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\S 1. Introduction and notation.

In this paper we study involutive automorphisms of reduced root systems
using the following notations and definitions (patterned after those in [3], [5]).

Let $\Delta$ be a reduced root system spanning a finite-dimensional Euclidean space
$E$ with Weyl group invariant inner product $(\cdot|\cdot)$ . Let $\Pi$ be a fundamental
system of $\Delta$ . We endow the space $E$ with a partial ordering $\geqq$ with respect to
$\Pi$ : for $\alpha,$ $\beta$ in $E\alpha\geqq\beta$ if $\alpha-\beta$ is a linear combination of roots in $\Pi$ with
integral non-negative coefficients. Since the Weyl group $W$ of $\Delta$ acts simply
transitively on the set of fundamental systems of $\Delta$, there exists a unique element
$w_{\Pi}$ in $W$ such that $w_{\Pi}(\Pi)=-\Pi$ . The automorphism $op\Pi$ defined by $op_{\Pi}$ $:=-w_{\Pi}$

is called the opposition involution of $\Delta$ with respect to $\Pi$ .
Now let $\sigma$ be an involutive automorphism of $\Delta$ ; denote its linearization to a

transformation of $E$ by $\sigma$ too. We renorm the space $E$ in such a way that $\sigma$

extends to a congruence of $E$ . We can decompose $E$ into a direct sum of
subspaces $E_{0}$ $:=\{\alpha\in E|\sigma\alpha=-\alpha\}$ and $\overline{E}:=\{\alpha\in E|\sigma\alpha=\alpha\}$ . Let $-$ : $E\ni\alpha-\overline{\alpha}\in\overline{E}$

be the canonical projection of $E$ onto $\overline{E}$ with respect to $E_{0}$ . We define $\Delta_{0}$ $:=$

$\Delta\cap E_{0},$ $\Pi_{0}$ $;=\Pi\cap\Delta_{0},\overline{\Delta}:=\{\overline{\alpha}|\alpha\in\Delta\backslash \Delta_{0}\}$ and $\overline{\Pi};=\{\overline{\rho}|\rho\in\Pi\backslash \Pi_{0}\}$ ; $\overline{\Delta}$ is called the
system of restricted roots. The set $\tilde{\Delta}:=\{\psi\in\overline{\Delta}|\psi$ is not of the form $c\eta$ with
$\eta\in\overline{\Delta},$ $c\in R,$ $c>1$} is the system of reduced restricted roots. In general neither
a nor $\tilde{\Delta}$ is a root system.

We call $\Pi\sigma$-fundamental if $\sigma\rho>0$ for each root $\rho$ in $\Pi\backslash \Pi_{0}$ . Throughout
this paper we will assume $\Pi$ to be a $\sigma$ -fundamental system of $\Delta$ and call the
corresponding partial ordering of $E$ a $\sigma$-ordering. In \S 2 we state some basic
properties of $\sigma$-fundamental systems and we will also give a diagrammatic
description of the action of the involutive automorphism $\sigma$ on $\Delta$ by introduction
of a so-called Satake diagram of $\sigma$ with respect to a a-fundamental system $\Pi$ .

We define $W_{\sigma}$ $:=\{w\in W|w\circ\sigma=\sigma\circ w\},\overline{w}:=the$ restriction of an element $w$ in
$W_{\sigma}$ to $\overline{E}$ and $\overline{W}:=\{\overline{w}|w\in W_{\sigma}\}$ . Schattschneider [6] studied the action of a
general automorphism group $G$ on the root system of a semisimple algebraic
group and determined under which conditions $\tilde{\Delta}$ is a root system with Weyl
group $\overline{W}$. In \S 3 we will give easier proofs of these results in our less general
context of $G=\{1, \sigma\}$ . In \S 4 we show that the propertv of $\tilde{\Delta}$ being a root
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system with Weyl group $\overline{W}$ is equivalent to the simple transitive action of $W_{\sigma}$

on the set of a-fundamental systems of $\Delta$ . This solves a problem posed by
Hirai [4].

We call a Satake diagram admissible if it belongs to an involutive auto-
morphism of $\Delta$ such that $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$. In \S 5 we
classify all admissible Satake diagrams. We remark that most admissible Satake
diagrams arise from so-called a-normal root systems and determine which
admissible Satake diagrams belong to $\sigma$-normal root systems. Our method of
determining the Satake diagrams that belong to $\sigma$-normal root systems leads to
a modification of Araki’s method of classifying real simple Lie algebras [1]:

instead of explicit construction of all real simple Lie algebras characterizing
Satake diagrams out of the diagrams of restricted rank 1, we can use the results
for restricted rank 1 merely to check if a Satake diagram belonging to a
$a$-normal root system characterizes a real simple Lie algebra. This last step in
the classification problem is easy and left to the reader.

In general a Satake diagram of an involutive automorphism $\sigma$ with respect
to a a-fundamental system $\Pi$ depends on the choice of $\Pi$ . In \S 6 we show
that the Satake diagram does not depend on the choice of its a-fundamental
system iff the system $\tilde{\Delta}$ of reduced restricted roots is a root system (not neces-
sarily with Weyl group $\overline{W}$). Furthermore it is proved that if $\tilde{\Delta}$ is a root system,

then in almost all cases $\overline{W}$ is the Weyl group of $\tilde{\Delta};0-\bullet$ is the prototype of
a Satake diagram for which $\overline{W}$ is not the Weyl group of $\tilde{\Delta}$ .

The author wishes to thank Professor H. de Vries who carefully read the
manuscript and gave helpful comments.

\S 2. $\sigma$-fundamental systems and Satake diagrams.

In this section we will describe some properties of $\sigma$ -fundamental systems
and introduce Satake diagrams. Proofs are omitted as the reader can easily
convince himself of the correctness of the results or find complete proofs in [5].

PROPOSITION 2.1. The following conditions are equivalent;
(i) $\Pi$ is $\sigma$-fundamental.
(ii) If $\alpha\in E\backslash E_{0}$ and $\alpha>0$ , then $\sigma\alpha>0$ .
(iii) If $\alpha,$ $\beta\in E\backslash E_{0}$ and $\alpha,$ $\beta>0$, then $\alpha+\beta\not\in E_{0}$ .
(iv) If $\alpha,$ $\beta\in E\backslash E_{0},$ $\alpha-\beta\in E_{0},$ $\alpha>0$ and $\beta$ is a linear combination of roots in
$\Pi$ with integral coefficients, $all\geqq 0$ or $all\leqq 0$ , then $\beta>0$ .

Define $l;=\dim E,\overline{l};=\dim\overline{E},$ $l_{0}$ $;=\#\Pi_{0},$ $l_{1}$ $;=2\overline{l}+l_{0}-l$ and $l_{2}$ $;=l-l_{0}-\overline{l}$ .
PROPOSITION 2.2. In a suitable numbering of the $\sigma$ -fundamental system $\Pi$

the involutive automorphis$m\sigma$ acts as follows:
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$a\rho_{j}=-\rho_{j}$ for $j=1,2,$ $\cdots$ $l_{0}$ : $\Pi_{\theta}=\{\rho_{1}, \rho_{2}, \cdots \rho_{l_{0}}\}$ ,

$a\rho_{j}\equiv\rho_{j}$ mod $Z\Pi_{0}$ for $j=l_{0}+1,$ $\cdots$ , $l_{0}+l_{1}$ ,

$a\rho_{j}\equiv\rho_{j+l_{2}}$ mod $Z\Pi_{0}$ for $j=l_{0}+l_{1}+1,$ $\cdots$ , $l_{0}+\overline{l}$,

$a\rho_{j}\equiv\rho_{j-l_{2}}$ mod $Z\Pi_{0}$ for $j=l_{0}+\overline{l}+1,$ $\cdots$ , $l$ .
PROPOSITION 2.3. Zil is a basis of $\overline{E}$ and each element in $\overline{\Delta}$ is a linear com-

bination of elements in I7 with integral coefficients, $all\geqq 0$ or $all\leqq 0$ .
PROPOSITION 2.4. Let $\Pi,$ $\Pi’$ be $\sigma$-fundamental systems of $\Delta$ . Then $\Pi=\Pi^{r}$

iff $\Pi_{0}=\Pi_{0}’$ and $\overline{\Pi}=\overline{\Pi}’$ .
PROPOSITION 2.5. $\Delta_{0}$ is a root system with fundamental system $\Pi_{0}$ .
Let $W_{0}$ be the Weyl group of the root system $\Delta_{0}$ and consider $W_{0}$ as a

subgroup of the Weyl group $W$ of $\Delta$ . Number the a-fundamental system $\Pi$ of
$\Delta$ as indicated in Proposition 2.2. In the sequel $w_{0}$ instead of $w_{\Pi_{0}}$ denotes the
unique element in $W_{0}$ such that $w_{0}\Pi_{0}=-\Pi_{0}$ . Define $\tilde{a}$ $:=w_{0}\circ\sigma$ ; then $\tilde{a}\in Aut(\Pi)$ ,
$\tilde{a}^{2}=1,\tilde{a}$ leaves $\Pi_{0}$ invariant and the action of $\tilde{a}$ on $\Pi\backslash \Pi_{0}$ is given by

$\tilde{a}\rho_{j}=\rho_{j}$ for $j=l_{0}+1,$ $\cdots$ , $l_{0}+l_{1}$ ,

$\tilde{a}\rho_{j}=\rho_{j+l_{2}}$ for $j=l_{0}+l_{1}+1,$ $\cdots$ , $l_{0}+\overline{l}$,

$\tilde{a}\rho_{j}=\rho_{j-l_{2}}$ for $j=l_{0}+\overline{l}+1,$ $\cdots$ , $l$ .
We define the Satake diagram of $\sigma$ with respect to the $\sigma$-fundamental system $\Pi$

as the triple $(\Pi, \Pi_{0},\tilde{a})$ . It is pictured as the Dynkin diagram of $\Pi$ (using white
circles for the vertices) in which vertices that represent roots in $\Pi_{0}$ are coloured
black and the action of $\tilde{\sigma}$ on $\Pi\backslash \Pi_{0}$ is marked by arrows, $i$ . $e$ . if $\rho,$

$\rho’\in\Pi\backslash \Pi_{0}$ and

$\tilde{a}\rho=\rho’$ , then the action of $\tilde{a}$ is indicated by arrows $o^{-9}O\rho\rho^{l}$ (cf. [5], [8]). We

call two Satake diagrams $(\Pi, \Pi_{0},\tilde{a})$ and $(\Pi’, \Pi_{0}’,\tilde{\sigma}’)$ isomorphic if there exists
a map $\phi$ : $\Piarrow\Pi’$ satisfying the following conditions:
(i) $\phi$ is an isomorphism between the Dynkin diagrams of $\Pi$ and $\Pi’$ .
(ii) $\phi^{\Pi_{0}=\Pi_{0}’}$ .
(iii) $\phi^{Q}\tilde{a}=\tilde{a}’\circ\phi$ .
This is equivalent to the existence of an isomorphism $\phi$ from $\Pi$ to $\Pi’$ such that
$\phi^{Q}\sigma=\sigma’\circ\phi$ .

\S 3. The restriction $\overline{W}$ of the Weyl group.

Schattschneider [6] studied the action of a general automorphism group
$G$ on the root system $\Delta$ of a semisimple algebraic group. In the Euclidean space
$E$ spanned by the roots she defines the subspaces $E_{0}$

$:= \{\alpha\in E|\sum_{\sigma\in G}\sigma\alpha=0\}$ and
$\overline{E}$

$:=$ {$\alpha\in E|\sigma\alpha=\alpha$ for all $\sigma$ in $G$}. The dePnitions of the system a of restricted
roots and the system $\tilde{\Delta}$ of reduced restricted roots are the same as given in the
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first section. A total ordering $\geqq$ of $E$ is called an $E_{0}$-adapted ordering if $\alpha,$ $\beta$

$\in E\backslash E_{0}$ and $\alpha,$ $\beta>0$ imply $\alpha+\beta\not\in E_{0}$ (cf. Proposition 2.1, (iii)). The pair $(E, E_{0})$

is called admissible if for each $E_{0}$-adapted ordering of $E$ with corresponding
fundamental system $\Pi$ the restricted fundamental system $\overline{\Pi}$ is a basis of $\overline{E}$

(note that $\sigma$-fundamental systems according to our definition satisfy the latter
condition by Proposition 2.3). $\overline{W}$ is the group of restrictions to $\overline{E}$ of elements
in the Weyl group $W$ of $\Delta$ that leave $\overline{E}$ invariant. For admissible pairs $(E, E_{0})$

Schattschneider determines necessary and sufficient conditions for $\tilde{\Delta}$ to be a root
system with Weyl group $\overline{W}$. We will give easier proofs of these results in our
less general context of $G=\{1, \sigma\}$ .

PROPOSITION 3.1. $\overline{W}\cong W_{\sigma}/W_{0}$ .
PROOF. In view of the first isomorphism theorem it is sufficient to show

that $W_{0}$ is the kernel of the surjective homomorphic map $-$ : $W_{\sigma}\ni w-\overline{w}\in\overline{W}$.
Since $(\overline{E}|E_{0})=\{0\},$ $W_{0}$ acts trivially on $\overline{E}$ and hence $W_{0}\subseteqq the$ kernel of the map $-$

Now let $w$ be an element in $W_{\sigma}$ such that $\overline{w}=1_{\overline{E}}$. Since $w$ leaves each vector
in $\overline{E}$ invariant, $w$ can be written as a product of reflections in roots orthogonal
to $\overline{E}$ (Bourbaki [3], ch. V, \S 3, Proposition 1). So $w$ can be written as a product
of reflections in roots in $E_{0},$ $i.e$ . $w\in W_{0}$ . Thus the kernel of the map $-\subseteqq W_{0}$ .

For $\gamma$ in I7 we define $\Pi^{\gamma}$
$;=\{\rho\in\Pi\backslash \Pi_{0}|\overline{\rho}=\gamma\},$ $\Pi_{\gamma}$ $;=\Pi^{\gamma}\cup\Pi_{0}$ and $\Delta_{\gamma}$ $:=$

$\Delta\cap$(linear span of $\Pi_{\gamma}$). Let $W_{\gamma}$ be the Weyl group of the root system $\Delta_{\gamma}$,
understood as a subgroup of the Weyl group $W$ of $\Delta$ , and write $w_{\gamma}$ instead
of $w_{\Pi}\gamma$

LEMMA 3.2. The following conditions are equivalent for $\gamma$ in $\overline{\Pi}$ ;

(i) $\overline{W}$ contains the reflection $S_{\gamma}$ in the hyperplane orthogonal to $\gamma$ .
(ii) $w_{\gamma}\in W_{\sigma}$ and $\overline{w}_{\gamma}=S_{\gamma}$ .
(iii) The opposition involution $op\Pi\gamma$ of $\Delta_{\gamma}$ with respect to $\Pi_{\gamma}$ leaves $\Pi_{0}$ invariant.

PROOF. $(i)\Rightarrow(ii)$ : let $w$ be an element in $W_{\sigma}$ such that $\overline{w}=S_{\gamma}$ . Then $w$

leaves all vectors in $\overline{E}\cap\gamma^{\perp}$ invariant and consequently $w$ can be written as a
product of reflections in roots orthogonal to $\overline{E}\cap\gamma^{\perp}$ . $(\overline{E}\cap\gamma^{\perp})^{\perp}=E_{0}+R\gamma$ and
$(E_{0}+R\gamma)\cap\Delta=\Delta_{\gamma}$ . Therefore $w\in W_{\gamma}$ . Since $w\Pi_{0}$ and $-\Pi_{0}$ are fundamental
systems of the root system $\Delta_{0}$ , there exists a unique element $w’$ in $W_{0}$ such that
$w’w\Pi_{0}=-\Pi_{0}$ . Then $w’w\Pi_{\gamma}$ and $-\Pi_{\gamma}$ are $\sigma$-fundamental systems of $\Delta_{\gamma}$ satisfy-
ing $(w’w\Pi_{\gamma})_{0}=(-\Pi_{\gamma})_{0}$ and ($\overline{w’w\Pi_{\gamma})}=(\overline{-\Pi_{\gamma}})$ . By Proposition 2.4 $w’w\Pi_{\gamma}=-\Pi_{\gamma}$,
whence $w’w=w_{\gamma}$ . In particular $w_{\gamma}\in W_{\sigma}$ and $\overline{w}_{\gamma}=S_{\gamma}$ . The implication $(ii)\Rightarrow(i)$

is obvious. $(ii)\Rightarrow(iii)$ : if $w_{\gamma}\in W_{\sigma}$ , then $w_{\gamma}\Pi_{0}=-\Pi_{0}$ and therefore $\Pi_{0}$ is
invariant under the action of the opposition involution $op\Pi_{\gamma}(=-w_{\gamma})$ . $(iii)\Rightarrow(ii)$ :
suppose that $\Pi_{0}$ is invariant under the action of the opposition involution $op\Pi\gamma$

$i.e$ . $w_{\gamma}\Pi_{0}=-\Pi_{0}$ . We need to show that $w_{\gamma}$ and $\sigma$ commute or, equivalently,
that $w_{\gamma}$ leaves $\overline{E}$ invariant. Since $\Delta_{\gamma}=\Delta\cap[(\overline{E}\cap\gamma^{\perp})^{\perp}],$

$w_{\gamma}$ leaves $\overline{E}\cap\gamma^{\perp}$ invariant
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and therefore it suffices to prove the $w_{\gamma}$-invariance of $R\gamma$ . Define $E’$ $:=linear$

span of $\Delta_{\gamma}$ and $E_{0}’$ $:=\{\alpha\in E’|\sigma\alpha=-\alpha\}$ . We show that $w_{\gamma}$ leaves $E_{0}’$ invariant
for then $R\gamma$ is $w_{\gamma}$-invariant too. We distinguish two cases: (a) $\#\Pi^{\gamma}=1:E_{0}’$ is
the linear span of $\Pi_{0}$ and so $E_{0}’$ is $w_{\gamma}$-invariant. (b) $\#\Pi^{\gamma}=2$ , say $\Pi^{\gamma}=\{\rho, \rho^{f}\}$ :
then $E_{0}’=R(\rho-\rho’)+the$ linear span of $\Pi_{0}$ . Since $w_{\gamma^{\Pi_{0}}}=-\Pi_{0}$ and $w_{\gamma}(\rho-\rho’)$

$=\pm(\rho-\rho’),$ $E_{0}’$ is $w_{\gamma}$-invariant.
We now come to the main theorem on the restriction $\overline{W}$ of the Weyl group.

THEOREM 3.3. The following conditions are equivalent:
\langle i) The opposition involution $op\Pi\gamma$ of $\Delta_{\gamma}$ with respect to $\Pi_{\gamma}$ leaves $\Pi_{0}$ invariant

for all $\gamma$ in $\overline{\Pi}$.
(ii) If $\psi\in\tilde{\Delta}$, then $S_{\psi}\in\overline{W}$.
(iii) $\overline{W}$ is generated by $\{S_{\gamma}|\gamma\in\overline{\Pi}\}$ .
\langle iv) $\tilde{\Delta}$ is a root system in $\overline{E}$ with Weyl group $\overline{W}$ and fundamental system Z7.

PROOF. We only prove the implication $(ii)\Rightarrow(iii)$ for the rest of the proof is
merely a slight modification of Schattschneider’s proof of Theorem 2.6 in [6].
$(ii)\Rightarrow(iii)$ : suppose $S_{\psi}\in\overline{W}$ for all $\psi$ in $\tilde{\Delta}$ ; then in particular $S_{\gamma}\in\overline{W}$ for all $\gamma$ in $\overline{\Pi}$.
By Lemma 3.2 $w_{\gamma}\in W_{\sigma}$ for all $\gamma$ in $\overline{\Pi}$. Let $W_{\sigma}’$ be the subgroup of $W_{\sigma}$ generated
by $\{w_{\gamma}|\gamma\in\Pi\}-\cup\{S_{\rho}|\rho\in\Pi_{0}\}$ . According to Proposition 3.1 it is sufficient to prove
$W_{\sigma}=W_{\sigma}’$, so what remains is the proof of the inclusion $W_{\sigma}\subseteqq W_{\sigma}’$ . Let $w\in W_{\sigma}$ ;
by induction on the length $l(w)$ we show $w\in W_{\sigma}’$ (for properties of the length
function see Bourbaki [3], ch. IV, \S 1). If $l(w)>0$, then there exists a root in
$\Pi$ that is mapped by $w$ into a negative root. We distinguish two cases: (a)

There exists an element $\rho$ in $\Pi_{0}$ such that $w\rho<0$ : define $w_{1}$ $:=S_{\rho}$ ; then $l(ww_{1})$

$=l(w)-1<l(w)$ . (b) There exists no root in $\Pi_{0}$ that is mapped by $w$ into a
negative root: this implies that $w\Pi_{0}=\Pi_{0}$ . Let $\gamma$ be an element in 11 and $\rho$ a
root in $\Pi^{\gamma}$ such that $w\rho<0$ . First we show that $w\tilde{\rho}<0$ for each root $\tilde{\rho}$ in $\Pi^{\gamma}$ ;
for this we only have to consider the case $\#\Pi^{\gamma}=2$ , say $\Pi^{\gamma}=\{\rho, \rho’\}$ and $w\rho<0$ .
From $w\in W_{\sigma},$ $w\Pi_{0}=\Pi_{0}$ and $\rho’\equiv a\rho$ mod $Z\Pi_{0}$ follows that $w\rho’\equiv\sigma(w\rho)$ mod $Z\Pi_{0}$ .
Since $w\rho\not\in\Delta_{0},$ $w\rho<0$ and $<$ is a $\sigma$-ordering of $E,$ $\sigma(w\rho)<0$ and hence $w\rho’<0$ .
So $w\in W_{\sigma}$ , $w\Pi_{0}=\Pi_{0}$ and $w\rho<0$ for all $\rho$ in $\Pi^{\gamma}$ . Now define $w_{1}$ $:=w_{0}w_{\gamma}$ ;
then $w_{1}\in W_{\sigma}’,$ $l(w_{1})>0,$ $w_{1}$ leaves $\Pi_{\gamma}$ invariant and $l(ww_{1})<l(w)$ :

$l(ww_{1})=\#\{\alpha\in\Delta^{+}|ww_{1}\alpha<0\}=\#\{\alpha\in\Delta^{+}\backslash \Delta_{\gamma}|ww_{1}\alpha<0\}+\#\{a\in\Delta_{\gamma}^{+}| WWla<0\}$

$=\#\{\alpha\in\Delta^{+}\backslash \Delta_{\gamma}|ww_{1}\alpha<0\}=\#\{\alpha\in\Delta^{+}\backslash \Delta_{\gamma}|w\alpha<0\}$

$=\#\{\alpha\in\Delta^{+}|w\alpha<0\}-\#\{\alpha\in\Delta_{\gamma}^{+}|w\alpha<0\}=l(w)-\#\{a\in\Delta_{\gamma}^{+}|w\alpha<0\}<l(w)$ .

In both cases (a) and (b) we have defined an element $w_{1}$ in $W_{\sigma}’$ such that
$l(ww_{1})<l(w)$ and $ww_{1}\in W_{\sigma}$ . By induction $ww_{1}\in W_{\sigma}’$ and so $w\in W_{\sigma}’$ .

If $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$, the next problem is the deter-
mination of its type. Of course direct projection of all roots in $\Delta\backslash \Delta_{0}$ onto
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elements of a and further restriction to the system a of reduced restricted roots
is one way of determining the type of root system $\tilde{\Delta}$ , but this brute force
method is less attractive than the method described by Borel and Tits [2], ch. 6.

\S 4. Hirai’s problem.

Hirai [4] has posed the question whether $W_{\sigma}$ acts simply transitively on the
set of $\sigma$-fundamental systems of $\Delta$ . In general the answer will be negative,
but we will determine necessary and sufficient conditions for simple transitivity
of $W_{\sigma}$ .

LEMMA 4.1. Let $w$ be an element in $W$ such that $w\Pi$ is $a$ a-fundamental
system of $\Delta$ . Then $\Pi$ is $w^{-1}\sigma w$-fundamental and the Satake diagrams $(w\Pi, (w\Pi)_{0},\tilde{\sigma})$

and $(\Pi, \Pi_{0}, \overline{w^{-1}\sigma w})$ are isomorphic.
PROOF. If $\rho\in\Pi$ and $(w^{-1}\sigma w)\rho\neq-\rho$ , then $\sigma w\rho\neq-w\rho$ . Since $w\Pi$ is a-

fundamental, $\sigma w\rho>0$ (with respect to the partial ordering corresponding to $w\Pi$).

So $(w^{-1}\sigma w)\rho>0$ (with respect to the partial ordering corresponding to $\Pi$). Thus
$\Pi$ is $w^{-1}\sigma w$ -fundamental. Clearly the Satake diagrams $(w\Pi, (w\Pi)_{0},\tilde{\sigma})$ and
$(\Pi, \Pi_{0},\overline{w^{-1}\sigma w})$ are isomorphic by the map $w^{-1}$ : $w\Piarrow\Pi$ .

Consider a fixed $\sigma$ -fundamental system $\Pi$ of $\Delta$ . DePne $\Sigma_{\Pi}$ $:=\{\sigma’\in Aut(\Delta)|$

$(\sigma’)^{2}=1,$ $\Pi$ is $\sigma’$-fundamental} and $K_{\sigma}$ $:=\{w^{-1}\sigma w|w\in W\}$ . It follows from Lemma
4.1 that the set of Satake diagrams of $\sigma$ with respect to one or another $\sigma-$

fundamental system equals the set of Satake diagrams of involutions in $\Sigma_{\Pi}\cap K_{\sigma}$

with respect to the fixed $\sigma$-fundamental system $\Pi$ .
LEMMA 4.2. $W_{\sigma}$ acts simply transitively on the set of $\sigma$-fundamental systems

iff $\Sigma_{\Pi}\cap K_{\sigma}=\{\sigma\}$ .
PROOF. This is an immediate consequence of the simple transitive action of

the Weyl group $W$ on the set of fundamental systems, Lemma 4.1 and the deP-
nitions of $\Sigma_{\Pi}$ and $K_{\sigma}$ .

LEMMA 4.3. If $\Sigma_{\Pi}\cap K_{\sigma}=\{\sigma\}$ , then $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$.
PROOF. First we show that $\Pi$ is $w_{\overline{\gamma}^{1}}\sigma w_{\gamma}$-fundamental for all $\gamma$ in $\overline{\Pi}$. Let

$\rho\in\Pi\backslash \Pi_{\gamma}$ . Then $w_{\gamma}\rho\equiv\rho$ mod $Z\Pi_{\gamma}$ . As a consequence of the $\sigma$-invariance of $\Delta_{\gamma}$

$\sigma w_{\gamma}\rho\equiv\sigma\rho$ mod $Z\Pi_{\gamma}$, whence $(w_{\overline{\gamma}^{1}}\sigma w_{\gamma})\rho\equiv\sigma\rho$ mod $Z\Pi_{\gamma}$ ; $\sigma\rho\not\in linear$ span of $\Pi_{\gamma}$

and $\sigma\rho>0$ , so $(w_{\overline{\gamma}^{1}}\sigma w_{\gamma})\rho>0$ . Now let $\rho\in\Pi_{\gamma}$ . Then $w_{\gamma}\Pi_{\gamma}=-\Pi_{\gamma}$ implies $w_{\gamma}\rho$

$<0$ . Since $\Pi$ is a-fundamental, $(\sigma w_{\gamma})\rho<0$ if $w_{\gamma}\rho\not\in\Delta_{0}$ and $(\sigma w_{\gamma})\rho>0$ if $w_{\gamma}\rho\in\Delta_{0}$ ;
in the latter case $\sigma w_{\gamma}\rho=-w_{\gamma}\rho$ . Thus $(w_{\overline{\gamma}^{1}}\sigma w_{\gamma})\rho>0$ if $w_{\gamma}\rho\not\in\Delta_{0}$ and $(w_{\overline{\gamma}}^{1}aw_{\gamma})\rho$

$=-\rho$ if $w_{\gamma}\rho\in\Delta_{0}$ . We conclude that $(w_{\overline{\gamma}}^{1}\sigma w_{\gamma})\rho>0$ or $(w_{\overline{\gamma}^{1}}\sigma w_{\gamma})\rho=-\rho$ for all $\rho$

in $\prod$ and $\gamma$ in $\overline{\Pi}$. So $\Pi$ is $w_{\overline{\gamma}^{1}}\sigma w_{\gamma}$-fundamental for all $\gamma$ in [Z. If $\Sigma_{\Pi}\cap K_{\sigma}$

$=\{\sigma\}$ , then $w_{\overline{\gamma}^{1}}\sigma w_{\gamma}=\sigma,$
$i$ . $e$ . $w_{\gamma}\in W_{\sigma}$ for all $\gamma$ in $\overline{\Pi}$. Lemma 3.2 and Theorem

3.3 imply that $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$.
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LEMMA 4.4. If $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$, then $W_{\sigma}$ acts simply
transitively on the set of $\sigma$-fundamental systems of $\Delta$ .

PROOF. Let $\Pi,$ $\Pi’$ be a-fundamental systems of $\Delta$ . a and $\overline{\Pi}’$ are funda-
mental systems of the root system $\tilde{\Delta}$ and so there exists an element $w$ in $W_{\sigma}$

such that $\overline{w}\overline{\Pi}=\overline{\Pi}’$ . According to Proposition 3.1 $w$ is determined up to a pro-
duct with an element of $W_{0}$ . Let $w’$ be the unique element in $W_{0}$ such that
$w’(w\Pi)_{0}=\Pi_{0}’$ . Then $w’w$ is the unique element of $W_{\sigma}$ such that $(w’w\Pi)_{0}=\Pi_{0}’$

and $\overline{(w’w\Pi}$) $=\overline{\Pi}’$ . Proposition 2.4 implies $w’w\Pi=\Pi’$ .
The following theorem, which is an immediate consequence of the preceding

lemmas, gives a solution to Hirai’s problem:

THEOREM 4.4. The following conditions are equivalent:
(i) $\Sigma_{\Pi}\cap K_{\sigma}=\{a\}$ .
(ii) $W_{\sigma}$ acts simply transitively on the set of $\sigma$ -fundamental systems of $\Delta$ .
(iii) $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$.

PROPOSITION 4.5. If $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$ and fundamental
system 11, then the Satake diagram $(\Pi, \Pi_{0},\tilde{\sigma})$ is up to isomorphism independent
of the choice of the $\sigma$-fundamental system $\Pi$ .

PROOF. Let $\Pi,$ $\Pi’$ be $\sigma$-fundamental systems of $\Delta$ . By Theorem 4.4 there
exists an element $w$ in $W_{\sigma}$ such that $w\Pi=\Pi’$ . The restriction of $w$ to $\Pi$ gives
an isomorphism between the Satake diagrams $(\Pi, \Pi_{0},\tilde{\sigma})$ and $(\Pi’, \Pi_{0}’,\tilde{a}’)$ .

In section 6 we will extend the result of Proposition 4.5 and determine neces-
sary and sufficient conditions for the Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ to be inde-
pendent of the choice of $\Pi$ .

\S 5. Admissible Satake diagrams.

We call the root system $\Delta$ a-irreducible if it cannot be decomposed into two
disjoint nonempty orthogonal $\sigma$-invariant subsets. In a classification of Satake
diagrams we may restrict ourselves to $\sigma$-irreducible root systems. We call a
Satake diagram admissible if it belongs to an involutive automorphism $\sigma$ of $\Delta$

such that $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$ or, equivalently, if it satisfies
condition (i) of Theorem 3.3. According to Proposition 4.5 the admissible Satake
diagram does not depend up to isomorphism on the choice of its $\sigma$-fundamental
system. We will give a classification of $\sigma$-irreducible admissible Satake diagrams.
The following proposition describes the situation in which $\Delta$ is a $\sigma$-irreducible,
but not irreducible root system.

PROPOSITION 5.1. If $\Delta$ is $\sigma$-irreducible, but not irreducible, then $\Delta$ is a union
of irreducible root systems $\Delta_{1},$ $\Delta_{2}$ with $\Delta_{1}\cong\Delta_{2}$ and $\sigma(\Delta_{1})=\Delta_{2}$ . $\tilde{\Delta}$ is a root system
isomorphic to $\Delta_{1}$ (and $\Delta_{2}$) with Weyl group $\overline{W}$ isomorphic to the Weyl group of
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$\Delta_{1}$ (and $\Delta_{2}$).

The easy proof is omitted.

PROPOSITION 5.2. If $(\Pi, \Pi_{0},\tilde{\sigma})$ is an admissible Satake diagram, then the
oPposition involution $op\Pi$ of $\Delta$ with respect to $\Pi$ commutes with the involution $\sigma$ .

PROOF. If $\Pi$ is $\sigma$-fundamental, then $-\Pi$ is $\sigma$-fundamental too. By Theorem
4.4 there exists an element $w$ in $W_{\sigma}$ such that $w\Pi=-\Pi$ . However $-w$ equals
the opposition involution $op\Pi$ and therefore $op\Pi$ and $\sigma$ commute.

We now state sufficient criteria to classify admissible Satake diagrams.

CRITERION 5.3. An admissible Satake diagram $(\Pi, \Pi_{0},\tilde{\sigma})$ is invariant under
the opposition involution $op\Pi$ .

PROOF. This is an immediate consequence of Proposition 5.2.

CRITERION 5.4. Let $(\Pi, \Pi_{0},\tilde{\sigma})$ be an admissible Satake diagram. If $\Pi’$ is
a subset of $\Pi$ such that $\Pi_{0}\subseteqq\Pi’$ and the root system $\Delta’$ spanned by $\Pi’$ is $\sigma-$

invariant, then the Satake diagram $(\Pi’, \Pi_{0}, (\overline{\sigma|_{\Delta’}}))$ is admissible.
PROOF. Condition (i) of Theorem 3.3 remains true for the restricted funda-

mental system $\overline{\Pi}’$ .
CRITERION 5.5. By removal of a white circle and if p0ssible its partner in

an admissible Satake diagram a new admissible Satake diagram is constructed.
PROOF. This criterion follows from Criterion 5.4.

CRITERION 5.6. If a $\sigma$-irreducible root system consists of two disjoint non-
empty orthogonal root $syste\uparrow ns\Delta_{1}$ and $\Delta_{2}$ , then $\sigma$ is an isomorphism between the
root systems $\Delta_{1}$ and $\Delta_{2}$ .

PROOF. This is a re-formulation of Proposition 5.1.
The following three criteria hold for any Satake diagram.

CRITERION 5.7. Supp0se the Satake diagram $(\Pi, \Pi_{0},\tilde{\sigma})$ contains the following
subgraph

$\bullet-\bullet---------\bullet-0\rho_{1}\rho_{2}\rho_{j-1}\overline{\rho_{f}}\rho_{j+1}$

with $j\in N\cup\{0\},$ $-=-$ $or=-$ and $\rho_{1},$ $\rho_{2},$
$\cdots$ , $\rho_{j}$ are not joined to other

vertices in the graph. If $\sigma\rho_{j+1}\equiv\rho_{j+1}$ mod $Z\Pi_{0}$ , then $j\in\{0,1\}$ and if $\sigma\rho_{j+1}\not\equiv$

$\rho_{j+1}$ mod $Z\Pi_{0}$ , then $j=0$ .
PROOF. Let $\sigma\rho_{j+1}=\rho_{j+1}+x_{1}\rho_{1}+$ $+x_{j}\rho_{j}+a$ with $\alpha\in linear$ span of

$\Pi_{0}\backslash \{\rho_{1}, \rho_{2}, \cdots , \rho_{j}\}$ and $x_{k}\in N\cup\{0\}$ for all $k$ in $\{1, 2, \cdots j\}$ . From

$2 \frac{(\sigma\rho_{k}|\sigma\rho_{j+1})}{(\sigma\rho_{k}|\sigma\rho_{k})}=2\frac{(\rho_{k}1\rho_{j+1})}{(\rho_{k}1\rho_{k})}=0$

for all $k$ in $\{1, 2, \cdots , j-1\}$ and
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$2 \frac{(\sigma\rho_{j}|\sigma\rho_{j+1})}{(a\rho_{j}|\sigma\rho_{j})}=2\frac{(\rho_{j}1\rho_{j+1})}{(\rho_{j}1\rho_{j})}=-1$

we get the following system of linear equations: $2x_{1}-x_{2}=0,2x_{k}-x_{k- 1}-x_{k+1}$

$=0$ $(k=2,3, \cdots , j-1),$ $2x_{j}-x_{j-1}-1=1$ . Its solution is $x_{k}=2k/(j+1)$ for $k=$

$1,2,$ $\cdots$ , $j$ . So $x_{1}\in N\cup\{0\}$ implies $j=0$ or $j=1$ . Now let $\sigma\rho_{j+1}=\rho_{j+1}’+x_{1}\rho_{1}+\cdots$

$+x_{j}\rho_{j}+\alpha$ with $\alpha\in linear$ span of $\Pi_{0}\backslash \{\rho_{1}, \rho_{2}, \cdots , \rho_{j}\},$ $\rho_{j+1}’\in\Pi\backslash (\{\rho_{j+1}I\cup\Pi_{0})$ and
$x_{k}\in N\cup\{0\}$ for all $k$ in $\{$ 1, 2, – , $j\}$ . Analogously to the former case we get
the following system of linear equations: $2x_{1}-x_{2}=0$ , $2x_{k}-x_{k-1}-x_{k+1}=0$

$(k=2,3, -- , j-1),$ $2x_{j}-x_{j- 1}=1$ . Its solution is $x_{k}=k/(j+1)$ for $k=1,2,$ $\cdots$ , $j$ .
So $x_{1}\in N\cup\{0\}$ implies $j=0$ .

CRITERION 5.8. Let $\rho$ be a root in $\Pi$ such that $\sigma\rho\equiv\rho$ mod $Z\Pi_{0}$ . Define
$\Pi’$ $:=\Pi_{1}’\cup\Pi_{2}’\cup\cdots\cup\Pi_{m}’\cup\{\rho\}$ with $\Pi_{1}’,$ $\Pi_{2}’,$ $\cdots$ , $\Pi_{m}’$ the distinct irreducible com-
ponents of $\Pi$, not orthogonal to $\rho$ . If the only aufomorphism of $\Pi’$ leaving $\rho$

and all components $\Pi_{k}’$ ( $k=1,2,$ $\cdots$ , m) invariant is trivial, then the opposition
involutim $op\Pi_{k}^{r}$ of the root system $\Delta_{k}’$ corresponding to $\Pi_{k}’$ is trivial for all $k$ in
$\{1, 2, \cdots m\}$ .

PROOF. For each index $k$ in $\{$ 1, 2, $\cdots$ , $m\}w_{k}$ instead of $w_{\Pi_{k}’}$ denotes the
unique element in the Weyl group of root system $\Delta_{k}’$ such that $w_{k^{\Pi_{k}’}}=-\Pi_{k}’$ .
For all $k$ in $\{$ 1, 2, $\cdots$ , $m\}w_{1}w_{2}\cdots w_{m}\sigma$ transforms roots in $\{\rho\}\cup\Pi_{k}’$ into non-
negative linear combinations of elements in $\{\rho\}\cup\Pi_{k}’$ and $\rho$ is transformed into
$\rho+$ (a non-negative linear combination of elements in $\Pi_{k}’$). This implies that
$w_{1}w_{2}\cdots w_{m}\sigma$ leaves $\{\rho\}\cup\Pi_{k}’$ invariant for all $k$ in $\{$ 1, 2, $\cdots$ , $m\}$ and $(w_{1}w_{2}\cdots$

$w_{m}\sigma)\rho=\rho$ . Since the only automorphism of $\Pi’$ leaving $\rho$ and all components
$\Pi_{k}’$ invariant is trivial $w_{1}w_{2}\cdots w_{m}\sigma=1$ . Hence $op_{\Pi_{k}’}=-w_{k}=(w_{1}w_{2}\cdots u_{m}\sigma)|_{\Delta_{k}’}$

$=1_{\Delta_{k}’}$ for all $k$ in $\{$ 1, 2, $\cdots$ , $m\}$ .
CRITERION 5.9. The following graphs are no Satake diagrams:

of tyPe $C_{l}$ with $l\geqq 3$

of $tyPeD_{l}$ with $l\geqq 4$
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PROOF. It can easily be seen that there does not exist an involutive auto-
morphism that has one of the above graphs as its Satake diagram.

The above criteria 5.3 up to 5.9 enable us to find all admissible Satake dia-
grams in a straightforward manner. This does not solve the existence problem
of Satake diagrams, but actually it is a not too difficult problem to find an in-
volutive automorphism $\sigma$ that suits a given diagram $(\Pi, \Pi_{0},\tilde{a})$ . At the end of
this section in table I we present all irreducible admissible Satake diagrams
together with their involutions in case $\sigma\neq\pm 1$ .

Most admissible Satake diagrams arise from so-called a-normal root systems.
A root system $\Delta$ with involutive automorphism $\sigma$ is called $\sigma$-normal if $\sigma\alpha-\alpha\not\in\Delta$

for each root $\alpha$ in $\Delta$ . The following proposition, due to Araki [1], shows that
a Satake diagram corresponding to a $\sigma$-normal root system is admissible; the
converse statement does not hold as can be seen in the counter-example $\bullet=\Rightarrow-0$ .

PROPOSITION 5.10. If $\Delta$ is $\sigma$-normal, then a is a (Possibly non-reduced) root
system with Weyl group $\overline{W}$.

PROOF. See Araki [1], Proposition 2.1.
Now we present the results of the classification of irreducible admissible

Satake diagrams. For each irreducible root system type we determine all admis-
sible Satake diagrams $(\Pi, \Pi_{0},\tilde{\sigma})$ and corresponding involutions $\sigma$ . For each
Satake diagram we check if it belongs to a a-normal root system; if $\Delta$ is $\sigma-$

normal we determine the root system type of a by the method of Borel and Tits
[2], ch. 6, if not the root system type of $\tilde{\Delta}$ is determined. In table I $\sigma$-funda-
mental systems are numbered according to the convention of Bourbaki [3],
planches I-IX; we also use Bourbaki’s description of root systems of classical
type in order to get simpler expressions for the involution $\sigma$ . For root systems
of type $A_{l}(l\geqq 2),$ $D_{l}(l\geqq 4)$ and $E_{6}\mathcal{A}$ denotes the following automorphism:

$A_{l}$ : $\rho_{k}arrow\geq\rho_{l+1-k}$ for $k=1,2,$ $\cdots$ , $l$

$D_{l}$ : $\rho_{l-1}\neqarrow\geq\rho_{l}$ , $\rho_{k}-\rho_{k}$ for $k=1,2,$ $\cdots$ $1-2$

$E_{6}$ : $\rho_{1}arrow\rho_{6}$ , $\rho_{3^{-}}\rho_{5}$ , $\rho_{2^{-\geq\rho_{2}}}$ , $\rho_{4}-arrow\rho_{4}$ .
In table I $\mathcal{B}$ and $\mathcal{D}$ denote the following expressions:

$\mathcal{B}$ $;= \prod_{j=0}^{(l-k- 2)/2}(S_{\epsilon_{k+2j+1^{-g}k+2j+2}}S_{\epsilon_{k}+2j+1^{+\epsilon}k+2j+2})$ ,

$\mathcal{D};=\prod_{j=0}^{(l-k- 3)/2}(S_{\epsilon_{k}+2j+1^{-\epsilon}k+2j+2}S_{\epsilon_{k+2j+1}+\epsilon_{k+2j+2}})$ .

We adapt the graphical representation of a Satake diagram of classical type as
follows: portions of the graph that are repeated zero or more times are drawn
once and are enclosed by brackets; by giving the type of the root system and
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marking some vertices in the graph by their corresponding fundamental roots
we get a compact diagram that unambiguously describes the Satake diagram
(dotted lines possibly leading to pictorial misinterpretations are not needed !). In
table I the trivial cases $a=1$ and $a=-1$ are not included.

Table I: Irreducible admissible Satake diagrams $(\Pi, \Pi_{0},\tilde{a})$ with $\sigma\neq\pm 1$

type graph representing type aa-normal
$\Delta$

$(\Pi, \Pi_{0},\tilde{a})$ or $\tilde{\Delta}$

$(l-1)\prime 2$

$+$ $A_{(l-1)/2}$ $\prod_{j=0}S_{\rho_{2j+1}}$

$\int \mathcal{A}(\prod_{j=k+1}^{\iota/2}S_{\epsilon_{j^{-\xi}l+2-j}})$ if 1 even
$A_{l}$ $+$ $BC_{k}$

$( \mathcal{A}(\prod_{j=k+1}^{(l+1)/2}S_{\epsilon_{j}-\epsilon_{l+2-j}})$ if 1 odd

$A_{l}$ $+$ $BC_{(l- 1)/2}$
$\mathcal{A}S_{\rho_{(l+1)/2}}$

$A_{l}$ $+$ $BC_{l/2}$ $\mathcal{A}$

$A_{l}$ $+$ $C_{(i+1)/2}$
$\mathcal{A}$

$B_{l}$ $-$

$B_{l}$ $+$

$B_{l}$

$B_{l}$ $+$

$B_{\iota/2}$

$\prod_{j=0}^{(l- 2)/2}S_{\rho_{2j+1}}$

$B_{k}$$\{\begin{array}{l}\mathcal{B} if l-k even \mathcal{D}S_{\rho_{l}} if l-k odd\end{array}$

$(k- 2)/2$

$B_{k/2}$
$\{\begin{array}{l}( J\prod_{=0}S_{\rho_{2j+1}})\mathcal{B} if l-k even (\prod_{j=0}^{(k-2)/2}S_{\rho_{2j+1}})\mathcal{D}S_{\rho_{l}} if l-k odd\end{array}$

$B_{l- 1}$ $S_{\rho_{l}}$
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$B_{l}$ $B_{(l- 1)/2}$ $(l- 1)/2\Pi S_{\rho_{2j+1}}$

$f=0$

$C_{l}$
$\perp$

$C_{\iota/\underline{Q}}$

$(l- 2)/2\Pi S_{\rho_{2f+1}}$

$f=0$

$C_{l}$ $B_{k}$ $\{\begin{array}{l}\mathcal{B} if l-k even\mathcal{D}S_{\rho_{l}} if l-k odd\end{array}$

$\int(\prod_{f=0}^{(k- 9)/\circ}S_{\rho_{2j+1}})\mathcal{B}$ if $l-k$ even
$C_{l}$ $BC_{k/\underline{9}}$

$(( \prod_{f=()}S_{\rho_{9}})\mathcal{D}S_{\rho}-f+l$

’ if $l-k$ odd

$C_{l}$ $-$ $B_{l- 1}$
$S_{p\prime}$

$C_{\iota}$ $+$ $BC_{(l- 1\rangle 2}/$

$1l-\rfloor$ )

$/2\Pi S_{\rho_{2f+1}}$

/-0

$D_{l}$ $\perp$

$D_{l}$

$\int 9$ if $l-k$ even
$B_{k}$

$(\mathcal{D}A$ if $l-k$ odd

$\}(\prod_{j=0}^{(k- 2)12}S_{\rho_{2j+1}})\mathcal{B}$ if $l-k$ even
$BC_{k/}\underline{\prime)}$

$(( \prod_{j\Rightarrow 0}^{(k-2)fg}S_{\rho_{2f+1}})\mathcal{D}\mathcal{A}$ if $l-k$ odd

$D_{l}$ $\perp$
$B_{l- 2}$ $s_{\rho_{l- 1}}s_{\rho_{l}}$

$D_{\ell}$ $+$ $BC_{(l- 2)’2}$ $( \prod$

g-u

$+$ $B_{\ell/}\underline{o}$ $\prod_{J=ti}^{(l-2)/2}S_{\rho_{2j+1}}$

$D_{l}$ $+$ $B_{l-1}$

$D_{l}$
$\perp$ $BC_{(l- 1)/2}$ $\mathcal{A}(\prod_{f\Rightarrow 0}^{(l-\S)/2}S_{\rho_{2j+1}})$

$+$ $A_{\underline{o}}$

$S_{\rho_{6}}S_{\rho_{2}+\rho_{\gamma}+2^{\circ_{1}}+\rho_{v}}S_{\rho_{2}}S_{\rho_{(}}$
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$+$ $BC_{1}$
$\mathcal{A}S_{\rho_{1}+Pa+\rho_{4}+\rho_{5+P_{6}}}S_{\rho_{3}+\rho_{4}+F_{5}}S_{f_{4}}$

$+$ $F_{4}$
$\mathcal{A}$

$+$ $BC_{\sim^{y}}$
$\mathcal{A}S_{P_{\theta}+\rho_{4}+\rho_{5}}S_{\rho_{4}}$

$+$ $F_{4}$
$S_{\rho_{2}}S_{p_{5}}S_{p_{7}}$

$+$ $C_{s}$
$S_{Ps}S_{P_{2}+P_{3}+2\rho_{4+}\rho_{\epsilon}}S_{P\underline{\circ}}S_{0_{3}}$

$+$ $BC_{z}$
$S_{\rho_{7}}S_{\rho_{6}}S_{\rho_{2}+\rho_{\}+z\circ_{4}+\rho_{0}}\ulcorner S_{\rho_{2}}S_{\rho_{g}}$

$+$ $BC_{1}$ $-S_{123432}^{2}$

$+$ $F_{4}$ $S_{\rho_{5}}S_{\rho_{2}+\rho_{S}+2P_{4}+P_{t}}S_{\rho_{l}}S_{p_{B}}$

$+$ $BC_{z}$
$-S_{2 45\epsilon^{3}42}S_{012a4\theta 2}^{2}$

$+$ $BC_{1}$ $-S_{2345642}^{\}$

$B_{z}$
$S_{f_{3}}S_{p_{g}+\rho_{3}}$

$+$ $BC_{1}$
$S_{\rho_{1}}S_{P_{1}+2\rho_{2}+2\rho_{\theta}}S_{\rho_{3}}$

$G_{z}\sim$

$G_{z}\infty$

$A_{1}$

$A_{1}$

$A_{I}$

$S_{\rho_{4}}S_{\rho_{2+2}\rho_{\theta}+\rho_{4}}S_{\rho_{z}}$

$S_{\rho_{2}}$

$S_{\rho_{1}}$
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\S 6. The system $\tilde{\Delta}$ of reduced restricted roots.

In section 3 we have determined necessary and sufficient conditions for $\tilde{\Delta}$ to
be a root system with Weyl group $\overline{W}$. Now we will weaken these conditions
and examine the situation in which $\tilde{\Delta}$ is merely a root system, not necessarily
with Weyl group Ml.

THEOREM 6.1. $\tilde{\Delta}$ is a root system in $\overline{E}$ iff each $\sigma$-irreducible component of
the Satake diagram is admissible or isomorphic to $0$ .

PROOF. We consider the case that $\Delta$ is irreducible. First we look at the case
dim $\overline{E}=1$ . If the opposition involution $op\Pi$ of $\Delta$ with respect to $\Pi$ leaves $\Pi_{0}$

invariant, then by Theorem 3.3 $\tilde{\Delta}$ is a root system in $\overline{E}$ with Weyl group $\overline{W}$.
Since the opposition involution $op\Pi$ is nontrivial iff $\Delta$ is a root system of type
$A_{l}(l\geqq 2),$ $D_{l}$ ($1\geqq 4,1$ odd) or $E_{6}$ , only for these types $\tilde{\Delta}$ might be a root system
without Weyl group $\overline{W}$ and in this case $op\Pi$ must not leave $\Pi_{0}$ invariant. For
each of these root system types we determine all non-admissible Satake diagrams
\langle $\Pi,$ $\Pi_{0},\tilde{\sigma}$ ) with dim $\overline{E}=1$ . We use criteria 5.7 and 5.8 and number the $\sigma-$

fundamental system $\Pi$ according to Bourbaki [3], Planches I-IX. $A_{l}(l\geqq 2)$ : we
may assume that in the Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ no arrows are present, for
otherwise $\Pi_{0}$ is $op\Pi$-invariant (and hence $(\Pi,$ $\Pi_{0},\tilde{a})$ is admissible). Let $\rho_{j}$

$(j\in\{1,2, \cdots , l\})$ be the root corresponding to the white circle in the Satake
diagram; then Criterion 5.7 implies $1=2$ and ($j=1$ or 2). So $(\Pi, \Pi_{0},\tilde{a})$ is iso-
morphic to $0-\bullet$ . $D_{l}$ ($l\geqq 4,1$ odd): in this case $op\Pi$ does not leave $\Pi_{0}$ invar-
iant iff no arrows are present in the Satake diagram and $\rho_{l-1}$ or $\rho_{l}$ is the white
circle. However by Criterion 5.8 for $\rho=\rho_{l-1}$ or $\rho_{l}$ no such Satake diagram
exists. $E_{6}$ : in this case $op\Pi$ does not leave $\Pi_{0}$ invariant iff no arrows are
present in the Satake diagram and $\rho_{2},$

$\rho_{4}\in\Pi_{0}$ . So the only possible non-admis-
sible Satake diagrams consist of black circles and one white circle representing
a root $\rho$ in $\{\rho_{1}, \rho_{3}. \rho_{6}, \rho_{6}\}$ . Application of Criterion 5.8 for each possible root
$\rho$ shows that no such Satake diagram exists. We conclude that in the case
dimE $=1$ the only non-admissible Satake diagram is isomorphic to $0-\bullet$ . Now
we will consider the case dimE $>1$ ; we shall see that then $\tilde{\Delta}$ is not a root
system if the Satake diagram is not admissible. Let $(\Pi, \Pi_{0}, \delta)$ be a non-admissible
Satake diagram. According to Theorem 3.3 there should exist an element $\gamma$ in
I7 such that $\Pi_{0}$ is not left invariant by the opposition involution $op\Pi\gamma$ of $\Delta_{\gamma}$

with respect to $\Pi_{\gamma}$ . Since $\#\overline{\Pi}_{\gamma}=1$ , the Prst part of the proof shows that the
Satake diagram is of the form

$---0arrow---\rho_{1}\rho_{2}$

with $\overline{\rho}_{1}=\gamma$ and $\rho_{1},$ $\rho_{2}$ not joined to other black vertices. Then $\sigma\rho_{1}=\rho_{1}+\rho_{2}$ and
therefore $\overline{\rho}_{1}=\rho_{1}+(1/2)\rho_{2}$ . Since dimE $>1$ and $\Delta$ is supposed to be irreducible, $\rho_{1}$
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$and/or\rho_{2}$ are joined to a white circle. We distinguish two cases: (i) $\rho_{1}$ is
joined to a white circle $\rho_{3}$ : then

$2 \frac{(\overline{\rho}_{1}1\overline{\rho}_{3})}{(\overline{\rho}_{1}1\overline{\rho}_{1})}=2\frac{(\overline{\rho}_{1}1\rho_{3})}{(\overline{\rho}_{1}1\overline{\rho}_{1})}=\frac{4}{3}\cdot 2\frac{(\rho_{1}1\rho_{3})}{(\rho_{1}1\rho_{1})}$ .

Since $2 \frac{(\rho_{1}1\rho_{8})}{(\rho_{1}1\rho_{1})}\in\{-1, -2, -3\},$ $2 \frac{(\overline{\rho}_{1}1\overline{\rho}_{3})}{(\overline{\rho}_{1}1\overline{\rho}_{1})}\not\in\{0, -1, -2, -3\}$ . It follows that
$\tilde{\Delta}$ is not a root system in E. (ii) $\rho_{2}$ is joined to a white circle $\rho_{3}$ : then

$2 \frac{(\overline{\rho}_{1}\lfloor\overline{\rho}_{3})}{(\overline{\rho}_{1}1\overline{\rho}_{1})}=2\frac{(\overline{\rho}_{1}1\rho_{8})}{(\overline{\rho}_{1}1\overline{\rho}_{1})}=\frac{2}{3}\cdot 2\frac{(\rho_{2}1\rho_{3})}{(\rho_{2}1\rho_{2})}$ .

Since $2 \frac{(\rho_{2}1\rho_{3})}{(\rho_{2}1\rho_{2})}\in\{-1, -2, -3\}$ and $2 \frac{(\rho_{2}1\rho_{3})}{(\rho_{2}1\rho_{2})}=-3$ iff $\Delta$ is of type $G_{2},2 \frac{(\overline{\rho}_{1}1\overline{\rho}_{3})}{(\overline{\rho}_{1}1\overline{\rho}_{1})}$

$\not\in\{0, -1, -2, -3\}$ . It follows that $\tilde{\Delta}$ is not a root system in $\overline{E}$ . We conclude
that in the case dim $\overline{E}>1$ each Satake diagram with root systeni $\tilde{\Delta}$ is in fact
admissible. So if $\tilde{\Delta}$ is a root system in $\overline{E}$ , then $\tilde{\Delta}$ has Weyl group $\overline{W}$ (and hence
the Satake diagram is admissible) or the Satake diagram is isomorphic to $0-\bullet$ .
The converse statement is obvious.

As Sugiura [7] already remarked, the Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ may
depend on the choice of the $\sigma$-fundamental system $\Pi,$ $i.e$ . if $\Pi$ and $\Pi’$ are $\sigma-$

fundamental systems of root system $t\Delta$, the Satake diagrams $(\Pi, \Pi_{0},\tilde{\sigma})$ and
$(\Pi’, \Pi_{0}’,\tilde{a}’)$ need not be isomorphic. We will show that a Satake diagram
$(\Pi, \Pi_{0},\tilde{a})$ up to isomorphism does not depend on the choice of $\Pi$ iff $\tilde{\Delta}$ is a
root system. We need the following lemma and criterion.

LEMMA 6.2. Let $(\Pi, \Pi_{0},\tilde{\sigma})$ be a Satake diagram of the form $---0^{f}-\bullet---\rho\rho_{2}$

with $\rho_{2}$ not joined to any other black vertex and $\rho_{2}$ the only black vertex joined
to $\rho_{1}$ . Then there exists a $\sigma$-fundamental system $\Pi’$ with Satake diagram
$(\Pi’, \Pi_{0}’,\tilde{\sigma}’)$ constructed from the original Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ by switching
the colours of the vertices $\rho_{1}$ and $\rho_{2}$ .

PROOF. Define $\Pi’$ $:=(S_{\rho_{1}+\rho_{2}}S_{\rho_{1}})\Pi$ . Then $\Pi’$ is a a-fundamental system
that has the right properties.

CRITERION 6.3. By removal of a white circle and if possible its pariner in
a Satake diagram a new Satake diagram is constructed.

We omit the proof of this obvious statement.

THEOREM 6.4. $\tilde{\Delta}$ is a root system iff the Satake diagram $(\Pi, \Pi_{0},\tilde{\sigma})$ up to
isomorphism does not depend on the choice of $\Pi$ .

PROOF. We may restrict ourselves to a $\sigma$-irreducible root system $\Delta$ . More-
over Proposition 5.1 permits us to consider only the case that $\Delta$ is irreducible.
If $\tilde{\Delta}$ is a root system, then by Theorem 6.1 $\overline{W}$ is the Weyl group of $\tilde{\Delta}$ (and

hence the Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ is admissible) or the Satake diagram
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$(\Pi, \Pi_{0},\tilde{a})$ is :isomorphic to $0-\bullet$ . If $(\Pi, \Pi_{0},\tilde{a})$ is admissible, then by Prop-
osition 4.5 the Satake diagram is independent of the choice of $\Pi$ . If $(\Pi, \Pi_{0},\tilde{a})$

is isomorphic to $0-\bullet$, then the reader can easily convince himself that $(\Pi, \Pi_{0},\tilde{\sigma})$

does not depend on the choice of $\Pi$ . Now we prove the converse statement:
if an irreducible Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ does not depend on the choice of $\Pi$,
then $\tilde{\Delta}$ is a root system. According to Theorem 6.1 we must prove that an
irreducible Satake diagram that does not depend on the choice of its a-fundamental
system is admissible or isomorphic to $0-\bullet$ . If the root system $\Delta$ is not of
type $A_{l}(1\geqq 2),$ $D_{l}(l\geqq 4)$ or $E_{6}$ , then $Aut(\Delta)=Weyl$ group $W$ of $\Delta$ . In this case
the independence of the Satake diagram $(\Pi, \Pi_{0},\tilde{a})$ on the choice of $\Pi$ is equiv-
alent to the simple transitive action of $W_{\sigma}$ on the set of a-fundamental systems.
By Theorem 4.4 $\tilde{\Delta}$ is a root system with Weyl group $\overline{W}$ ; so $(\Pi, \Pi_{0},\tilde{a})$ is
admissible. What remains are the three cases of a root system $\Delta$ of type $A_{l}$

$(l\geqq 2),$ $D_{l}(l\geqq 4)$ and $E_{6}$ . For each type we can use criteria 5.6 up to 5.9 and
6.3 as well as Lemma 6.2 to construct all Satake diagrams that do not depend
on the choice of the $\sigma$-fundamental system; the result of this straightforward
determination is a set of admissible Satake diagrams and a Satake diagram iso-
morPhic to $0-\bullet$ . Thus the proof of the theorem is compIeted.
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