
J. Math. Soc. Japan
Vol. 36, No. 1, 1984

Extension of modifications of ample
divisors on fourfolds

By Maria Lucia FANIA

(Received Sept. 20, 1982)
(Revised Jan. 25, 1983)

Introduction.

In this article we consider the following problem: Let $A$ be an ample divisor
on a connected four dimensional projective manifoId $X$. Assume that the Kodaira
dimension of $X$ is non-negative. Suppose that $A$ is the blow up of a projective
manifold $A’$ with center $R_{g}$ where $R_{g}$ is a smooth curve of genus $\geqq 1$ which is
contained in $A’$ .

Does there exist a four dimensional manifold $X’$ such that $A’$ lies on $X’$ as
a divisor and such that $X$ is the blow up of $X’$ with center $R_{g}$ ?

The answer to this question turned out to be positive. In fact following
Sommese’s idea, see [13], we construct a divisor $D$ on $X$ with the following
properties:

1) $D\cap A=Y$ , where $Y$ is the exceptional divisor on $A$ over $R_{g}$

2) the natural projection $Yarrow R_{g}$ can be extended to a surjective holomor-
phic map $\tilde{p}:Darrow R_{g}$

3) $\tilde{p}$ makes $D$ a $P^{2}$-bundle over $R_{g}$ where $\dim A’-\dim R_{g}=2$ . Moreover,
each fibre $f’$ of $Y$ over $x\in R_{g}$ is a hyperplane on $F=\tilde{p}^{-1}(x)\cong P^{2}$ .

4) $[D]_{F}=o_{p2}(-1)$ .
The above is enough to ensure the existence of $X’$ such that $A’$ is a divisor on
$X’$ and $X$ is the blow up of $X’$ with center $R_{g}$ , see [8].

The above problem, in a more general setting, was already considered by
Sommese in [14] and by Fujita in [3]. In fact they set up the problem for a
proiective manifold $X$ of any dimension and without any assumption on the
Kodaira dimension of $X$. Sommese in [14] showed that when $co\dim_{A’}R>2$ then
there is an analytic set of codimension one in $X$ that satisfies the condition for it
to be blown down if the map $\tilde{p}$ : $Xarrow X’$ existed. Fujita in [3] showed that the
problem could be solved in the case $co\dim_{A’}R>2$ where $R$ is a submanifold of
$A’$ along which we blow up.

We need the non-negativity of the Kodaira dimension for the theorem to be
true. In fact given any projective threefold $A$ there is a $P^{1}$-bundle $X$ over $A$
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with a threefold $B$ as a hyperplane section of $X$ but yet the main theorem is
false for (X, $B$ ).

We would like to thank Andrew J. Sommese for having suggested the pro-
blem and for very helpful discussions. We would also like to thank William
Dwyer for helpful discussions about covering spaces. We would also like to
thank the referee of this paper for his comments, for the shorter proof of Claim
2 in (1.2), and for the example in (1.7), which gave us a better understanding
of the situation.

\S 0. Background material.

The notation will be as in [13]. Those that are used more frequently will
be given below.

(0.1) Given a sheaf $\mathfrak{S}$ of abelian groups on a topological space $X$ we denote
the global sections of $\mathfrak{S}$ over $X$ by $\Gamma(\mathfrak{S})$ or by $H^{0}(\mathfrak{S})$ .

(0.2) All spaces and manifolds are complex analytic, all dimensions are over
$C$ . Given an analytic space $X$ we denote the structure sheaf by $O_{X}$ .

Given a coherent analytic sheaf $\mathfrak{S}$ on an analytic space $X$, we let $h^{i}(\mathfrak{S})$ or
$h^{i}(X, \mathfrak{S})$ denote dim $H^{i}(X, \mathfrak{S})$ . Assuming that $X$ is smooth we let $h^{p.q}(X)=$

$h^{q}(\wedge^{p}T_{X}^{*})$ where $T_{X}^{*}$ is the holomorphic cotangent bundle of $X$.
(0.3) Let $X$ be a connected projective manifold. Let $D$ be an effective

Cartier divisor on $X$. Denote by $[D]$ the holomorphic line bundle associated to
$D$ . If $L$ is a holomorphic line bundle, we denote by $|L|$ the linear system of
all Cartier divisors associated to $L$ .

If $D\in|L|$ and $C$ is a curve in $X,$ $L\cdot C=D\cdot C=c_{1}(L)[C]$ where $c_{1}(L)$ is the
first Chern class of $L$ . We denote by $K_{X}$ the canonical bundle of $X$ if $X$ is a
pure dimensional complex manifold. If $X$ is a complex manifold and $A$ is a
submanifold of $X$ we denote by $N_{A/X}$ or $N_{A}$ the normal bundle of $A$ in $X$, and
if $f\subset A$ is a subspace then we denote by $N_{A.f}$ the normal bundle of $A$ in $X$

restricted to $f$ .
(0.4) If $p:Xarrow Y$ is a morphism and $\mathfrak{S}$ is any locally free sheaf on $Y$ of

finite rank we denote by $p^{*}\mathfrak{S}$ the pullback of $\mathfrak{S}$ . If $\mathfrak{S}$ is a locally free sheaf
on $X$ of finite rank we denote by $p_{(i)}\mathfrak{S}$ the i-th direct image of $\mathfrak{S}$ and sometimes
we denote $p_{(0)}\mathfrak{S}$, the direct image sheaf, by $p_{*}\mathfrak{S}$.

(0.5) By $F_{r}$ with $r\geqq 0$ we denote the Hirzebruch surfaces which are the
unique $P^{1}$-bundle over $P^{1}$ with a section $E$ satisfying $E\cdot E=-r$. If $r\geqq 1$ we
denote by $fl_{r}$ the normal surface obtained from $F_{r}$ by blowing down $E$ . In case
$r=1,$ $F_{1}=P^{2}$. If $L$ is a line bundle in $F_{r}$ then $L$ is given by $[E]^{a}\otimes[f]^{b}$ where
$f$ is a fibre in $F_{r}$ and $[E]^{a}\otimes[f]^{b}$ is ample if and only if $a>0$ and $b\geqq ar+1$ .
$[E]^{a}\otimes[f]^{b}$ is spanned by global sections if and only if $a\geqq 0$ and $b\geqq ar$ . Given
a line bundle $L$ on $\hat{F}_{r}$, the pullback of $L$ to $F_{r}$ is of the form $([E]\otimes[f]^{r})^{a}$ for
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some integer $a$ .

(0.6) THEOREM. Let $X$ be a reduced compact complex space, all of whose
irreducible components have the same dimension. Assume that $X$ is a local com-
plete intersection and that $\pi;\tilde{X}arrow X$ is a desingularization of $X$ with X Kahler.
Let $L$ be a holomorphic line bundle on $X$ whose pullback to $\tilde{X}$ has a metric with
a semiposjtive curvature form that has at least $k$ positjve eigenvalues at at least
one pojnt of each comp0nent of X. Then:

$H^{j}(X, L^{-1})=0$ for $j< \min$ { $k$ , dim $X-\sigma$ }

where $\sigma$ is the dimension of the singular set of $X$.
The proof is done using the dualizing sheaf, the Grauert-Riemenschneider

canonical sheaf and Serre duality, see [12].

(0.7) LEMMA. Let $X,$ $Y$ and $Z$ be topological spaces. Let $\pi:Xarrow Y$ and
$p:Xarrow Z$ be continuous maps with connected fibres. Assume that the induced maps
$\pi_{*}:$ $\pi_{1}Xarrow\pi_{1}Y$ and $p_{*}:$ $\pi_{1}Xarrow\pi_{1}Z$ are surjective. Assume that $H_{1}(X, Z)/Tor\alpha on$

$\cong H_{1}(Y, Z)/Torsion\cong H_{1}(Z, Z)$ . Then there exist covering spaces $(X^{\vee}, p_{1}),$ $(Y^{\vee}, p_{2})$ ,
$(Z^{\vee}, p_{3})$ of $X,$ $Y$ and $Z$ respectively such that $(Z^{\vee}, p_{3})$ corresponds to the com-
mutator subgroup of $\pi_{1}Z$ and the maps $p\circ p_{1}$ and $\pi\circ p_{1}$ lift to $Z^{\vee}$ and $Y^{\vee}$ respec-
tively, with connected fibres.

PROOF. Using the following two diagrams

$\psi$

$0arrow$ ker $\psiarrow\pi_{1}Xarrow H_{1}(X, Z)/Torsionarrow 0$

$\downarrow\pi_{*}$ $\downarrow\pi_{*}$ $\downarrow\pi_{*}$

$\eta$

$0arrow ker\etaarrow\pi_{1}Yarrow H_{1}(Y, Z)/Torsionarrow 0$

$\psi$

$0arrow ker\psiarrow\pi_{1}Xarrow H_{1}(X, Z)/Torsionarrow 0$

$\downarrow p_{*}$ $\downarrow p_{*}$ $\downarrow p_{*}$

$0arrow[\pi_{1}Z, \pi_{1}Z]arrow\pi_{1}Zarrow H_{1}(Z, Z)arrow 0$

and the hypothesis we have ker $\eta=\pi_{*}ker\psi$ and $[\pi_{1}Z, \pi_{1}Z]=p_{*}ker\psi$ . Let $K$

$=[\pi_{1}Z, \pi_{1}Z],$ $K’=ker\psi,$ $K’=ker\eta$ . Let $(X^{\vee}, p_{1}),$ $(Y^{\vee}, p_{2})$ and $(Z^{\vee}, p_{3})$ be the
covering spaces of $X,$ $Y,$ $Z$ associated to the subgroups $K,$ $K’,$ $K’$ , of $\pi_{1}Z,$ $\pi_{1}X$

and $\pi_{1}Y$ respectively. Noting that $P^{\circ}P_{1}$ lifts to a map $X^{\vee}$ to $Z^{\vee}$ since $(p\circ p_{1})_{*}$

$(\pi_{1}X^{\vee})=K=p_{3*}\pi_{1}Z^{\vee}$ we get a continuous map $f$ : $X^{\vee}arrow Z^{\vee}$ . Moreover $\pi\circ p_{1}$ lifts
to a map $X^{\vee}$ to $Y^{\vee}$ since $(\pi\circ p_{1})_{*}(\pi_{1}X^{\vee})=K’’=p_{2*}(\pi_{1}Y^{\vee})$ hence we get a con-
tinuous map $g:X^{\vee}arrow Y^{\vee}$ . Thus we have the following diagram
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We note that the maps $p$ and $\pi$ have connected fibres thus $f$ and $g$ have con.
nected Pbres. $\square$

(0.8) LEMMA. We have the same conditions as in (0.7) except that $X,$ $Y$ and
$Z$ are now normal analytic spaces, $\pi$ is a Proper modification and $P$ is a holomor-
phic map. Moreover assume that Sing $(Y)$ is a finite set of points and that $Z^{\vee}$ is
Stein. Then the map $F^{\vee}=f\circ g^{-1}$ : $Y^{v}arrow Z^{v}$ is holomorphic. Moreover we get a
holomorphic map $F:Yarrow Z$ .

PROOF. By (0.7) there exist covering spaces $(X^{\vee}, p_{1}),$ $(Y^{\vee}, p_{2})$ and $(Z^{\vee}, p_{3})$

of $X,$ $Y$ and $Z$ respectively, moreover the maps $p\circ p_{1}$ and $\pi\circ p_{1}$ lift to $Z^{\vee}$ and $Y^{\vee}$

respectively. Let $f$ and $g$ denote these lifted maps. Note that they are holo-
morphic. Moreover, $g^{-1}$ exists as a meromorphic map since the map $g$ has
connected fibres and $g^{-1}$ : $Y^{\vee}-p_{2}^{-1}(SingY)arrow X^{\vee}-(\pi\circ p_{1}^{-1})$ (Sing $Y$ ) is biholomorphic.
Consider $f\circ g^{-1}$ : $Y^{\vee}arrow Z^{\vee}$ . $(f\circ g^{-1})|_{Y^{\vee}-p_{2}^{-1}}$ (Sing $Y$ ) is holomorphic, $p_{2}^{-1}(SingY)$

is an analytic set in $Y^{\vee}$ and codim ( $p_{2}^{-1}$ Sing $(Y)$ ) $\geqq 2$ . Hence by Riemann’s ex-
tension theorem $f\circ g^{-1}$ extends to a holomorphic map from $Y^{\vee}$ to $Z^{\vee}$ . Let $F^{v}$

$=f\circ g^{-1}$ . Note that $X^{\vee},$ $Y^{v}$ and $Z^{v}$ are regular covering spaces thus:

$A(X^{v}, p_{1})\cong\pi_{1}X/K’\cong H_{1}(X, Z)/Torsion$

$A(Y^{v}, p_{2})\cong\pi_{1}Y/K’\cong H_{1}^{*}(Y, Z)/Torsion$

$A(Z^{\vee}, p_{3})\cong\pi_{1}Z/K\cong H_{1}(Z, Z)$

where $A(-, p_{i})$ denotes the group of the deck transformations. The above three
groups are isomorphic to one another since each one of them is isomorphic to
$H_{1}(Z, Z)$ . Denote such group by G. $G$ acts transitively on $X^{\vee},$ $Y^{\vee},$ $Z^{\vee}$ thus
$X^{\vee}/G\cong X,$ $Y^{v}/G\cong Y,$ $Z^{\vee}/G\cong Z$ . Denote by $F$ the map obtained from $F^{\vee}:$ $Y^{\vee}arrow$

$Z^{\vee}$ after we have considered the action of $G$ on $Y^{\vee}$ and $Z^{\vee}$ . Thus $F:Yarrow Z$ .
The map $F$ is a holomorphic map since $F^{v}$ and the maps $\pi_{1}$ ; $Y^{v}arrow Y^{\vee}/G$ and
$\pi_{2}$ : $Z^{\vee}arrow Z^{\vee}/G$ are holomorphic. Moreover we note that $F=p\circ\pi^{-1}$ . In fact it
is straightforward to see that $(f\circ g^{-1})_{G}=f_{G}\circ g_{G}^{-1}$ and $f_{G}\circ g_{G}^{-1}=p\circ\pi^{-1}$ . Thus $F=$
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$p\circ\pi^{-1}$ (by $(f\circ g^{-1})_{G}$ : $Yarrow Z$ we denote the map obtained from $f\circ g^{-1}$ : $Y^{v}arrow Z^{\vee}$

after we have considered the action of $G$ on $Y^{\vee}$ and $Z^{\vee}$ ). $\square$

\S 1. The main theorem.

(1.0) Throughout this section we assume:
a) $X$ is a four dimensional connected projective manifold,
b) $L$ is an ample line bundle with at least one smooth $A\in|L|$ ,
c) the Kodaira dimension of $X$ is non-negative $i.e$ . $\Gamma(K_{X}^{n})\neq 0$ for some

integer $n>0$ .
(1.1) LEMMA. Let $X,$ $A$ and $L$ be as in (1.0). Assume that $A$ is the blow-up

of a smooth projective threefold $A’$ with center a smooth curve $R_{g}$ of genus $g$

$\geqq 1$ . Let $Y$ be the exceptional divisor of this blow-up and let $f’$ be a fibre of $Y$ .
Then the closure $D$ of the union of all deformations of $f’$ in $X$ is a nomal, ir-
reducible, reduced divisor on $X$ such that:

a) $D$ intersects A transversely in $Y$ , and
b) $Y\subset D_{reg}$ .
PROOF. From $f’\subset Y\subset A$ and the fact that $N_{Y/A,f’}=O_{f’}(-1)$ we have the

exact sequence

(1.1.1) $0arrow 0_{f’}arrow N_{f^{i}/A}arrow o_{f’}(-1)arrow 0$

where $O_{f^{l}}$ is the trivial bundle and $N_{f\vee A}$ is the normal bundle of $f’$ in $A$ . By
the long exact cohomology sequence associated to (1.1.1) we have

$h^{0}(N_{f’/A})=1$ and $H^{1}(f’, N_{f’/A})=0$ .

From $f’\subset A\subset X$ we have the short exact sequence

(1.1.2) $0arrow N_{f’/A}arrow N_{f’}arrow O_{f’}(a)arrow 0$

where $N_{f^{l}}$ is the normal bundle of $f’$ in $X$ and $O_{f’}(a)$ is the a-th power of the
hyperplane section bundle on $f’\cong P^{1}$ , and where $a=L\cdot f’>0$ . By the long exact
cohomology sequence associated to (1.1.2) it follows that

(1.1.3) $h^{0}(N_{f’})=a+2\geqq 3$ and $H^{1}(f’, N_{f^{l}})=0$ .

From (1.1.3) it follows that there exist deformations of $f’$ in $X$. Let $D$ be the
closure of the union of all the deformations of $f’$ in $X$.

Claim. $D$ is a divisor in $X$.
Proof of Claim. Since $\Gamma(N_{f’})$ is naturally identified with Tst, $a$ ’ where $\mathcal{H}$

is the irreducible component of the Hilbert scheme of $X$ parametrizing flat de-
formations of $f’$ with $\alpha\in \mathcal{H}$ corresponding to $f’$ and containing the deformations
of $f’$ on $Y$ , we have $\dim T_{\mathcal{H}.\alpha}=\dim\Gamma(N_{f’})\geqq 3$ thus dim $\mathcal{H}\geqq 3$ . From (1.1.3)
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using Kodaira-Spencer theory, it follows that $\dim D\geqq 2$ . But dimD $=2$ does not
occur since this would imply that $Y$ was a component of $D$ and that deforma-
tions of most fibres of $Y$ remain in $Y$ . This implies that dim $\mathcal{H}<2$ for a generic
$f’$ on $Y$ . Finally $\dim D\neq 4$ ([13], (0.7.2)). In fact if the deformations of $f’$

filled out an open set of $X$, then since $nK_{X}$ is effective it follows that

(1.1.4) $K_{X}\cdot f’\geqq 0$ .
By (1.1.1) and (1.1.2) we have $\det N_{f’}=O_{f^{\iota}}(a-1)$ . By the adjunction formula

$K_{f’}=K_{X1f’}\otimes\det N_{f^{r}}$

thus $-2=K_{X}\cdot f’+a-1,$ $i$ . $e.,$ $K_{X}\cdot f’=-2-a+1\leqq-2$ which contradicts (1.1.4).

The above argument also shows that $N_{f’}$ is not spanned since otherwise by
Kodaira-Spencer theory the deformations of $f’$ are dense in $X$. It is straight-
forward to see that $N_{f’}=O_{f’}(-1)\oplus \mathcal{L}_{f’}$ where $\mathcal{L}_{f^{J}}$ is a rank two vector bundle
on $f’$ . This shows that a union $U$ of small deformations of $f’$ in $X$ gives a
complex manifold that meets $A$ transversely in $Y$ , which implies that $D$

meets $A$ transversely in $Y$ , by the same argument as in [13] p. 23. Since the
intersection is transverse and $Y$ is smooth, the singularities of $D$ are in $D-A$ ,
but $A$ is ample. Therefore Sing $(D)$ is a finite set of closed points. Hence $D$

is normal being a divisor with isolated singularities in a manifold of dimension
$\geqq 3$ . For a proof, see [13] p. 67. $\square$

(1.2) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.1). Let $p:Yarrow R_{g}$ be the
restriction of the blow-up $p:Aarrow A’$ . Then $p$ extends to a holomorphjc map from
$D$ to $R_{g}$ .

PROOF. Let $\tilde{D}$ be a desingularization of $D$ .
Claim 1. dim Alb $(Y)=\dim$ Alb $(\tilde{D})$ .
Proof of Claim 1. Let $\overline{L}=[Y]$ be the ample line bundle on $D$ determined

by $Y$ . Since $\pi_{*}O_{\tilde{D}}\cong G_{D}$ we have

$H^{0}(\tilde{D}, \pi^{*}\overline{L}^{n})\cong H^{0}(D, \pi_{*}(\pi^{*}\overline{L}^{n}))\cong H^{0}(D,\overline{L}^{n})$ for $n\gg O$ .
Note that $\pi^{*}\overline{L}^{n}$ is spanned by global sections and the map $\Phi_{\tau^{s}\overline{L}^{n}}$ : $\hat{D}arrow P_{c}$ is
given by the following composition

$\tilde{D}arrow^{\pi}Darrow P_{c}\Phi_{\overline{L}^{n}}$ .

Moreover note that dim $\Phi_{\pi^{*}\overline{L}^{n}}(D)=3$ since $\pi(D)=D$ and $\Phi_{\overline{L}^{n}}$ is an embedding
where by $\Phi_{\overline{L}^{n}}$ we denote the map associated to the linear system given by $\overline{L}^{n}$ .
Since $\pi^{*}\overline{L}^{n}$ is spanned by global sections and $\Phi_{\pi^{*}\overline{L}^{n}}$ has three dimensional image
this implies

$h^{i}(K_{D}^{\sim}\otimes\pi^{*}\overline{L})=0$ for $i>\dim\tilde{D}-3$
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therefore
$h^{1}(K_{\tilde{D}}\otimes\pi^{*}\overline{L})=h^{2}(K_{\tilde{D}}\otimes\pi^{*}\overline{L})=0$

and by Serre duality

$(*)$ $h^{1}(\tilde{D}, (\pi^{*}\overline{L})^{-1})=h^{2}(\tilde{D}, (\pi^{*}\overline{L})^{arrow 1})=0$ .
Using $(*)$ , the fact that $(\pi^{*}\overline{L})^{-1}\approx \mathcal{O}_{D}^{\sim}(-Y)$ and the long exact cohomology sequence
associated to

$0arrow O_{\hat{D}}(-Y)arrow O_{\tilde{D}}arrow 0_{Y}arrow 0$

we have

(1.2.1) $H^{1}(O_{\tilde{D}})\cong H^{1}(\mathcal{O}_{Y})$ .

From this last fact and Hodge theory it follows that $H^{0}(D, T_{D}^{*}\sim)\cong H^{0}(Y, T_{Y}^{*})$ . Thus

dim Alb $(Y)=\dim$ Alb $(\hat{D})$ .
We have the following diagram

$Y-R_{g}-Alb(Y)$
$\downarrow j$ $\downarrow j$ $\downarrow Alb(i)$

$\tilde{D}\alpha(\hat{D})\underline{\alpha}arrow$ Alb $(\tilde{D})$

where $\alpha$ is the Albanese map. In the above diagram we use the fact that
Alb $(Y)\cong J(R_{g})$ where $J(R_{g})$ denotes the Jacobian variety of $R_{g}$ .

Claim 2. dim $\alpha(D)=1$ .
Proof of Claim 2. If dim $\alpha(\hat{D})\neq 1$ then we would have 2 cases:
1) dim $\alpha(\tilde{D})=0$ which does not occur since $\alpha(D)$ generates Alb $(\hat{D})$ and

dim Alb $(\hat{D})=\dim$ Alb $(Y)=g>0$ .
2) dim $\alpha(\tilde{D})\geqq 2$ .

If dim $\alpha(\hat{D})\geqq 2$ , one can conclude that $H^{0}(\tilde{D}, \Omega_{\tilde{D}}^{2})>0$ by Ueno’s theory. But this
is impossible because $H^{2}(Y, O_{Y})=0$ and $H^{2}(\tilde{D}, (\pi^{*}\overline{L})^{-1})=0$ .

Claim 3. $\alpha(\tilde{D})$ is isomorphic to $R_{g}$ via $j$ .
Proof of Claim 3. Assume $g(\alpha(\hat{D}))=g’>1$ . If $j$ is not an isomorphism

then $\deg j\geqq 2$ and by Riemann-Hurwitz’ theorem we have

(1.2.2) $2g-2=n(2g’-2)+\rho$

where $g=g(R_{g}),$ $n=\deg j$ and $\rho$ is the total ramification. Since $g=g’$ and $n\geqq 2$ ,

from (1.2.2) we get a contradiction. Thus $j$ is an isomorphism for $g>1$ . Now
assume that $g=1$ . In this last case the map $j:R_{g}arrow\alpha(\tilde{D})$ is a covering map by
Riemann-Hurwitz’ theorem. From the following diagram
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where $h=r^{\circ}P$ , if $j$ is not an isomorphism, then the generic fibre of $h$ is discon-
nected. Let $e’\in\alpha(\tilde{D})$ such that $h^{-1}(e’)$ is disconnected. Let $S=\alpha^{-1}(e’)$ be a
smooth surface in $\tilde{D}$ . Note that $\alpha^{-1}(e’)$ is connected. For a proof, see [18].

Moreover note that $i(Y)\cong Y$ and $C=Y\cap S$ is disconnected. Denote by $\overline{L}_{S}$ the
restriction of the line bundle $\overline{L}$ to S. $\overline{L}_{S}^{m}$ gives a birational map of $S$ for $m\gg O$ .
Looking at the long exact cohomology sequence associated to

$0arrow\overline{L}_{\tilde{S}}^{1}arrow 0_{s}arrow 0_{c}arrow 0$

since $h^{0}(\overline{L}_{\overline{S}}^{1})=h^{1}(\overline{L}_{\overline{S}}^{1})=0$ we get $H^{0}(O_{S})\cong H^{0}(O_{C})$ but $H^{0}(O_{S})\cong C$ which gives a
contradiction since $C$ is not connected. Hence $j$ has to be an isomorphism and
therefore we can identify $R_{g}$ with $\alpha(\mathfrak{H})$ via $j$ . Thus we get a holomorphic map
$\tilde{p}:\tilde{D}arrow R_{g}$ such that $\tilde{p}|_{Y}=p$ .

Claim 4. $H^{1}(D, Z)\cong H^{1}(D, Z)$ .
Proof of Claim 4. From (0.6) we get

$H^{i}(D,\overline{L}^{-1})=0$ for $i< \min$ { $k$ , dim $D-\sigma$ } $=3$

since $k=3$ and $\sigma=dimSing(D)=0$ , thus $H^{1}(D,\overline{L}^{-1})=H^{2}(D,\overline{L}^{-1})=0$ . Using this
and the long exact cohomology sequence associated to

$0arrow \mathcal{J}_{Y}arrow 0_{D}arrow 0_{Y}arrow 0$

we get that $H^{1}(O_{D})\cong H^{1}(\mathcal{O}_{Y})$ . Since $Y$ is ruled it follows that $H^{2}(o_{Y})=0$ which

$spectraltogethersequence,H^{1}(D,\mathcal{O}_{D})\cong H^{1}(\tilde{D},\mathcal{O}_{\tilde{D}})andH^{2}(D,\mathcal{O}_{D})=0withH^{2}(\mathcal{J}_{Y})=H^{2}(\mathcal{O}_{D}(-Y))=0givesH^{2}(O_{D})=0.NowitfollllowsthatusingtheLeray$

$H^{0}(D, \pi_{(1)}\mathcal{O}_{\tilde{D}})=0$ which implies $\pi_{(1)}\mathcal{O}_{\tilde{D}}=0$ since $\pi_{(1)}O_{\tilde{D}}$ is supported at a finite
number of points. From

$0arrow Zarrow 0_{\tilde{D}}arrow \mathcal{O}_{\hat{D}}^{*}arrow 0$

we get
$0arrow\pi_{*}Zarrow\pi_{*}O_{\tilde{D}}arrow^{\beta}\pi_{*}O_{\tilde{D}}^{*}arrow\pi_{(1)}Zarrow\pi_{(1)}O_{D}^{\sim}arrow\ldots$

Since the map $\beta$ is onto and $\pi_{(1)}\mathcal{O}_{\tilde{D}}=0$ we get that $\pi_{(1)}Z=0$ and by the Leray
spectral sequence we get $H^{1}(D, Z)\cong H^{1}(D, Z)$ .

This claim implies $H_{1}(D, Z)/Torsion\cong H_{1}(\tilde{D}, Z)/Torsion$ . By $H^{1}(O_{R_{g}})\cong H^{1}(\mathcal{O}_{l)}^{-})$

and by Hodge theory we get
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(1.2.3) $H^{1}(R_{g}, C)\cong H^{1}(\tilde{D}, C)$ .

The map $\tilde{p}$ : $\tilde{D}arrow R_{g}$ is proper with connected fibres and $R_{g}$ is a Riemann surface
thus the fundamental group of $\tilde{D}$ maps onto the fundamental group of $R_{g}$ . The
above fact together with (1.2.3) implies that

(1.2.4) $H_{1}(\tilde{D}, C)\cong H_{1}(R_{g}, C)$ .

Moreover since $\pi_{1}\tilde{D}$ maps onto $\pi_{1}R_{g}$ it follows that $\tilde{p}_{*}:$ $H_{1}(\tilde{D}, Z)arrow H_{1}(R_{g}, Z)$

is onto and using (1.2.4) we have ker $(\tilde{p}_{*})=Torsion(H_{1}(D, Z))$ . Thus $H_{1}(R_{g}, Z)$

$\cong H_{1}(D, Z)/Torsion$ . Note that the fundamental group of $\tilde{D}$ maps onto the
fundamental group of $D$ . Since $D$ has isolated singularities, loops in $D$ can be
moved away from the singular points, but $D-Sing(D)$ is isomorphic to $\tilde{D}-$

$\pi^{-1}(Sing(D))$ . Thus loops in $D$ come from loops in $D$ . We can apply (0.7) and
(0.8) with $x=D,$ $Y=D$ and $Z=R_{g}$ . Thus we have a holomorphic map $F^{\vee}=$

$f\circ g^{-1}$ : $D^{\vee}arrow R_{g}^{\vee}$ as in (0.8) and $F:D^{\vee}/Garrow R_{g}^{\vee}/G$ is holomorphic. Note that
$D^{\vee}/G\cong D$ and $R_{g}^{\vee}/G\cong R_{g}$ thus $F:Darrow R_{g}$ . Moreover $F$ extends $p:Yarrow R_{g}$ since
$f_{G}=\tilde{p}$ where $f_{G}$ : $\hat{D}arrow R_{g}$ is obtained from $f$ : $D^{v}arrow R_{g}^{\vee}$ after we consider the
action of $G$ on $D^{v}$ and $R_{g}^{\vee}$ , and $\tilde{p}$ is as in (1.2). Denote the map $F$ by $\tilde{p}$ . $\square$

(1.3) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.2). Then all the fibres of
the map $\tilde{p}:Darrow R_{g}$ are smooth.

PROOF. The map $\tilde{p}:Darrow R_{g}$ is flat, see [5] Prop. 9.7 p. 257. This implies
that the Hilbert polynomial of the fibres $D_{x}$ is independent of $x$ (see [5] theorem
(9.9) p. 261) thus the Hilbert polynomial of the singular fibres $F$ is equal to the
Hilbert polynomial of the smooth fibres $F’$ ; in particular $x(o_{F’})=x(O_{F})$ . Note
that $F’$ intersects $Y$ transversely in $f’$ , where $f’$ is a fibre of $Y$ . Moreover $f’$

is ample in $F’$ and $f’\cong P^{1}$ thus by Scorza’s lemma, see [11], $F’$ is either $F_{r}$

with $r\geqq 0$ or $P^{2}$ . Thus $\chi(O_{F’})=1$ . Note that the singular fibre $F$ intersects $Y$

transversely in $f’$ and $f’$ is a smooth Cartier divisor on $F$ which implies that
Sing $(F)$ is in the complement of $Y$ which is ample in $D$ thus Sing $(F)$ is a finite
set of closed points. Since $F$ is a local complete intersection and has only isolated
singular points, $F$ is normal by Serre’s criterion. Thus $F$ is either $F_{r}$ with $r\geqq 0$

or F., $r\geqq 1$ , where $F_{r}$ is as in (0.5).

Assume $F=F_{r}$ . Let $N_{F/D}$ be the normal bundle of $F$ in D. $N_{F/D}$ is trivial
since $F$ is a fibre of $\tilde{p}$ . Note that since $f’\cong P^{1}$ then $f’=(E+rf)^{a}$ for some
integer $a$ , where $E$ and $f$ are as in (0.5). We know that

(1.3.1) $F\cap Y=f’$

and such intersection is transverse in $D$ therefore $1V_{f’}=V_{Y/D,f^{i}}$ . From (1.3.1)

we see that

(1.3.2) $IV_{f’/D}=N_{F/Df’}\oplus\Lambda_{Y/D,f’}^{\gamma}=0_{f’}\oplus O_{f^{l}}(ra^{2})$
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since

(1.3.3) $N_{Y/D.f’}=N_{f^{l}/F}=O_{f’}(ra^{2})$ .

We know that $D\cap\backslash A=Y$ and such intersection is transverse in $X$ thus $N_{A/X.Y}$

$=N_{Y/D}$ which implies that $N_{A/X,f’}=N_{Y/D,f’}$ thus by (1.3.3)

(1.3.4) $N_{A/X,f^{l}}=O_{f^{r}}(ra^{2})$ .

From (1.1.1) it follows that det $N_{f’/A}=\mathcal{O}_{f},$ $(-1)$ and from (1.1.2) and (1.3.4) we
have

(1.3.5) det $N_{f’}=\det N_{f’/A}\otimes N_{A/X,f’}=O_{f’}(ra^{2}-1)$ .

From $f’\subset D\subset X$ and (1.3.2) we have

(1.3.6) det $N_{f’}=o_{f’}(ra^{2})\otimes N_{D/X,f’}$ .
From

$0arrow N_{F/D}arrow N_{F/X}arrow N_{D/X,F}arrow 0$

and the fact that $N_{F/D}$ is trivial it follows $\det N_{F/X}=N_{D/X,F}$ . Thus

$(*)$ $\det N_{F/X,f’}=N_{D/X,f’}$

and (1.3.6) becomes

det $N_{f’}=O_{f’}(ra^{2})\otimes\det N_{F/X,f’}$ .

Combining the above with (1.3.5) we have

(1.3.7) $\det N_{F/X,f^{r}}=O_{f’}(-1)$ .

Note that $\det N_{F/X}=(E+rf)^{b}$ for some integer $b$ since $F=F_{r}$ . Thus $\det N_{F/X,f’}$

$=O_{f’}(abr)$ and by (1.3.7) we have $abr=-1$ . Note that $r\geqq 1,$ $a$ and $b$ are in-
tegers thus $r=1$ . Therefore $F=\hat{F}_{1}$ . Thus we conclude that $F$ is smooth since
$F$ can be either $F_{r}$ with $r\geqq 0$ or $\tilde{F}_{1}$ . $\square$

(1.4) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.0) and (1.2). Then the
fibres of $\tilde{p}$ are biholomorphjc to $P^{2}$ . Moreover $L_{P^{2}}\cong O_{P^{2}}(1)$ .

PROOF. By (1.3) the fibres $F$ of $p$ are smooth and $F$ is either $F_{r}$ with $r\geqq 0$

or $P^{2}$ . Assume $F=F_{r}$ . Knowing that $f’(\cong P^{1})$ is ample in $F_{r}$, we have $f’=E$

$+(r+k)f$ with $k>0$ , and as in (1.3), using $F=F_{r}$, instead of $F=\tilde{F}_{r}$ , we get

(1.4.1) $\det N_{F_{r}/X,f},$ $=c?_{f},(-1)$ .

Denote by $L_{F_{\gamma}}$ the restriction of the line bundle $L$ to $F_{r}$ . Thus $L_{F_{r}}$ is ample
since $L$ is ample. Moreover $f’\in|L_{F_{r}}|$ since $f’=F_{r}\cap A$ . Let $E$ and $f$ be as
in (0.5). From $f\subset F_{r}\subset D$ we get
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$0arrow O_{f}arrow N_{f/D}arrow 0_{f}arrow 0$

which implies that $N_{f/D}$ is spanned by global sections and $H^{1}(N_{f/D})=0$ . From
$f\subset D\subset X$ we have

(1.4.2) $0arrow N_{f/D}arrow N_{f}arrow N_{D.f}arrow 0$ .

Thus det $N_{f}=N_{D.f}$ since det $N_{f/D}$ is trivial. We will show that $N_{D,f}$ is not span-
ned by global sections. Assume it is, $i.e$ . $N_{D}\cdot f\geqq 0$ , this implies, from the long
exact cohomology sequence associated to (1.4.2), that $N_{f}$ is spanned by global
sections and $H^{1}(N_{f})=0$ which is impossible by an earlier argument used in (1.1).

Hence

(1.4.3) $N_{D}\cdot f<0$ .

The line bundle $L_{F_{r}}$ is ample thus $L_{F_{r}}=[E]\otimes[(r+k)f]$ with $k>0$ . Since $L_{F_{r}}$

is spanned we can find a smooth rational curve $C\in|[E]\otimes[(r+k-1)f]|=$

$|L_{F_{r}}-f|$ . Let $N_{C}$ denote the normal bundle of $C$ in $X$.
Claim. $\Gamma(N_{C})$ is spanned by global sections and $H^{1}(N_{C})=0$ .
Proof of Claim. From $C\subset F_{r}\subset D$ we have

$0arrow O_{C}(a)arrow N_{C/D}arrow 0_{c}arrow 0$

where $a=C\cdot C=r+2k-2\geqq 0$, thus $N_{C/D}$ is spanned and $H^{1}(N_{C/D})=0$ . From $C\subset$

$D\subset X$ we have

(1.4.4) $0arrow N_{C/D}arrow N_{C}arrow N_{D/X.C}arrow 0$ .

Note that $N_{D}\cdot C=N_{D}\cdot(L_{F_{r}}-f)=N_{D}\cdot L_{F_{r}}-N_{D}\cdot f=N_{D}\cdot f’-N_{D}\cdot f$ , thus by (1.4.1)

and (1.4.3) we have $N_{D}\cdot c=-1-N_{D}\cdot f\geqq 0$ . Hence by (1.4.3) and (1.4.4) above
$N_{C}$ is spanned and $H^{1}(N_{C})=0$ .

Using a similar argument used with $f$ we get $K_{X}\cdot C\geqq 0$ . $K_{X}\cdot C=K_{X}\cdot(L_{F_{r}}$

$-f)=K_{X}\cdot L_{F_{r}}-K_{X}\cdot f$ thus

(1.4.5) $K_{X}\cdot L_{F_{\gamma}}\geqq K_{X}\cdot f$ .

From the adjunction formula, and $f’=E+(r+k)f$ and deg $(\det N_{F_{r}/X,f’})=-1$ it
follows $K_{X}\cdot L_{F_{r}}=K_{X}\cdot f’=-1-(r+2k)$ . Hence from (1.4.5) we get $K_{X}\cdot f\leqq-1$

$-(r+2k)\leqq-3$ . Again by the adjunction formula it follows $-2=(K_{X}+D)\cdot f=$

$K_{X}\cdot f+D\cdot f\leqq-3-1$ which is a contradiction. Thus $F=P^{2}$ .
Denote by $\mathcal{L}$ the $\det N_{P2/X}$ which is a line bundle in $P^{2}$ thus $\mathcal{L}=O_{P2}(\beta)$

with $\beta\in Z$ moreover $\mathcal{L}_{f’}=O_{f’}(-1)$ by (1.4.1) hence

(1.4.6) $\mathcal{L}\cdot f’=-1$ .
Noting that $f’\in|L_{P^{2}}|$ and that $L_{P^{2}}$ is ample, $i.e.,$ $L_{P^{2}}=\mathcal{O}_{P2}(\alpha),$ $\alpha>0$ and $\alpha\in Z$

we have $\mathcal{L}\cdot f’=\mathcal{L}\cdot L_{p2}=\alpha\beta$ . From (1.4.6) $\alpha\beta=-1$ giving $\alpha=\pm 1$ hence $\alpha=1$
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since $\alpha>0$ therefore $L_{P^{2}}=O_{P2}(1)$ . $\square$

(1.5) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.2). Then the map $\tilde{p}$ : $Darrow$

$R_{g}$ is a $P^{2}$-bundle.
PROOF. By (1.3) and (1.4) the fibres of $\tilde{p}$ are smooth and biholomorphic to

$P^{2}$ . Moreover there exists a line bundle in $D,$ $L_{D}$ such that $L_{D}|_{F}\cong O_{P2}(1)$ . The
map $\tilde{P}$ is flat by (1.4) hence by Hironaka’s theorem $\tilde{p}:Darrow R_{g}$ is a $P^{2}$-bundle,
see [7] Theorem 1.8, p. 10.

(1.6) MAIN THEOREM. Let $X$ be a connected four dimensional projective
manifold. Let $A$ be an ample divisor in X. Assume that the Kodaira dimension
of $X$ is non-negative. Assume that $A$ is the blow-up of a smooth projective three-
fold $A’$ with center a curve $R_{g}$ of genus $g\geqq 1$ , where $R_{g}$ is a submanifold of $A’$ .
Then there exists a smooth four dimensional manifold $X’$ such that $A’$ lies on $X’$

as a divisor and such that $X$ is the blow $uP$ of $X’$ with center $R_{g}$ . For the divisor
$A’$ to be ample it suffices to have $N\_{g^{X’}}$, not ample.

PROOF. By (1.1), (1.2), (1.3), (1.4) and (1.5) there exists a divisor $D$ in $X$

such that:
1) $D\cap A=Y$ , where $Y$ is the exceptional divisor on $A$ over $R_{g}$

2) the natural projection $p:Yarrow R_{g}$ extends to a surjective holomorphic map
$\tilde{p}:Darrow R_{g}$

3) $\tilde{p}$ makes $D$ a $P^{2}$-bundle over $R_{g}$ , where $2=co\dim_{A},R_{g}$ . Moreover each
fibre $Y_{x}$ of $Y$ over $x\in R_{g}$ is a hyperplane on $D_{x}=\tilde{p}^{-1}(x)\cong P^{2}$ .

Now it is straightforward to see that 1), 2) and 3) imply that $N_{D.P2}\cong O_{P^{2}}(-1)$ ,

see [3] (5.3). This is enough to ensure the existence of a manifold $X’$ such
that $A’$ lies in $X’$ as a divisor and $X$ is the blow-up of $X’$ with center $R_{g}$ .
Thus we have a map $\tilde{P}’$ : $Xarrow X’$ which blows down $D$ , see [8]. In order to
show that the divisor $A’$ is ample on $X’$ , under the assumption that the dual
bundle of $N_{R_{g}’ X’}$ is not ample, it is enough to show that the restriction of $[A’]$

to $R_{g}$ is ample, see [3] Prop. 5.6. Thus, assume that $[A’]|_{R_{g}}$ is not ample,
$i.e.,$ $[A’]\cdot R_{g}\leqq 0$ . We have $P^{*}[A’]=[A]+[D]$ since $A$ is the proper transform
of $A’$ in $X$. Therefore

(1.6.1) $[A]|_{D}=p*[A’]|_{D}-[D]|_{D}=p*[A’]|_{D}+\zeta$

where $\zeta$ is the tautological line bundle on $P(N_{R_{g}/X’}^{*})$ and $N_{R_{g}/X’}^{*}$ is the dual
bundle of $N_{R_{g}/X},$ . From (1.6.1) and using $P^{*}[A’]|_{D}=p^{*}[A’|_{R_{g}}]$ we get

(1.6.2) $\zeta=[A]|_{D}+p^{*}([A’|_{R_{g}}]^{-1})$ .

Thus $\zeta$ is ample since $[A]|_{D}$ is ample and $[A’|_{R_{g}}]^{\sim 1}$ is semipositive which implies
$N_{R_{g}/X’}^{*}$ is ample contradicting our hypothesis. $\square$

(1.7) REMARK. For $A’$ to be ample, it suffices to have $N_{R_{g}/X’}^{*}$ not ample.
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The referee of this paper gave the following example in which the divisor $A^{f}$

is not ample even though its proper transform $A$ in $X$ is ample.
Let $C$ be an elliptic curve. Let $\mathcal{L}$ be a very ample line bundle on $C$ . Let

$X’=P_{C}(\mathcal{L}\oplus I\oplus X\oplus O)$ and let $\zeta$ be the tautological line bundle on $X’$ . Let $S$

be the section of $X’arrow C$ defined by the quotient O. One can find a smooth $A’$

$\in|K|$ which contains $S$ . Let $X$ be the blow-up of $X’$ with center $S$ and let $A$

be the proper transform of $A’$ on $X$. Then one can check that $A$ is an ample
divisor on $X$ but $A’$ is not ample on $X’$ .
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