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Introduction.

Let $M$ be a finite dimensional manifold and let $L(\gamma,\dot{\gamma})$ be a function on the
tangent bundle $TM$. Our aim is to construct a $C^{0}$-semi group of bounded linear
operators $H_{t}^{\lambda}(L)$ associated with $L(\gamma,\dot{\gamma})$ and its infinitesimal generator $A^{\lambda}(L)$ on
the intrinsic Hilbert space $\mathcal{H}(M)$ (see \S 5 for its definition), where $t\in R_{+}$ and $\lambda$

is a positive parameter.
As the above problem is too vague to consider, we restrict ourselves to the

following case which seems rather typical.

(M) $M$ is a smooth, simply-connected and connected d-dimensional manifold.

(L. I) $L(\gamma,\dot{\gamma})$ is represented by

(1) $L(\gamma,\dot{\gamma})=L^{0}(\gamma,\dot{\gamma})-V(\gamma)$ , $L^{0}(\gamma,\dot{\gamma})=(1/2)g_{ij}(\gamma)\dot{\gamma}^{i}\dot{\gamma}^{j}$

for $(\gamma,\dot{\gamma})\in TM$. (Hereafter, we use Einstein’s convention to contract indices.)

Moreover,

(L. II) $ds^{2}=g_{ij}(x)dx^{i}dx^{j}$ defines a complete Riemannian metric on $M$

(In the following, for such $g_{ij}(x)$ , we associate quantities in Riemannian
geometry as are used usually.)

(L. III) There exists a constant $k\geqq 0$ such that for any 2-plane $\pi$ , the sec-
tional curvature $K_{\pi}$ satisfies $-k^{2}\leqq K_{\pi}\leqq 0$ .

(L. IV) Denote by $R_{ijk^{h}}(x)$ the component of curvature tensor $R(\cdot, )$ . Then,
there exists a constant $C_{0}$ such that

$|\nabla^{a}R_{ijk}^{h}(x)|\leqq C_{0}$ for $0\leqq|\alpha|\leqq 3$ ,
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where $\alpha=(\alpha_{1}, \cdots , \alpha_{d})$ is a multi-index, $\nabla^{a}=\nabla_{1}^{\alpha_{1}}\cdots\nabla_{d^{d}}^{a}$ and $\nabla_{j}$ represents the
covariant derivation in the direction of $x^{j}$ for any local chart at $x=(x^{1}, \cdots , x^{d})$ .

(L. V) $V\in C_{0}^{\infty}(M)$ is real valued.

For any natural measure $\mu$ on $M$ which is defined without mentioning
Riemannian metric (see \S 5 for its definition), we consider the following trans-
formation in $L^{2}(M, d\mu)$ with parameters $t>0$ and $\lambda>0$ . For any $f\in C_{0}^{\infty}(M)$ and
sufficiently small $t>0$ , we put

(2) $(H_{t}^{\lambda}(L; \mu)f)(x)=(2\pi\lambda)^{-d/2}\int_{M}\rho(L;\mu)(t, x, y)\exp\{-\lambda^{-1}S(L)(t, x, y)\}\cdot f(y)d\mu(y)$

Here we denote

(3) $S(L)(t, x, y)= \inf\{\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d\tau$ : $\gamma(\tau)\in\Omega_{\iota,x,y}\}$ , $\dot{\gamma}(\tau)=d\gamma(\tau)/d\tau$ ,

(4) $\Omega_{t.x.y}=\{\gamma(\cdot)\in C([0, t]arrow M)$ : absolutely continuous in $\tau$

with $\gamma(0)=y,$ $\gamma(t)=x$ , and $\int_{0}^{t}\langle\dot{\gamma}(\tau),\dot{\gamma}(\tau)\rangle_{\gamma(r)}d\tau<+\infty\}$

and
(5) $\rho(L;\mu)(t, x, y)=[\det(-\partial_{xi}\partial_{y^{a}}S(L)(t, x, y))/\mu(x)\mu(y)]^{1/2}$

where $\mu(x)$ is the density of $\mu$ at $x,$ $i.e$ . $d\mu(x)=\mu(x)dx^{1}\wedge\cdots\wedge dx^{d},$ $\partial_{xi}$ denotes
the partial derivation in the direction of $x^{i}$ at $x=(x^{1}, \cdots , x^{d})$ , and $\langle X, Y\rangle_{x}$ is
the Riemannian scalar product at $x$ for $X,$ $Y\in T_{x}M$.

Our theorem is:

THEOREM. Let $M$ and $L$ be given satisfying assumptions (M) and (L. $I$)$-(L.V)$ .
Then, there exists a postjve number $T>0$ such that the followings hold:

(a) For any natural measure $\mu$ , the operator $H_{t}^{\lambda}(L;\mu)$ defines a bounded
linear operator in $L^{2}(M, d\mu)$ for $0<t<T$ .

(b) $\lim_{tarrow 0}\Vert H_{t}^{\lambda}(L;\mu)f-f\Vert=0$ for all $f\in L^{2}(M, d\mu)$ .

(c) There exzst $po\alpha tive$ constants $C$ and $C’$ dependjng on $T$ independent of $\mu$

such that

(6) $\Vert H_{t+s}^{\lambda}(L;\mu)f-H_{t}^{\lambda}(L;\mu)H_{s}^{\lambda}(L;\mu)f\Vert\leqq[C\{(t+s)^{3/2}-t^{3/2}+s^{3/2}\}+C’(t+s)s]\Vert f\Vert$

for $0<t+s<T$. Moreover, we take $C’=0$ for $V=0$ .
Furthemore, we have:
(d) There exests a limit $H_{t}^{\lambda}(L; \mu)=\lim_{n-}[H_{t/n}^{\lambda}(L;\mu)]^{n}$ in the operatw norm

in $L^{2}(M, d\mu)$ for any $t>0$ . Moreover, $\{H_{t}^{\lambda}(L;\mu)\}_{t\geq 0}$ with $H_{0}^{\lambda}(L;\mu)=the$ identity
operator, forms a $C^{0}$ semi-group in $L^{2}(M, d\mu)$ .

(e) For any two natural measures $\mu$ and $\nu$ on $M$, we have
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(7) $H_{t}^{\lambda}(L;\mu)=U_{\nu\mu}^{-1}H_{t}^{\lambda}(L;\nu)U_{\nu\mu}$

where $U_{\nu\mu}$ is an isomorphjsm from $L^{2}(M, d\mu)$ onto $L^{2}(M, d\nu)$ , defined by

(8) $(U_{\nu\mu}f)(x)=f(x)(\mu(x)/\nu(x))^{1/2}$ for $f\in L^{2}(M, d\mu)$ .
(f) The infinitesimal generator $A^{\lambda}(L;\mu)$ of $H_{t}^{\lambda}(L;\mu)$ is pven by

(9) $\partial_{t}(H_{t}^{\lambda}(L;\mu)f)_{1t=0}=A^{\lambda}(L;\mu)f=U_{\mu_{g}\mu}^{-1}A^{\lambda}(L;\mu_{g})U_{\mu_{g}\mu}f$ for $f\in C_{0}^{\infty}(M)$ ,

$(A^{\lambda}(L;\mu_{g})f)(x)=\lambda^{2}(\Delta_{g}/2-R(x)/12)f(x)+V(x)f(x)$ .
Here $\Delta_{g}$ is the negative Laplace-Beltrami operatOr and $R(\cdot)$ stands for the scalar
curvature.

In other words, the above procedure defines a $C^{0}$ semi-group $H_{t}^{\lambda}(L)$ and its
infinitesimal generator $A^{\lambda}(L)$ on the intrinsic Hilbert space $\mathcal{H}(M)$ such. that if
$\mathcal{H}(M)$ is trivialized by a natural measure $\mu$ as $L^{2}(M, d\mu)$ , then $H_{t}^{\lambda}(L)$ and $A^{\lambda}(L)$

are represented by $H_{t}^{\lambda}(L;\mu)$ and $A^{\lambda}(L;\mu)$ on $L^{2}(M, d\mu)$ .
The old and debated question whether the Schr\"odinger equation in the

curved space contains the term with $\hslash^{2}R(\cdot)$ will be solved completely if we
could proceed in a similar way as above for $\lambda=i\hslash$ .

In \S 1, we enumerate the basic properties for the quantities derived from the
classical mechanics defined through $L$ . As our configuration space is curved, we
cannot apply directly the iteration scheme used in Fujiwara [8] to our case.
Instead of it, we use the Morse theory to obtain the estimates of the classical
quantities. In \S \S 2-4, for the special choice of $\mu=\mu_{g}$ , we give the proof of $(a)-$

(d) of Theorem. As one of the corollaries, we give the covariant property of
the operators $H_{t}^{\lambda}(L;\mu_{g})$ and $A^{\lambda}(L;\mu_{g})$ under a diffeomorphism of $M$. In \S 5, we
give the definition of the half-density and the intrinsic Hilbert space on $M$, which
combined with the result in \S 4, gives readily the proof of Theorem. Here, the
meaning of the appearance of the term $R(\cdot)/12$ is clarified. In spite of this
fact, in \S 6, we claim that for any number $\beta\in R$ , we may produce the term
$\lambda^{2}(1/6-\beta/12)R(\cdot)$ if we change our procedure a little bit. But in this case, we
must use the fact that $\Delta_{g}$ is essentially self-adjoint on $C_{0}^{\infty}(M)$ not proving it as
in \S 4. Moreover, there exist no covariance properties unless $\beta=1$ .

Some parts of Theorem were already announced in Inoue-Maeda [11].

1. Some properties of the classical action
–preliminaries from differential geometry.

For any $x,$ $y\in M$, the set $\Omega_{t.x.y}$ introduced in (4), denoted simply by $\Omega$ in
this section, forms a Hilbert manifold. (See p. 247 of Abraham-Marsden [1].)

The tangent space $T_{\gamma}\Omega$ at $\gamma\in\Omega$ may be identified with the space of vector fields
$Z$ on $M$ along $\gamma$ with $Z(O)=Z(t)=0$ . Moreover, a scalar product on $T_{\gamma}\Omega$ is
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defined by

(1.1) $\langle Z_{1}, Z_{2}\rangle_{\gamma}=\int_{0}^{t}\langle Z_{1}(\tau), Z_{2}(\tau)\rangle_{\gamma(\tau)}d\tau$ .

(For the notational simplicity, we drop the indices $\gamma$ and $\gamma(\tau)$ above if there
occurs no confusion.)

Now, we introduce two functionals $S(\gamma)$ and $S^{0}(\gamma)$ on $\Omega$ by

\langle 1.2) $S( \gamma)=\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d\tau$ for $\gamma\in\Omega$ ,

\langle 1.3) $S^{0}(\gamma)=\int_{0}^{t}L^{0}(\gamma(\tau),\dot{\gamma}(\tau))d\tau$ for $\gamma\in\Omega$ .

LEMMA 1.1. Under assumpti0ns (M), (L. I), (L. II) and (L. V), we have:
(i) $S(\gamma)$ is bounded from below.
(ii) $S(\cdot)$ is a smooth functional on $\Omega,$ $i.e$ . for any curve $\gamma(t;\epsilon)$ on $M$ satis-

fying $\gamma($ . ; $0)=\gamma(\cdot)\in\Omega$ , $(d/d\epsilon)\gamma(\cdot ; \epsilon)_{1\epsilon\Rightarrow 0}=Z\in T_{\Omega}$, there exzsts $(d/d\epsilon)S(\gamma$(. ; $\epsilon$ ) $)_{1\epsilon=0}$

$=dS(\gamma)\cdot Z$ .
(iii) $\gamma\in\Omega$ is a critical ponnt of $S$ , $i$ . $e$ . $dS(\gamma)=0$ , iff (a) $\gamma$ belongs to

$C^{2}([0, t]arrow M)$ and (b) $\gamma$ satisfies the following equation

(1.4) $\ddot{\gamma}^{i}(\tau)+\Gamma_{jk^{i}}(\gamma(\tau))\dot{\gamma}^{j}(\tau)\dot{\gamma}^{k}(\tau)=-(\nabla V(\gamma(\tau)))^{i}$ ,

where $\Gamma_{jk^{i}}$ stands for the Christoffel symbol and $(VV(x))^{i}=g^{ij}(x)\nabla_{j}V(x)$ .
(iv) $\gamma\in\Omega$ is a non-degenerate minimum of $S(\cdot)$ iff there is no trimal $J\in T_{\gamma}\Omega$

satisfying the following V-Jacobi equation,

(1.5) $J’’(\tau)+R(J(\tau),\dot{\gamma}(\tau))\dot{\gamma}(\tau)=-\nabla^{2}V(\gamma(\tau))\cdot J(\tau)$ ,

where $J’(\tau)=(\delta/\delta\tau)J(\tau)=the$ covariant denvative of $J$ along $\gamma(\tau)$ and $\nabla^{2}V(x)$ stands
for the matrix whose $(i, j)$ element is given by $\nabla^{j}\nabla_{i}V(x)$ .

PROOF. See, Milnor [13] and modify it slightly, if necessary.
It is well-known that under assumption (L. II)

(1.6) $S^{0}(t, x, y)=d^{2}(x, y)/2t$ for $x,$ $y\in M$ ,

where $d(x, y)$ is the Riemannian distance between $x$ and $y$ . We consider the
initial value problem for (1.4) with initial conditions

(1.7) $\gamma(0)=y$ and $7(0)=Y\in T_{y}M$ .
As is well-known, for any $Y\in T_{y}M$, there is an interval $I_{Y}$ where the solution
$\gamma(t)$ of (1.4) with (1.7) exists. Moreover we have:

LEMMA 1.2. Assume (M), (L. I), (L. II) and (L. V). There exists a constant
$C_{1}>0$ such that



Integral transformations 223

(1.8) $|Y|-C_{1}t\leqq|\dot{\gamma}(t)|\leqq|Y|+C_{1}t$ for $t\in I_{Y}$ ,

(1.9) $t^{2}[|Y|^{2}-C_{1}|Y|t+(C_{1}^{2}/3)t^{2}-4C_{1})]$

$\leqq d(y, \gamma(t))^{2}$

$\leqq t^{2}[|Y|^{2}+C_{1}|Y|t+(C_{1}^{2}/3)t^{2}+4C_{1}]$ for $t\in I_{Y}$ .

Here, $|Y|^{2}=\langle Y, Y\rangle_{y}$ for $Y\in T_{y}M$.
PROOF.

$(1/2)(d/dt)|\dot{\gamma}(t)|^{2}=\langle(\delta/\delta t)\dot{\gamma}(t),\dot{\gamma}(t)\rangle$

$=-\langle\nabla V(\gamma(t)),\dot{\gamma}(t)\rangle$

$\leqq C_{1}|\dot{\gamma}(t)|$ .

This leads us to the second inequality of (1.8). And we have, by definition of
$S(t, x, y)$ and $S^{0}(t, x, y)$ ,

(1.10) $S^{0}(t, x, y)-C_{1}t\leqq S(t, x, y)\leqq S^{0}(t, x, y)+C_{1}t$ .
Combining this with (1.6), we have

$d^{2}(y, \gamma(t))=2tS^{0}(t, y, \gamma(t))$

$\leqq 2t\{\int_{0}^{t}(1/2)|\dot{\gamma}(\tau)|^{2}d\tau-\int_{0}^{t}V(\gamma(\tau))d\tau+C_{1}t\}$ .
So, we have the second inequality of (1.9) readily. The other parts are proved
analogously. $q$ . $e$ . $d$ .

COROLLARY 1.3. Same assumptions as above. The solution $\gamma(t)=\gamma(t;y, Y)$ of
(1.4) with (1.7) exists for any $t$ , that is, $I_{Y}=[0, \infty$ ). Moreover, $\gamma(t;y, Y)$ depends
smoothly on $(t, y, Y)\in[0, \infty)\cross TM$

We denote $\gamma(t;y, Y)$ by $\Phi_{t,y}(Y)$ . By calculating primitively, we have:

LEMMA 1.4. Assume (M), (L. I), (L. II) and (L. V). Let $(d\Phi_{t.y})_{Y}$ : $T_{Y}(T_{y}M)arrow$

$T_{\Phi_{t,y}(Y)}M$ be the differential of $\Phi_{t,y}$ at $Y\in T_{y}M$. Then, for any $W\in T_{Y}(T_{y}M)$ ,
$J(t)=(d\Phi_{t,y})_{Y}W$ satisfies the V-Jacobn equation (1.5) with initial conditions

(1.11) $J(O)=0$ and $J’(O)=W$ .
LEMMA 1.5. Under assumptjOns(M), (L. $I$ ) $-$ ( $L$ . III) and (L. V), there exzsts a

constant $T_{1}>0$ such that for any $W\neq 0$ , the solution $J(t)$ of (1.5) with (1.11) satisfies
$J(t)\neq 0$ for $0<t<T_{1}$ .

PROOF.
$(1/2)(d^{2}/dt^{2})|J(t)|^{2}=(d/dt)\langle J(t), J’(t)\rangle$

$=\langle J’(t), J’(t)\rangle+\langle J(t), J’(t)\rangle$

$\geqq|J’(t)|^{2}-C_{1}|J(t)|^{2}$
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by (L. III) and (L. V). Using $(d/dt)|J(t)|^{2}= \int_{0}^{t}(d^{2}/d\tau^{2})|J(\tau)|^{2}d\tau$ and $J(t)= \int_{0}^{t}J’(\tau)d\tau$ ,

we have readily

$(1/2)(d/dt)|J(t)|^{2} \geqq(1-(C_{1}t^{2})/2)\int_{0}^{t}|J’(\tau)|^{2}d\tau$ .

Taking $T_{1}$ smaller than $\sqrt{2}/C_{1}$ , we have the desired result. $q.e.d$ .

COROLLARY 1.6. Under the same assumptions in Lemma 1.5, we have
$(d\Phi_{t,y})_{Y}\neq 0$ for $0<t<T_{1}$ and $Y\in T_{y}M$ where $T_{1}$ is taken as above.

PROPOSITION 1.7. Assume (M), (L. $I$ ) $-$ ( $L$ . III) and (L. V). Then, there exzsts a
positive number $T_{1}$ such that $\Phi_{t.y}$ gives a diffeomorphism from $T_{y}M$ onto $M$ for
$0<t<T_{1}$ and $y\in M$.

PROOF. As the functional $S(\cdot):\Omegaarrow R$ has the non-degenerate Hessian at
critical points for $0<f<T$ by Corollary 1.6 and (iv) of Lemma 1.1, $\Omega$ is homotop-
ically equivalent to a CW-complex with O-dimensional vertex. On the other hand,
as $M$ is assumed to be simply connected, $\Omega$ consists of one point. That is,
there exists one and only one critical point for $S(\cdot)$ in $\Omega$ . This means that $\Phi_{t.y}$

is one to one and onto from $T_{y}M$ to $M$ and $\Phi_{t.y}$ is differentiable by Corollary
1.3. So we have the desired result. $q.e.d$ .

Take orthonormal bases $\{W_{j}\}$ and $\{e_{j}\}$ on $T_{Y}(T_{y}M)$ and $T_{x}M$ respectively.
Then, the differential mapping $(d\Phi_{t.y})_{Y}$ may be expressed by

(1.12) $(d\Phi_{t.y})_{Y}W_{j}=F_{j}^{t}e_{i}$ .

We denote det $(F_{j}^{i})$ by $\det_{g}(d\Phi_{t.y})_{Y}$, which is independent of the choice of ortho-
normal bases. Defining

(1.13) $\Theta(t, x, y)=t^{-d}|\det_{g}(d\Phi_{t.y})_{Y}|$ ,

we want to give the upper and lower estimates of it. Before that, we prepare
the following lemma which is a modification of Rauch’s comparison lemma (\S 7

of Chap. I of Aubin [2], \S 10 of Chap. I of Cheeger-Ebin [4]).

LEMMA 1.8. Let $A(\tau)$ be a smooth real vector field on $R^{d}$ satisfying

(1.14) $\dot{A}(\tau)+K(\tau)A(\tau)=0$ with $A(O)=0$ .
Here $K(\tau)$ is a real $d\cross d$ matmx of $0\leqq\tau\leqq t$ .

(i) If $-K(\tau)$ is bounded from below, $i.e$ . $-K(\tau)\geqq-\kappa_{1}^{2}I(\kappa_{1}\geqq 0)$ , then

(1.15) $\langle\dot{A}(t), A(t)\rangle_{0}\geqq\kappa_{1}$ cot $\kappa_{1}t\cdot\langle A(t), A(t)\rangle_{0}$ for $t<\pi/\kappa_{1}$ .
(ii) If $-K(\tau)$ is symmeiric and bounded from above, $i.e$ . $-K(\tau)\leqq\kappa_{2}^{2}I(\kappa_{2}\geqq 0)$ ,

then

(1.16) $\langle_{\angle}\dot{4}(t), A(t)\rangle_{0}\leqq\kappa_{2}$ coth $\kappa_{2}t\cdot\langle A(t), A(t)\rangle_{0}$ ,
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for sufficiently small $t$ , where $\langle, \rangle_{0}$ is the Euclidean scalar prOduct.
PROOF. (i) We compare the equation (1.4) with

(1.17) $\ddot{B}(\tau)+\kappa_{1}^{2}B(\tau)=0$ with $B(O)=0$ .
Let $\{B_{j}(\tau)\}$ be a solution of (1.17) with $B_{j}(0)=0,\dot{B}_{j}(0)=e_{j},$ $\{e_{j}\}$ stands for

the canonical bases of $R^{d}$ . As $\{B_{j}(\tau)\}$ is linearly independent vectors in $R^{d}$ for
$t<\pi/\kappa_{1}$ , we expand a solution $A(\tau)$ of (1.14) as $A(\tau)=\Sigma_{j=1}^{d}a_{j}(\tau)B_{j}(\tau)$ . Using
$\langle B_{j}(\tau),\dot{B}_{j}(\tau)\rangle=\langle\dot{B}_{j}(\tau), B_{j}(\tau)\rangle$ and integration by parts, we get readily

$\langle A(t), A(t)\rangle_{0}=\int_{0}^{t}\{\langle A(\tau), A(\tau)\rangle_{0}-\langle K(\tau)A(\tau), A(\tau)\rangle\}d\tau$

$+ \langle\sum_{i\Leftarrow 1}^{d}a_{i}(t)\dot{B}_{i}(t),\sum_{j=1}^{d}a_{j}(t)B_{j}(t)\rangle$

$+ \int_{0}^{t}\langle\sum_{i=1}^{d}a_{i}(\tau)\dot{B}_{i}(\tau),\sum_{f=1}^{d}a_{j}(\tau)\dot{B}_{j}(t)\rangle d\tau$ .

On the other hand, as any solution of (1.17) with $B(O)=0$ is represented by
$B( \tau)=\sum_{j=1}^{d}\beta_{j}B_{j}(\tau)(\beta_{j}\in R)$ , we have readily, for $B(\tau)$ satisfying $B(t)=A(t)$ ,

$\langle_{\lrcorner}\dot{4}(t), A(t)\rangle_{0}\geqq\langle\dot{B}(t), B(t)\rangle_{0}$ .
Since, $A(t)=B(t)$ implies $\beta_{j}=a_{j}(t)$ . Defining $B(\tau)=(\sin\kappa_{1}\tau/\sin\kappa_{1}t)A(t)$ we have
(1.15).

(ii) Instead of (1.17), we use

(1.18) $\dot{C}(\tau)-\kappa_{2}^{2}C(\tau)=0$ with $C(O)=0$ .

Let $\{A_{j}(\tau)\}$ be solution of (1.14) with $A_{j}(0)=0$ , A$j(0)=e_{J}$ . For sufficiently small
$t,$ $\{A_{j}(\tau)\}$ is linearly independent. Expanding a solution of (1.18) as $C(\tau)=$

$\sum_{j=1}^{d}a_{j}(\tau)A_{j}(\tau)$ , we have, by analogous calculation as in prcving (i),

$\langle\dot{C}(t), C(t)\rangle_{0}=\langle\sum_{i=1}^{d}c_{i}(t)A_{i}(t),\sum_{j=1}^{d}c_{j}(t)A_{j}(t)\rangle_{0}$

$+ \int_{0}^{t}\langle\sum_{i=1}^{d}c_{i}(\tau)\dot{A}_{i}(\tau),\sum_{j=1}^{d}c_{j}(\tau)A_{j}(\tau)\rangle_{0}d\tau$ .

Here we use the symmetry of $K(\tau)$ to prove $\langle A_{i}(\tau), A_{j}(\tau)\rangle_{0}=\langle A_{i}(\tau), A_{j}(\tau)\rangle_{0}$ . As
$A(\tau)=\Sigma_{i=1}^{d}c_{j}(t)A_{j}(\tau)$ is a solution of (1.14) with $A(t)=C(t)$ , we get

$\langle\dot{C}(t), C(t)\rangle_{0}\geqq\langle A(t), A(t)\rangle_{0}$ .
Putting $C(\tau)=(\sinh\kappa_{2}\tau/\sinh\kappa_{2}t)A(t)$ , we have (1.16). $q.e.d$ .

Now, using this, we give first of all, the lower bound for $\Theta(t, x, y)$ .
PROPOSITION 1.9. Assume (M), (L. $I$ ) $-$ ( $L$ . III) and (L. V). Then, there exists

a constant $T_{2}>0$ such that
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(1.19) $\Theta(t, x, y)\geqq(\sin\sqrt{C_{1}}t/\sqrt{C_{1}}t)^{d}$ , for $0<t<T_{2}$ and $x,$ $y\in M$ .

PROOF. Introducing vector Pelds $\{P_{j}(\tau)\}$ parallel along $\gamma_{c}(\tau)$ and orthogonal
$w.r.t$ . $\langle, \rangle$ , we expand any V-Jabobi Peld $J(\tau)$ as $J( \tau)=\sum_{j1}^{d}=a^{j}(\tau)P_{j}(\tau)$ where
$a^{j}(\tau)\in R$ . Then, $A(\tau)=$ ( $a^{1}(\tau),$ $\cdots$ , a $(\tau)$ ) defines a vector field in $R^{d}$ and satisfies

$\dot{A}(\tau)+K(\tau)A(\tau)=0$ .

Here $(j, k)$ -element of $K(\tau)$ is given by

(1.20) $\langle R(P_{j}(\tau),\dot{\gamma}_{c}(\tau))\dot{\gamma}_{c}(\tau), P_{k}(\tau)\rangle+\langle\nabla^{2}V(\gamma_{c}(\tau))\cdot P_{j}(\tau), P_{k}(\tau)\rangle$ .

By assumptions (L. 1II) and (L. V), there exists $C_{1}>0$ such that

$-K(\tau)\geqq-C_{1}I$ .
Using (i) of the above Iemma, for $t<T_{2}= \min(T_{1}, \pi/\sqrt{C_{1}})$ , we have

$(1/2)(d/dt)\log|J(t)|^{2}\geqq\sqrt{C_{1}}\cot\sqrt{C_{1}}t$ .

Here, we use the fact $|J(t)|^{2}=\langle J(t), J(t)\rangle=\langle A(t), A(t)\rangle_{0}$ . Remarking $\lim_{tarrow 0}|J(t)|/t$

$=1$ , we have $|J(t)|/t\geqq\sin\sqrt{C_{1}}t/\sqrt{C_{1}}t$ . We get (1.19) by the definition of $det$ .
$q.e.d$ .

Analogously, we have the upper bound of $\Theta(t, x, y)$ as

PROPOSITION 1.10 Under assumptions(M), (L. $I$) $-$ ($L$ . III) and (L. V), we have

(1.21) $\Theta(t, x, y)\leqq[\sinh(k|Y|+C_{2})t/(k|Y|+C_{2})t]^{d}$ for $0<t<T_{2}$

where $x=\Phi_{t,y}(Y),$ $C_{2}=(k^{2}C_{1}^{2}T_{1}^{2}+C_{1})^{1/2}$ and $T_{2}$ is defined in Proposition 1.9.
PROOF. As before, we consider (1.14) with (1.20). Then, assumptions (L. III)

and (L. V), combined with the estimate (1.8) give us an upper bound for $K(\tau)$ as

$\langle-K(\tau)A(\tau), A(\tau)\rangle_{0}\leqq(k|Y|+C_{2})^{2}|A(\tau)|^{2}$ for $0<\tau<T_{2}$ .

Using (ii) of Lemma 1.8, and proceeding as before, we have the desired estimate.
$q.e.d$ .

Now, we give elementary properties for $S(t, x, y)$ , called the classical action.
By Proposition 1.7, there exists the unique critical point $\gamma_{c}$ of $S(\cdot)$ , called the
classical path, which satisfies

(1.22) $S(t, x, y)= \int_{0}^{t}\{(1/2)\langle\dot{\gamma}_{c}(\tau),\dot{\gamma}_{c}(\tau)\rangle-V(\gamma_{c}(\tau))\}d\tau$ .

Following fact is rather well-known. (See p. 390 of Berger et al. [3].)

LEMMA 1.11. Under assumptjons (M), (L. $I$ ) $-$ ( $L$ . III) and (L. V), $S(t, x, y)$ is a
$C^{\infty}$-function on $(0, T_{2})\cross M\cross M$, symmetmc in $x$ and $y$ , satisfying the Hamilton-
Jacoln equation:
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(1.23) $\partial_{t}S(t, x, y)+(1/2)\langle\nabla_{x}S(t, x, y), \nabla_{x}S(t, x, y)\rangle+V(x)=0$ ,

and for any $Y\in T_{y}M$

(1.24) $(\nabla_{y}S(t, x, y))(Y)=-\langle\Phi_{t.y}^{-1}(x), Y\rangle$ .
By (1.24), we have, for $X\in T_{x}M,$ $Y\in T_{y}M$

$\nabla_{x}\nabla_{y}S(t, x, y)(X, Y)=-\langle(d\Phi_{t.y}^{-1})_{x}(X), Y\rangle$ ,

which gives us the following formula:

(1.25) $\det_{g}(d\Phi_{t.y}^{-1})_{x}=\det(\nabla_{y}\nabla_{x}S(t, x, y))/\sqrt{g(x)}\sqrt{g(y)}$ $(\sqrt{g(x)}=\mu_{g}(x))$ .

If we put $\rho(t, x, y)=|\det_{g}(d\Phi_{t.y}^{-1})_{x}|^{1/2}$ , we have easily $\rho(t, x, y)=t^{-d/2}\Theta^{-1/2}(t, x, y)$ .
Then, we have

PROPOSITION 1.12. Assume (M), (L. $I$ ) $-$ ( $L$ . III) and (L. V). The function $\rho(t, x, y)$

is smooth on $(0, T_{2})\cross M\cross M$ and satisfies the following continuity equation:

(1.26) $\partial_{t}\rho(t.’ x, y)+(1/2)\rho(t, x, y)\Delta^{(x)}S(t, x, y)+\langle\nabla_{x}\rho(t, x, y), \nabla_{x}S(t, x, y)\rangle=0$ .
Here, $\Delta^{(x)}$ stands for the Laplace-Beltrami operator acting on a function of $x$ .

PROOF. Define $\zeta(t, x, y)=\det_{g}(d\Phi_{t.y}^{-1})_{x}$ . Then, using the identity $\Phi_{t+s.y}^{-1}=$

$\Phi_{t.y}^{-1}\circ\Phi_{t.y}\circ\Phi_{t+s.y}^{-1}$ , we get

$(d\Phi_{t+s}^{-1})_{x}=(d\Phi_{t,y}^{-1})_{z}\cdot(d(\Phi_{t,y}\circ\Phi_{t+s,y}^{-1}))_{x}$ , $z=\Phi_{t.y}\circ\Phi_{t+s.y}^{-1}(x)$ .

This means

$(\partial/\partial s)\zeta(t+s, x, y)=\langle\nabla_{z}\zeta(t, x, z), \partial_{s}z\rangle\cdot\det_{g}(d(\Phi_{t.y}\circ\Phi_{t+s.y}^{-1}))_{x}$

$+\zeta(t, x, y)(\partial/\partial s)\exp$ trace log $(d(\Phi_{t,y}\circ\Phi_{t+s}^{-1}))_{x}$ .

As $\langle\nabla_{z}\zeta(t, x, y), \partial_{s}z\rangle_{1s=0}=-\langle\nabla_{x}\zeta, \nabla_{x}S(t, x, y)\rangle$ and

$\partial_{s}$ exp trace log $(d(\Phi_{t,y}\circ\Phi_{t+s.y}^{-1}))_{x}=-trace[\nabla_{x}^{2}S(t, x, y)]$

$=-\Delta^{(x)}S(t, x, y)$ ,

we have

$\partial_{t}\zeta(t, x, y)+\langle\nabla_{x}\zeta(t, x, y), \nabla_{x}S(t, x, y)\rangle_{x}+\zeta(t, x, y)\Delta^{(x)}S(t, x, y)=0$ .
As $\rho(t, x, y)=\zeta(t, x, y)^{1/2}$ , we have $(1.26)_{C}$ . $q.e.d$ .

REMARK. As is mentioned before, $S(t, x, y)$ and $p(t, x, y)$ are symmetric
in $x$ and $y$ . In the following, we use $(1.23)_{H.J}$ , and $(1.26)_{C}$ witQ changing the
role of $x$ and $y$ if necessary.

Following estimates are easily obtained by differentiating $(1.5)_{V.J}$ and using
the variation of constant for ordinary differential equations (see, Appendix in
Maeda [12]).
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LEMMA 1.13. Let take $T>0$ smaller than $T_{2}$ and satisfying $\Theta(t, x, y)\geqq 1/2$

for any $x,$ $y\in M$ and $0<t<T$. Then, under assumpti0ns (M) and (L. $I$)$-(L.V)$ ,
there exests a posttive cmstant $C_{3}$ independent of $x,$ $y\in M$ and $0<t<T$ such that
for $0\leqq|\alpha|\leqq 3$ and $x=\Phi_{t.y}(Y)$ ,

(1.27) $|\nabla_{y}^{a}\Theta(t, x, y)|\leqq C_{3}\exp(k|Y|+C_{2})t$ ,

(1.28) $|\nabla_{x}^{\alpha}\rho(t, x, y)|\leqq C_{3}t^{-d/2}\exp(k|Y|+C_{2})t$ .

2. Some basic properties of $H_{t}^{\lambda}(L;\mu_{g})$ .
In this and in \S \S 3 and 4, we denote $H_{t}^{\lambda}(L, \mu_{g})$ simply by $H_{t}^{\lambda}$ and $L^{2}$-norm

of $L^{2}(M, d\mu_{g})$ by $\Vert\cdot\Vert$ . Hereafter, we fix $T>0$ as defined in Lemma 1.13.

PROPOSITION 2.1. Assume (M), (L. $I$) $-$ ( $L$ . III) and (L. IV). Then, the operator
$H_{t}^{\lambda}$ are stable in $L^{2}(M, d\mu_{g})$ . That is, there exists a posrtive constant $C_{4}=C_{4}(\lambda, T)$

such that

(2.1) $\Vert H_{t}^{\lambda}f\Vert\leqq\exp C_{4}t\cdot\Vert f\Vert$ for $0<t<T$ and $f\in C_{0}^{\infty}(M)$ .
PROOF. $H_{t}^{\lambda}$ is an integral operator with kernel

(2.2) $h^{\lambda}(t, x, y)=(2\pi\lambda)^{-d/2}p(t, x, y)\exp\{-\lambda^{-1}S(t, x, y)\}$ .

We claim that there exist constants $C_{1}’=C_{1}’(\lambda;T)$ and $C_{4}’=C_{4}’(\lambda;T)$ such that

\langle 2.3) $\int_{M}h^{\lambda}(t, x, y)d\mu_{g}(y)\leqq(1+C_{4}’t)$ . exp $C_{1}’t/\lambda$ ,

(2.3) $\int_{M}h^{\lambda}(t, x, y)d\mu_{g}(x)\leqq(1+C_{4}’t)$ . exp $C_{1}’t/\lambda$ ,

for all $0<t<T$ .
Putting $y=\Phi_{t.x}(X),$ $X\in T_{x}M$, and remarking $\rho(t, x, y)=t^{-d/2}\Theta(t, x, y)^{-1/2}$,

we have

(2.4) $\int_{M}h^{\lambda}(t, x, y)d\mu_{g}(y)$

$=(2 \pi\lambda)^{-d/2}t^{-d/2}\int_{\tau_{x^{M}}}\exp\{-\lambda^{-1}S(t, x, \Phi_{t,x}(X))\}\cdot\Theta(t, x, \Phi_{t,x}(X))^{1/2}dX$ .

Inserting the relation above and (1.21) and using polar coordinate, we have

$\int_{M}h^{\lambda}(t, x, y)d\mu_{g}(y)$

$\leqq(2\pi\lambda)^{-d/2}t^{d/2}vol(S^{d- t})$

$\cross\int_{0}^{\infty}r^{d- 1}[\sinh(kr+C_{2})t/(kr+C_{2})t]^{d/2}\exp[(-r^{2}t+6C_{1}t+C_{1}rt^{2})/2\lambda]dr$ .
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Using

$(-r^{2}+C_{1}rt^{2}+6C_{1}t)/2\lambda=-r^{2}t/4\lambda+((-r^{2}t/2)+C_{1}rt^{2}+6C_{1}t)/2\lambda$

$\leqq-r^{2}t/4\lambda+C_{1}’t/\lambda$ , for $0<t<T$ and for $r\geqq 0$ ,

where $C_{1}’=3C_{1}+(C_{1}^{2}T^{2}/4)$ , we have

$\int_{M}h^{\lambda}(t, x, y)d\mu_{g}(y)\leqq\exp(C_{1}’t/\lambda)\cdot F_{\lambda}(t)$ .

Here, we set

$F_{\lambda}(t)=(2 \pi)^{-d/2}vol(S^{d-1})\int_{0}^{\infty}u^{d-1}[\cosh(ku(\lambda t)^{1/2}+C_{2}t)]^{d/2}\exp(-u^{2}/4)du$ .

Using $\sinh r/r\leqq\cosh r$ for $r>0$, we get

$F_{\lambda}’(t)= \frac{d}{dt}F_{\lambda}(i)$

$\leqq(d/4)(2\pi)^{-d/2}vol(S^{d-1})$

$\cross\int_{0}^{\infty}u^{d-1}\cosh(ku(\lambda t)^{1/2}+C_{2}t)^{d/2}$

$\cross[k^{2}u^{2}\lambda+3C_{2}ku(\lambda t)^{1/2}+2C_{2}^{2}t]$ exp $(-u^{2}/4)du$ ,

there exists a positive constant $C_{4}’=C_{4}’(\lambda;T)$ which bounds from above the right-
hand side of the inequality above. Combining this with $F_{\lambda}(O)=1$ , we get (2.3).
Analogously, we get (2.3).

Remarking

$|(H_{t}^{\lambda}f)(x)| \leqq\int_{M}h^{\lambda}(t, x, y)^{1/2}h^{\lambda}(t, x, y)^{1/2}|f(y)|d\mu_{g}(y)$ ,

and using Schwarz’ inequality, we have

$\Vert H_{t}^{\lambda}f\Vert^{2}\leqq\exp(2C_{I}’t/\lambda)\cdot(1+C_{4}’t)^{2}\Vert f\Vert^{2}$ .

This implies (2.1) by putting $C_{4}=C_{4}’+(C_{1}’T/\lambda)$ . $q.e.d$ .
By Proposition 2.1, we may extend $H_{t}^{\lambda}$ acting on $L^{2}(M, d\mu_{g})$ . Now, we

study the dependence of $H_{t}^{\lambda}$ on $t$ .

PROPOSITION 2.2. Assume that (M), (L. $I$) $-$ ($L$ . III) and (L. V) hold. For
$f\in L^{2}(M, d\mu_{g})$ , we have

(2.5) $\lim_{tarrow+0}\Vert H_{t}^{\lambda}f-f\Vert=0$ .

Therefore, putting $H_{0}^{\lambda}=the$ identity operator, we have the maPping from $t\in[0, T]$

to $H_{t}^{\lambda}f\in L^{2}(M, d\mu_{g})$ , strongly continuous in $t$ for each $f\in L^{2}(M, d\mu_{g})$ .
PROOF. By Proposition 2.1, it is sufficient to prove (2.6) for each $f\in C_{0}^{\infty}(M)$ .

We take a smooth function $\chi(x),$ $0\leqq\chi(x)\leqq 1$ , as
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$\chi(x)=\{\begin{array}{ll}1 if d ( x, supp f) \leqq 20 if d ( x, supp f) >3.\end{array}$

We shall show the following.

(2.6) $\lim_{tarrow+0}||H_{1}(t, )-f(\cdot)\Vert=0$ ,

(2.7) $\lim_{tarrow+0}\Vert H_{2}(t, )\Vert=0$ ,

where $H_{1}(t, x)=x(x)(H_{t}^{\lambda}f)(x)$ and $H_{2}(t, x)=(1-\chi(x))(H_{t}^{\lambda}f)(x)$ .
Proof of (2.6). Putting $y=\Phi_{t,x}(X)=\gamma(t, x, X),$ $X\in T_{x}(M)$ , we get

(2.8) $f(y)=f(x)+f_{1}(x;t, X)$ and $\Theta(t, x, y)^{1/2}=1+\Theta_{1}(x, t, X)$ ,

where

$f_{1}(x, t, X)= \int_{0}^{t}(d/ds)f(\Phi_{s,x}(X))ds=\int_{0}^{t}\langle\nabla_{y}f(\Phi_{s.x}(X)),\dot{\gamma}(s, x, X)\rangle ds$ ,

$\Theta_{1}(x;t, X)=\int_{0}^{s}(d/ds)\Theta(t, x, \Phi_{s,x}(X))^{1/2}ds$

$=(1/2) \int_{0}^{t}\Theta(t, x, \Phi_{s,x}(X))^{-1/2}\langle\nabla_{y}\Theta(t, x, \Phi_{s,x}(X)),\dot{\gamma}(s, x, X)\rangle ds$ .

So, using polar coordinate $X=r\omega,$ $r\in(O, \infty),$ $\omega\in S^{d-1}$ , we have

(2.9) $H_{1}(t, x)=x(x)(2 \pi\lambda)^{-d/2}i^{d/2}\int_{0}^{\infty}\int_{s^{d-1}}(f(x)+H_{1}(x, t, r\omega))$

$\cross\exp\{-\lambda^{-1}S(t, x, \Phi_{t,x}(r\omega))\}r^{d-1}drd\omega$ ,

where $H_{1}(x, t, r\omega)=f_{1}(x, t, r\omega)+f(\Phi_{t.x}(r\omega))\Theta_{1}(x, t, r\omega)$ . Using the estimates (1.8)

and (1.27), we have readily, for some constant $C_{5}=C_{5}(T)$ ,

(2.10) $|H_{1}(x;t, r \omega)|\leqq[\sup_{x\in M}|\nabla f|+C_{5}\sup_{x\in M}|f|\cdot\exp kr][rt+(C_{1}t^{2}/2)]$ .

Using these estimates and remarking that $\chi(x)$ has compact support, there exists
a constant $C_{6}=C_{6}(T, \lambda, \chi)$ such that

(2.11) $\Vert H_{1}(t, )-f($
.
$) \Vert\leqq C_{6}t^{1/2}[\sup_{x\in H}|\nabla f|+\sup_{x\in M}|f|]$ .

Proof of (2.7). Choose another function $\varphi(y)\in C_{0}^{\infty}(M),$ $0\leqq\varphi\leqq 1$ satisfying

$\varphi(y)=\{\begin{array}{ll}1 if d ( y, supp f) \leqq 10 if d ( y, supp f) \geqq 3/2.\end{array}$

Remarking $\varphi(y)f(y)=f(y)$ , we have

(2.12) $H_{2}(t, x)= \int_{M}F_{\lambda}(t, x, y)f(y)d\mu_{g}(y)$ ,
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where
$F_{\lambda}(t, x, y)=(2\pi\lambda)^{-d/2}(1-\chi(x))\varphi(y)\rho(t, x, y)\exp\{-\lambda^{-1}S(t, x, y)\}$ .

By the choice of $\chi(x)$ and $\varphi(y)$ , we have $F_{\lambda}(t, x, y)=0$ for $d(x, y)\leqq 1/2$ . On the
other hand, by the choice of $T$ ,

$0<cx.y\in MSu_{P_{T}^{t^{d/2}\rho(t}},$

$x,$ $y$ ) $\leqq\sqrt{2}$ and
$0<tX\geqq 1/2sug_{\tau}[t^{-d/2}\exp(-X^{2}/2t)]\leqq C(d)<\infty$

.

So, using (1.6) and (1.10), we get

$F_{\lambda}(t, x, y)\leqq C_{7}(1-\chi(x))\varphi(y)\exp(-d^{2}(x, y))$ for $0<t<T$ ,

where $C_{7}$ is a positive constant, independent of $x,$ $y\in M$ and $0<t<T$ . Moreover,
as $\lim_{tarrow 0}|F_{\lambda}(t, x, y)|=0$ for each $x,$ $y\in M$, using Lebesgue’s dominated conver-
gence theorem and the argument at the end of the proof of Proposition 2.1, we
get (2.7). $q.e.d$ .

3. The convergence of the product $H_{t}^{\lambda}$ in the operator norm.

Take $t>0$ arbitrarily. Dividing the interval $[0, t]$ into n-equal subintervals
such that $(t/n)<T$ , we define an operator $\tilde{H}_{n}^{\lambda}(t)$ as $\tilde{H}_{n}^{\lambda}(t)=H_{t/n}^{\lambda}\cdots H_{t/n}^{\lambda}$ (product

of n-times).

PROPOSITION 3.1. Assume that $M$ and $L$ satisfy (M), (L. $I$ ) $-(L. V)$ . Then, there
exists a $C^{0}$-semi group $H_{t}^{\lambda}(L;\mu_{g})(t\geqq 0)$ on $L^{2}(M, d\mu_{g})$ such that, for any $t>0$ ,

(3.1) $\Vert H_{t}^{\lambda}(L;d\mu_{g})-H_{n}^{\lambda}(t)\Vert\leqq(Ct^{3/2}n^{-1/2}+C’t^{2}n^{-1})$ . exp $C_{4}t$ ,

where $C$ and $C’$ are posttive constants depending on $T$, independent of $n$ .
Proof of this proposition is composed of several lemmas.

LEMMA 3.2. The function $h^{\lambda}(t, x, y)$ satisfies the following:

(3.2) $(\lambda\partial_{t}-(\lambda^{2}/2)\Delta^{(x)})h^{\lambda}(t, x, y)$

$=-(2\pi\lambda)"/2[(\lambda^{2}/2)\Delta^{(x)}-V(x)]p(t, x, y)\cdot\exp\{-\lambda^{-1}S(t, x, y)\}$ ,

(3.3) $(\lambda\partial_{\sigma}+(\lambda^{2}/2)\Delta^{(y)})h^{\lambda}(t-\sigma, x, y)$

$=(2\pi\lambda)^{-d/2}[(\lambda^{2}/2)\Delta^{(y)}-V(y)]p(t-\sigma, x, y)\cdot\exp\{-\lambda^{-1}S(t-\sigma, x, y)\}$ .

PROOF. By the formula of $\Delta^{(y)}$ acting on the product of functions, we have

(3.4) $\Delta^{(y)}h^{\lambda}(t, x, y)=(2\pi\lambda)^{-d/2}[(\Delta^{(y)}p(t, x, y))\exp\{-\lambda^{-1}S(t, x, y)\}$

$-2\lambda^{-1}\langle\nabla_{y}\rho(t, x, y), \nabla_{y}S(t, x, y)\rangle\exp\{-\lambda^{-1}S(t, x, y)\}$

$+p(t, x, y)\Delta^{(y)}\exp\{-\lambda^{-1}S(t, x, y)\}]$ .
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Combining $(1.23)_{H.J}$ and $(1.26)_{C}$ , we have easily (3.2). Analogously, we $have_{A}^{Y}(3.3)$ .
$q.e.d$ .

For $f\in C_{0}^{\infty}(M)$ and $t,$ $s>0,$ $\lambda>0$, we may write

(3.5) $(H_{t+s}^{\lambda}f)(x)-(H^{\lambda}{}_{t}H_{s}^{\lambda}f)(x)= \int_{M}\tilde{h}_{\lambda}(t, s;x, y)f(y)d\mu_{g}(y)$ ,

where

(3.6) $\tilde{h}_{\lambda}(t, s ; x, y)=h^{\lambda}(t+s ; x, y)-\int_{M}h^{\lambda}(t, x, z)h^{\lambda}(s, z, y)d\mu_{g}(z)$ .

Since $\tilde{h}^{\lambda}(t, s;x, y)$ has a singularity at $t=0$ , we define, for any positive $\epsilon$ ,

(3.7) $\tilde{h}5(t, s ; x, y)=\int_{\epsilon}^{s}[(d/d\sigma)\int_{M}h^{\lambda}(t+s-\sigma, x, z)h^{\lambda}(\sigma, z, y)d\mu_{g}(z)]d\sigma$

which satisfies $\lim_{\text{\’{e}}arrow+0}\tilde{h}_{\lambda}^{\epsilon}(t, s;x, y)=\tilde{h}_{\lambda}(t, s;x, y)$ for any $(t, s, x, y),$ $t>s$ . Ex-
changing $d/d\sigma$ and the integration, we have using Lemma 3.2 and integration
by parts,

(3.8) $\lambda\tilde{h}_{\lambda}^{\epsilon}(t, s ; x, y)=-(\lambda^{2}/2)(2\pi\lambda)^{-d}\int_{\epsilon}^{s}\{(t+s-\sigma)^{-d/2}\sigma^{-d/2}$

$\cross\int_{M}[\tilde{\rho}(\sigma, z, y)\Delta^{(z)}\tilde{\rho}(t+s-\sigma, x, z)-\tilde{p}(t+s-\sigma, x, z)\Delta^{(z)}\tilde{p}(\sigma, z, y)]$

$\cross\exp\{-\lambda^{-1}(S(t+s-\sigma, x, z)+S(\sigma, z, y))\}d\mu_{g}(z)\}d\sigma$ ,

where we put $\tilde{\rho}(t, x, y)=t^{d/2}p(t, x, y)$ .

LEMMA 3.3. Assume that (M), (L. $I$ ) $-(L. V)$ hold. For $T>0$ defined in Lemma
1.13, there exest posztjve constants $C_{8}$ and $C_{9}$ depending on $\lambda$ and $T$ such that

(3.9) $\lim_{\epsilonarrow 0}\int_{M}\lambda|\tilde{h}_{\lambda}^{\epsilon}(t, s;x, y)|d\mu_{g}(y)\leqq C_{8}\{(i+s)^{3/2}-t^{3/2}+s^{3/2}\}+C_{9}(t+s)s$ ,

$\lim_{\epsilonarrow 0}\int_{M}\lambda|\tilde{h}\S(t, s ; x, y)|d\mu_{g}(x)\leqq C_{8}\{(t+s)^{3/2}-t^{3/2}+s^{3/2}\}+C_{9}(t+s)s$ .

PROOF. Remark at first that

(3.10) $\tilde{\rho}(\sigma, z, y)\Delta^{(z)}\tilde{p}(t+s-\sigma, x, z)-\tilde{p}(t+s-\sigma, x, z)\Delta^{(z)}\tilde{p}(\sigma, z, y)$

$=\tilde{p}(\sigma, z, y)[\Delta^{(z)}\tilde{\rho}(t+s-\sigma, x, z)-\Delta^{(z)}\tilde{p}(t+s-\sigma, x, z)_{1z=x}]$

$+[\tilde{\rho}(\sigma, z, y)\Delta^{(z)}\tilde{\rho}(t+s-\sigma, x, z)_{1z=x}-\tilde{\rho}(t+s-\sigma, x, z)\Delta^{(z)}\tilde{p}(\sigma, z, y)_{1z\Leftarrow y}]$

$+\tilde{\rho}(t+s-\sigma, x, z)[\Delta^{(z)}\tilde{p}(\sigma, z, y)_{Iz=y}-\Delta^{(z)}\tilde{\rho}(\sigma, z, y)]$ .

Take the geodesic $\gamma_{g}(\tau)$ with $\gamma_{g}(0)=x,$ $\gamma_{g}(r)=z$ where $r=d(x, z)$ . Then, we
have, using (1.28),
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(3.11) $|\Delta^{(z)}\tilde{\rho}(t+s-\sigma, x, z)-\Delta^{(z)}\tilde{\rho}(t+s-\sigma, x, z)_{1z=x}|$

$\leqq\int_{0}^{r}|\nabla_{z}\Delta^{(z)}\tilde{p}(t+s-\sigma, x, \gamma_{g}(\tau))|d\tau$

$\leqq C_{8}d(x, z)$ exp $\tilde{k}d(x, z)$ ,

where $C_{8}$ and $\tilde{k}$ are positive constants independent of $x,$ $z\in M$. Analogously

(3.12) $|\Delta^{(z)}\tilde{\rho}(\sigma, z, y)-\Delta^{(z)}\tilde{\rho}(\sigma, z, y)_{1z=y}|\leqq C_{8}d(y, z)\exp\tilde{k}d(y, z)$ .

In order to estimate the second term of the right-hand side of (3.10), we use

LEMMA 3.4. $\Delta^{(z)}\tilde{\rho}(t, x, z)_{1z=x}=R(x)/6+tO(t, x)$ , where the function $|O(t, x)|$

is bounded from above $C_{9}>0$ for any $0<t<T$ and for any $x\in M$.
Retaining the proof of the above lemma later, we have, by assumption (L. III),

(3.13) $|\tilde{\rho}(\sigma, z, y)\Delta^{(z)}\tilde{\rho}(t+s-\sigma, x, z)_{1z=x}-\tilde{p}(t+s-\sigma, x, z)\Delta^{(z)}\tilde{p}(\sigma, z, y)_{1z=y}|$

$=|\{(\tilde{\rho}(\sigma, z, y)-1)R(x)/6\}+\{(R(x)-R(y))/6\}$

$+\{(1-\tilde{\rho}(t+s-\sigma, x, z))R(y)/6\}$

$+\{(t+s-\sigma)\tilde{\rho}(\sigma, z, y)O(t+s-\sigma, x)-\sigma\tilde{\rho}(t+s-\sigma, x, z)O(\sigma, y)\}|$

$\leqq C_{8}$ [ $d(y,$ $z)$ exp $\beta d(y,$ $z)+d(x,$ $y)+d(x,$ $z)$ exp $\tilde{k}d(x,$ $z)$ ] $+C_{9}(t+s)$ ,

where $C_{9}$ is a positive constant independent of $x\in M$.
Inserting these estimate in (3.8), we get

(3.14) $\int_{M}\lambda|\tilde{h};(t, s, x, y)|d\mu_{g}(y)\leqq(-\lambda^{2}/2)\int_{\epsilon}^{s}[L_{1}(\sigma)+L_{2}(\sigma)+L_{3}(\sigma)]d\sigma$ ,

where

(3.15) $L_{1}( \sigma)=C_{8}(2\pi\lambda(t+s-\sigma))^{-d/2}(2\pi\lambda\sigma)^{-d/2}\int_{M}\int_{M}[d(x, z)+d(x, z)\exp\tilde{k}d(x, z)]$

$\cross\exp\{-\lambda^{-1}(S(t+s-\sigma, x, z)+S(\sigma, z, y))\}d\mu_{g}(z)d\mu_{g}(y)$ ,

(3.16) $L_{2}( \sigma)=C_{8}(2\pi\lambda(t+s-\sigma))^{-d/2}(2\pi\lambda\sigma)^{-d/2}\int_{M}\int_{M}$ [ $d(y,$ $z)+d(y,$ $z)$ exp $\tilde{k}d(y,$ $z)$]

$\cross\exp\{-\lambda^{-1}(S(t+s-\sigma, x, z)+S(\sigma, z, y))\}d\mu_{g}(z)d\mu_{g}(y)$

and

(3.17) $L_{3}(\sigma)=C_{9}(2\pi\lambda(t+s-\sigma))^{-d/2}(2\pi\lambda\sigma)^{-d/2}(t+s)$

$\cross\int_{M}\int_{M}\exp\{-\lambda^{-1}(S(t+s-\sigma, x, z)+S(\sigma, z, y))\}d\mu_{g}(z)d\mu_{g}(y)$ .

Using (1.8), we have
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(3.18) $L_{1}(\sigma)\leqq(2\pi\lambda(t+s-\sigma))^{-d/2}(2\pi\lambda\sigma)^{-d/2}\exp C_{1}(t+s)/\lambda$

$\cross\int_{M}$ [ $d(x,$ $z)+d(x,$ $z)$ exp $\tilde{k}d(x,$ $z)$ ] exp $(-d^{2}(x, z)/2\lambda(i+s-\sigma))$

$\cross\{\int_{M}$exp $(-d^{2}(z, y)/2\lambda\sigma)\cdot d\mu_{g}(y)\}d\mu_{g}(z)$ .

Then, calculating the integral in $\{\cdots\}$ , using the normal coordinate at $z$ and
then using the normal coordinate at $x$ , we get readily

(3.19) $L_{1}(\sigma)\leqq C_{8}(t+s-\sigma)^{1/2}$

for $0<\sigma,$ $t+s-\sigma<T$ with some constant $C_{8}$ depending on $\lambda,$ $T$ . Analogously,
we have

(3.20) $L_{2}(\sigma)\leqq C_{8}\sigma^{1/Z}$ .
Lastly,

(3.21) $L_{3}(\sigma)\leqq C_{9}(t+s)$ .

Substituting these into (3.14), we get

(3.22) $\int_{M}\lambda|\tilde{h}_{\lambda}^{\epsilon}(t, s, x, y)|d\mu_{g}(y)\leqq C_{8}((t+s)^{3/2}-t^{3/2}+s^{3/2})+C_{9}(t+s)s$ .

PROOF OF LEMMA 3.4. In order to calculate this, we take special bases in
defining $\Theta(t, x, y)=t^{-d}\det_{g}(d\Phi_{t,x})_{X}$ for $Exp_{x}X=y$ . That is, taking the normal
coordinate $(X^{1}, \cdots , X^{d})$ at $x$ , we have

(3.23) $\tilde{p}(t, x, y)=[\det(A_{i}^{a}(t, x))/\sqrt{\det(g_{ij}(X))}]^{1/2}$,

where $A_{i}^{a}(t, X)$ is the component of $(d\Phi_{t,x})_{X}$ with respect to (X 1
$\ldots$ , $X^{d}$). As

$A_{i}^{a}(0, X)=\delta_{i}^{a}$ , putting the remainder term of the Taylor expansion of det $(A_{i}^{a}(t, X))$

at $t=0$ as $0(t, x, X)$ , we get

(3.24) $\Delta^{(z)}\tilde{p}(t, x, y)=\Delta^{(X)}(\det(g_{ij}(X)))^{-1/2}+tO(t, x, X)$ .
On the other hand,

(3.25) $\Delta^{(X)}(\det(g_{ij}(X)))_{1X=0}^{-1/2}=-R(x)/6$ .

(See p. 593 of Sakai [13] and p. 97 of Berger et al. [2].) Also, as $\tilde{p}(t, x, y)$

$=t^{d/2}\rho(t, x, y)$ , the boundedness of $0(t, x)=O(t, x, X)_{1X=0}$ is easily obtained by
Lemma 1.14. $q.e.d$ .

For fixed $t,$ $s$ and $x\in M$, we have
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(3.26) $| \tilde{h}5(t, s, x, y)|\leqq\int_{0}^{s}\{(2\pi(t+s-\sigma))^{-d/2}(2\pi\sigma)^{-d/2}$

$\cross\int_{M}|\tilde{p}(\sigma, z, y)\Delta^{(z)}\tilde{p}(t+s-\sigma, x, z)-\tilde{p}(t+s-\sigma, x, z)\Delta^{(z)}\tilde{\rho}(\sigma, z, y)|$

$\cross\exp\{-\lambda^{-1}(S(t+s-\sigma, x, z)+S(\sigma, z, y))\}\cdot d\mu_{g}(z)d\sigma$ .
By Fubini’s theorem, we see that the right-hand side of the above inequality is
$L^{1}$ function with respect to y-variables. Thus, using Lebesgue’s dominated con-
vergence theorem and $\lim_{\epsilonarrow 0}\tilde{h}_{\lambda}^{\epsilon}(t, s, x, y)=\tilde{h}_{\lambda}(t, s, x, y)a.e.$ , wet get

(3.27) $\int_{M}\lambda|\tilde{h}_{\lambda}(t, s, x, y)|d\mu_{g}(y)\leqq C_{8}((t+s)^{3/2}-t^{3/2}+s^{3/2})+C_{9}(t+s)s$ ,

because of Lemma 3.3. By the same argument, we have

(3.28) $\int_{M}\lambda|\tilde{h}_{\lambda}(t, s, x, y)|d\mu_{g}(y)\leqq C_{8}((t+s)^{3/2}-t^{3/2}+s^{3/2})+C_{9}(t+s)s$ .

So, by the same computation as in the proof of Proposition 2.1, we have, by
putting $C=C_{8},$ $C’=C_{9}$ ,

LEMMA 3.5. Under assumpti0ns (M) and (L. $I$ )$-(L.V)$ , for any $0<t,$ $s,$ $t+s<T$

and any $f\in L^{2}(M, d\mu_{g})$ , we have

(3.29) $\Vert H_{t+s}^{\lambda}f-H^{\lambda}{}_{\iota}H_{s}^{\lambda}f\Vert\leqq[C((t+s)^{3/2}-t^{3/2}+s^{3/2})+C’(t+s)s]\Vert f\Vert$ .
To prove Proposition 3.1, we prepare

LEMMA 3.6. $\{H_{n}^{\lambda}(t)\}_{n}$ forms a Cauchy sequence in $\mathcal{B}(L^{2}(M, d\mu_{g}))$ in operator
norm, uniformly in $t$ on any finite interval, where $\mathcal{B}(L^{2}(M, d\mu_{g}))$ denotes the space
of bounded linear operat0rs in $L^{2}(M, d\mu_{g})$ with the operat0r norm. Moreover, its
limit $H_{t}^{\lambda}$ satisfies the estimate (3.1).

PROOF. As we have, for $s\in[0, T]$ ,

$H_{s}^{\lambda}-(H_{s/n}^{\lambda})^{n}= \sum_{j=0}^{n- 2}[H_{(n- j)s/n}^{\lambda}-H_{(n- j- 1)s\gamma n}^{\lambda}H_{s/n}^{\dot{A}}]\cdot(H_{s/n}^{\lambda})^{j}$,

we get

(3.30) $\Vert(H_{s}^{\lambda}-(H_{s/n}^{\lambda})^{n})f\Vert\leqq\exp C_{4}s\cdot[C(s^{3/2}+(n-1)(s/n)^{3/2})+C’s^{4}]\Vert f\Vert$ ,

by (3.29) and (2.1). Using (3.30), we have

(3.31) $\Vert(H_{t/n}^{\lambda})^{n}f-(H_{t/nm}^{\lambda})^{nm}f\Vert$

$\leqq\sum_{j=0}^{n-1}\Vert((H_{t/n}^{\lambda})^{n- j- 1}\cdot H_{t/n}^{\lambda}\cdot(H_{t/nm}^{\lambda})^{jm}-(H_{t/n}^{\lambda})^{n-j- 1}\cdot(H_{t/nm}^{\lambda})^{(j+1)m})f\Vert$

$\leqq\sum_{j=0}^{n-1}\exp$ $\{C_{4}(n-]-1)(t/n)\}\cdot\Vert(H_{t/n}^{\lambda}\cdot(H_{t/nm}^{A})^{gm}-(H_{t\prime nm}^{\lambda})^{(j+1)m}f)\Vert$
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$\leqq\exp C_{4}t\cdot[C\sum_{j=0}^{n-1}\{(t/n)^{3/2}+(m-1)(t/nm)^{3/2}\}+C’\sum_{j=0}^{n- 1}(t/m)^{2}]$

$\leqq\exp C_{4}t\cdot[Ct^{3/2}(n^{-1/2}+(nm)^{-1/2})+C’t^{2}n^{-1}]\Vert f\Vert$ .
Therefore, we get

(3.32) $\Vert((H_{tfn}^{\lambda})^{n}-(H_{t/m}^{\lambda})^{m})f\Vert$

$\leqq\Vert((H_{t/nm}^{\lambda})^{n}-(H_{t/nm}^{\lambda})^{nm})f\Vert+\Vert((H_{t/nm}^{\lambda})^{nm}-(H_{t/m}^{\lambda})^{m})f\Vert$

$\leqq\exp C_{4}t\cdot[Ct^{3/2}(n^{-1/2}+m^{-1/2}+2(nm)^{-1/2})+C’t^{2}(n^{-1}+m^{-1})]$ .
Thus, $\tilde{H}_{n}^{\lambda}(t)=(H_{t/n}^{\lambda})^{n}$ is a Cauchy sequence uniformly in $t$ on any finite interval
in the operator norm. Therefore, it converges to a limit $H_{t}^{\lambda}$ . Letting $m$ tend
to $\infty$ in (3.32), we get (3.1). $q.e.d$ .

REMARK. The above proof is a slight modification of the proof of Theorem 5.3,
p. 240 of Chorin et al. [5]. This simplifies greatly the proof of Lemma 5.7, p. 79
of Fujiwara [8] which seems rather difficult to follow.

Now, we generalize Proposition 3.1 a little bit:

PROPOSITION 3.7. Let us assume that $M$ and $L$ satisfy (M) and (L. $I$)$-(L.1V1$ .
Take $T>0$ as in Lemma 1.13. Assume also that two subintervals

$\Delta_{1}$ : $0=t_{0}<t_{1}<\cdots<t_{n}=t$ , $\delta(\Delta_{1})=\max j|t_{j}-t_{f- 1}|$ ,

and
$\Delta_{2}$ : $0=s_{0}<s_{1}<\cdots<s_{m}=t$, $\delta(\Delta_{2})=\max|s_{j}-s_{j-1}|j$

are given as $\delta(\Delta_{1})$ and $\delta(\Delta_{2})$ are smaller than $T$ .
Define $H(\Delta_{1} ; t)=H_{t_{n}-t_{n-1}}^{\lambda}\cdots H_{t_{1}}^{\lambda}$ , and $H(\Delta_{2} : t)=H_{s_{m^{-S}m-1}}^{\lambda}\cdots H_{s_{1}}^{\lambda}$ . Then, $we$

have

(3.33) $\Vert H(\Delta_{1} ; t)-H(\Delta_{2} : t)\Vert$

$\leqq\exp C_{4}t\cdot[Ct(\delta(\Delta_{1})^{1/2}+\delta(\Delta_{2})^{1/2})+2t^{1/2}\delta(\Delta_{1})^{1/2}\delta(\Delta_{2})^{1/2}+C’t(\delta(\Delta_{1})+\delta(\Delta_{2}))]$ ,

(3.34) $\Vert H(\Delta_{1} ; t)-H_{t}^{\lambda}\Vert\leqq t\cdot\exp C_{4}t\cdot(C\delta(\Delta_{1})^{1/2}+C’\delta(\Delta_{1}))$ .

PROOF. Following the proof of Lemma 5.8, p. 81 of [8], we get the result.

By the above argument, we obtain (d) of Theorem in case of $\mu=\mu_{g}$ .

4. Computation of the infinitesimal generator of $H_{t}^{\lambda}$ .
Our object in this section is to prove:

PROPOSITION 4.1. Assume (M) and (L. $I$ )$-(L. V)$ . Then, for any $f\in C_{0}^{\infty}(M)$ ,

(4.1) $\lambda\partial_{t}(H_{t}^{\lambda}f)(x)_{1t=0}=\lambda^{2}[\Delta_{g}/2-R(x)/12]f(x)+V(x)f(x)$ .
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This follows from:

LEMMA 4.2. Under the same assumptions as above, we have

(i) $\partial_{t}(H_{t}^{\lambda}f)(x)_{1t=0}=\partial_{t}(H_{t}^{\lambda}f)(x)_{1t=0}$ for $f\in C_{0}^{\infty}(M)$ .
(ii) $(H_{t}^{\lambda}f)(x)-f(x)=t(A^{\lambda}f)(x)+tG(t, \lambda, f)(x)$ for $f\in C_{0}^{\infty}(M)$ ,

and $\lim_{tarrow 0}\Vert G(t, \lambda, f)\Vert=0$ .

PROOF. For each $n$ , we have

$(H_{t}^{\lambda}f)(x)-f(x)=(H_{t}^{\lambda}f)(x)-( \tilde{H}_{n}^{\lambda}(t)f)(x)+\sum_{j=1}^{n}[(H_{J/n}^{\lambda})^{n- j}(H_{t/n}^{\lambda}-I)f](x)$ .
Dividing both sides of the above by $t$ , taking $n$ sufficiently large and making $t$ tend
to $0$ , we get (i). Here we used the estimate in Proposition 3.1.

Proof of (ii). Combining $(1.23)_{H.J}$ and $(1.26)_{C}$ with the definition of
$h^{\lambda}(t, x, y)$ , we get readily

$\lambda\partial_{t}(H_{t}^{\lambda}f)(x)=\lambda(2\pi\lambda)^{-d/2}\int_{M}[\partial_{t}\rho(t, x, y)-\lambda^{-1}\rho(t, x, y)\partial_{t}S(t, x, y)]$

$X\exp\{-\lambda^{-1}S(t, x, y)\}\cdot f(y)d\mu_{g}(y)$

$=\{H_{t}^{\lambda}[((\lambda^{2}/2)\Delta+V)f]\}(x)$

$-( \lambda^{2}/2)(2\pi\lambda)^{-d/2}\int_{M}\Delta^{(y)}\rho(t, x, y)$ exp $\{-\lambda^{-1}S(t, x, y)\}\cdot f(y)d\mu_{g}(y)$ .

Therefore, by Lemma 3.4,

(4.2) $\lambda\partial_{t}(H_{t}^{\lambda}f)(x)-\lambda^{2}(\Delta/2-R(x)/12)f(x)-V(x)f(x)$

$=[(H_{t}^{\lambda}-I)((\lambda^{2}/2)\Delta+V)f](x)$

$-( \lambda^{2}/2)(2\pi\lambda t)^{-t1/2}\int_{M}(\Delta^{(y)}\rho(t, x, y)-R(x)/12)$

$\cross\exp\{-\lambda^{-1}S(t, x, y)\}f(y)d\mu_{g}(y)$

$=\tilde{G}(t;\lambda, f)(x)$ .
Using Proposition 2.2, we have

$\Vert(H_{t}^{\lambda}-I)((\lambda^{2}/2)\Delta+V)f\Vertarrow 0$ for $f\in C_{0}^{\infty}(M)$ .
Also, by Lemma 3.4 and similar computations as in proving Lemma 3.3, we get

$\lim_{tarrow 0}\Vert(2\pi\lambda t)^{-d/2}\int_{M}(\Delta^{(y)}p(t, , y)-R(\cdot)/12)$

$\cross\exp\{-\lambda^{-1}S(t, \cdot, y)\}f(y)d\mu_{9}(y)\Vert=0$ , for $f\in C_{0}^{\infty}(M)$ .

Remarking $(H_{t}^{\lambda}f)(x)-f(x)= \int_{0}^{t}\partial_{\sigma}(H_{\sigma}^{\lambda}f)(x)d\sigma$ and putting $G(t, \lambda, f)(x)=$

$(1/t) \int_{0}^{t}\tilde{G}(\sigma, \lambda, f)(x)d\sigma$ , we obtain the desired result. $q.e$ . $d$ .
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Now, we have proved $(a)-(d)$ and (f) of Theorem for $\mu=\mu_{g}$ . As corollaries
of the arguments in proving parts of Theorem, we have

COROLLARY 4.3. There exists a distribution kernel $H^{\lambda}(L, \mu_{g})(t, x, y)$ of
$H_{t}^{\lambda}(L, \mu_{g})$ . That is, for any $f,$ $h\in C_{0}^{\infty}(M)$ , we have

(4.3) $(H_{t}^{\lambda}(L, \mu_{g})f,$ $h$) $=\langle H^{\lambda}(L, \mu_{g})(t, x, y), h(x)\otimes f(y)\rangle$

where $\langle, \rangle$ stands for the duality between $\mathcal{D}(M\cross M)$ and $\mathcal{D}’(M\cross M)$ .
This follows by applying Schwartz’ kernel theorem to the left-hand side

of (4.3).

PROPOSITION 4.4. Let $M$ and $\tilde{M}$ be smooth manifolds diffeomorphic to each
other. (We denote the diffeomorphu $sm$ from $\tilde{M}$ onto $M$ by $\Phi.$ ) On $M$, there exests
a Lagrangian $L$ satisfying (L. $I$)$-(L.V)$ also with (M). We induce the Lagrangian
and the Riemannian metric on $\tilde{M}$ by $\tilde{L}=\Phi^{*}L$ and $\tilde{g}=\Phi^{*}g$ , where $\Phi^{*}$ denotes the
pull-back by $\Phi$ . Then, we have

(4.4) $(\Phi^{*})^{-1}H_{t}^{\lambda}(\tilde{L};\mu_{\tilde{g}})\Phi^{*}=H_{t}^{\lambda}(L;\mu_{g})$ .

In other words,

(4.4) $H^{\lambda}( \sum, \mu_{\xi})(t, \Phi^{-1}(x),$ $\Phi^{-1}(y))=H^{\lambda}(L, \mu_{g})(t, x, y)$ for $x,$ $y\in M$ .
PROOF. By the dePnition of $HS(L, \mu_{g})$ , we have readily

$(H_{t}^{\lambda}(L;\mu_{g})f)(x)=[H_{t}^{\lambda}(\hat{L} ; \mu_{\tilde{g}})(\Phi^{*}f)](\Phi^{-1}(x))$ for $x\in M,$ $f\in C_{0}^{\infty}(M)$ .

Moreover, as $(M, g)$ is isometric to $(\tilde{M},\tilde{g})$ , we get the assertion. $q.e$ . $d$ .
COROLLARY 4.5. The differential operat0r $A^{\lambda}(L;\mu_{g})$ defines a self-adjoznt

operat0r in $L^{2}(M, d\mu_{g})$ if $M$ and $L$ satisfy (M) and (L. $I$ )$-(L.V)$ . Moreover, $we$

may define $\{U_{\tau}\}_{\tau\in R}$ , a $C^{0}$-group of unitary operat0rs on $L^{2}(M, d\mu_{g})$ , as

(4.5) $U_{r}f= s-\lim_{\epsilonarrow 0}$ H. $+i\tau f$ for $f\in C_{0}^{\infty}(M)$ .

PROOF. By the symmetry in $x$ and $y$ of kernel $h^{\lambda}(t, x, y),$ $(H_{t}^{\lambda}(L;\mu_{g}))^{*}=$

$H_{t}^{\lambda}(L, \mu_{g})$ . This gives $(H_{t}^{\lambda}(L;\mu_{g}))^{*}=H_{t}^{\lambda}(L;\mu_{g})$ which asserts $(A^{\lambda}(L;\mu_{g}))^{*}=$

$A^{\lambda}(L;\mu_{g})$ . Moreover $A^{\lambda}(L;\mu_{g})$ is bounded from below, using Theorem 7.9.1 of
Hille-Phillips [10], we have the desired assertion. $q.e$ . $d$ .

5. Proof of Theorem and its interpretation.

We first remember the following dePnition.

DEFINITION (p. 427 of [1]). (i) Two measures on $M$ are said to be
equivalent provided that each is absolutely continuous with respect to the other.



Integral transformations 239

(ii) A measure on $M$ is called natural if it is equivalent to the Lebesgue
measure in every coordinate chart of $M$.

(iii) Consider the set of all pairs $(f, \mu)$ , where $\mu$ is a natural measure on
$M$ and $f\in L^{2}(M, d\mu)$ . Two pairs $(f, \mu)$ and $(g, \nu)$ will be called equivalent
provided that $f(d\mu/d\nu)^{1/2}=g$ , where $d\mu/d\nu$ is the Radon-Nikodym derivative of
$\mu w.r.t$ . $\nu$ . We denote the equivalence class of $(f, \mu)$ by $f\sqrt{d\mu}$ .

(iv) An equivalence class $f\sqrt{d\mu}$ is called a half-density on $M$ and the set
of all half-densities is regarded as sections of l-dimensional vector bundle $\Lambda^{1/2}(M)$ ,
called the half density bundle on $M$, which may be trivialized by choosing a
natural measure $\mu$ on $M$.

(v) We denote $\mathcal{H}(M)$ the intrinsic Hilbert space on $M$, by the set of all such
equivalence class $(f, \mu)$ . As $\mathcal{H}(M)$ is trivialized by choosing a natural measure
$\mu$ on $M,$ $\mathcal{H}(M)$ is isomorphic to $L^{2}(M, d\mu)$ by the isomorphism $U_{\mu}$ : $f\in L^{2}(M, d\mu)$

$arrow U_{\mu}f=f\sqrt{d\mu}\in \mathcal{H}(M)$ . So, $U_{\mu\nu}$ defined by (8) is represented by

(5.1) $U_{\mu\nu}=U_{\mu}U_{\nu}^{-1}$ .
Moreover, $U_{\mu\nu}$ is obtained by the transition function of the half-density bundle
$\Lambda^{1/2}(M)$ .

PROOF OF THEOREM. For $f\in C_{0}^{\infty}(M)$ , we rewrite $H_{t}^{\lambda}(L;\mu)$ by

(5.2) $(H_{t}^{\lambda}(L, \mu)f)(x)$

$=(2 \pi\lambda)^{-d/2}\int_{M}[\det[-\partial_{x^{i}}\partial_{y^{\alpha}}S(L)(t, x, y)]/\sqrt{g(x)}\sqrt{g(y)}]^{1/2}$

’

$\cross\exp\{-\lambda^{-1}S(L)(t, x, y)\}(\sqrt{g(x)}/\mu(x))^{1/2}(\sqrt{g(y)}/\mu(y))^{1/2}f(y)d\mu(y)$

$=( \sqrt{g(x)}/\mu(x))^{1/2}(2\pi\lambda)^{-d/2}\int_{M}\rho(L;\mu_{g})(t, x, y)$

$\cross\exp\{-\lambda^{-1}S(L)(t, x, y)\}(\mu(y)/\sqrt{g(y)})^{1/2}f(y)d\mu_{g}(y)$ .

As $\Vert f\Vert_{\mu}=\Vert f(\cdot)(\mu(\cdot)/\sqrt{g()})^{1/2}\Vert_{\mu_{g}}$ for $f\in L^{2}(M, d\mu)$ , we get

$\Vert H_{t}^{\lambda}(L;\mu)f\Vert_{\mu}=\Vert H_{t}^{\lambda}(L;\mu_{g})(f(\cdot)(\mu(\cdot)/\sqrt{g()})^{1/2})\Vert_{\mu_{g}}$ .

So, the isomorphism $U_{\mu_{g}\mu}$ : $L^{2}(M, d\mu)arrow L^{2}(M, d\mu_{g})$ given by

$(U_{\mu_{g}\mu}f)(x)=f(x)(\mu(x)/\sqrt{g(x)})^{1/2}$ for $f\in L^{2}(M, d\mu)$

leads us to

(5.3) $H_{t}^{\lambda}(L;\mu)f=U_{\mu_{g}}^{-1}{}_{\mu}H_{t}^{\lambda}(L;\mu_{g})U_{\mu_{g}\mu}$ .

Since $(H_{t/n}^{\lambda}(L;\mu))^{n}=U_{\mu_{g}\mu}^{-1}(H_{t/n}^{\lambda}(L;\mu_{g}))^{n}U_{\mu_{g}\mu}$ , we get $H_{t}^{\lambda}(L;\mu)=$

$U_{\mu_{g}}^{-1}{}_{\mu}H_{t}^{\lambda}(L;\mu_{g})U_{\mu_{g}\mu}$ . The end of the proof of Theorem.

REMARK 1. By putting $C_{t.x.y}=\{\gamma(\cdot)\in C([0, t]arrow M) : \gamma(0)=y, \gamma(t)=x\}$ , we
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propose to regard Feynman’s expression (Feynman [7])

(5.4) $\int_{c_{t.x.y}}\exp\{-\lambda^{-1}\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d\tau\}d_{F}(\gamma)$

as it stands for the ‘ distribution kernel ’ of the operator $H_{t}^{\lambda}(L)$ on $\mathcal{H}(M)$ which
is represented concretely by using the trivialization of the bundle $\Lambda^{1/2}(M)$ . That
is, for any natural measure $\mu$ on $M$, we define (5.4) as

(5.5) $\{\int_{c_{t.x.y}}\exp\{-\lambda^{-1}\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d_{T}\}d_{F}(\gamma)\}_{\mu}$

$=H_{t}^{\lambda}(L;\mu)(t, x, y)|d\mu(x)|^{1/2}\otimes|d\mu(y)|^{1/2}$ ,

where $H_{t}^{\lambda}(L;\mu)(t, x, y)$ is the distribution kernel of the operator $H_{t}^{\lambda}(L;\mu)$ whose
existence is assumed by Schwartz’ kernel theorem.

In the separate paper [12], Maeda proves that $H_{t}^{\lambda}(L;\mu)(t, x, y)$ is in fact a
smooth function on $M\cross M$ for $t>0$ .

REMARK 2. As is already noticed, the term $R(x)/12$ in the expression (9) is
necessary to consider the operators $H_{t}^{\lambda}(L)$ and $A^{\lambda}(L)$ in the intrinsic Hilbert
space. And the choice of a natural measure seems to correspond to fix the
measurement of the physical system described in the intrinsic Hilbert space.

But in any way, to answer completely why we consider the problem in $L^{2}$

scheme, it is necessary to put $\lambda=i\hslash$ . (See, de Witt [6] concerning the term
$R(\cdot)/12.)$

6. We may produce any multiple of $R(\cdot)$ in the infinitesimal generator.

In stead of the argument in the previous section, we may produce any
multiple of $R(\cdot)$ , if we change the order of our procedure and we content ourselves
with the convergence of $\tilde{H}_{n}^{\lambda}(t)$ only in the strong sense.

To make our point clear, we consider the case where $V=0$ .
For any $\beta\in R$ , we define an operator $H_{t}^{\lambda}(\beta)$ as

(6.1) $(H_{t}^{\lambda}( \beta)f)(x)=(2\pi\lambda t)^{-d/2}\int_{M}\rho^{0}(x, y)^{\beta}$ exp $(-\lambda^{-1}S^{0}(t, x, y))\cdot f(y)d\mu_{g}(y)$ ,

for $f\in C_{0}^{\infty}(M)$ , where $t^{d/2}\rho^{0}(t, x, y)$ is independent of $t$ and simply denoted by
$\rho^{0}(x, y)$ . In this case, as we may put $\lambda=1$ without loss of generality, we denote
$H_{t}^{1}(\beta)$ simply by $H_{t}(\beta)$ . And we drop the super index $0$ above for notational
simplicity.

THEOREM 6.1. Under assumpti0ns (M), (L. $I$ ) $-$ ( $L$ . IV), we have the following:
Fix $T>0$ arbitramly. For any $\beta\in R$ ,

(a) $H_{t}(\beta)$ defines a bounded linear operat0r in $L^{2}(M, d\mu_{g})$ for $0<t<T$.
Moreover, there exists a constant $C_{10}$ such that
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(6.2) $\Vert H_{t}(\beta)f\Vert\leqq\exp C_{10}t\cdot\Vert f\Vert$

for $0<t<T$ and $f\in C_{0}^{\infty}(M)$ .
(b) $\lim_{tarrow 0}\Vert H_{t}(\beta)f-f\Vert=0$ for $f\in L^{2}(M, d\mu_{g})$ .

(c) $\partial_{t}(H_{t}(\beta)f)(x)_{1t=0}=[\Delta/2-(1-(\beta/2))R(x)/6]f(x)$

$=(A_{\beta}f)(x)$ for $f\in C_{0}^{\infty}(M)$ .
(d) There exists a limit $s-\lim_{narrow\infty}(H_{t/n}(\beta))^{n}f$, denoted by $H_{t}(\beta)f$ for each

$f\in C_{0}^{\infty}(M)$ . $\{H_{t}(\beta)\}_{t\geq 0}$ with $H_{0}(\beta)=the$ identity operator, forms a $C^{0}$-semi group in
$L^{2}(M, d\mu_{g})$ with the infinitesimal generator given in (c).

REMARK. Comparing the above theorem with Theorem, we remark that the
order of statements is changed. And in proving (d), we use the fact that the
Laplace-Beltrami operator $\Delta$ is self-adjoint in $L^{2}(M, d\mu_{g})$ under our assumptions.
(This fact is proved in the previous sections but we need that fact in order to
prove $(d).)$

PROOF OF (a), (b). In our case, $t^{d}\Theta^{0}(t, x, y)$ is independent of $t$ and denoted
simply by $\Theta(x, y)$ . We may rewrite the operator $H_{t}(\beta)$ by using normal polar
coordinate at $x$ and $Exp_{x}X=\Phi_{t.x}(x)$ as

(6.1) $(H_{t}(\beta)f)(x)$

$=(2 \pi t)^{d/2}\int_{0}^{\infty}\int_{S^{d- t}}\Theta(x, Exp_{x}r\omega)^{1-(\beta/2)}\exp(-d^{2}(x, Exp_{x}r\omega)/2t)r^{d- 1}drd\omega$ .

To prove the statements (a) and (b), we proceed analogously as proving
Propositions 2.1 and 2.2. $But_{\sim}for\beta\geqq 2$ , we use the fact $\Theta(x, y)\geqq 1$ for estimating
$\Theta(x, Exp_{x}r\omega)^{1-(\beta/2)}$ . (As $V=0$ , we may take $\Theta(x,$ $y)\geqq 1$ in Proposition 1.10.)

PROOF OF (c). Take a function $\nu(x, y)\in C^{\infty}(M\cross M),$ $0\leqq\nu(x, y)\leqq 1$ , satisfying

$\nu(x, y)=\{\begin{array}{ll}1 if d(x, y)\leqq 10 if d(x, y)\geqq 3.\end{array}$

Define operators $H_{1}(t, \beta)$ and $H_{2}(t, \beta)$ as follows:

(6.3) $(H_{1}(t, \beta)f)(x)=(2\pi t)^{-d/2}\int_{M}\nu(x, y)\rho(x, y)^{\beta}\exp(-d^{2}(x, y)/2t)f(y)d\mu_{g}(y)$ ,

(6.4) $(H_{2}(t, \beta)f)(x)=(2\pi t)^{-d/2}\int_{M}(1-\nu(x, y))\rho(x, y)^{\beta}\exp(-d^{2}(x, y)/2t)f(y)d\mu_{g}(y)$ .

Now, we claim the following:

(6.5) $(H_{1}(t, \beta)f)(x)=f(x)+t(A_{\beta}f)(x)+tG_{1}(t, f)(x)$ for $f\in C_{0}^{\infty}(M)$ ,

(6.6) $\lim_{tarrow 0}\Vert G_{1}(t, f)(\cdot)\Vert=0$ ,

and
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(6.7) $\lim_{tarrow 0}\Vert t^{-1}(H_{2}(t, \beta))f(\cdot)\Vert=0$ .
By Taylor’s expansion, we get

(6.8) $f(y)=f(x)+(\partial_{x\iota}f)(x)X^{\ell}+(1/2)(\partial_{X^{i}}\partial_{xJ}f)(x)X^{i}X^{j}+F(x, X)$ ,

where $y=Exp_{x}X$. $(\partial_{X^{i}}f)(x)=\partial_{X^{i}}f(Exp_{x}X)_{1x=0}$ , and

$F(x, X)=(1/6) \int_{0}^{1}[\partial_{x\iota}\partial_{Xj}\partial_{X^{k}}f(Exp_{x}sX)]dsX^{i}X^{j}X^{k}$ .

Then, it is clear that $F(x, X)=\nu(x, Exp_{x}X)F(x, X)$ is a smooth function in
$x$ and $X$ with compact support.

Analogously, we have

(6.9) $\Theta(x, y)^{1-(\beta/2)}=1-(1/6)(1-(\beta/2))R_{ij}(x)Y^{i}Y^{j}+\Theta_{\beta}(x, y)$

$=1+\Theta_{\beta}(x, y)$ ,
where

$\Theta_{\beta}(x, y)=(1/6)\int_{0}^{1}\partial_{Y^{i}}\partial_{Yj}\partial_{Y^{k}}\Theta(x, Exp_{x}sY)^{1-(\beta/2)}dsY^{i}Y^{j}Y^{k}$ .

By assumption (L. IV), there exist constants $C_{11}$ and $\kappa$ such that

(6.10) $|\Theta_{\beta}(x, y)|\leqq C_{11}\exp\kappa|Y|$

for any $x\in M$ and any $Y\in T_{x}M$. Inserting (6.8) and (6.9) into (6.3), we get (6.5)

by defining $G_{1}(t, f)$ as

(6.11) $tG_{1}(t, f)$

$=-f(x)(2 \pi t)^{-d/2}\int_{\tau_{x^{M}}}(1-\nu(x, y))[1+(1/6)(1-(\beta/2))R_{ij}(x)Y^{i}Y^{j}]e^{-1|^{2}/2t}dY$

$+( \partial_{Y^{i}}f)(x)(2\pi t)^{-d/2}\int_{\tau_{x^{M}}}\nu(x, y)Y^{i}\Theta(x, y)^{1-(\beta/2)}e^{-|Y|^{2}/2t}dY$

$-(1/2)( \partial_{Y^{i}}\partial_{Yj}f)(x)(2\pi t)^{-d/2}\int_{\tau_{x^{M}}}[(1-\nu(x, y))+\nu(x, y)\Theta_{\beta}(x, y)]Y^{i}Y^{j}e^{-|Y|^{2}/2t}dY$

$+(2 \pi t)^{-d/2}\int_{\tau_{x^{M}}}F(x, Y)\nu(x, Y)^{1-(\beta/2)}e^{-|Y|^{2}/2t}dY$ ,

where $\nu(x, y)=\nu(x, Exp_{x}Y)$ etc.
By (6.10) and the property of $F(x, y)$ , we have the estimate in (6.6) readily.
The estimate (6.7) is an easy consequence of the introduction of $\nu(x, y)$ .
PROOF OF (d). Under assumptions (M), (L. $I$ ) $-$ ( $L$ . IV), it is well-known that

$\Delta$ is self-adjoint in $L^{2}(M, d\mu_{g})$ . So $A_{\beta}$ is also self-adjoint. Moreover as $A_{\beta}$ is
bounded from below, $A_{\beta}$ generates a $C^{0}$-semi group. This and the facts $(a)-(c)$

guarantee us to apply the generalized Lax theorem to our case (cf. p. 214, Chorin
et al. [4]). So we proved our Theorem 6.1. $q.e.d$ .
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Note added.

After this paper had been submitted, we were informed of the paper of
Darling [Stochastics, Vol. 12, No. $3+4$ (1984), pp. 277-301].

In the introduction of this paper, without having asked us for a detailed
proof, he claims that our argument in [11] contains an error. As this type of
response concerning the term $R(x)/12$ is rather general, especially in physics
literature, it seems meaningful to refute his claim.

From our point of view, neither his paper nor ours contains any mathematical
error. Only for each the understanding of the notorious Feynman $measure_{-}^{Y}-d_{F}\gamma$

is different.
In general, one writes formally the Wiener measure $d_{W}\gamma$ as

(1) $d_{W} \gamma=\exp(-\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau)d_{T})d_{F}\gamma$ for $M=R^{n}$ and $L(\gamma,\dot{\gamma})=(1/2)|\dot{\gamma}|^{2}$ .

This stems from the Feynman-Kac formula representing the fundamental solution
of the heat equation. Here, we try to give a meaning directly to the expression

(2) $\int_{c_{t,x.y}}\exp(-\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d_{T})d_{F}\gamma$ ,

for $M=a$ suitable manifold and $L(\gamma,\dot{\gamma})=(1/2)g_{ij}(\gamma)\dot{\gamma}^{i}\dot{\gamma}^{j}$ by tracing backward the
original argument given by Feynman to derive his famous formula

(3) $F(t, x, y)= \int_{c_{t.x.y}}\exp((i/h)\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d_{T})d_{F}\gamma$

for $M=R^{n}$ and $L(\gamma,\dot{\gamma})=(1/2)|\dot{\gamma}|^{2}-V(\gamma)$ . Here $F(t, x, y)$ is the fundamental
solution of the corresponding Schrodinger equation. So, if we want to regard

(2) as a ‘ definition ’ of measure $\exp(-\int_{0}^{t}L(\gamma(\tau),\dot{\gamma}(\tau))d_{T})d_{F}\gamma$ , then Darling’s result

states that it does not equal to $d_{W}\gamma$ when $M$ is curved.: Actually, we may recover
the formula (1) formally by putting

(1) $d_{W} \gamma=\exp(-\int_{0}^{t}L_{eff}(\gamma(\tau),\dot{\gamma}(\tau))d_{T})d_{F}\gamma$

for $L_{eff}(\gamma,\dot{\gamma})=L(\gamma,\dot{\gamma})-(1/12)R(\gamma)$ . Here, $L_{eff}(\gamma,\dot{\gamma})$ is called an effective Lagran-
gian. But we have, for the time being, no a priori reason to consider $L_{eff}(\gamma,\dot{\gamma})$

instead of $L(\gamma,\dot{\gamma})$ before quantization.
We think in this sense that the origin of the debate concerning the term

$R(x)/12$ has been clarified.
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