Extension of modifications of ample divisors on fourfolds

By Maria Lucia Fania

(Received Sept. 20, 1982)
(Revised Jan. 25, 1983)

Introduction.

In this article we consider the following problem: Let A be an ample divisor on a connected four dimensional projective manifold X. Assume that the Kodaira dimension of X is non-negative. Suppose that A is the blow up of a projective manifold A^{\prime} with center R_{g} where R_{g} is a smooth curve of genus $\geqq 1$ which is contained in A^{\prime}.

Does there exist a four dimensional manifold X^{\prime} such that A^{\prime} lies on X^{\prime} as a divisor and such that X is the blow up of X^{\prime} with center R_{g} ?

The answer to this question turned out to be positive. In fact following Sommese's idea, see [13], we construct a divisor D on X with the following properties :

1) $D \cap A=Y$, where Y is the exceptional divisor on A over R_{g}
2) the natural projection $Y \rightarrow R_{g}$ can be extended to a surjective holomorphic map $\tilde{p}: D \rightarrow R_{g}$
3) \tilde{p} makes D a \boldsymbol{P}^{2}-bundle over R_{g} where $\operatorname{dim} A^{\prime}-\operatorname{dim} R_{\boldsymbol{g}}=2$. Moreover, each fibre f^{\prime} of Y over $x \in R_{g}$ is a hyperplane on $F=\tilde{p}^{-1}(x) \cong \boldsymbol{P}^{2}$.
4) $[D]_{F}=\mathcal{O}_{P 2}(-1)$.

The above is enough to ensure the existence of X^{\prime} such that A^{\prime} is a divisor on X^{\prime} and X is the blow up of X^{\prime} with center R_{g}, see [8].

The above problem, in a more general setting, was already considered by Sommese in [14] and by Fujita in [3]. In fact they set up the problem for a projective manifold X of any dimension and without any assumption on the Kodaira dimension of X. Sommese in [14] showed that when $\operatorname{codim}_{A^{\prime}} R>2$ then there is an analytic set of codimension one in X that satisfies the condition for it to be blown down if the map $\tilde{p}: X \rightarrow X^{\prime}$ existed. Fujita in [3] showed that the problem could be solved in the case $\operatorname{codim}_{A^{\prime}} R>2$ where R is a submanifold of A^{\prime} along which we blow up.

We need the non-negativity of the Kodaira dimension for the theorem to be true. In fact given any projective threefold A there is a \boldsymbol{P}^{1}-bundle X over A
with a threefold B as a hyperplane section of X but yet the main theorem is false for (X, B).

We would like to thank Andrew J. Sommese for having suggested the problem and for very helpful discussions. We would also like to thank William Dwyer for helpful discussions about covering spaces. We would also like to thank the referee of this paper for his comments, for the shorter proof of Claim 2 in (1.2), and for the example in (1.7), which gave us a better understanding of the situation.

§0. Background material.

The notation will be as in [13]. Those that are used more frequently will be given below.
(0.1) Given a sheaf \mathfrak{S} of abelian groups on a topological space X we denote the global sections of $\mathfrak{\Im}$ over X by $\Gamma(\mathbb{S})$ or by $H^{0}(\mathfrak{S})$.
(0.2) All spaces and manifolds are complex analytic, all dimensions are over C. Given an analytic space X we denote the structure sheaf by \mathcal{O}_{X}.

Given a coherent analytic sheaf \subseteq on an analytic space X, we let $h^{i}(\subseteq)$ or $h^{i}\left(X\right.$, ©) denote $\operatorname{dim} H^{i}\left(X\right.$, S). Assuming that X is smooth we let $h^{p, q}(X)=$ $h^{q}\left(\bigwedge^{p} T_{X}^{*}\right)$ where T_{X}^{*} is the holomorphic cotangent bundle of X.
(0.3) Let X be a connected projective manifold. Let D be an effective Cartier divisor on X. Denote by [D] the holomorphic line bundle associated to D. If L is a holomorphic line bundle, we denote by $|L|$ the linear system of all Cartier divisors associated to L.

If $D \in|L|$ and \mathcal{C} is a curve in $X, L \cdot \mathcal{C}=D \cdot \mathcal{C}=c_{1}(L)[\mathcal{C}]$ where $c_{1}(L)$ is the first Chern class of L. We denote by K_{X} the canonical bundle of X if X is a pure dimensional complex manifold. If X is a complex manifold and A is a submanifold of X we denote by $N_{A / X}$ or N_{A} the normal bundle of A in X, and if $f \subset A$ is a subspace then we denote by $N_{A, f}$ the normal bundle of A in X restricted to f.
(0.4) If $p: X \rightarrow Y$ is a morphism and \subseteq is any locally free sheaf on Y of finite rank we denote by $p^{*} \mathbb{S}$ the pullback of \subseteq. If \mathbb{S} is a locally free sheaf on X of finite rank we denote by $p_{(i)} \subseteq$ the i-th direct image of \subseteq and sometimes we denote $p_{(0)} \subseteq$, the direct image sheaf, by $p_{*} \subseteq$.
(0.5) By F_{r} with $r \geqq 0$ we denote the Hirzebruch surfaces which are the unique \boldsymbol{P}^{1}-bundle over \boldsymbol{P}^{1} with a section E satisfying $E \cdot E=-r$. If $r \geqq 1$ we denote by \tilde{F}_{r} the normal surface obtained from F_{r} by blowing down E. In case $r=1, \widetilde{F}_{1}=\boldsymbol{P}^{2}$. If L is a line bundle in F_{r} then L is given by $[E]^{a} \otimes[f]^{b}$ where f is a fibre in F_{r} and $[E]^{a} \otimes[f]^{b}$ is ample if and only if $a>0$ and $b \geqq a r+1$. $[E]^{a} \otimes[f]^{b}$ is spanned by global sections if and only if $a \geqq 0$ and $b \geqq a r$. Given a line bundle L on \widetilde{F}_{r}, the pullback of L to F_{r} is of the form $\left([E] \otimes[f]^{r}\right)^{a}$ for
some integer a.
(0.6) Theorem. Let X be a reduced compact complex space, all of whose irreducible components have the same dimension. Assume that X is a local complete intersection and that $\pi: \tilde{X} \rightarrow X$ is a desingularization of X with \tilde{X} Kähler. Let L be a holomorphic line bundle on X whose pullback to \tilde{X} has a metric with a semipositive curvature form that has at least k positive eigenvalues at at least one point of each component of X. Then:

$$
H^{j}\left(X, L^{-1}\right)=0 \quad \text { for } \quad j<\min \{k, \operatorname{dim} X-\sigma\}
$$

where σ is the dimension of the singular set of X.
The proof is done using the dualizing sheaf, the Grauert-Riemenschneider canonical sheaf and Serre duality, see [12].
(0.7) Lemma. Let X, Y and Z be topological spaces. Let $\pi: X \rightarrow Y$ and $p: X \rightarrow Z$ be continuous maps with connected fibres. Assume that the induced maps $\pi_{*}: \pi_{1} X \rightarrow \pi_{1} Y$ and $p_{*}: \pi_{1} X \rightarrow \pi_{1} Z$ are surjective. Assume that $H_{1}(X, \boldsymbol{Z}) /$ Torsion $\cong H_{1}(Y, \boldsymbol{Z}) /$ Torsion $\cong H_{1}(Z, \boldsymbol{Z})$. Then there exist covering spaces $\left(X^{\vee}, p_{1}\right),\left(Y^{\vee}, p_{2}\right)$, $\left(Z^{\vee}, p_{3}\right)$ of X, Y and Z respectively such that $\left(Z^{2}, p_{3}\right)$ corresponds to the commutator subgroup of $\pi_{1} Z$ and the maps $p \circ p_{1}$ and $\pi \circ p_{1}$ lift to Z^{\vee} and Y^{\vee} respectively, with connected fibres.

Proof. Using the following two diagrams

and the hypothesis we have $\operatorname{ker} \eta=\pi_{*} \operatorname{ker} \psi$ and $\left[\pi_{1} Z, \pi_{1} Z\right]=p_{*} \operatorname{ker} \psi$. Let K $=\left[\pi_{1} Z, \pi_{1} Z\right], K^{\prime}=\operatorname{ker} \phi, K^{\prime \prime}=\operatorname{ker} \eta$. Let $\left(X^{\vee}, p_{1}\right),\left(Y^{2}, p_{2}\right)$ and $\left(Z^{\imath}, p_{3}\right)$ be the covering spaces of X, Y, Z associated to the subgroups $K, K^{\prime}, K^{\prime \prime}$, of $\pi_{1} Z, \pi_{1} X$ and $\pi_{1} Y$ respectively. Noting that $p^{\circ} p_{1}$ lifts to a map X^{\vee} to Z^{\vee} since $\left(p \circ p_{1}\right)_{*}$ $\left(\pi_{1} X^{\vee}\right)=K=p_{3 *} \pi_{1} Z^{\vee}$ we get a continuous map $f: X^{\swarrow} \rightarrow Z^{\swarrow}$. Moreover $\pi \circ p_{1}$ lifts to a map X^{\curlyvee} to Y^{\curlyvee} since $\left(\pi \circ p_{1}\right) *\left(\pi_{1} X^{\curlyvee}\right)=K^{\prime \prime}=p_{2 *}\left(\pi_{1} Y^{\curlyvee}\right)$ hence we get a continuous map $g: X^{\vee} \rightarrow Y^{乞}$. Thus we have the following diagram

We note that the maps p and π have connected fibres thus f and g have connected fibres.
(0.8) Lemma. We have the same conditions as in (0.7) except that X, Y and Z are now normal analytic spaces, π is a proper modification and p is a holomorphic map. Moreover assume that $\operatorname{Sing}(Y)$ is a finite set of points and that Z^{\vee} is Stein. Then the map $F^{\vee}=f \circ g^{-1}: Y^{\vee} \rightarrow Z^{\vee}$ is holomorphic. Moreover we get a holomorphic map $F: Y \rightarrow Z$.

Proof. By (0.7) there exist covering spaces (X^{2}, p_{1}), $\left(Y^{2}, p_{2}\right)$ and $\left(Z^{2}, p_{3}\right)$ of X, Y and Z respectively, moreover the maps $p^{\circ} p_{1}$ and $\pi \circ p_{1}$ lift to Z^{\vee} and Y^{\vee} respectively. Let f and g denote these lifted maps. Note that they are holomorphic. Moreover, g^{-1} exists as a meromorphic map since the map g has connected fibres and $g^{-1}: Y^{2}-p_{2}^{-1}(\operatorname{Sin} Y) \rightarrow X^{2}-\left(\pi \circ p_{1}^{-1}\right)(\operatorname{Sing} Y)$ is biholomorphic. Consider $f \circ g^{-1}: Y^{\curlyvee} \rightarrow Z^{\curlyvee} .\left.\quad\left(f \circ g^{-1}\right)\right|_{Y^{\vee}-p_{2}^{-1}(\operatorname{Sin} g Y)}$ is holomorphic, $p_{2}^{-1}(\operatorname{Sing} Y)$ is an analytic set in Y^{\vee} and $\operatorname{codim}\left(p_{2}^{-1} \operatorname{Sing}(Y)\right) \geqq 2$. Hence by Riemann's extension theorem $f \circ g^{-1}$ extends to a holomorphic map from Y^{\curvearrowright} to Z^{\wedge}. Let F^{\vee} $=f \circ g^{-1}$. Note that $X^{\curlyvee}, Y^{\swarrow}$ and Z^{\vee} are regular covering spaces thus:

$$
\begin{aligned}
& A\left(X^{\vee}, p_{1}\right) \cong \pi_{1} X / K^{\prime} \cong H_{1}(X, Z) / \text { Torsion } \\
& A\left(Y^{\vee}, p_{2}\right) \cong \pi_{1} Y / K^{\prime \prime} \cong H_{1}^{*}(Y, \boldsymbol{Z}) / \text { Torsion } \\
& A\left(Z^{\vee}, p_{3}\right) \cong \pi_{1} Z / K \cong H_{1}(Z, Z)
\end{aligned}
$$

where $A\left(-, p_{i}\right)$ denotes the group of the deck transformations. The above three groups are isomorphic to one another since each one of them is isomorphic to $H_{1}(Z, Z)$. Denote such group by G. G acts transitively on X^{2}, Y^{2}, Z^{\wedge} thus $X^{\curlyvee} / G \cong X, Y^{\curlyvee} / G \cong Y, Z^{\curlyvee} / G \cong Z$. Denote by F the map obtained from $F^{`}: Y^{乞} \rightarrow$ Z^{\vee} after we have considered the action of G on Y^{\swarrow} and Z^{2}. Thus $F: Y \rightarrow Z$. The map F is a holomorphic map since F^{\vee} and the maps $\pi_{1}: Y^{\vee} \rightarrow Y^{\vee} / G$ and $\pi_{2}: Z^{\curlyvee} \rightarrow Z^{\curlyvee} / G$ are holomorphic. Moreover we note that $F=p \circ \pi^{-1}$. In fact it is straightforward to see that $\left(f \circ g^{-1}\right)_{G}=f_{G} \circ g_{G}^{-1}$ and $f_{G} \circ g_{G}^{-1}=p \circ \pi^{-1}$. Thus $F=$
$p \circ \pi^{-1}\left(\right.$ by $\left(f \circ g^{-1}\right)_{G}: Y \rightarrow Z$ we denote the map obtained from $f \circ g^{-1}: Y^{\vee} \rightarrow Z^{\vee}$ after we have considered the action of G on Y^{\vee} and Z^{\vee}).

§ 1. The main theorem.

(1.0) Throughout this section we assume:
a) X is a four dimensional connected projective manifold,
b) L is an ample line bundle with at least one smooth $A \in|L|$,
c) the Kodaira dimension of X is non-negative i. e. $\Gamma\left(K_{X}^{n}\right) \neq 0$ for some integer $n>0$.
(1.1) Lemma. Let X, A and L be as in (1.0). Assume that A is the blow-up of a smooth projective threefold A^{\prime} with center a smooth curve R_{g} of genus g $\geqq 1$. Let Y be the exceptional divisor of this blow-up and let f^{\prime} be a fibre of Y. Then the closure D of the union of all deformations of f^{\prime} in X is a normal, irreducible, reduced divisor on X such that:
a) D intersects A transversely in Y, and
b) $Y \subset D_{\text {reg }}$.

Proof. From $f^{\prime} \subset Y \subset A$ and the fact that $N_{Y / A, f^{\prime}}=\mathcal{O}_{f^{\prime}}(-1)$ we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{f^{\prime}} \longrightarrow N_{f^{\prime} / A} \longrightarrow \mathcal{O}_{f^{\prime}}(-1) \longrightarrow 0 \tag{1.1.1}
\end{equation*}
$$

where $\mathcal{O}_{f^{\prime}}$ is the trivial bundle and $N_{f^{\prime} / A}$ is the normal bundle of f^{\prime} in A. By the long exact cohomology sequence associated to (1.1.1) we have

$$
h^{0}\left(N_{f^{\prime} / A}\right)=1 \quad \text { and } \quad H^{1}\left(f^{\prime}, N_{f^{\prime} / A}\right)=0 .
$$

From $f^{\prime} \subset A \subset X$ we have the short exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{f^{\prime} / A} \longrightarrow N_{f^{\prime}} \longrightarrow \mathcal{O}_{f^{\prime}}(a) \longrightarrow 0 \tag{1.1.2}
\end{equation*}
$$

where $N_{f^{\prime}}$ is the normal bundle of f^{\prime} in X and $\mathcal{O}_{f^{\prime}}(a)$ is the a-th power of the hyperplane section bundle on $f^{\prime} \cong \boldsymbol{P}^{1}$, and where $a=L \cdot f^{\prime}>0$. By the long exact cohomology sequence associated to (1.1.2) it follows that

$$
\begin{equation*}
h^{0}\left(N_{f^{\prime}}\right)=a+2 \geqq 3 \quad \text { and } \quad H^{1}\left(f^{\prime}, N_{f^{\prime}}\right)=0 . \tag{1.1.3}
\end{equation*}
$$

From (1.1.3) it follows that there exist deformations of f^{\prime} in X. Let D be the closure of the union of all the deformations of f^{\prime} in X.

Claim. D is a divisor in X.
Proof of Claim. Since $\Gamma\left(N_{f}\right)$ is naturally identified with $T_{\mathscr{H}, \alpha}$, where \mathscr{H} is the irreducible component of the Hilbert scheme of X parametrizing flat deformations of f^{\prime} with $\alpha \in \mathscr{H}$ corresponding to f^{\prime} and containing the deformations of f^{\prime} on Y, we have $\operatorname{dim} T_{\mathscr{H}, \alpha}=\operatorname{dim} \Gamma\left(N_{f^{\prime}}\right) \geqq 3$ thus $\operatorname{dim} \mathscr{H} \geqq 3$. From (1.1.3)
using Kodaira-Spencer theory, it follows that $\operatorname{dim} D \geqq 2$. But $\operatorname{dim} D=2$ does not occur since this would imply that Y was a component of D and that deformations of most fibres of Y remain in Y. This implies that $\operatorname{dim} \mathscr{H}<2$ for a generic f^{\prime} on Y. Finally $\operatorname{dim} D \neq 4$ ([13], (0.7.2)). In fact if the deformations of f^{\prime} filled out an open set of X, then since $n K_{X}$ is effective it follows that

$$
\begin{equation*}
K_{X} \cdot f^{\prime} \geqq 0 . \tag{1.1.4}
\end{equation*}
$$

By (1.1.1) and (1.1.2) we have $\operatorname{det} N_{f^{\prime}}=\mathcal{O}_{f^{\prime}}(a-1)$. By the adjunction formula

$$
K_{f^{\prime}}=K_{X \mid f^{\prime}} \otimes \operatorname{det} N_{f^{\prime}}
$$

thus $-2=K_{X} \cdot f^{\prime}+a-1$, i. e., $K_{X} \cdot f^{\prime}=-2-a+1 \leqq-2$ which contradicts (1.1.4).
The above argument also shows that N_{f}, is not spanned since otherwise by Kodaira-Spencer theory the deformations of f^{\prime} are dense in X. It is straightforward to see that $N_{f}=\mathcal{O}_{f}(-1) \oplus \mathcal{L}_{f^{\prime}}$ where $\mathcal{L}_{f^{\prime}}$ is a rank two vector bundle on f^{\prime}. This shows that a union U of small deformations of f^{\prime} in X gives a complex manifold that meets A transversely in Y, which implies that D meets A transversely in Y, by the same argument as in [13] p. 23. Since the intersection is transverse and Y is smooth, the singularities of D are in $D-A$, but A is ample. Therefore $\operatorname{Sing}(D)$ is a finite set of closed points. Hence D is normal being a divisor with isolated singularities in a manifold of dimension $\geqq 3$. For a proof, see [13] p. 67 .
(1.2) Lemma. Let X, A, L, Y and D be as in (1.1). Let $p: Y \rightarrow R_{g}$ be the restriction of the blow-up $p: A \rightarrow A^{\prime}$. Then p extends to a holomorphic map from D to R_{g}.

Proof. Let \tilde{D} be a desingularization of D.
Claim 1. $\operatorname{dim} \operatorname{Alb}(Y)=\operatorname{dim} \operatorname{Alb}(\widetilde{D})$.
Proof of Claim 1. Let $\bar{L}=[Y]$ be the ample line bundle on D determined by Y. Since $\pi_{*} \Theta_{\widetilde{D}} \cong \mathcal{O}_{D}$ we have

$$
H^{0}\left(\tilde{D}, \pi^{*} \bar{L}^{n}\right) \cong H^{0}\left(D, \pi_{*}\left(\pi^{*} \bar{L}^{n}\right)\right) \cong H^{0}\left(D, \bar{L}^{n}\right) \quad \text { for } \quad n \gg 0 .
$$

Note that $\pi^{*} \bar{L}^{n}$ is spanned by global sections and the map $\Phi_{\pi *} \bar{L}^{n}: \widetilde{D} \rightarrow \boldsymbol{P}_{C}$ is given by the following composition

$$
\tilde{D} \xrightarrow{\pi} D \xrightarrow{\Phi_{\bar{L}^{n}}} \boldsymbol{P}_{C} .
$$

Moreover note that $\operatorname{dim} \Phi_{\pi * \Sigma^{n}}(\tilde{D})=3$ since $\pi(\widetilde{D})=D$ and $\Phi_{\bar{L}^{n}}$ is an embedding where by $\Phi_{\bar{L}^{n}}$ we denote the map associated to the linear system given by \bar{L}^{n}. Since $\pi^{*} \bar{L}^{n}$ is spanned by global sections and $\Phi_{\pi \cdot \bar{L}^{n}}$ has three dimensional image this implies

$$
h^{i}\left(K_{\tilde{D}} \otimes \pi^{*} \bar{L}\right)=0 \quad \text { for } \quad i>\operatorname{dim} \tilde{D}-3
$$

therefore

$$
h^{1}\left(K_{\widetilde{D}} \otimes \pi^{*} \bar{L}\right)=h^{2}\left(K_{\widetilde{D}} \otimes \pi^{*} \bar{L}\right)=0
$$

and by Serre duality

$$
\begin{equation*}
h^{1}\left(\tilde{D},\left(\pi^{*} \bar{L}\right)^{-1}\right)=h^{2}\left(\tilde{D},\left(\pi^{*} \bar{L}\right)^{-1}\right)=0 . \tag{*}
\end{equation*}
$$

Using (*), the fact that $\left(\pi^{*} \bar{L}\right)^{-1} \approx \mathcal{O}_{\tilde{D}}(-Y)$ and the long exact cohomology sequence associated to

$$
0 \longrightarrow \mathcal{O}_{\widetilde{D}}(-Y) \longrightarrow \mathcal{O}_{\widetilde{D}} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0
$$

we have

$$
\begin{equation*}
H^{1}\left(\mathcal{O}_{\widetilde{D}}\right) \cong H^{1}\left(\mathcal{O}_{Y}\right) . \tag{1.2.1}
\end{equation*}
$$

From this last fact and Hodge theory it follows that $H^{0}\left(\widetilde{D}, T_{\widetilde{D}}^{*}\right) \cong H^{0}\left(Y, T_{Y}^{*}\right)$. Thus

$$
\operatorname{dim} \operatorname{Alb}(Y)=\operatorname{dim} \operatorname{Alb}(\widetilde{D}) .
$$

We have the following diagram

where α is the Albanese map. In the above diagram we use the fact that $\operatorname{Alb}(Y) \cong J\left(R_{g}\right)$ where $J\left(R_{g}\right)$ denotes the Jacobian variety of R_{g}.

Claim 2. $\operatorname{dim} \alpha(\widetilde{D})=1$.
Proof of Claim 2. If $\operatorname{dim} \alpha(\widetilde{D}) \neq 1$ then we would have 2 cases:

1) $\operatorname{dim} \alpha(\tilde{D})=0$ which does not occur since $\alpha(\tilde{D})$ generates $\operatorname{Alb}(\tilde{D})$ and $\operatorname{dim} \operatorname{Alb}(\widetilde{D})=\operatorname{dim} \operatorname{Alb}(Y)=g>0$.
2) $\operatorname{dim} \alpha(\widetilde{D}) \geqq 2$.

If $\operatorname{dim} \alpha(\tilde{D}) \geqq 2$, one can conclude that $H^{0}\left(\tilde{D}, \Omega_{\tilde{D}}^{2}\right)>0$ by Ueno's theory. But this is impossible because $H^{2}\left(Y, \mathcal{O}_{Y}\right)=0$ and $H^{2}\left(\tilde{D},\left(\pi^{*} \bar{L}\right)^{-1}\right)=0$.

Claim 3. $\alpha(\tilde{D})$ is isomorphic to R_{g} via j.
Proof of Claim 3. Assume $g(\alpha(\tilde{D}))=g^{\prime}>1$. If j is not an isomorphism then $\operatorname{deg} j \geqq 2$ and by Riemann-Hurwitz' theorem we have

$$
\begin{equation*}
2 g-2=n\left(2 g^{\prime}-2\right)+\rho \tag{1.2.2}
\end{equation*}
$$

where $g=g\left(R_{g}\right), n=\operatorname{deg} j$ and ρ is the total ramification. Since $g=g^{\prime}$ and $n \geqq 2$, from (1.2.2) we get a contradiction. Thus j is an isomorphism for $g>1$. Now assume that $g=1$. In this last case the map $j: R_{g} \rightarrow \alpha(\tilde{D})$ is a covering map by Riemann-Hurwitz' theorem. From the following diagram

where $h=j \circ p$, if j is not an isomorphism, then the generic fibre of h is disconnected. Let $e^{\prime} \in \alpha(\tilde{D})$ such that $h^{-1}\left(e^{\prime}\right)$ is disconnected. Let $S=\alpha^{-1}\left(e^{\prime}\right)$ be a smooth surface in \tilde{D}. Note that $\alpha^{-1}\left(e^{\prime}\right)$ is connected. For a proof, see [18]. Moreover note that $i(Y) \cong Y$ and $\mathcal{C}=Y \cap S$ is disconnected. Denote by \bar{L}_{S} the restriction of the line bundle \bar{L} to S. \bar{L}_{s}^{m} gives a birational map of S for $m \gg 0$. Looking at the long exact cohomology sequence associated to

$$
0 \longrightarrow \bar{L}_{S}^{-1} \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{c} \longrightarrow 0
$$

since $h^{0}\left(\bar{L}_{S}^{-1}\right)=h^{1}\left(\bar{L}_{s}^{-1}\right)=0$ we get $H^{0}\left(\mathcal{O}_{s}\right) \cong H^{0}\left(\mathcal{O}_{C}\right)$ but $H^{0}\left(\mathcal{O}_{S}\right) \cong \boldsymbol{C}$ which gives a contradiction since \mathcal{C} is not connected. Hence j has to be an isomorphism and therefore we can identify R_{g} with $\alpha(\widetilde{D})$ via j. Thus we get a holomorphic map $\tilde{p}: \tilde{D} \rightarrow R_{g}$ such that $\left.\tilde{p}\right|_{Y}=p$.

Claim 4. $H^{1}(D, \boldsymbol{Z}) \cong H^{1}(\widetilde{D}, \boldsymbol{Z})$.
Proof of Claim 4. From (0.6) we get

$$
H^{i}\left(D, \bar{L}^{-1}\right)=0 \quad \text { for } \quad i<\min \{k, \operatorname{dim} D-\sigma\}=3
$$

since $k=3$ and $\sigma=\operatorname{dim} \operatorname{Sing}(D)=0$, thus $H^{1}\left(D, \bar{L}^{-1}\right)=H^{2}\left(D, \bar{L}^{-1}\right)=0$. Using this and the long exact cohomology sequence associated to

$$
0 \longrightarrow g_{Y} \longrightarrow \mathcal{O}_{D} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0
$$

we get that $H^{1}\left(\mathcal{O}_{D}\right) \cong H^{1}\left(\mathcal{O}_{Y}\right)$. Since Y is ruled it follows that $H^{2}\left(\mathcal{O}_{Y}\right)=0$ which together with $H^{2}\left(\mathcal{g}_{Y}\right)=H^{2}\left(\mathcal{O}_{D}(-Y)\right)=0$ gives $H^{2}\left(\mathcal{O}_{D}\right)=0$. Now using the Leray spectral sequence, $H^{1}\left(D, \mathcal{O}_{D}\right) \cong H^{1}\left(\tilde{D}, \mathcal{O}_{\tilde{D}}\right)$ and $H^{2}\left(D, \mathcal{O}_{D}\right)=0$ it follows that $H^{0}\left(D, \pi_{(1)} \partial_{\widetilde{D}}\right)=0$ which implies $\pi_{(1)} \partial_{\widetilde{D}}=0$ since $\pi_{(1)} \theta_{\widetilde{D}}$ is supported at a finite number of points. From

$$
0 \longrightarrow Z \longrightarrow \mathcal{O}_{\widetilde{D}} \longrightarrow \mathcal{O}_{\tilde{D}}^{*} \longrightarrow 0
$$

we get

$$
0 \longrightarrow \pi_{*} Z \longrightarrow \pi_{*} \Theta_{\widetilde{D}} \xrightarrow{\beta} \pi_{*} \sigma_{\widetilde{D}}^{*} \longrightarrow \pi_{(1)} Z \longrightarrow \pi_{(1)} \Theta_{\widetilde{D}} \longrightarrow \cdots
$$

Since the map β is onto and $\pi_{(1)} \Theta_{\tilde{D}}=0$ we get that $\pi_{(1)} \boldsymbol{Z}=0$ and by the Leray spectral sequence we get $H^{1}(D, \boldsymbol{Z}) \cong H^{1}(\widetilde{D}, \boldsymbol{Z})$.

This claim implies $H_{1}(D, \boldsymbol{Z}) /$ Torsion $\cong H_{1}(\tilde{D}, \boldsymbol{Z}) /$ Torsion. By $H^{1}\left(\mathcal{O}_{R_{g}}\right) \cong H^{1}\left(\mathcal{O}_{\tilde{D}}\right)$ and by Hodge theory we get

$$
\begin{equation*}
H^{1}\left(R_{g}, \boldsymbol{C}\right) \cong H^{1}(\tilde{D}, \boldsymbol{C}) . \tag{1.2.3}
\end{equation*}
$$

The map $\tilde{p}: \tilde{D} \rightarrow R_{g}$ is proper with connected fibres and R_{g} is a Riemann surface thus the fundamental group of \tilde{D} maps onto the fundamental group of R_{g}. The above fact together with (1.2.3) implies that

$$
\begin{equation*}
H_{1}(\tilde{D}, \boldsymbol{C}) \cong H_{1}\left(R_{g}, \boldsymbol{C}\right) \tag{1.2.4}
\end{equation*}
$$

Moreover since $\pi_{1} \tilde{D}$ maps onto $\pi_{1} R_{g}$ it follows that $\tilde{p}_{*}: H_{1}(\tilde{D}, \boldsymbol{Z}) \rightarrow H_{1}\left(R_{g}, \boldsymbol{Z}\right)$ is onto and using (1.2.4) we have $\operatorname{ker}\left(\tilde{p}_{*}\right)=\operatorname{Torsion}\left(H_{1}(\tilde{D}, \boldsymbol{Z})\right)$. Thus $H_{1}\left(R_{g}, \boldsymbol{Z}\right)$ $\cong H_{1}(\widetilde{D}, \boldsymbol{Z}) /$ Torsion. Note that the fundamental group of \tilde{D} maps onto the fundamental group of D. Since D has isolated singularities, loops in D can be moved away from the singular points, but $D-\operatorname{Sing}(D)$ is isomorphic to $\tilde{D}-$ $\pi^{-1}(\operatorname{Sing}(D))$. Thus loops in D come from loops in \tilde{D}. We can apply (0.7) and (0.8) with $X=\tilde{D}, Y=D$ and $Z=R_{g}$. Thus we have a holomorphic map $F^{\wedge}=$ $f \circ g^{-1}: D^{\curlyvee} \rightarrow R_{g}^{\ulcorner }$as in (0.8) and $F: D^{\curlyvee} / G \rightarrow R_{g}^{\ulcorner } / G$ is holomorphic. Note that $D^{\curlyvee} / G \cong D$ and $R_{g}^{\smile} / G \cong R_{g}$ thus $F: D \rightarrow R_{g}$. Moreover F extends $p: Y \rightarrow R_{g}$ since $f_{G}=\tilde{p}$ where $f_{G}: \tilde{D} \rightarrow R_{g}$ is obtained from $f: \tilde{D}^{2} \rightarrow R_{g}$ after we consider the action of G on \tilde{D}^{\curlyvee} and R_{g}^{\checkmark}, and \tilde{p} is as in (1.2). Denote the map F by \tilde{p}.
(1.3) Lemma. Let X, A, L, Y and D be as in (1.2). Then all the fibres of the map $\tilde{p}: D \rightarrow R_{g}$ are smooth.

Proof. The map $\tilde{p}: D \rightarrow R_{g}$ is flat, see [5] Prop. 9.7 p.257. This implies that the Hilbert polynomial of the fibres D_{x} is independent of x (see [5] theorem (9.9) p.261) thus the Hilbert polynomial of the singular fibres F is equal to the Hilbert polynomial of the smooth fibres F^{\prime}; in particular $\chi\left(\Theta_{F^{\prime}}\right)=\chi\left(\Theta_{F}\right)$. Note that F^{\prime} intersects Y transversely in f^{\prime}, where f^{\prime} is a fibre of Y. Moreover f^{\prime} is ample in F^{\prime} and $f^{\prime} \cong \boldsymbol{P}^{1}$ thus by Scorza's lemma, see [11], F^{\prime} is either F_{r} with $r \geqq 0$ or \boldsymbol{P}^{2}. Thus $\chi\left(\mathcal{O}_{F^{\prime}}\right)=1$. Note that the singular fibre F intersects Y transversely in f^{\prime} and f^{\prime} is a smooth Cartier divisor on F which implies that $\operatorname{Sing}(F)$ is in the complement of Y which is ample in D thus $\operatorname{Sing}(F)$ is a finite set of closed points. Since F is a local complete intersection and has only isolated singular points, F is normal by Serre's criterion. Thus F is either F_{r} with $r \geqq 0$ or $\tilde{F}_{r}, r \geqq 1$, where F_{r} is as in (0.5).

Assume $F=\tilde{F}_{r}$. Let $N_{F / D}$ be the normal bundle of F in $D . \quad N_{F / D}$ is trivial since F is a fibre of \tilde{p}. Note that since $f^{\prime} \cong \boldsymbol{P}^{1}$ then $f^{\prime}=(E+r f)^{a}$ for some integer a, where E and f are as in (0.5). We know that

$$
\begin{equation*}
F \cap Y=f^{\prime} \tag{1.3.1}
\end{equation*}
$$

and such intersection is transverse in D therefore $N_{f^{\prime} / F}=N_{Y / D, f^{\prime}}$. From (1.3.1) we see that

$$
\begin{equation*}
N_{f^{\prime} / D}=N_{F / D, f^{\prime}} \oplus N_{Y / D, f^{\prime}}=\mathcal{O}_{f^{\prime}} \oplus \mathcal{O}_{f^{\prime}}\left(r a^{2}\right) \tag{1.3.2}
\end{equation*}
$$

since

$$
\begin{equation*}
N_{Y / D, f^{\prime}}=N_{f^{\prime} \mid F}=\mathcal{O}_{f^{\prime}}\left(r a^{2}\right) \tag{1.3.3}
\end{equation*}
$$

We know that $D \cap A=Y$ and such intersection is transverse in X thus $N_{A / X, Y}$ $=N_{Y / D}$ which implies that $N_{A / X, f^{\prime}}=N_{Y / D, f^{\prime}}$ thus by (1.3.3)

$$
\begin{equation*}
N_{A / X, f^{\prime}}=\mathcal{O}_{f^{\prime}}\left(r a^{2}\right) \tag{1.3.4}
\end{equation*}
$$

From (1.1.1) it follows that $\operatorname{det} N_{f^{\prime} / A}=\mathcal{O}_{f^{\prime}}(-1)$ and from (1.1.2) and (1.3.4) we have

$$
\begin{equation*}
\operatorname{det} N_{f^{\prime}}=\operatorname{det} N_{f^{\prime} / A} \otimes N_{A / X, f^{\prime}}=\mathcal{O}_{f^{\prime}}\left(r a^{2}-1\right) \tag{1.3.5}
\end{equation*}
$$

From $f^{\prime} \subset D \subset X$ and (1.3.2) we have

$$
\begin{equation*}
\operatorname{det} N_{f^{\prime}}=\mathcal{O}_{f}\left(r a^{2}\right) \otimes N_{D / X, f} \tag{1.3.6}
\end{equation*}
$$

From

$$
0 \longrightarrow N_{F / D} \longrightarrow N_{F / X} \longrightarrow N_{D / X, F} \longrightarrow 0
$$

and the fact that $N_{F / D}$ is trivial it follows $\operatorname{det} N_{F / X}=N_{D / X, F}$. Thus

$$
\begin{equation*}
\operatorname{det} N_{F / X, f}=N_{D / X, f} \tag{*}
\end{equation*}
$$

and (1.3.6) becomes

$$
\operatorname{det} N_{f^{\prime}}=\mathcal{O}_{f^{\prime}}\left(r a^{2}\right) \otimes \operatorname{det} N_{F / X, f^{\prime}}
$$

Combining the above with (1.3.5) we have

$$
\begin{equation*}
\operatorname{det} N_{F / X, f^{\prime}}=\mathcal{O}_{f},(-1) \tag{1.3.7}
\end{equation*}
$$

Note that $\operatorname{det} N_{F / X}=(E+r f)^{b}$ for some integer b since $F=\widetilde{F}_{r}$. Thus $\operatorname{det} N_{F / X, f}$, $=\mathcal{O}_{f^{\prime}}(a b r)$ and by (1.3.7) we have $a b r=-1$. Note that $r \geqq 1, a$ and b are integers thus $r=1$. Therefore $F=\widetilde{F}_{1}$. Thus we conclude that F is smooth since F can be either F_{r} with $r \geqq 0$ or \widetilde{F}_{1}.
(1.4) Lemma. Let X, A, L, Y and D be as in (1.0) and (1.2). Then the fibres of \tilde{p} are biholomorphic to \boldsymbol{P}^{2}. Moreover $L_{\boldsymbol{P}^{2}} \cong \mathcal{O}_{\boldsymbol{P}_{2}}(1)$.

Proof. By (1.3) the fibres F of \tilde{p} are smooth and F is either F_{r} with $r \geqq 0$ or \boldsymbol{P}^{2}. Assume $F=F_{r}$. Knowing that $f^{\prime}\left(\cong \boldsymbol{P}^{1}\right)$ is ample in F_{r}, we have $f^{\prime}=E$ $+(r+k) f$ with $k>0$, and as in (1.3), using $F=F_{r}$, instead of $F=\tilde{F}_{r}$, we get

$$
\begin{equation*}
\operatorname{det} N_{F_{r} / X, f^{\prime}}=\mathcal{O}_{f^{\prime}}(-1) \tag{1.4.1}
\end{equation*}
$$

Denote by $L_{F_{r}}$ the restriction of the line bundle L to F_{r}. Thus $L_{F_{r}}$ is ample since L is ample. Moreover $f^{\prime} \in\left|L_{F_{r}}\right|$ since $f^{\prime}=F_{r} \cap A$. Let E and f be as in (0.5). From $f \subset F_{r} \subset D$ we get

$$
0 \longrightarrow \mathcal{O}_{f} \longrightarrow N_{f / D} \longrightarrow \mathcal{O}_{f} \longrightarrow 0
$$

which implies that $N_{f / D}$ is spanned by global sections and $H^{1}\left(N_{f / D}\right)=0$. From $f \subset D \subset X$ we have

$$
\begin{equation*}
0 \longrightarrow N_{f / D} \longrightarrow N_{f} \longrightarrow N_{D, f} \longrightarrow 0 \tag{1.4.2}
\end{equation*}
$$

Thus $\operatorname{det} N_{f}=N_{D, f}$ since $\operatorname{det} N_{f / D}$ is trivial. We will show that $N_{D, f}$ is not spanned by global sections. Assume it is, i. e. $N_{D} \cdot f \geqq 0$, this implies, from the long exact cohomology sequence associated to (1.4.2), that N_{f} is spanned by global sections and $H^{1}\left(N_{f}\right)=0$ which is impossible by an earlier argument used in (1.1). Hence

$$
\begin{equation*}
N_{D} \cdot f<0 . \tag{1.4.3}
\end{equation*}
$$

The line bundle $L_{F_{r}}$ is ample thus $L_{F_{r}}=[E] \otimes[(r+k) f]$ with $k>0$. Since $L_{F_{r}}$ is spanned we can find a smooth rational curve $\mathcal{C} \in|[E] \otimes[(r+k-1) f]|=$ $\left|L_{F_{r}}-f\right|$. Let $N_{\mathcal{C}}$ denote the normal bundle of \mathcal{C} in X.

Claim. $\quad \Gamma\left(N_{C}\right)$ is spanned by global sections and $H^{1}\left(N_{c}\right)=0$.
Proof of Claim. From $\mathcal{C} \subset F_{r} \subset D$ we have

$$
0 \longrightarrow \mathcal{O}_{\mathcal{C}}(a) \longrightarrow N_{C / D} \longrightarrow \mathcal{O}_{\mathcal{C}} \longrightarrow 0
$$

where $a=\mathcal{C} \cdot \mathcal{C}=r+2 k-2 \geqq 0$, thus $N_{\mathcal{C} / D}$ is spanned and $H^{1}\left(N_{\mathcal{C} / D}\right)=0$. From $\mathcal{C} \subset$ $D \subset X$ we have

$$
\begin{equation*}
0 \longrightarrow N_{C / D} \longrightarrow N_{\mathcal{C}} \longrightarrow N_{D / X, C} \longrightarrow 0 . \tag{1.4.4}
\end{equation*}
$$

Note that $N_{D} \cdot \mathcal{C}=N_{D} \cdot\left(L_{F_{r}}-f\right)=N_{D} \cdot L_{F_{r}}-N_{D} \cdot f=N_{D} \cdot f^{\prime}-N_{D} \cdot f$, thus by (1.4.1) and (1.4.3) we have $N_{D} \cdot \mathcal{C}=-1-N_{D} \cdot f \geqq 0$. Hence by (1.4.3) and (1.4.4) above $N_{\mathcal{C}}$ is spanned and $H^{1}\left(N_{\mathcal{C}}\right)=0$.

Using a similar argument used with f we get $K_{X} \cdot \mathcal{C} \geqq 0 . \quad K_{X} \cdot \mathcal{C}=K_{X} \cdot\left(L_{F_{r}}\right.$ $-f)=K_{X} \cdot L_{F_{r}}-K_{X} \cdot f$ thus

$$
\begin{equation*}
K_{X} \cdot L_{F_{r}} \geqq K_{X} \cdot f . \tag{1.4.5}
\end{equation*}
$$

From the adjunction formula, and $f^{\prime}=E+(r+k) f$ and $\operatorname{deg}\left(\operatorname{det} N_{F_{r} / X, f^{\prime}}\right)=-1$ it follows $K_{X} \cdot L_{F_{r}}=K_{X} \cdot f^{\prime}=-1-(r+2 k)$. Hence from (1.4.5) we get $K_{X} \cdot f \leqq-1$ $-(r+2 k) \leqq-3$. Again by the adjunction formula it follows $-2=\left(K_{X}+D\right) \cdot f=$ $K_{X} \cdot f+D \cdot f \leqq-3-1$ which is a contradiction. Thus $F=\boldsymbol{P}^{2}$.

Denote by \mathcal{L} the $\operatorname{det} N_{P 2 / X}$ which is a line bundle in \boldsymbol{P}^{2} thus $\mathcal{L}=\mathcal{O}_{\boldsymbol{P} 2}(\beta)$ with $\beta \in \boldsymbol{Z}$ moreover $\mathcal{L}_{f}=\mathcal{O}_{f},(-1)$ by (1.4.1) hence

$$
\begin{equation*}
\mathcal{L} \cdot f^{\prime}=-1 . \tag{1.4.6}
\end{equation*}
$$

Noting that $f^{\prime} \in\left|L_{P^{2}}\right|$ and that $L_{P^{2}}$ is ample, i. e., $L_{P^{2}}=\mathcal{O}_{P^{2}}(\alpha), \alpha>0$ and $\alpha \in Z$ we have $\mathcal{L} \cdot f^{\prime}=\mathcal{L} \cdot L_{P^{2}}=\alpha \beta$. From (1.4.6) $\alpha \beta=-1$ giving $\alpha= \pm 1$ hence $\alpha=1$
since $\alpha>0$ therefore $L_{P 2}=\mathcal{O}_{P 2}(1)$.
(1.5) Lemma. Let X, A, L, Y and D be as in (1.2). Then the map $\tilde{p}: D \rightarrow$ R_{g} is a \boldsymbol{P}^{2}-bundle.

Proof. By (1.3) and (1.4) the fibres of \tilde{p} are smooth and biholomorphic to \boldsymbol{P}^{2}. Moreover there exists a line bundle in D, L_{D} such that $\left.L_{D}\right|_{F} \cong \mathcal{O}_{P_{2}}(1)$. The map \tilde{p} is flat by (1.4) hence by Hironaka's theorem $\tilde{p}: D \rightarrow R_{g}$ is a \boldsymbol{P}^{2}-bundle, see [7] Theorem 1.8, p. 10.
(1.6) Main Theorem. Let X be a connected four dimensional projective manifold. Let A be an ample divisor in X. Assume that the Kodaira dimension of X is non-negative. Assume that A is the blow-up of a smooth projective threefold A^{\prime} with center a curve R_{g} of genus $g \geqq 1$, where R_{g} is a submanifold of A^{\prime}. Then there exists a smooth four dimensional manifold X^{\prime} such that A^{\prime} lies on X^{\prime} as a divisor and such that X is the blow up of X^{\prime} with center R_{g}. For the divisor A^{\prime} to be ample it suffices to have $N_{R_{g^{\prime}} X^{\prime}}$, not ample.

Proof. By (1.1), (1.2), (1.3), (1.4) and (1.5) there exists a divisor D in X such that:

1) $D \cap A=Y$, where Y is the exceptional divisor on A over R_{g}
2) the natural projection $p: Y \rightarrow R_{g}$ extends to a surjective holomorphic map $\tilde{p}: D \rightarrow R_{g}$
3) \tilde{p} makes D a \boldsymbol{P}^{2}-bundle over R_{g}, where $2=\operatorname{codim}_{A^{\prime}} R_{g}$. Moreover each fibre Y_{x} of Y over $x \in R_{g}$ is a hyperplane on $D_{x}=\tilde{p}^{-1}(x) \cong \boldsymbol{P}^{2}$.

Now it is straightforward to see that 1), 2) and 3) imply that $N_{D, P 2} \cong \mathcal{O}_{P_{2}}(-1)$, see [3] (5.3). This is enough to ensure the existence of a manifold X^{\prime} such that A^{\prime} lies in X^{\prime} as a divisor and X is the blow-up of X^{\prime} with center R_{g}. Thus we have a map $\tilde{p}^{\prime}: X \rightarrow X^{\prime}$ which blows down D, see [8]. In order to show that the divisor A^{\prime} is ample on X^{\prime}, under the assumption that the dual bundle of $N_{R_{g} X^{\prime}}$ is not ample, it is enough to show that the restriction of [A^{\prime}] to R_{g} is ample, see [3] Prop. 5.6. Thus, assume that [$\left.A^{\prime}\right]\left.\right|_{R_{g}}$ is not ample, i. e., $\left[A^{\prime}\right] \cdot R_{g} \leqq 0$. We have $p^{*}\left[A^{\prime}\right]=[A]+[D]$ since A is the proper transform of A^{\prime} in X. Therefore

$$
\begin{equation*}
\left.[A]\right|_{D}=\left.p *\left[A^{\prime}\right]\right|_{D}-\left.[D]\right|_{D}=\left.p *\left[A^{\prime}\right]\right|_{D}+\zeta \tag{1.6.1}
\end{equation*}
$$

where ζ is the tautological line bundle on $\boldsymbol{P}\left(N_{R_{g^{\prime}} X^{\prime}}^{*}\right)$ and $N_{R_{g^{\prime}} X^{\prime}}^{*}$, is the dual bundle of $N_{R_{g^{\prime}} X^{\prime}}$. From (1.6.1) and using $\left.p^{*}\left[A^{\prime}\right]\right|_{D}=p^{*}\left[\left.A^{\prime}\right|_{R_{g}}\right]$ we get

$$
\begin{equation*}
\zeta=\left.[A]\right|_{D}+p^{*}\left(\left[\left.A^{\prime}\right|_{R_{g}}\right]^{-1}\right) \tag{1.6.2}
\end{equation*}
$$

Thus ζ is ample since $\left.[A]\right|_{D}$ is ample and $\left[\left.A^{\prime}\right|_{R_{g}}\right]^{-1}$ is semipositive which implies $N_{R_{g^{\prime}} X}{ }^{*}$, is ample contradicting our hypothesis.
(1.7) Remark. For A^{\prime} to be ample, it suffices to have $N_{R_{g^{\prime}} X^{\prime}}^{*}$, not ample.

The referee of this paper gave the following example in which the divisor A^{\prime} is not ample even though its proper transform A in X is ample.

Let \mathcal{C} be an elliptic curve. Let \mathcal{L} be a very ample line bundle on \mathcal{C}. Let $X^{\prime}=\boldsymbol{P}_{c}(\mathcal{L} \oplus \mathcal{L} \oplus \mathcal{L} \oplus \mathcal{O})$ and let ζ be the tautological line bundle on X^{\prime}. Let S be the section of $X^{\prime} \rightarrow \mathcal{C}$ defined by the quotient \mathcal{O}. One can find a smooth A^{\prime} $\in|2 \zeta|$ which contains S. Let X be the blow-up of X^{\prime} with center S and let A be the proper transform of A^{\prime} on X. Then one can check that A is an ample divisor on X but A^{\prime} is not ample on X^{\prime}.

References

[1] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math., 69 (1959), 713-717.
[2] G. Fischer, Complex analytic geometry, Lecture Notes in Math., 538, SpringerVerlag, Berlin-Heidelberg-New York, 1976.
[3] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169.
[4] Gunning-Rossi, Analytic functions of several complex variables, Prentice-Hall, 1965.
[5] R. Hartshorne, Algebraic geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[6] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 156, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[7] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 1-54.
[8] B. G. Moisenzon, The Castelnuovo-Enriques contraction theorem for arbitrary dimension, Izv. Acad. Nauk SSSR Ser. Math., 33 (1969), 974-1025.
[9] D. Mumford, Pathologies III, Amer. J. Math., 89(1967), 94-104.
[10] C. P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc., 36(1972), 41-51.
[11] G. Scorza, Sulle varieta di Segre, Opere Scelte, Vol. I, 376-386.
[12] Unpublished notes by B. Shiffman and A. J. Sommese.
[13] A. J. Sommese, On the minimality of hyperplane sections of projective threefolds, J. Reine Angew. Math., 329 (1981), 16-41.
[14] A. J. Sommese, On manifolds that cannot be ample divisors, Math. Ann., 221 (1976), 55-72.
[15] A. J. Sommese, Hyperplane sections of projective surfaces; I - the adjunction mapping, Duke Math. J., 46(1979), 377-401.
[16] A. J. Sommese, The birational theory of hyperplane sections of projective threefolds, to appear.
[17] N. Steenrod, The Topology of fibre bundles, Princeton University Press, 1951.
[18] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., 439, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

Maria Lucia Fania
Department of Mathematics University of Notre Dame Notre Dame, Indiana 46556
U. S. A.

