
J. Math. Soc. Japan
Vol. 36, No. 1, 1984

High energy resolvent estimates, II,
higher order elliptic operators

By Minoru MURATA

(Received May 6, 1982)

\S 1. Introduction.

This is a continuation of [1] and is concerned with elliptic partial differential
operators on $R^{n}$ whose coefficients are nearly constants at infinity. For such an
operator $A(X, D_{x})$ with real principal symbol $a(x, \xi)$ we shall show in this paper
that if every classical orbit under the Hamiltonian $a(x, \xi)$ is not trapped, then
the resolvent of $A(X, D_{x})$ admits, as operators from a weighted $L_{2}$-space to its
dual space, boundary values on the upper or lower bank of the reals which are
bounded and uniformly Holder continuous at infinity; and that the nontrapping
condition for orbits is necessary to the uniform estimate for the resolvent.

In connection with time-decay for solutions of Schrodinger-type equations
uniform estimates at high energy for resolvents of elliptic operators have been
investigated (see [2], [4], [5], and references there). But such estimates were
given only for operators whose leading and the next coefficients are constant.
The purpose of this paper is to give high energy resolvent estimates for elliptic
differential operators with variable leading coefficients. The results here will be
used in [3] to study the asymptotic behavior as $tarrow\infty$ of solutions for Schr\"odinger-
type equations.

Now we prepare some notations in order to state our main results. We
write $D_{x_{j}}=-i\partial/\partial x_{j},$ $D_{x}=(D_{x_{1}}, \cdots , D_{x_{n}})$ , and $\langle x\rangle=(1+|x|^{2})^{1/2}$ . For a real number
$\sigma$ and $s,$

$H^{\sigma.\iota}$ denotes the weighted Sobolev space with the norm

(1.1) $\Vert f\Vert_{\sigma.s}\equiv\Vert f\Vert_{H^{\sigma.s}}=\Vert\langle x\rangle^{s}\langle D_{x}\rangle^{\sigma}f\Vert_{L_{2}(Rn)}$ .

We write $H^{\sigma}=H^{\sigma.0}$ and $L_{2}^{s}=H^{0}\cdot\cdot$ . $B(\sigma, s;\tau, t)$ stands for the Banach space of
all bounded linear operators from $H^{\sigma}\cdot$ . to $H^{\tau.t}$ . We write $B(s, t)=B(O, s;0, t)$ .
For a positive number $h$ and a function $f$ on $C$ to a Banach space, we put

$\Delta\}_{\iota}f(x)=f(x+h)-f(x)$ , $\Delta\S f(x)=f(x+2h)-2f(x+h)+f(x)$ .

For a real number $r,$ $[r]$ denotes the largest number which is not larger than $r$.
We consider the elliptic partial differential operator
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(1.2) $A(X, D_{x})= \sum_{|a|\leq m}a_{\alpha}(X)D_{x}^{\alpha}=p(D_{x})+\sum_{|\alpha|\leqq m}q_{a}(X)D_{x}^{\alpha}$

of order $m$ satisfying the following conditions (A. I) and (A. II).
(A. I) (i) There exists a positive constant $c_{0}$ such that the principal symbol

$a(x, \xi)$ of $A(X, D_{x})$ satisfies $a(x, \xi)\geqq c_{0}|\xi|^{m}$ for all $(x, \xi)\in R^{n}$ . (ii) $p(\xi)$ is an
elliptic polynomial of degree $m$ with real coefficients.

(A. II) There exists $\rho>1$ such that

\langle 1.3) $|\partial_{x}^{\beta}q_{\alpha}(x)|\leqq\{\begin{array}{ll}C_{\beta}\langle x\rangle^{-\rho-1-|\beta|} for |\alpha|=mC_{\beta}\langle x\rangle^{-\rho-|\beta|} for |\alpha|\leqq m-1\end{array}$

for any multi-index $\beta$ , where the $C_{\beta}$ are constants independent of $x$ .
It follows from (A. I) and (A. II) that the operator $A$ on $L_{2}(R^{n})$ defined by

\langle 1.4) $Au=A(X, D_{x})u$ , $u\in D(A)=H^{m}$

is a closed operator whose resolvent $R(z)=(z-A)^{-1}$ exists for $z$ with Imz $|\gg 1$

or $-{\rm Re} z\gg 1$ . Our problem is whether the resolvent $R(z)$ on {$z;\pm{\rm Im} z\gg 1$ and
${\rm Re} z\gg 1\}$ can be extended to the set $N_{\pm}=$ {$z;\pm{\rm Im} z\geqq 0$ and Rez $>N$} for some
$N>0$ . In solving the problem the following condition (A. III) concerning the
solution $\{x(t, y, \xi), \eta(t, y, \xi)\}$ of the Hamilton equation

(1.5) $\frac{dx}{dt}=-\nabla_{\eta}a(x, \eta)$ , $\frac{d\eta}{dt}=\nabla_{x}$ a $(x, \eta)$ , $\{x(0), \eta(0)\}=\{y, \xi\}$

plays a crucial role.
(A. III) For any $R>0$ there exists $T>0$ such that $|x(t, y, \xi)|>R$ for all

$t>T$ if $|y|\leqq R$ and $|\xi|=1$ .
REMARK. When $A(x, \xi)$ is real-valued, (A. III) is equivalent to the condition

that every classical orbit with $|\xi|\gg 1$ under the Hamiltonian $A(x, \xi)$ is not trap-
ped (cf. Proposition 2.5 below).

Our main results are as follows.

THEOREM 1. Assume (A. $I$) $\sim$ ($A$ . III). Let $0\leqq\theta<1$ and $k$ be a nonnegative
integer such that $0<k+\theta<\rho-1$ . Then there exists a pOntive constant $N$ such
that the resolvent $R(z)$ on {$z;\pm{\rm Im} z\gg 1$ and ${\rm Re} z\gg 1$ } can be extended to a k-times
continuously differentiable function on the set $N_{\pm}=$ {$z;\pm{\rm Im} z\geqq 0$ and Rez $>N$} to
$B(s, -s)$ , where $s>k+\theta+3/2$ , which is holomorphic in the interior of $N_{\pm}$ and
satisfies
(1.6) $\Vert R^{(j)}(z)\Vert_{B(0,8;\sigma,-S)}\leqq C|z|^{-\{(m-1)(j+1)-\sigma\}/m}$ ,

$z\in N_{\pm}$ , $j=0,$ $\cdots$ $k$ , $0\leqq\sigma\leqq m(j+1)$ ,

(1.7) $h^{-\theta}\Vert\Delta_{h}^{1}R^{(k)}(z)\Vert_{B(0,\iota;\sigma,-S)}\leqq C|z|^{-\{(m- 1)(k+\theta+1)-\sigma\}/m}$ ,

$0<h<1$ , $z$ and $z+h\in N_{\pm}$ , $0\leqq\sigma\leqq m(k+1)$ ,
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where $C$ is a constant depending only on $s$ . Furthermore, for any $r>k+\theta+1$

there exists a constant $C_{r}$ such that for all $f\in L_{2}^{r}$

(1.8) $\int[\langle t\rangle^{k+\theta-l}|t|^{l}\Vert(\frac{d}{dt})^{j}\int e^{it\lambda}x(\lambda)\lambda^{\delta/m}R(\lambda\pm i0)fd\lambda\Vert_{\sigma.- r}]^{2}dt\leqq C_{r}\Vert f\Vert_{r}^{2}$ ,

$0\leqq\sigma+mj\leqq m(k+1)$ , $\delta\leqq(m-1)(k+\theta+1/2)-(\sigma+mj)$ ,

$l= \max(0, (\sigma+mj+\delta)/(m-1)-1/2)$ ,

where $\chi(\lambda)$ is a $C^{\infty}$-function such that $\chi(\lambda)=1$ for $\lambda>N+1$ and Supp $\chi\subset(N, \infty)$ .
Assume further that $\rho>1+1/2(m-1)$ . Let $1/2(m-1)<\gamma<\rho-1$ , $s>\gamma+1$ ,

$0\leqq\sigma+mj\leqq(m-1)\gamma-1/2$ , and $l>(\sigma+mj+1/2)/(m-1)$ . Then

(1.9) $\Vert(\frac{d}{di})^{j}\int e^{il\lambda}\chi(\lambda)R(\lambda\pm i0)d\lambda\Vert_{B(0,\iota;\sigma.-S)}\leqq C\langle t\rangle^{-\gamma+l}|t|^{-l}$ , $t\neq 0$ .

THEOREM 2. Let $A(X, D_{x})$ satisfy (A. I) and (A. II). Then the estimate (1.8)

implies (A. III).

A consequence of Theorem 1 is worth mentioning.

THEOREM 3. Assume (A. $I$ ) $\sim$ ($A$ . III). Then the spectrum of $A$ is contained
in $\{z\in C;|z|\leqq N\}\cup(N, \infty)$ for some $N>0$ .

PROOF. Choose a positive constant $N$ such that Theorem 1 holds for $N$ and
the spectrum of $A$ is contained in $\{z;|z|\leqq N\}\cup$ {$z;|{\rm Im} z|\leqq N$ and ${\rm Re} z>N$}.
Let $\zeta$ be ${\rm Im}\zeta\neq 0$ and ${\rm Re}\zeta>N$. Suppose that $\zeta$ belongs to the spectrum of $A$ .
Then it is easily seen that $\zeta$ is a point spectrum and an eigenfunction $u\not\equiv O$

associated with $\zeta$ belongs to $H^{m,*}$ for any $s>0$ . Thus Theorem 1 shows that
$u=(\zeta-A)^{-1}(\zeta-A)u=0$ . This is a contradiction. Q. E. D.

Theorem 1 is useful also in studying asymptotic behaviors of $e^{-itA}$ as $tarrow\pm\infty$ .
THEOREM 4. Let $A$ be a second order self-adjoint elliptjc differential operat0r

on $R^{3}$ satisfying (A. I), (A. II) for some $\rho>5$ , and (A. III). Let $3/2<\gamma<\rho/2-1$

and $s>2\gamma-1/2$ . Then $e^{-itA}$ has the following expansi0n in $B(s, -s)$ as $tarrow\pm\infty$ ,
whech can be differentiated $[\gamma/2-1/4]$ -times in $t$ :

(1.10) $e^{-itA}= \sum_{j}e^{-it\lambda_{j}}P_{j}+\sum_{k=0}^{-1/2]}e^{-it\mu}t^{-(k+1/2)}C_{k}+o(t^{-\gamma})[\gamma$

where the $\lambda_{j}$ are mgenvalues of $A$ with the associated eigenpr0jecti0n $P_{j},$ $\mu=\min p(\xi)$ ,
and the $C_{k}$ are operat0rs of finite rank.

For the proof and more information, see [3]. The differentiability property
in $t$ is easily seen from the proof of [Theorems 1.2 and 8.11, 3], although it is
not discussed there.

The remainder of this paper is organized as follows. Theorems 1 and 2 are
proved in Section 2 by applying the results in [1] for a first order pseudo-
differential operator like $A^{1/m}$ . In Section 3 an improvement of the estimates (1.6)
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$\sim(1.9)$ will be given for operators with constant leading coefficients. In Section
4 and the latter half of Section 3 Theorem 1 will be extended to differential
operators with singular lower order coefficients.

\S 2. Proof of Theorems 1 and 2.

In this section Theorems 1 and 2 are proved by making use of corresponding
theorems for a first order pseudo-differential operator like $A^{1/m}$ .

Choose a positive number $K$ such that ${\rm Re} A(x, \xi)+K\geqq 1$ , set

(2.1) $b(x, \xi)=(A(x, \xi)+K)^{1/m}$

$+ \frac{1}{2m}(\frac{1}{m}-1)(A(x, \xi)+K)^{1/m-2}\sum_{j\Rightarrow 1}^{n}\partial_{\xi_{j}}A(x, \xi)D_{x_{j}}A(x, \xi)$ ,

and put $B=b(X, D_{x})$ . Then we have

PROPOSITION 2.1. Assume (A. I) and (A. II). Then the following statements
(i) and (ii) hold.

(i) The estimates (1.6) and (1.7) hold if and only if those estimates hold
with $R(z)=(z-B)^{-1},$ $m=1,$ $\sigma=0$ .

(ii) The estimate (1.8) holds if and $mly$ if that estimate holds with $R(\lambda\pm iO)$

$=(\lambda\pm iO-B)^{-1},$ $m=1,$ $\sigma=0,$ $l=0$ .
For the proof we prepare lemmas. Since they can be shown easily by usual

calculations for pseudo-differential operators, we omit the proof of the lemmas.
(For pseudo-differential operators, see [6] for example.)

LEMMA 2.2. Let $c(x, \xi)=(p(\xi)+\sum_{|a|=m}q_{\alpha}(x)\xi^{a}+K)^{1/m}-(p(\xi)+K)^{1/m}$ and $d(x, \xi)$

$=b(x, \xi)-(p(\xi)+\sum_{|a|=m}q_{a}(x)\xi^{\alpha}+K)^{1/m}$ . Then

(2.2) $b(x, \xi)=(p(\xi)+K)^{1/m}+c(x, \xi)+d(x, \xi)$ ,

(2.3) $|D_{x}^{\alpha}\partial_{\xi}^{\beta}c(x, \xi)|\langle x\rangle\langle\xi\rangle^{-1}+|D_{x}^{\alpha}\partial_{\xi}^{\beta}d(x, \xi)|\leqq C_{a\beta}\langle x\rangle^{-\rho-I\alpha|}\langle\xi\rangle^{-|\beta|}$

for any multi-indices $\alpha$ and $\beta$ .
LEMMA 2.3. (i) The symbol $v(x, \xi)$ of a pseudo-differential operat0r $V=$

$A+K-B^{m}$ satisfies, for any multi-indices $\alpha$ and $\beta$ ,

(2.4) $|D_{x}^{\alpha}\partial_{\xi}^{\beta}v(x, \xi)|\leqq C_{a\beta}\langle x\rangle^{-\rho-2-|\alpha|\langle\xi\rangle^{m-2-|\beta|}}$ .
(ii) $V\in B(m-2+\sigma, s;\sigma, s+\rho+2)$ for all $s,$

$\sigma\in R^{1}$ .
LEMMA 2.4. There exists a positive constant $N$ such that for all $z$ with Rez

$>N$ and $0\leqq\sigma\leqq m-1$

(2.5) $\Vert(\sum_{l=0}^{m-1}z^{l/m}B^{m-1-l})^{-1}\Vert_{B(r,\iota;r+\sigma,s)}\leqq C_{rs}|z|^{-(m-1-\sigma)/m}$ , $r,$
$s\in R^{1}$ .
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PROOF OF PROPOSITION 2.1. Assume that the estimates (1.6) and (1.7) hold
with $R(z)$ and $m$ replaced by $(z-B)^{-1}$ and 1, respectively. We have that for
all $z\in N_{\pm}$ and $J^{=0}’,1,$ $\cdots$ , $k$ ,

(2.6) $( \frac{d}{dz})^{j}(z-B^{m})^{-1}=(\sum_{l=0}^{m-1}z^{l/m}B^{m-1-l})^{-j-1}(\frac{d}{d\zeta})^{j}(\zeta-B)^{-1}|_{\zeta=z^{1}/m}$ .

This together with Lemma 2.4 shows that (1.6) for $\sigma\leqq(m-1)(j+1)$ holds with
$R(z)$ replaced by $(z-B^{m})^{-1}$ . In order to prove (1.6) for $(m-1)(j+1)<\sigma\leqq m(j+1)$ ,
we have only to use the equality

(2.7) $(z-B^{m})^{-j-1}=(iM-B^{m})^{-j-1}[1+(iM-z) \sum_{l=0}^{j}(iM-B^{m})^{j-l}(z-B^{m})^{f}](z-B^{m})^{-j-1}$

for $z\in N_{*}$ , where $M$ is a sufficiently large constant. Since for some positive
constants $C_{1}$ and $C_{2}$

$C_{1}h\lambda^{1/m-1}\leqq|(\lambda+h)^{1/m}-\lambda^{1/m}|\leqq C_{2}h\lambda^{1/m-1}$ , $\lambda>2$ , $0<h<1$ ,

(1.7) also holds with $R(z)$ replaced by $(z-B^{m})^{-1}$ . By Lemma 2.3,

(2.8) $\Vert V(z+K-B^{m})^{-1}\Vert_{B(s.\rho+2-S)}\leqq C_{s}|z|^{-1/m}$ , $3/2<s<\rho+1/2$ .
Thus,

(2.9) $(z-A)^{-1}= \sum_{j=0}^{\infty}(z+K-B^{m})^{-1}[V(z+K-B^{m})^{-1}]^{j}$

in $B(r, -r)$ for $3/2<r<(\rho+2)/2$ . Combining (2.8) and (2.9) we get (1.6) and
(1.7) from the estimates for $(z-B^{m})^{-1}$ . The converse can be shown similarly.
This completes the proof of (i).

In the same way we can show (ii) by using Parseval’s equality. Q. E. D.
Denote by $\{q(t, y, \xi), p(t, y, \xi)\}$ the solution of the Hamilton equation

(2.10) $\frac{dq}{dt}=-\nabla_{\xi}F(q, p)$ , $\frac{dp}{dt}=\nabla_{x}F(q, p)$ , $\{q(O, y, \xi), p(O, y, \xi)\}=\{y, \xi\}$ ,

where $F(x, \xi)=(p(\xi)+\sum_{\{\alpha|=m}q_{a}(x)\xi^{\alpha}+K)^{1/m}$ . Then we have

PROPOSITION 2.5. Assume (A. I) and (A. $ll$). Then the condition (A. $llD$ holds
if and only if there exzsts a positive constant $R_{0}$ such that for any $R>0$ one can
choose $T>0$ with

(2.11) $|q(t, y, \xi)|>R$ , $t>T$ , $|y|\leqq R$ , $|\xi|\geqq R_{0}$ .

PROOF. Denote by $\{x, \eta\}(t, y, \xi)$ and $\{Q, P\}(t, y, \xi)$ the solution of (2.10)

with $F(x, \xi)=a(x, \xi)$ and $F(x, \xi)=a(x, \xi)^{1/m}$ , respectively. Then simple calcula-
tions show that

(2.12) $\{x, \eta\}(t, y, \xi)=\{Q, P\}(ma(y, \xi)^{(m-1)/m}t,$ $y,$
$\xi$).
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By the homogeneity of $a(x, \xi)$ ,

(2.13) $\{x, \eta\}(t, y, \lambda\xi)=\{x, \lambda\eta\}(\lambda^{m- 1}t, y, \xi)$ , $\lambda\neq 0$ .
Combining (2.12) and (2.13) we get

(2.14) $\{\begin{array}{l}Q(t, y, \xi)=x(t, y, m^{-1/(m- 1)}a(y, \xi)^{-1/m}\xi)P(t, y, \xi)=m^{1/(m-1)}a(y, \xi)^{1/m}\eta(t, y, m^{-1/(m- 1)}a(y, \xi)^{-1/m}\xi).\end{array}$

Using the ellipticity of $A(x, \xi)$ we obtain that there exists a positive constant $c$

such that $|p(t, y, \lambda\xi)|\geqq c\lambda$ for all $t>0,$ $y\in R^{n},$ $|\xi|=1$ , and $\lambda\gg 1$ . Thus there
exists a positive constant $C$ such that for all $t>0,$ $y\in R^{n},$ $|\xi|=1$ , and $\lambda\gg 1$

(2.15) $|q(t, y, \lambda\xi)-Q(t, y, \xi)|+|p(t, y, \lambda\xi)/\lambda-P(t, y, \xi)|\leqq e^{C(t+1)}/\lambda$ .

Since $q(t, y, \xi)$ and $Q(t, y, \xi)$ are nearly straight lines outside a sufficiently large
ball (cf. Lemmas 2.1 and 2.2 in [1]), (2.14) and (2.15) show the proposition.

Q. E. D.
Now we can complete the proof of Theorems 1 and 2.
PROOF OF THEOREMS 1 AND 2. The estimates $(1.6)\sim(1.8)$ and Theorem 2

follow from Propositions 2.1 and 2.5, Lemma 2.2, and [Theorems 1 and 2, 1].

The estimate (1.9) can be shown by using (1.8) for $\delta/m>1/2$ . Q. E. D.

\S 3. The constant leading coefficient case.

In this section an improvement of the estimates $(1.6)\sim(1.9)$ is given for
operators with constant leading coefficients.

Let $A$ be the closed operator in $L_{2}(R^{n})$ defined by an elliptic differential
operator

(3.1) $A(X, D_{x})=p(D_{x})+ \sum_{|a|\leqq m- 1}q_{\alpha}(X)D_{x}^{a}$

of order $m$ satisfying (A. I) and (A. II). Then we have

THEOREM 3.1. Let $0<s-1/2=k+\theta<\rho-1(k$ : a nonnegative integer, $0<\theta$

$\leqq 1)$ . Then there exists a positive constant $N$ such that the resolvent $R(z)=(z-A)^{-1}$

on $\{z;\pm{\rm Im} z\gg 1, {\rm Re} z\gg 1\}$ can be extended to a k-times continuously differentiable
function on the set $N_{\pm}=$ {$z;\pm{\rm Im} z\geqq 0$ and ${\rm Re} z>N$ } to $B(s, -s)$ , which is holo-
morphic in the interior of $N_{\pm}$ and satisfies the following estimates:

(i) For all $z\in N_{\pm}$ , $j=0,$ $\cdots$ , $k$ , $0\leqq\sigma\leqq m(j+1)$ ,

(3.2) $\Vert R^{(j)}(z)\Vert_{B(0,;\sigma,- s)}\leqq C_{s}|z|^{-\{(m- 1)(j+1)-\sigma\}/m}$ .

(ii) For all $z\in N_{\pm}$ , $0<h<1$ , $0\leqq\sigma\leqq m(k+1)$ ,

(3.3) $h^{-\theta}\Vert\Delta_{h}^{1}R^{(k)}(z)\Vert_{B(0}$ . ,, $\sigma,$ $-s$ )
$\leqq C_{s}|z|^{-\{(m-1)(k+\theta+1)-\sigma\}/m}$ when $\theta<1$ ,



High energy resolvent estimates, II 7

(3.3) $h^{-1}\Vert\Delta_{h}^{2}R^{(k)}(z)\Vert_{B(0,.;\sigma,-S)}\leqq C_{s}|z|^{-\{(m- 1)(k+2)-\sigma\}/m}$ when $\theta=1$ .

(iii) For all $T>0$ , $0\leqq\sigma+mj\leqq m(k+1)$ , $\delta\leqq(m-1)s-(\sigma+m])$ , $l= \max(O$,
$(\sigma+mj+\delta)/(m-1)-1/2)$ ,

(3.4) $\int_{\Omega_{T}}[\langle t\rangle^{s- 1/2- l}|t|^{l}\Vert(\frac{d}{dt})^{j}\int e^{il\lambda}\chi(\lambda)\lambda^{\delta/m}R(\lambda\pm i0)fd\lambda\Vert_{\sigma,- s}]^{2}dt$

$\leqq C_{s}\Vert f\Vert_{s}^{2}$ ,

where $\Omega_{T}=\{t\in R^{1} ; T\leqq|t|\leqq 2T\}$ and $\chi(\lambda)$ is a $C^{\infty}$-function on $R^{1}$ such that $\chi(\lambda)$

$=1$ for $\lambda\geqq N+1$ and Supp $\chi\subset(N, \infty)$ .
Assume further that $\rho>1+1/2(m-1)$ . Let $1/2(m-1)<\gamma<\rho-1,$ $s=\gamma+1/2$ ,

$0\leqq\sigma+mj<(m-1)\gamma-1/2,$ $l>(\sigma+mj+1/2)/(m-1)$ . Then the estimate (1.9) holds.
PROOF. Using [Theorem 6.1, 1] instead of [Theorem 1, 1], the first half of

Theorem 3.1 is shown in the same way as Theorem 1. The second half is
deduced from (3.4). Q. E. D.

Now, let us extend Theorem 3.1 to operators whose lower order coefficients
may be singular. Let $A$ be the operator

(3.5) $A=p(D_{x})+ \sum_{|a|=m-1}q_{\alpha}(X)D_{x}^{\alpha}+V$

in $L_{2}(R^{n})$ with domain $H^{m}$ satisfying the following conditions:
(B. I) $p(\xi)$ is a real-valued elliptic polynomial of degree $m$ .
(B. II) There exist $\rho>1$ and $C>0$ such that for $|\beta|\leqq 3n+11$

(3.6) $|\partial_{x}^{\beta}q_{\alpha}(x)|\leqq C\langle x\rangle^{-\rho-|\beta|}$ , $\chi\in R^{n}$ .
(B. III) $V$ is a closed operator in $L_{2}(R^{n})$ such that for some $m’<m-1$

(3.7) $V\in B(m’, s;0, s+\rho)$ , $s\in R^{1}$ .
THEOREM 3.2. Assume (B. $I$) $\sim$ ( $B$ . III). Then the conclusion of Theorem 3.1

holds also for the operat0r A defined by (3.5) $und_{\Psi}$ the restriction that $\sigma\leqq m$ .
PROOF. By [Remark 4.3, 1], the theorem holds with $R(z)$ replaced by

$(z-A_{1})^{-1}$ , where $A_{1}=p(D_{x})+\Sigma q_{\alpha}(X)D_{x}^{\alpha}$ . Thus we get the theorem by using
the Neuman series

(3.8) $R(z)= \sum_{j=0}^{\infty}[(z-A_{1})^{-1}V]^{j}(z-A_{1})^{-1}$ . Q. E. D.

THEOREM 3.3. Let $A=p(D_{x})+V$ , where $p(\xi)$ and $V$ satisfy (B. I) and (B. III)

with $\rho>2$ , respectively. Let $1<s<\rho-1,0\leqq\sigma<m-1,0\leqq\sigma+mj\leqq(m-1)s$ , and
$l=(\sigma+mj)/(m-1)$ . Then

(3.9) $\Vert(\frac{d}{dt})^{j}\int e^{it\lambda}\chi(\lambda)R(\lambda\pm i0)d\lambda\Vert_{B(0,.;\sigma,-}\leqq C\langle t\rangle^{-s+l}|t|^{-l}$ , $t\neq 0$ ,
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where $\chi(\lambda)$ is a $C^{\infty}$-function on $R^{1}$ such that $\chi(\lambda)=1$ for $|\lambda|\geqq N+1$ and Supp $\chi\subset$

$\{\lambda;|\lambda|>N\}$ .
For the proof we need a lemma.

LEMMA 3.4. Let $R_{0}(z)=(z-p(D_{x}))^{-1}$ , $s\geqq 0$, $\sigma\geqq 0,0\leqq\sigma+mj\leqq(m-1)s$ , and
$1=(\sigma+mj)/(m-1)$ . Then (3.9) holds with $R(\lambda\pm iO)$ replaced by $R_{0}(\lambda\pm i0)$ , where
the constant $C$ can be chosen independent of $s,$ $\sigma,$

$j$ when $s$ runs over a compact set.
PROOF. Choosing another $N$ if necessary, we may assume that $|\nabla_{\xi}p(\xi)|\geqq$

$c|\xi|^{m-1}$ on Supp $\chi(P(\xi))$ , where $c$ is some positive constant. Making use of the
identity $(it)^{-1}(\nabla_{\xi}p(\xi)/|\nabla_{\xi}p(\xi)|^{2})\cdot\nabla_{\xi}e^{ttp(\xi)}=e^{itp(\xi)}$ for $t\neq 0$ and $\xi\in Supp^{\chi}(P(\xi))$ , we
obtain by integration by parts that for any nonnegative integer $j$

\langle 3.10) $\Vert\chi(p(D_{x}))e^{itp(D_{x})}\Vert_{B(0.j;(m- 1)j.-j)}\leqq C_{j}t^{-j}$ , $t\neq 0$ .

The estimate (3.10) with $j$ replaced by any nonnegative number $s$ is derived
from the above inequality by using the interpolation theorem for weighted
Sobolev spaces (for which, see [J. Math. Soc. Japan, 31 (1979), p. 477]). Then
elementary calculations show the lemma. Q. E. D.

PROOF OF THEOREM 3.3. Choose a $C^{\infty}$-function $\psi$ on $R^{1}$ such that $\psi(\lambda)=1$

on Supp $\chi$ and Supp $\psi\subset\{\lambda;|\lambda|>N\}$ . We have

\langle 3.11) $\int e^{it\lambda}\chi(\lambda)R(\lambda\pm i0)d\lambda=\int e^{it\lambda}\chi(\lambda)\sum_{j=0}^{\infty}R_{0}(\lambda\pm i0)[V\psi(\lambda)R_{0}(\lambda\pm i0)]^{j}d\lambda$ .

We write $W(t)= \int e^{it\lambda}\psi(\lambda)R_{0}(\lambda\pm i0)d\lambda$ . Choose $\sigma’$ such that max $(m’, \sigma)<\sigma’<m-1$ .
By Lemma 3.4, there exists a constant $C$ such that for any $1<r\leqq\rho$

$\Vert VW(t)\Vert_{B(r.\rho-r)}\leqq CN^{-\min(1.\sigma^{l}-m’)}\langle t\rangle^{-r+\sigma’/(m-1)}|t|^{-\sigma’/(m-1)}$ .
Thus, rechoosing $N$ if necessary we obtain from (3.11) that

(3.12) $\int e^{it\lambda}x(\lambda)R(\lambda\pm i0)d\lambda=\sum_{j=0}^{\infty}(\int e^{it\lambda}\chi(\lambda)R_{0}(\lambda\pm i0)d\lambda)(*VW(t))^{j}$

in $B(O, s;\sigma, -s)$ , where $*$ denotes the convolution. From this the theorem
follows. Q. E. D.

\S 4. A generalization.

In this section we extend Theorem 1 to operators with singular lower order
coefficients.

Let $A_{1}(X, D_{x})$ be the elliptic differential operator of order $m$ wbose symbol

$A_{1}(x, \xi)=\sum_{|\alpha|\leq m}a_{\alpha}(x)\xi^{\alpha}=p(\xi)+\sum_{|\alpha|\leq m}q_{\alpha}(x)\xi^{\alpha}$

satisPes the assumption (A. I), (A. III), and (A. II’): The functions $q_{\alpha}(x),$ $|\alpha|\leqq m$ ,
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satisfy (1.3) for $|\beta|\leqq 3n+11$ . Denote by $A_{1}$ the closed operator in $L_{2}(R^{n})$ de-
fined by: $A_{1}u=A_{1}(X, D_{x})u,$ $u\in D(A_{1})=H^{m}$ . Let $V$ be a closed operator in $L_{2}(R^{n})$

such that for some $m’<m-1$

(4.1) $V \in B(m’, s;0, s+\rho+\max(m’-m+3,0))$ , $s\in R^{1}$ .
Put $A=A_{1}+V$ . Then we have

THEOREM 4.1. The conclusion of Theorem 1 holds also for the above operator
A un&r the restnction that $\sigma\leqq m$ .

For the proof we need a lemma for $R_{1}(z)=(z-A_{1})^{-1}$ .
LEMMA 4.2. (i) Let $0<k+\theta<\rho-1,0\leqq\tau_{j}\leqq 1$ and $s_{j}>k+\theta+3/2-\tau_{j},$ $j=$

$1,2$ . Then for any $0\leqq\sigma\leqq m$

(4.2) $\Vert R_{1}^{(j)}(z)\Vert_{B(0.\iota_{1};\sigma.-s_{2})}\leqq C|z|^{-((m-1)(j+1)-\sigma-\tau_{1}-\tau_{2}\}/m}$ ,

$z\in N_{\pm}$ , $j=0,$ $\cdots$ $k$ ,

(4.3) $h^{-\theta}\Vert\Delta_{h}^{1}R_{1}^{(k)}(z)\Vert_{B(0,\iota_{1}\sigma,s_{2})};-\leqq C|z|^{-\{(m-1)(k+\theta+1)-\sigma-\tau_{1}-\tau_{2}\}/m}$ ,

$0<h<1$ , $z$ and $z+h\in N_{\pm}$ .

(ii) Let $0\leqq\kappa_{j}\leqq 1/2$ and $r_{j}>k+\theta+1-\kappa_{j},$ $j=1,2$ . Then for all $f\in L_{2}^{r_{1}}$

(4.4) $\int[\langle t\rangle^{k+\theta- l}|t|^{l}\Vert(\frac{d}{dt})^{j}\int e^{it\lambda}x(\lambda)\lambda^{\delta/m}R_{1}(\lambda\pm i0)fd\lambda\Vert_{\sigma.- r_{2}}]^{2}dt$

$\leqq C\Vert f\Vert_{r_{1}}^{2}$ ,

where $0\leqq\sigma\leqq m$ , $0\leqq\sigma+mj\leqq m(k+1)$ , $\delta\leqq(m-1)(k+\theta+1/2)-(\sigma+mj+2\kappa_{1}+2\kappa_{2})$ ,
$l= \max(0, (\sigma+mj+\delta)/(m-1))$ .

PROOF. Even if (A. II’) is assumed instead of (A. II), Theorem 1 holds also
for $A_{1}$ under the restriction that $\sigma\leqq m$ (cf. [Remark 4.3, 1]). Thus the state-
ment (i) for $\tau_{1}=\tau_{2}=0$ is valid. Since Theorem 3.1 holds with $R(z)$ and $\rho$ re-
placed by $R_{0}(z)$ and $\infty$ , respectively, (i) for $\tau_{1}=1$ and $\tau_{2}=0$ is shown by using
the resolvent equation

$R_{1}(z)=R_{0}(z)+R_{1}(z) \{:\sum_{||\alpha\leq m}q_{\alpha}(X)D_{x}^{\alpha}\}R_{0}(z)$ .

Thus the interpolation method shows (i) for $0\leqq\tau_{1}\leqq 1$ and $\tau_{2}=0$ . The lemma
for the other cases can be shown similarly. Q. E. D.

PROOF OF THEOREM 4.1. Lemma 4.2 shows that for any sufficiently small
$\epsilon>0$

$\Vert VR_{1}(z)\Vert_{B(0.1/2+l+\epsilon;0.1/2+l+\epsilon)}\leqq C_{\epsilon}|z|^{-g}$ ,

where $l= \max(0, (m’+3-m)/2)$ . Thus we obtain that for any $z$ with ${\rm Re} z\gg 1$

and $\pm{\rm Im} z\geqq 0$
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$R(z)= \sum_{j=0}^{\infty}R_{1}(z)[VR_{1}(z)]^{j}$

This yields the theorem.

in $B(s, -s)$ , $s>3/2$ .

Q. E. D.
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