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1. Introduction.

Several authors have studied the translation plane $\pi$ which satisfies the fol-
lowing conditions:

(i) Each component of a spread set $\Gamma$ of $\pi$ is a subspace of $V(2n, q)$ .
(ii) A collineation group $G$ of $\pi$ leaves a set $\Delta$ of $q+1$ components of $\Gamma$

invariant and acts transitively on $\Gamma-\Delta$ .
Any translation plane satisfying (i) and (ii) is called a $(G, \Gamma, n, q)$-plane and

$\Delta$ as in (ii) is denoted by $\Delta(\pi)$ .
The known classes of $(G, \Gamma, n, q)$-planes are (i) the desarguesian planes of

square order, (ii) the Hall planes, (iii) the planes of order $5^{2n}$ with $n$ odd con-
structed by Narayana Rao and Satyanarayana [9], (iv) the desarguesian planes
of cubic order and (v) the LR-16 and JW-16 [7]. Recently we presented a
generalization of (ii) and (iii), which are also $(G, \Gamma, 2, q)$-planes [3]. We note
that the “

$n$
“ are rather small for these examples. In his paper [6] V. Jha has

shown $n=2$ under the additional assumptions that (a) $q$ is a prime, (b) $G$ fixes
at least two components of $\Delta$ and (c) $O_{q}(G)$ is a Sylow q-subgroup of $G$ . More-
over the author has proved in [2] that $n=2$ or 3 if (a) $q$ is a prime and (b)
$O_{q}(G)$ has a nontrivial element which leaves at least two components of $\Delta$ fixed.

In this paper we generalize these results. The following theorem is a
generalization of Theorem 1 of [2].

THEOREM 1. Let $\pi$ be a $(G, \Gamma, n, q)$ -Plane with charactenstic $p$ . Set $\Delta=\Delta(\pi)$

and $\sigma=p^{m}$ . Then one of the following holds.
(i) $O_{p}(G)$ is semi-regular on $\Delta-\{A\}$ for some $A\in\Delta$ .
(ii) $n=2$ .
(iii) $n=3$ and $q\equiv 1(mod 2)$ . Moreover the length of each G-orbit on $\Delta$ is

divist ble by $\theta(n, q)$ . Here $\theta(n, q)=\Pi_{t\in\Phi}(q+1)_{t}$ if $q\equiv 1$ (mod4) or $\theta(n, q)=$

$\Pi_{t\in\Phi\cup\{2I}(q+1)_{t}$ if $\Gamma----1(mod 4)$ , where $\Phi$ is the set of prime $p$-Pnmifive divisors
of $p^{2m}-1$ .

In the case $q^{n}\equiv-1(mod 4)$ we prove the following theorem.

THEOREM 2. Let $\pi$ be a $(G, \Gamma, n, q)$-Plane with characteristic $p$ . If $q^{n}\equiv-1$

$(mod 4)$ and $O_{p}(G)\neq 1$ , then $n=3$ .
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The following theorem is a generalization of Theorem A of [6].

THEOREM 3. Let $\pi$ be a $(G, \Gamma, n, q)$-Plane with charactenstic $p$. If $O_{p}(G)\neq 1$

and $G$ has at least two fxed components of $\Delta(\pi)$ , then $n=2$ .
The desarguesian plane of order 27 satisPes the assumption of Theorem 2

and the classes of the planes (ii), (iii) as above satisfy the assumption of
Theorem 3.

2. The $(G, \Gamma, n, q)$-planes.

In this section we assume that $\pi$ is a $(G, \Gamma, n, q)$-plane with characteristic
$p$ . Set $q=P^{m}$ . We use the following notations.

$T$ : the group of translations of $\pi$ .
$T(A)$ : the group of translations with center $A$ .
$n_{p}$ : the highest power of a prime $p$ dividing a positive integer $n$ .
$F(H)$ : the fixed structure consisting of points and lines of $\pi$ fixed by a

nonempty subset $H$ of $G$ .
$\Delta=\Delta(\pi),$ $\Gamma=\Gamma-\Delta,$ $M=O_{p}(G)$ .
Other notations are standard and taken largely from [1], [4] and [8].
Let $\pi$ be the projective plane associated with $\pi$ . Throughout the paper we

identify $\Gamma$ with the set of points on the line at infinity of $\pi$ . All sets and
groups in this section are finite.

LEMMA 1. Let $p^{r}$ be a power of a prime $p$ with $r>1$ and let $t$ be a prime
p-Pnmitive divisor of $p^{r}-1$ . If $p^{i}-1\equiv 0(mod t)$ for sme $i>1$ , then $i\equiv 0(mod r)$ .

PROOF. Set $i=kr+s$ with $0\leqq s<r$ . Since $p^{kr+s}-1=p^{s}(p^{kr}-1)+(p^{s}-1)$ and
$p^{kr}-1\equiv 0(mod t)$ , we have $0\equiv p^{t}-1\equiv p^{s}-1(mod t)$ . Hence $s=0$ and so $i\equiv 0$

$\langle mod r)$ .
LEMMA 2. Let $t$ be a prime $P$-primitive divzsor of $p^{m(n-1)}-1$ and $X$ a non-

tnmal $t$-subgroup of G. If $X$ centralizes a subgroup $Y$ of $M$ and $XY$ fixes a
poznt $A\in\Gamma$, then either (i) $C_{T(A)}(X)\not\geqq C_{T(A)}(Y)$ and $|C_{T(A)}(Y)|\geqq q^{n-1}$ or (ii) $n=2$

and $X$ is a group of homolopes with axzs $OA$ .
PROOF. Set $U=T(A)$ . Then $U$ is an elementary abelian $p$-group of order

$q^{n}$ and $XY$ normalizes $U$ . By Theorem 5.2.3 of [1], $U=C_{U}(X)\cross[U, X]$ . If
$[U, X]=1$ , then $U=C_{U}(X)$ and so $X$ is a group of homologies with axis $OA$ .
Hence $q^{n}\equiv 1(mod t)$ . By Lemma 1, $mn\equiv 0(mod m(n-1))$ and (ii) follows. If
$[U, X]\neq 1$ , then $1\neq C_{[U.X]}(Y)$ as $Y$ normalizes $[U, X]$ . Hence $C_{U}(X)\not\geqq C_{U}(Y)$

$\geqq C_{[U,X]}(Y)$ and so $X$ acts nontrivially on $C_{U}(Y)$ . Thus $|C_{U}(Y)|\geqq q^{n-1}$ and (i)

follows.

LEMMA 3. Let $t$ be a prime $P$-primitive divisor of $p^{m(n-1)}-1$ and let $R$ be a
Sylow $t$-subgroup of G. Then the following hold.
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(i) Assume $n\neq 3$ . Then $R$ fixes a $p\alpha nt$ of $\Delta$ .
(ii) Assume $n\neq 2$ . Let $S$ be a nontrivial subgroup of $R$ which fixes a point

of $\Gamma$ Then $F(S)$ is a subplane of order $q$ . Moreover, $F(S)\cap\Gamma=\Delta$ and $S$ is
semi-regular on $F$ when $M\neq 1$ .

(iii) Assume $n\neq 2$ . If $R$ fixes a $p\alpha nt$ of $\Delta$ , then $F(R)\cap\Gamma=\Delta$ and $R$ is
semi-regular on $F$.

PROOF. Assume $F(R)\cap\Delta=\emptyset$ . Then $t|q+1$ . Since $q+1|q^{2}-1,$ $n\leqq 3$ . If
$n=2$, then $t|(q+1, q-1)=1$ or 2, a contradiction. Thus (i) holds.

Let $A\in F(S)\cap\Gamma$ Set $U=T(A)$ and $p^{k}=|C_{U}(S)|$ . If $p^{k}=q^{n}$ , then $S$ is a
group of homologies with axis $OA$ . Hence $t|(q^{n}-1, q^{n- 1}-1)=q-1$ and so $n=2$,
contrary to the assumption. Therefore $0\leqq k<mn$ . By Theorem 5.3.2 of [1], $S$

centralizes no nontrivial element of $U/C_{U}(S)$ . Hence $t||U/C_{U}(S)|-1=p^{mn-k}-1$ .
Applying Lemma 1, $mn-k\equiv 0(mod m(n-1))$ and so $k=m$ . Therefore $|C_{U}(S)|=q$ .

Since $t\nmid|\Gamma-\{AI|=q^{n},$ $S$ fixes another point $B\in\Gamma-\{A\}$ . By the similar
argument as above, $|C_{T(B)}(S)|=q$ . Hence $F(S)$ is a subplane of order $q$ . Thus
we obtain the former half of (ii). Hence (iii) holds as $F(R)\cap F=\emptyset$ .

To prove the latter half of (ii) we may assume $F(R)\cap\Gamma=\emptyset$ by (iii). Hence
$n=3$ by (i). Since $|F(M)\cap\Delta|\geqq 3$ and $F(M)\cap F=\emptyset,$ $F(M)$ is a subplane of order
at most $q$ and therefore $1\neq|C_{T}(M)|\leqq q^{2}$ . As $F(R)\cap\Gamma=\emptyset,$ $R$ does not centralize
$C_{T}(M)$ , so that $|C_{T}(M)|=q^{2}(=q^{n-1})$ and $F(M)$ is a subplane of order $q$ with
$F(M)\cap\Gamma=\Delta$ . By Bruck’s theorem (Theorem 3.7 of [4]), $M$ is semi-regular on
$F$. From this $|M|||F|_{p}=q$ and so $R$ centralizes $M$. Let $A,$ $B\in F(S)\cap\Delta,$ $A\neq B$ .
Then $S$ centralizes $C_{T(A)}(M)$ and $C_{T(B)}(M)$ . Therefore $C_{T}(S)\geqq\langle C_{T(A)}(M), C_{T(B)}(M)\rangle$

$=C_{T}(M)$ and so $F(S)=F(M)$ . Hence $S$ is semi-regular on $F$ by Bruck’s theorem.
Thus we obtain the latter half of (ii).

LEMMA 4. There exzsts a prime $P$-Primitive divisor of $p^{m(n-1)}-1$ except in
the following cases.

(i) $(m, n)=(1,3)$ or $(2, 2)$ and $p$ is a Mersenne prime.
(ii) $(m, n)=(1,2)$ or $(6, 2)$ .
(iii) $p=2$ and $(m, n)=(1,7),$ $(2,4)$ or $(3, 3)$ . Moreover $M$ is semi-regular on

$\Delta-\{A\}$ for some $A\in\Delta$ .
PROOF. Suppose false. By Zsigmondy’s theorem (Theorem 6.2 of [8]),

$p=2,$ $m(n-1)=6$ and $M$ contains a Baer involution $w$ with $|F(w)\cap\Delta|\geqq 2$ . Hence
$m=2$ and $n=4$ .

Let $R$ be a Sylow 7-subgroup of $G$ . Since $|F|=2^{2}\cdot 3^{2}\cdot 7||G|,$ $R\neq 1$ . Clearly
$R$ fixes $\Delta$ pointwise. Let $x\in R-\{1\}$ and assume $F(x)$ is a subplane of order $2^{i}$ .
Since $F(x)\supset\Delta$ and $2\leqq i\leqq 4$, we have $i=2$ by Bruck’s theorem. Hence $F(x)\cap\Gamma$

$=\Delta$ . Thus $R$ is semi-regular on $F$ and so $R\cong Z_{7}$ .
Assume $M_{\Delta}=\{u\in M|F(u)\supset\Delta\}=1$ . Then $M$ is isomorphic to a subgroup of

$D_{8}$ , the dihedral group of order 8. Since $w\in M$ and every nontrivial character-
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istic subgroup of $M$ is 1/2-transitive and faithful on $F$, one of the following
occurs: (a) $M\cong D_{8}$ and each M-orbit on $F$ is of length 4. (b) $M\cong Z_{2}\cross Z_{2}$ and
each M-orbit on $F$ is of length 2. Let $J$ be the set of involutions in $M$. Then
$F= \bigcup_{u\in J}(F(u)\cap F)$ and $F(u)\cap F(u’)\cap F=\emptyset$ for $u,$ $u’\in J,$ $u\neq u’$ . Hence $|J|\cross\sqrt{2^{8}}$

$\geqq|F|=4^{4}-4$ and so $|J|>4^{2}-1$ , a contradiction.
Next assume $M_{\Delta}\neq 1$ and set $N=\Omega_{1}(Z(M_{\Delta}))$ . Since $G\triangleright N\neq 1$ , $F(N)$ is a

subplane of order 4 and $F(N)\cap\Gamma=\Delta$ . Hence $|C_{U}(N)|=4$, where $U=T(A),$ $A\in\Delta$ .
If $|N|\leqq 4$, then $R$ centralizes $N$ and so $C_{U}(R)\geqq C_{U}(N)\geqq C_{[U.R]}(N)\neq 1$ . This is a
contradiction by Theorem 5.2.3 of [1]. Thus $|N|\geqq 8$ .

Let $B\in F$. Then $F(N_{B})$ is a Baer subplane of order $2^{4}$ as $F(N_{B})\supset F(N)$ .
Hence $N_{B}$ is semi-regular on $F-F\cap F(N_{B})$ . Thus each N-orbit on $F$ is of length
4 and $|N|=8$ or 16. If $|N|=16$ , then $R$ centralizes an involution $x\in N$. There-
fore $R$ acts on $F-F\cap F(x)$ , contrary to the semi-regularity of $R$ on $F$. If $|N|$

$=8$, then $\overline{\Gamma}=\bigcup_{1\neq x\in N}F(x)\cap\overline{\Gamma}$ and so $4^{4}-4=7(4^{2}-4)$ , a contradiction.

LEMMA 5. Assume $n\neq 2$ . Let $t$ be a $p$-primitive divisor of $p^{m(n-1)}-1$ and
let $R$ be a Sylow $t$-subgroup of G. Then

(i) If a subgroup $S(\neq 1)$ of $R$ fixes a point of $\Delta$ , then $F(S)$ is a desarguestan
subplane of $\pi$ of order $q$ .

(ii) Either $M$ is faithful on $\Delta$ or $R$ is semi-regular on $\Delta$ .
(iii) Assume $n>3$ . Then $|F(M)\cap OA|\geqq q^{n-1}+1$ for some $A\in\Delta$ and

$M\leqq Aut(GF(q))\{(\begin{array}{lll}1 0 x0 1 00 0 1\end{array})|x\in GF(q)\}(\leqq\Gamma L(3, q))$ .

PROOF. By Lemma 3 (ii), $F(S)$ is a subplane of $\pi$ of order $q$ . Let $A,$ $B\in$

$F(S)\cap\Delta,$ $A\neq B$ and let $I$ be an affine fixed point of $S$ with $I\not\in OA\cup OB$ . Set
$A=(\infty),$ $B=(O),$ $O=(O, 0),$ $I=(1,1)$ and let $Q$ be a coordinatizing quasiPeld
relative to $O,$ $A,$ $B,$ $I$. Set $K=Kern(Q)$ . Since $\Gamma$ is a set of $GF(q)$-subspaces,
$K\geqq GF(q)$ . To prove (i) we may assume that $\pi$ is not desarguesian. In partic-
ular $|K|<q^{n-1}$ . Since $S\leqq Aut(Q)$ , we have $S\leqq Aut_{K}(Q)$ and $K=GF(q)$ . There-
fore $F(S)$ is a subplane of order $q$ coordinatized by $K$, hence (i) holds.

Deny (ii). Then $N=M_{\Delta}\neq 1$ and there exists $S$ which satisfies the assumption
of (i). Let $A,$ $B,$ $I,$ $Q$ and $K$ be as above. By Lemma 2, $S\not\leqq C_{G}(N)$ and so
$|N|\geqq q^{n-1}$ . In particular $\pi$ is not desarguesian. By a similar argument as above
$S\leqq Aut_{K}(Q)$ and $F(S)$ is a desarguesian plane of order $q$ . $C_{T(A)}(N)$ and $C_{T(B)}(N)$

are S-invariant subgroups of order $q$ as $F(N)$ is a subplane of order $q$ . Hence
$C_{T}(S)\geqq\langle C_{T(A)}(N), C_{T(B)}(N)\rangle=C_{T}(N)$ and so $F(S)=F(N)$ . Therefore $N\leqq Aut_{K}(Q)$ .
By Proposition 6.12 of [5], $(p, m, n)=(2,1,4)$ and $|N|\geqq q^{3}$ . As $|\overline{\Gamma}|=q(q^{2}+q+1)$ ,
every N-orbit on $\overline{\Gamma}$ is of length at most $q$ . Let $C\in\overline{\Gamma}$ Then $|N_{c}|\geqq q^{2}$ and $F(N_{C})$

is a Baer subplane of order $q^{2}$ . Hence $N_{c}$ is semi-regular on $\overline{\Gamma}-\overline{\Gamma}\cap F(N_{C}1$ .
Since $N$ is 1/2-transitive on $\overline{\Gamma,}$ this is a contradiction. Thus (ii) holds.
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To prove (iii) we may assume $M\neq 1$ . If $F(M)\cap\Delta=\{A\}$ for some $A\in\Delta$ , then
$A\in F(R)\cap\Delta$ . By (i) and (ii), $F(R)$ is a desarguesian subplane of order $q$ and $M$

is faithful on $\Delta$ . By Lemma 3 (iii), $[M, R]\leqq(MR)_{\Delta}\cap M\leqq M_{\Delta}=1$ . Applying Lem-
ma 2, $|C_{T(A)}(M)|\geqq q^{n-1}$ . Since $M$ acts on the desarguesian plane $F(R)$ of order
$q$ and $|F(M)\cap F(R)\cap OA|\geqq p+1\geqq 3$ , we have (iii) in this case.

Assume $|F(M)\cap\Delta|\geqq 2$ . If $F(M)\cap\Gamma\neq\Delta$ , then $|C_{T}(M)|<q^{2}$ and so $R$ central-
izes $C_{T}(M)$ . Hence $F(R)\cap\Gamma=\Delta$ and $M_{\Delta}=1$ by (ii) and Lemma 3 (iii). Therefore
$[M, R]\leqq(MR)_{\Delta}\cap M=M_{\Delta}=1$ and so $|C_{T}(M)|\geqq q^{n-1}\geqq q^{2}$ by Lemma 2, a contradic-
tion. Hence $F(M)\cap\Gamma=\Delta$ . By (ii) and Lemma 3 (i), $n=3$ , contrary to the
assumption.

LEMMA 6. Assume $n\neq 2$ . If there exists a prime $P$-Pnmitive hmsor of
$p^{m(n-1)}-1$ , then $|F(M)\cap\Delta|\geqq 2$ or $M$ has at least $q^{n-1}$ affine fixed points on $OA$

for some $A\in\Delta$ .
PROOF. Let $t$ be a prime p-primitive divisor of $p^{m(n-1)}-1$ and $R$ a Sylow

t-subgroup of $G$ . Assume $F(M)\cap\Delta=\{A\}$ for some $A\in\Delta$ . Then $A\in F(R)\cap\Delta$

and by Lemma 3 (iii) $R$ fixes $\Delta$ pointwise. Hence, by Lemma 5 (ii), $M$ is faithful
on $\Delta$ . Therefore $[M, R]\leqq(MR)_{\Delta}\cap M\leqq M_{\Delta}=1$ . By Lemma 2, $|C_{T(A\rangle}(M)|\geqq q^{n-1}$ .
Thus the lemma holds.

LEMMA 7. Assume $n\neq 2$ . If there exzsts a p-pnmitive d2vzsor $t$ of $p^{m(n-1)}-1$ ,

then one of the followzng holds.
(i) $M$ is semi-regular $m\Delta-\{A\}$ for some $A\in\Delta$ .
(ii) $n=3$ and a Sylow t-subgroup of $G$ is semi-regular on $\Delta$ .
PROOF. Let $R$ be a Sylow t-subgroup of $G$ . Assume $M$ contains a non-

trivial element $v$ such that $|F(v)\cap\Delta|\geqq 2$ and assume $F(S)\cap\Delta\neq\emptyset$ for a nontrivial
subgroup $S$ of $R$ . Then $S$ fixes $\Delta$ pointwise by Lemma 3 (ii). Applying Lemma
5 (ii), $M_{\Delta}=1$ and so $[M, S]\leqq(MS)_{\Delta}\cap M=M_{\Delta}=1$ . By Lemma 2, $M$ has at least
$q^{n-1}$ affine fixed points on $OA$ for some $A\in\Delta$ . Since $v\in M$ and $|F(v)\cap\Delta|\geqq 2$,
$F(v)$ is a subplane whose order is at least $q^{n-1}$ . This contradicts Bruck’s theo-
rem. Therefore we have the lemma.

LEMMA 8. Assume $n\neq 2$ and $q\equiv 0(mod 2)$ . If there exists a prime 2-primitive
divzsor $t$ of $2^{m(n-1)}-1$ , then the following hold.

(i) $M$ is semi-regular on $\Delta-\{A\}$ for some $A\in\Delta$ .
(ii) $C_{G}(M)$ contains a Sylow $t$-subgroup of $G$ .
(iii) If $M\neq 1$ , then every nontrivial $t$-subgroup fixes $\Delta$ pointwise and has no

fixed point on $\overline{\Gamma}$

PROOF. Let $R$ be a Sylow t-subgroup of $G$ . We may assume $M\neq 1$ . If
$M_{\Delta}\neq 1$ , then $F(M_{\Delta})$ is a subplane of order $q$ . By Lemma 7, $n=3$ . Let $w$ be an
involution in $M_{\Delta}$ . Then $F(w)$ is a subplane of order $\sqrt{q^{3}}$ by Baer’s theorem
and $F(M_{\Delta})$ is a subplane of $F(w)$ . It follows from Bruck’s theorem that $q^{2}\leqq\sqrt{q^{3}}$,
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a contradiction. Hence $M_{\Delta}=1$ . If $|F(M)\cap\Delta|\geqq 2$ , then $F(M)$ is a subplane
whose order is less than $q$ as $M_{\Delta}=1$ . Therefore $|C_{T}(M)|<q^{2}$ and $R$ centralizes
$C_{T}(M)$ , so that $F(R)\cap\Delta\neq\emptyset$ . This contradicts Lemma 7. Thus $|F(M)\cap\Delta|=1$ .

Set $F(M)\cap\Delta=\{A\}$ . Then $R$ fixes $A$ and therefore $M$ is semi-regular on
$\Delta-\{A\}$ by Lemma 7. Moreover, $F(R)\cap\Gamma=\Delta$ and $R$ is semi-regular on $\overline{\Gamma}$ by
Lemma 3 (iii). Therefore (i) and (iii) hold. Since $[M, R]\leqq(MR)_{\Delta}\cap M=1$ , (ii)

holds.

LEMMA 9. Let $V$ be an elementary abelian $p$-group of order $p^{r}$ wzth $p^{r}\equiv-1$

(mod4) and $S$ a 2-subgroup of the autmorpfusm group of V. If an involution $x$

in $S$ inverts $V$, then $\langle x\rangle$ is a direct factor of $S$.
PROOF. Since $p^{r}\equiv-1(mod 4),$ $r$ is odd and $p\equiv-1$ (mod4). We may assume

that $V=V(r, p)$ and $S\leqq GL(r, p)$ . Then $x=-E$ , where $E$ is the unit matrix of
degree $r$. Since $r$ is odd, the determinant of $-E$ is equal to $-1$ . Hence
$\langle x\rangle\cross SL(r, p)$ is a normal subgroup of $GL(r, p)$ of index $(p-1)/2$ . Since $(p-1)/2$

is odd, $S\leqq\langle x\rangle\cross SL(r, p)$ and hence $S=\langle x\rangle\cross(S\cap SL(r, p))$ . Thus $\langle x\rangle$ is a direct
factor of $S$ .

LEMMA 10. Let $S$ be a Sylow 2-subgroup of G. $I$ $fq^{n}\equiv-1(mod 4)$ , then the
following hold.

(i) $S$ is dihedral or semi-dihedral and $Z(S)=S_{\Gamma}\cong Z_{2}$ .
(ii) $|S|\geqq 4(q+1)_{2}$ and $S_{A}\cong Z_{2}\cross Z_{2}$ for each $A\in\Delta$ .
PROOF. Set $W=S_{\Gamma}$ . Since $|\overline{\Gamma}|=q(q^{n-1}-1)||G|$ and $q^{2}-1|q^{n-1}-1$ ,

$2(q+1)_{2}||S/W|$ . Hence $|S_{A}|\geqq 2|W|$ for some point $A\in\Delta$ as $|\Delta|=q+1$ . Let
$B\in F(S_{A})\cap(\Delta-\{A\})$ .

First we show that $W\neq 1$ . Assume $W=1$ and let $x$ be an involution in
$Z(S_{A})$ . Since $q^{n}\equiv-1(mod 4)$ , every involution in $S$ is a homology by Baer’s
theorem. Since $S_{B}\geqq S_{A}$ , we may assume that $x$ is an $(A, OB)$-homology. Hence
$S_{A}=C_{S}(x)$ . In particular $|S_{A}|\geqq 4$ . By Lemma 4.22 of [4], $S_{(B.0A)}=1$ as $W=1$ .
Hence $S_{A}$ has a unique involution and it inverts $T(A)$ . However, by Lemma 9,
$S_{A}$ contains a subgroup isomorphic to $Z_{2}\cross Z_{2}$ as $|S_{A}|\geqq 4$, a contradiction. Thus
$W=1$ . Since 4 I $q^{n}-1,$ $S_{\Gamma}=W\cong Z_{2}$ . In particular $|S_{A}|\geqq 2|W|=4$.

Set $\langle z\rangle=W$ and $V=S_{A}$ . If $V_{(A.OB)}=1$ , then $V$ acts fixed point freely on
$T(A)$ and $z$ inverts $T(A)$ . By Lemma 9, $V$ contains a subgroup isomorphic to
$Z_{2}\cross Z_{2}$ . By Lemma 4.22 of [4], $V_{(A.0B)}\neq 1$ , a contradiction. Hence $V_{(A,0B)}\neq 1$

and similarly $V_{(B,OA)}\neq 1$ .
Set $\langle u\rangle=V_{(A.0B)}$ . Then $\langle u\rangle\cong Z_{2}$ and $C_{S}(u)=V$ as $u\in Z(V)$ . Assume $|V|>4$

and set $V=V/\langle u\rangle$ . Then $V$ acts on $T(B)$ and $z$ inverts $T(B)$ . Hence $V=\langle z\rangle\cross U$

for a subgroup $U$ of $V$ with $u\in U$ by Lemma 8. Since $U_{\Gamma}=1$ and $u\in U,$ $U$ acts
fixed point freely on $T(A)$ and $u$ inverts $T(A)$ . Therefore $U$ contains a sub-
group isomorphic to $Z_{2}\cross Z_{2}$ . This implies that $U_{\Gamma}\neq 1$ , a contradiction. Thus
$|V|=4$. In particular $V\cong Z_{2}\cross Z_{2}$ .



$(G, \Gamma, n, q)$ -translation planes 163

As $V\leqq S_{B}$ and $F(V)\cap\Gamma=\{A, B\}$ , we have $V=S_{B}$ . Since $C_{S}(u)=V,$ $S$ is
dihedral or semi-dihedral by a lemma of [10]. Therefore any involution in $S$ is
S-conjugate to an involution in $V$ . Hence if $S_{c}\neq 1$ for some $C\in\Delta$ , then $C=A^{S}$

or $B^{s}$ for a suitable element $s\in S$ . Thus $|S_{c}|=|V|=4$ and the lemma holds.

3. Proof of the theorems.

PROOF OF THEOREM 1. Assume $n\neq 2$ and $|F(v)\cap\Delta|\geqq 2$ for some $v\in M-\{1\}$ .
Let $\Phi$ be the set of prime p-primitive divisors of $p^{m(n-1)}-1$ . Suppose $\Phi=\emptyset$ .
Then $(m, n)=(1,3)$ and $q^{n}\equiv-1(mod 4)$ by Lemma 4. Applying Lemma 10, the
length of each G-orbit on $\Delta$ is divisible by $(q+1)_{2}$ . Hence (iii) holds. Suppose
$\Phi\neq\emptyset$ . By Lemma 8, $q$ is odd. Then (iii) follows immediately from Lemmas 7

$\wedge and10$.
PROOF OF THEOREM 2. Assume $n\neq 3$ . By Lemma 10, $|F(M)\cap\Delta|\geqq 2$ . Hence

there exists a prime $p$ -primitive divisor $t$ of $p^{m(n-1)}-1$ by Lemma 4. As $q^{n}\equiv-1$

$(mod 4),$ $n\neq 2$ . It follows from Lemma 7 that $n=3$ .
PROOF OF THEOREM 3. Let $\Phi$ be the set of prime p-primitive divisors of

$P^{m(n-1)}-1$ . Let $A,$ $B\in F(G)\cap\Delta,$ $A\neq B$ . If $\Phi$ is not empty, then $n=2$ applying
Theorem 1. Hence we may assume $\Phi$ is empty.

Suppose $n\neq 2$ . Then, by Lemma 4, $(m, n)=(1,3)$ and $p$ is a Mersenne prime.
The order of a Sylow 2-subgroup $S$ of $G$ is divisible by 8 as $|\overline{\Gamma}|||G|$ . Since
$|\Delta-\{A, B\}|=p-1\equiv 2(mod 4)$ , there is a subgroup $T$ of $S$ of index 2 such that
$|F(T)\cap\Delta|=5$ . As $mn=3$, any involution of $T$ is a homology by Baer’s theo-
rem. Therefore $|T|||OA-\{0, A\}|=p^{3}-1\equiv 2$ (mod4) and so $|T|\leqq 2$ . This
implies $|S|\leqq 4$, a contradiction. Thus $n=2$ .
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