Then
it is easy to see that

Ifls=inf{acR®| | f(€)]|s(@)=a(®)|é]s(w) a. e. for any E€ X},

where the infimum is taken with respect to the ordering on R‘® such that a<b
if and only if a(w)<b(w) a.e. Now define two subsets of .L?(X, Y) as follows:

LEPX, V)={fPeLPX, V)| Iflac L] p},
LIPX, V=[P eLPX, I | fllse X, p)}.

Recall that Hom(X§2, Y{?) is the set of bounded #-module maps from a normal
HM-module X§® into a normal H-module Y 2.

THEOREM 5.3. For any [P e Li®(X,Y), the restriction f®|x® of &
on X% is a bounded M-module map from X2 to Y§®. The correspondence
f‘-‘B)—>f‘$)]XgQ> is a bijection from L1P(X,Y) onto Hom(X§®, Y %),

PrROOF. Let fPeLf®(X,Y) and let T be f®|x®. Then obviously T
is an “H-module map. Let §=X{®. Then we have |[T&|s(w)=|f(&)|slw)=
[f1s(@)]€lls(w) a.e. Since ||fllas LI, p) and since |§llge L*([, p), we have
lfEMgs L¥I, p) so that Té€Y §®. Furthermore we have

ITe1={  IT8) a(w)ptde)
={ 111518 st do)

<H171sl2]  1El (@) de)

= flal21€0%,

where || fllsl~ is the essential supremum norm of | fllge L= p). Thus T is
a bounded H-module map from X{% into Y{?. Suppose that f, g& LSP(X, V)
and that [P (&)=g®(§) for every £ X§®. Then it follows from [X§® X {1}
=X]=1 that [f=g]=1, so that f® =g . Thus the correspondence f ‘% —
s x(# is injective. Now we have only to show that the correspondence is
surjective. Let TeHom(X{®, Y§®). By the similar argument as in the proof of
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T is extensional. Thus by and [Theorem 5l1, there
is some feV® such that [f: X—Y]=1 and that [ f(§)=T¢&]=1 for any £ X{®.
In order to show that ||flgs LI, p), let £€X§® and let B be a Borel set in
Ifllee LI} p). Since Té€Y{®, we have |Té|g< L¥I, 1) and hence

[ 17@l o@) o)

=] ItB17@)1 st e

=|z({BDTE|*
=|T=([BIEl®
=IT*=(CBDHE]*®

=TI 181 s(@) (o)

=| ITIIE1 o0 ptde).

It follows that | f(&)lls(@)=|T|Iéls(w) a.e., for any E€X§®. Since [X§® X {1}
=X]1=1 and since [T&=f(£)]=1 for any £ X{®, we have [VxeX|f(x)ls
ITI xl e]=1. Thus f“®erLi?(X, Y). Therefore, the correspondence f‘®-—
fPx® is surjective. QED

We shall now turn to the Hilbert space Hin V® which is the Boolean
embedding of a normal #-module H. Then H® is another normal H-module.
First we shall show how these two are connected each other.

THEOREM 5.4. Let H be a normal M-module and let H be the Boolean em-
bedding of H in V9. Then the relation Uyt=E€ for any §= H defines a unitary
M-module map Uy from H onto H®.

ProOF. Let £cH. Then F(§ &) eL¥[, p) and [Ugxéls=|Els=(£18)Y?=
F(&, &2 1t follows that UyEe HS® and that |Ux€|=|&]. Since Uy is obviously
an H-module map, we have only to show that Uy is surjective. Let neﬁéﬂ”.
Then |9llg=L¥[; p). Define a mapping f: H—L([, p) by the relation f(§)=
(€ [9)e for any é€H. Then by the Schwarz inequality in V® we have for
any £€H,

| /&) @) =1E @) 1] s(@) 7]l o)
=lnlls(@FE, Ew)® a.e.,

so that f satisfies the assumptions of Thus there is some {< H such

that for any £€H, f(&)=F( ). It follows that [(§]9)s=(€|0)s]=1 for any
EcH, so that [n={]=1. Since p=H®, we have p=Uy{. Therefore, Uy is
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surjective. QED

In general, the set ﬁé-‘B’ depends on the selection of the representatives from
veV®|[u=v]=1}. However by the proof of the above theorem, we can
choose such a selection as H{® =9(H), that is, for any u=H® there is exactly
one £ M such that [E=u]=1.

Let H and K be two normal .#-modules and denote H and K be their
Boolean embeddings, respectively. By the above remark, we can assume .@(}7)
=H® and .@(K’)zﬁz‘-@’. Let TeHom(H, K) and define a map T,: @(ﬁ)—».ﬂ)(ﬁ)
by the relation T E=(TE&)~ for any é€H. Then Ty=UxTUp™* and that T,
Hom(Hs®, K®) by Therefore from there is a @-
valued set TV uniquely in V® such that [T is a bounded linear map]=1,
that I]:’IN‘Ez(TE)~]]=1 for any £ H and that 1Tg€ M. We call this T the
Boolean embedding of T.

Now we can summarize the functorial properties of the Boolean embedding
H—H and T—T. Let Hilbert.® be the category of Hilbert spacesin V® and
bounded linear maps f in V® such that || f||lg=H, and let Normod-# be the
category of normal #-modules and bounded #-module maps. Then the following
theorem can be verified without any difficulties (see, [3; Theorem IV.1, p.917).

THEOREM 5.5. The Boolean embedding E: H-H E:T-T is a Sfunctor
Normod- . #—Hilbert.{® which is an equivalence of the two categories. Its adjoint
functor is R: X—X{®, R: f—>f(-‘3’lx(259> obtained in Theorem 5.3. The natural
isomorphism RE =1 on Normod-H is {U | H=Normod-.#} obtained in Theorem 5.4.

6. Boolean valued interpretation of Hilbert space theory.

With any Hilbert space X in V%, we can associate a cardinal in V%, i.e.
the dimension dim(X) of X in V®, Let X and Y be two Hilbert spaces in
V¢  Denote by X=Y the relation that X and Y are isomorphic as Hilbert
spaces. Then by the interpretation in the usual Hilbert space theory we have
[X=Y]=[dim(X)=dim(Y)].

Now we have the following.

THEOREM 6.1. Let H and K be two normal M-modules. Then the following
conditions are equivalent.

(1) H and K are unitarily equivalent.
@) [H=K]=1.
3) [dim(A)=dim(K)]=1.

PROOF. We have only to show the equivalence of (1) and (2). By the func-
torial properties of the functor H—>ﬁ, it suffices to show that if T: H—>K is a
unitary #-module map then T:H-Kis a unitary in V¢®. This follows from
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the relations

[, c@TE T8 ptdo)=(x(a)TE, TE)

~(Tw(0), TO=(m(0), =] a@)E Hst@p(dw)

for any é€H, aeH. QED

Recall that pg is a sum of finite measures p; with disjoint supports [ such
that \U:J;=1I. Let a be a cardinal. We have [Card(a&)]=[[3] for any 7, since
the Boolean algebra [[;]% satisfies the countable chain condition [11; Corollary
17.5, p. 162]. It follows that [Card(&)]=1, that is, cardinals are absolute in
V¢, Denote by /X&) the {*space over & in V%, Then [dim(/%&))=a]=1 by
the interpretation of the usual theory. Let b,=[dim(X)=a]. Then b,=
[X=¥(&@)]. Thus [dim(X)=2>,db,]J=1 and [X=>.%d&)b.]=1. In order to
clarify the above decomposition of X in V¥, we examine the (>-spaces in V9.

THEOREM 6.2. Let a be a cardinal. Then we have

Ha)s® = LM 1@l a)

as unitary equivalence of normal M-modules.

PrOOF. By the definition of /*-spaces we have [fe¥&)]=[f: a—CAZs<
| f“®(B)|2<o]. Since every function from (&) is extensional, there is a bijec-
tive correspondence between $B-valued sets f=V® such that [fe/*(&)]=1 and
functions f®: a—C® such that there is some geL([, p) for which 37,
| f®(B:)w)|*< glw) a. e. for any finite sequences B;, Bs, -, B2<a. In the above
correspondence, we have || fllg=sup {7, f P (B) | | n€w, Bi, Bz -, BrEal,
'~ where the supremum is taken with respect to the ordering < a.e. in L([, p).
Let fel@)s®. Then X7, f“P(B)I*=|flls*€ LY, p) for any By, Ba -+, Ba
ea. Thus we have

Sl S 2(BalE= ?:15P|f($)(,8i>(w>|2/1(dw>

=[, Bl r oo e £ 171w udo).

It follows that f®cXa; LXI, m)=Xa)RQLXI, ). Conversely, let [P e
ea; LI, p). Then

Eﬂ<ag,, | F () w)|2p(dw)< oo,

so that by Fubini’s theorem X gcq | f“®(B)@)|*€ L*(I p). Since 27| f®(B8)w)]?

S FP(P)w)|? a.e. for any By, B, -, Ba, we have that [f[%=3s<a
[f®(B)w)|% 1t follows that fe/*@)§®. Now the conclusion can be checked
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in a straightforward way by the obvious correspondence [*a; LI, p)=
LI, 1)®i*@). QED

Now we have the following.

THEOREM 6.3. Let X be a Hilbert space in V® with [dim(X)=3.ab.]=1.
Then there is a family {v.} of measures on Q with disjoint supports £, such
that [2,1=b, and that

X§P =32 LR, va)QIHa)

as unitary equivalence of normal M-modules.

PRrROOF. Let 2, be the clopen subsets of £ corresponding to b, by the Stone
representation. Then the family {£,} is disjoint, [2.]1=b, and (\U.R2.) =£.
Let v, be the restriction of ¢ on £, Then b, MH=L>(£2,, v,). Since [dim(X)
=d&]=b,, by we have [[2(&)= L%, va; (X)) ]=b,. Obviously
we can embed L¥02,, v.; ((a)) iIn 8L¥2,, v )R!¥a) as a closed submodule by
putting f(w, B)=0 for wel—02, and B<a. Write H=2%L*¥2,, v, )R «).
For any a= M and f, g=H, we have

(R @)f|8)=Fa| | Ss<at@)f(@, Hg@, Pra(do)

= e, pg@, Bda,

where ¥ means Xj<q if w=2,. Thus (f]g)sw)=2sf(w, Blglw, B) for any
f, g€H. Let feH and let glw, B)=/f(w, B) if wef, and glw, B)=0 if w&L2,
for a fixed «. Then g€ L¥Q,, va; Na@)SH and that (f—Z|f—&)a(@)=0 for
any we, It follows that [HS L¥Q., v.: 2(a)"1=[2.]. Since obviously
[A2L¥R., va; M) ]1=[2.] so that [X=H]=b, for any a. Thus [X=H]=1.
Therefore X{®=38L¥Q,, v.)RXa) by QED

The following corollary is an immediate consequence of and
(for the multiplicity functions see Section 2).

COROLLARY 6.4. Let H be a normal M-module with the multiplicity function
m. Then [dim(H)=3,dam(a)]=1.

Appendix.

In the following, we shall consider the relation between Takeuti’'s construc-
tion of Hilbert spaces in V% obtained in [10; Section 1] and ours. Let ¥ be
a von Neumann algebra on a Hilbert space 4, %, a von Neumann algebra in-
cluded in its center and @ the complete Boolean algebra of projections in Z,.
Let £ be the spectrum of 2, and assume that Z,=L>(2, p) where g is a Radon
measure on £2. Then we have C“®=L(2, p). In view of our construction in
Section 4, we can present Takeuti’s construction in the following manner. Let
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(CX J)® be the set of all <f, P eV® where fe€C® and =4 ; in the
sequel, <f, £ is denoted by f@®E. It is known [11; p. 135] that [(CX 4)®
X {1}=Cx4]=1. For any & npeH, we can define F( n)eL(L, 1) as in
Section 4 for the normal Z,-module %. Obviously, [CX 4 is an abelian group]
=1. It is shown that there is some I,€V ® such that [[,: (CX H)X(CX I)—C]
=1 and that [[IO(fEBé, g®n)=rfgF (&, n)]=1 for any f, g€C® and &, ne 4.
Let NeV® be such that

N={fDEc(Cx )P | I(fDE, gD#)=0} X {1}.
Then it is shown in that

[(Cx ) ® x {1} /N is a Hilbert space with inner product [,/N]=1.

In this case, we have an equivalence relation = on (CX.%)“® such that fPé=
g®@% if and only if [(fDE)+N=(g®7)+NI=1. Then it is easy to see that
f@E=g®y if and only if

f@FE Ow)=gwF(y, Ow) a.e.

for any {=4. Denote by f& the equivalence class of f@DE and by C®4 the
quotient space (CxX#)® /=, Now we can state a precise construction of
(C&ﬁ)“‘”x{l}/N. For any fE=C®4, define a B-valued set fEEV(Q) by
(f&)={£|é ) and

FEO=[1(fPE—1DE, fPE—180)=0],

for any L€ 4. Let C®H <=V ® be a B-valued set such that
COF={fE| feC®, £c 4} x {1}.

Then the correspondence f§—>f~6 is one-to-one and that [(Cx %) x {1} /N=
C®Jd1=1. The proof of the above facts is similar to the proof of
4.3. Thus the definition of C*®4 is a precise expression of Takeuti’s construc-
tion of Hilbert spaces in V®, although the definition of C*® 4 is tacit in [10]

Let 4 be the Boolean embedding of the Z,-module 4 in V® defined as
Then the relation of Takeuti’s construction C‘® 4 and our con-
struction 4 is as follows.

THEOREM A.l. By a suitable selection of the representatives from {vsV P |
Tu=v]=1}, we have

C(Q)ﬁ:ﬁ(ﬁ)x {1}

PROOF. By the similar argument as in the proof of for any
us(CPd)i? there is a unique &4 such that [1é=u]=1. By definition we
have 16=£, where € is defined in Thus we have (C® )% =
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(). Then by [Theorem 5.1, we have [C®H=.4]=1 and hence we can
assume that D(CPIH)S AP, LetusA®. Then |ullac L(2, p). Let ve £P
be such that [v=(1/1+4|ulg)u]=1. Then |v|gsL=(2, ¢) and hence |vl|s<
L¥Q, p) since 2 is compact. It follows that there is some §<H such that
[v=£]=1. Let f=1+|uls. Then we have [u=fE]=1. Now it is straight-
forward to prove that [fé=fé]=1. Therefore, we have PCPI)=F P so
that CPH=H P x {1}. QED
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