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Introduction.

In this paper we study global graph links $i.e$ . graph links in three dimen-
sional manifolds, and the main purpose is to answer Tamura’s problem below
for such links: In [14], [15], Tamura has studied global knot theory–the inves-
tigation of (codimension two) spheres embedded in manifolds. He called a knot
local if it is contained in an embedded ball in the ambient manifold and raised
in [14] the following

PROBLEM. Give criteria for a knot to be local.
In dimension three, the fundamental group of the exterior determines up to

the Poincar\’e conjecture whether given knot is local or not, since Kneser’s con-
jecture is true (see [21]). However, if one looks for a localness criterion in
terms of the homotopy class of the knot, one encounters the following difficulty:
Local knots are inessential $i.e.$ , null homotopic in the ambient manifold, but the
converse does not hold. A counterexample in a solid torus is given in Figure 1.
By the characterization of $S^{3}$ due to Bing [2], any three dimensional manifold
admits a knot with irreducible exterior. Thus embedding the above example
into a tubular neighborhood of such a knot, we have a counterexample in any
manifold. (See Tamura [15] for counterexamples in higher dimensions.)

Figure 1.
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In contrast with this, if we restrict ourselves to graph knots and graph
links, the converse does hold. For the precise argument, we need the notion of
the support and the homotopy support of a link in an orientable three dimensional
manifold. The supPort is the essential part of the ambient manifold, in which
th$e$ link lies, and the homotopy suPport is that in the sense of homotopy (see

section 1).

THEOREM. Let $M$ be an orientable graph manifold and suppose that $M$ does
not contain $S^{1}\cross S^{2}$ and manifolds with finite fundamental groups as prime factors.
Then the suppOrt of a graph link in $M$ coincides with its homotopy suppOrt.

As a corollary to this, we have

LOCALNESS THEOREM FOR GRAPH LINKS. A graph link in a manifold $oS$ in
the above theorem is local if and only if it is inessential.

In these results, the condition on the ambient manifold cannot be omitted.
In fact, all graph manifolds with finite fundamental groups as well as $S^{1}\cross S^{2}$ admit
graph knots which are not local but inessential (section 5). In case where the
ambient manifold contains $S^{1}\cross S^{2}$ as a prime factor, we cannot define the homo-
topy support of links. We determine, however, the support of such a graph
link if it is inessential and also that of a graph link consisting of local knots
(section 5).

The graph manifold theory was first developed by Waldhausen [19] with
his graph decompositions, and was then refined by Neumann [12] with the
plumbing diagrams. In this paper we introduce a new method; $\mathcal{R}$ -decomposi-
tions of graph manifolds, which is a modification of round handle decompositions
due to Asimov [1] (see also Morgan [11]). In section 2 we give the definition
of this and prove fundamental results about it. Using this in section 3, we
establish the following (see sections 1 and 3 for terminology).

CHARACTERIZATION OF GLOBAL GRAPH LINKS. Every graph link is obtained
from elementary ones by a finite number of operatjOns of disjoint union, adding
a cable, replacjng by a cable, link connected sum and self link connected sum.

This was known for graph knots in $S^{3}$ by Gordon [4] and Ue [18] (see

also Soma [13] and Eisenbud-Neumann [3]). In section 4 we study how the
support changes by the operations in this theorem and the main results are
proved in section 5. Finally in section 6, we study Dehn surgeries along graph
knots as an application of $\mathcal{R}$ -decompositions and prove

THEOREM. All but two Dehn surgeries along a graph knot with irreducible
exterior yield irreducible manifolds.

A part of this paper was announced in [20].

The author would like to thank I. Tamura for leading him to this field and
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1. Terminology.

We work in the smooth category, and manifolds are assumed to be con-
nected, compact, oriented, and of dimension three unless otherwise stated. A
manifold $M$ is irreducible if every embedded $S^{2}$ bounds a ball in $M$ and is prime
if either $M$ is irreducible and is not $S^{3}$ or $M$ is $S^{1}\cross S^{2}$ . It is known by Kneser
[9] and Milnor [10] that every manifold is uniquely decomposed as a connected
sum of prime factors. We say that a manifold is prime to $S^{1}\cross S^{2}$ if its prime
decomposition does not contain $S^{1}\cross S^{2}$ as its factor. An embedded orientable
surface in a manifold is incompressible if the homomorphism between the funda-
mental groups induced by the inclusion is injective, and compressible otherwise.

A link is a union of disjointly embedded oriented circles in the interior of
a manifold and a knot is a link with a single component. For convenience, the
emp$ty$ set is also considered as a link, and is called an empty link. We identify
two links if they coincide up to ambient isotopy. A link is inessential if each
component of it is null homotopic in the ambient manifold, and essential other-
wise. A link is nonspliitable if there does not exist an embedded $S^{2}$ which
separates the ambient manifold into two nonempty sublinks.

Now we define the support and the homotopy support of a link $L$ , which
will be denoted by $suPp(L)$ and $h- supp(L)$ , respectively. Although the support
and the homotopy support are diffeomorphism classes of manifolds in the strict
sense, by abuse of notation, we treat them as manifolds in the sequel.

Let $L=\cup k_{i}$ be a link in a manifold $M$. Let $N(L)=\cup N(k_{i})$ be a tubular
neighborhood and $E(L)$ the exterior $M$–int $N(L)$ .

DEFINITION. When $L$ is nonsplittable, there exist a link $L_{0}$ in a manifold
$M_{0}$ with irreducible exterior and another manifold $M_{1}$ such that the pair $(M, L)$

is diffeomorphic to $(M_{0}\# M_{1}, L_{0})$ . Then the support of $L$ is the manifold $M_{0}$ .
In general, $L$ is decomposed into nonsplittable sublinks $L=\cup L_{j}$ , and then the
suPport of $L$ is the connected sum of the supports of $L_{j}’ s$ . The suPport of an
empty link is defined to be $S^{3}$ .

In other words, the support of a link $L$ is given as follows: Consider the
prime decomposition of $E(L)$ and take prime factors which contain some com-
ponent of $\partial N(L)$ . Then the support of $L$ is the connected sum of these factors
with $N(L)$ glued back at $\partial N(L)$ . A link is local if its support is $S^{3}$ and is full
if the ambient manifold is its support.

Let $M$ be a manifold prime to $S^{1}\cross S^{2}$ and fix a homeomorphism $\phi:M\simeq M_{1}\#$

$\# M_{k}$ which gives a prime decomposition. Then there is a natural isomorphism
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$\phi_{*};$ $\pi_{1}(M)arrow\pi_{1}(M_{1})*\cdots*\pi_{1}(M_{k})$ . Let $p_{j}$ ; $\pi_{1}(M_{1})*\cdots*\pi_{1}(M_{k})arrow\pi_{1}(M_{j})$ be a homo-
morphism given by adding relations $\pi_{1}(M_{i})=1$ for $i\neq j$ .

DEFINITION. For a link $L=\cup k_{i}$ in $M$, the homotopy suPport of $L$ is defined
to be the connected sum of $M_{j}’ s$ such that there is a $k_{i}$ with $p_{j}(\phi_{*}([k_{i}]))\neq 1$ in
$\pi_{1}(M_{j})$ . That is,

$h- supp(L)=j$
such that

$p_{j}(\phi_{*}([k_{i}]))\neq 1\#$

for some
$iM_{j}$ .

This definition does not depend on the homeomorphism $\phi$ because of the lemma
below, which is shown in Hempel [6] in the course of the proof of Milnor’s
uniqueness theorem for the prime decomposition. However, for links in manifolds
not prime to $S^{1}\cross S^{2}$ , it cannot be a well defined notion for the lack of the
property below (see Example 4.8).

LEMMA 1.1. Let $M_{i}$ and $N_{j}$ be prime manifolds, not diffeomorphic to $S^{1}\cross S^{2}$ .
If $\psi:M_{1}\#\cdots\# M_{k}arrow N_{1}\#\cdots\# N_{l}$ is a homeomorphism, then $k=l$ and there is a
permutation $\sigma$ : $\{$ 1, $\cdots$ , $k\}arrow\{1, \cdots , k\}$ such that $\psi(\hat{M}_{i})$ is isotopic into $N_{\sigma(i)}$ . Here
$\hat{M}$ denotes the manifold obtained from $M$ by deleting an embedded ball.

A manifold $M$ is a graph manifold if there is a family of disjointly embedded
tori in $M$ such that each connected component of the manifold obtained by cutting
$M$ along these tori is the total space of an $S^{1}$-bundle over a surface. A link is
called a graph link if its exterior is a graph manifold. Note that manifolds
which admit graph links are also graph manifolds.

In the rest of this section we define operations for links, by which a char-
acterization of graph links is given.

For two links $L_{1}\subset M_{1}$ and $L_{2}\subset M_{2}$ , the disjoint union of $L_{1}$ and $L_{2}$ is the
link $L_{1}\cup L_{2}$ in the manifold $M_{1}\# M_{2}$ .

Let $k$ be a knot in a manifold $M$ and Px an identification $N(k)\simeq S^{1}\cross D^{2}$,
where $S^{1}$ and $D^{2}$ are oriented. Then there is a natural basis $\{\mu, \lambda\}$ for
$H_{1}(\partial N(k);Z)\simeq Z+Z$ , dePned by $\mu=[\{*\}\cross\partial D^{2}]$ and $\lambda=[S^{1}\cross t*\}]$ . For two
integers $m$ and $n$ , the $(m, n)$-cable knot of $k$ is a knot on $\partial N(k)$ which represents
$m\mu+n\lambda$ in $H_{1}(\partial N(k);Z)$ , where $m=0,$ $n=\pm 1$ or $m$ and $n$ are coprime (Figure
2). Note that this definition allows $(m, \pm 1)$ -cable knots, which are excluded by
the usual definition.

Let $L_{1}\subset M_{1},$ $L_{2}\subset M_{2}$ be links and $k_{1}\subset L_{1},$ $k_{2}\subset L_{2}$ be components. Take a
small ball $B_{i}\subset N(k_{i})$ which intersects $k_{i}$ by an arc, for $i=1,2$. Glue $M_{1}$–int $B_{1}$

and $M_{2}-$ int $B_{2}$ to make ( $k_{1}$–int $B_{1}$ ) $\cup$ ( $k_{2}$–int $B_{2}$) again a circle and the orienta-
tion compatible. Then the resulting link in $M_{1}\# M_{2}$ (Figure 3) is called the
link connected sum of $L_{1}$ and $L_{2}$ by $k_{1}$ and $k_{2}$ and is denoted by $L_{1}\# L_{2}(k_{1}, k_{2})$ .
For simplicity, we rather write $L_{1}\# L_{2}$ instead of $L_{1}\# L_{2}(k_{1}, k_{2})$ and call any
one of $L_{1}\# L_{2}’ s$ a link connected sum of $L_{1}$ and $L_{2}$ . If both $L_{1}$ and $L_{2}$ are
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$(5, 2)$ -cable knot

Figure 2.

Figure 3.

knots, $L_{1}\# L_{2}is_{\wedge}^{-}called$ the knot connected sum of $L_{1}$ and $L_{2}$ .
Let $L$ be a link in a manifold $M$ with more than one component, and let

$k_{1},$ $k_{2}$ be two distinct components of $L$ . Let $B_{1}$ and $B_{2}$ be balls chosen as
above and glue $\partial B_{1}$ and $\partial B_{2}$ in $M-$ int $B_{1}-$ int $B_{2}$ to make ( $k_{1}-$ int $B_{1}$ ) $\cup$ ( $k_{2}-$ int $B_{2}$)

a circle and the orientation compatible. Then the resulting link in $M\# S^{1}\cross S^{2}$

(Figure 4) is called the self link connected sum of $L$ by $k_{1}$ and $k_{2}$ and is denoted
by $\#_{L(k_{1}}k_{2}$). For simplicity, we rather write $\#_{L}$ instead of $\#_{L(k_{1}}k_{2}$) and calI
any one of $\#_{L’ s}$ a self link connected sum of $L$ .

Figure 4.
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2. $\mathcal{R}$-decompositions of graph manifolds.

To deal with graph manifolds, we introduce in this section the notion of
$\mathcal{R}$ -decompositions, which is a modification of that of round handle decompositions
(compare with graph decompositions by Waldhausen [19] and plumbing diagrams
by Neumann [12]). For round handle decompositions, we refer to Asimov [1]

and Morgan [11].

DEFINITION. A decomposition $\mathcal{D}=\{S_{1}, \cdots , S_{m} ; H_{1}, \cdots , H_{n}\}$ of a manifold $M$

is called an $\mathcal{R}$ -decomposition if
(i) there is a family of disjointly embedded tori such that $\mathcal{D}$ is the set of

connected components of the manifold obtained by cutting $M$ along these tori,
and

(ii) $S_{i}\simeq S^{1}\cross D^{2}$ $i=1,$ $\cdots$ , $m$ , and

$H_{j}\simeq S^{1}\cross$ ($two$ punctured disk) $j=1,$ $\cdots$ , $n$ .

We write $S$ instead of $S_{i}$ and $H$ instead of $H_{j}$ except when confusion might
occur.

Since the twisted $S^{1}$-bundle over the M\"obius band has a Seifert fibered
structure over $D^{2}$ , we have

LEMMA 2.1. A manifold admits an $\mathcal{R}- decompo\alpha tion$ if and only if it is a
graph manifold.

Let $\mathcal{D}$ be an $\mathcal{R}$ -decomposition of a manifold $M$. We say that an element $A$

of $\mathcal{D}$ is a neighbor of another element $B$ if $A$ and $B$ have a common boundary
component in $M$. If $A$ and $B$ are neighbors with the common boundary com-
ponent $T$ , we write $A_{\tau}\sim B$ or simply $A\sim B$ . We set $h(\mathcal{D})$ to be the number $n$

of elements of $\mathcal{D}$ diffeomorphic to $S^{1}\cross$ (two punctured disk).

When $h(\mathcal{D})\geqq 1$ , every element $S$ of $\mathcal{D}$ , diffeomorphic to $S^{1}\cross D^{2}$ , has a unique
neighbor $H\in \mathcal{D}$ , and thus $\partial S$ has the structure of an $S^{1}$-bundle induced by the
inclusion $\partial Sarrow H$. Then the winding number of $S$ is defined by $w(S)=[fibre]$

$\in H_{1}(S;Z)\simeq Z$ . In this case we define the induced decomposition $\Phi=\{\hat{H}_{j}\}$ of $M$

by $\hat{H}_{j}=H_{j}\bigcup_{s_{i}}\bigcup_{\sim H_{j}}S_{i}$ for each $H_{j}\in \mathcal{D}$ . Here the union is taken in $M$, for example,

if two boundary components of $H_{j}$ have the same image under the inclusion
$H_{f}arrow M$, then they are identified in $\hat{H}_{j}$ .

For an $\mathcal{R}$ -decomposition $\mathcal{D}$ of $M$, we define the diagram of $\mathcal{D}$ as follows:
We write $O$ for each $S\in \mathcal{D},$ $\triangle$ for each $H\in \mathcal{D}$ and. for each connected com-
ponent of $\partial M$. Here each edge of $\triangle$ indicates a boundary component of the
corresponding $H$. Two of $O’ s$ , edges of $\triangle s$ and $s$ are connected by–if the
corresponding boundary components have the same image under the inclusion
into M. (See Figure 5 for examples.)
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$?$

Figure 5.

An $\mathcal{R}$ -decomposition $\mathcal{D}$ of $M$ is called minimal unless some union of more
than one elements of $\mathcal{D}$ in $M$ is again diffeomorphic either to $S^{1}\cross D^{2}$ or to
$S^{1}\cross$ (two punctured disk). The arguments below are based on those of Morgan’s
in [11], while $h\epsilon$ used irreducible minimal round handle decompositions.

LEMMA 2.2. SuppOse that $\mathcal{D}$ is a minimal $\mathcal{R}$ -decomPosition \’of a manifold $M$

and that there is an $S\in \mathcal{D}$ with $w(S)=\pm 1$ . Then $M$ is diffeomorphic either to
$T^{2}\cross I$ or to a $T^{2}$-bundle over $S^{1}$ .

PROOF. Let $s\sim HT$ Then $S \bigcup_{T}H\simeq T^{2}\cross I$ ; thus either { $S,$
$q_{1}\iota^{1}$ can be elimi-

nated from $\mathcal{D}9^{r}\mathcal{D}=\{S, H\}$ . The fqrmer case does not $occ\iota fr$ since $\mathcal{D}$ is
minimal, and in the latter case, $M$ is diffeomorphic either to‘ $T^{2}\cross I$ or to a
$T^{2}$-bundle over $S^{1}$ . $\square$

LEMMA 2.3. SuppOse that $\mathcal{D}$ is a minimal $\mathcal{R}$-decomPosition of an irreducible
manifold. Then every $S\in \mathcal{D}$ satisfies $w(S)\neq 0$ .

PROOF. If there is an $S$ such that $w(S)=0$ with $s\sim HT$ then $S\cup {}_{T}H\simeq$

$S^{1}\cross D^{2}\# S^{1}\cross D^{2}$ . This contradicts the minimality of $\mathcal{D}$ or the irreducibility of
M. $\square$

Thus all minimal $\mathcal{R}$ -decompositions of most of irreducible manifolds have no
$S’ s$ with $w(S)=0$ or $\pm 1$ , and the following proposition asserts the converse.

PROPOSITION 2.4. Let $\mathcal{D}$ be an $\mathcal{R}$ -decomPosition of a manifold M. If every
$S\in \mathcal{D}$ satisfies $w(S)\neq 0,$ $\pm 1$ , then $\mathcal{D}$ is minimal and $M$ is either irreducible or
diffeomorphic to $S^{1}\cross S^{2}$ .

For the proof, we need the following two lemmas. The proof of Lemma 2.5
is obvious and is omitted.

LEMMA 2.5. If a manifold $M$ admits an $\mathcal{R}- decomposition\mathcal{D}$ with $h(\mathcal{D})=0$ ,
then $M$ is diffeomorphjc to one of $S^{3},$ $S^{1}\cross S^{2}$ , lens spaces and $S^{1}\cross D^{2}$ .

LEMMA 2.6. If a manifold $M$ admits an $\mathcal{R}$ -decomposition $\mathcal{D}$ such that $h(\mathcal{D})=1$

and each $S\in \mathcal{D}$ satisfies $w(S)\neq 0,$ $\pm 1$ , then $\mathcal{D}$ is minimal and $M$ is diffeomorPfuc
to one of the following:

(1) $S^{1}\cross$ ($two$ punctured disk),

(2) a manifold obtained by gluing two boundary components of $S^{1}\cross(twa$ punc-
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tured disk),
(3) a Seifert fibred space over $S^{1}\cross D^{1}$ with one excepti0nal fibre,
(4) a manifold obtained by gluing the two boundary comp0nents of a manifold

in (3),

(5) a Seifert fibred space over $D^{2}$ with two exceptional fibres, and
(6) a Seifert fibred space over $S^{2}$ with three exceptional fibres.
PROOF. The diagram of $\mathcal{D}$ is one of those in Figure 6 and thus the result

follows. $\square$

(1) (2) (3)

(4) (5) (6)

Figure 6.

PROOF OF PROPOSITION 2.4. In case of $h(\mathcal{D})\leqq 1$ , Lemmas 2.5 and 2.6 imply
the result. When $h(\mathcal{D})\geqq 2$ , each element $\hat{H}_{j}$ of the induced decomposition $\hat{\mathcal{D}}$ is
diffeomorphic to one of (1), (2), (3) and (5) in Lemma 2.6. Therefore every $\hat{H}_{j}$

is irreducible with incompressible boundary, and thus $M$ is irreducible and each
$\partial\hat{H}_{j}$ consists of incompressible tori in M. The minimality of $\mathcal{D}$ follows from the
fact that any incompressible torus in $S^{1}\cross$ (two punctured disk) is boundary
parallel. $\square$

COROLLARY 2.7 (Waldhausen [19]). A manifold is a graph manifold if and
only if so is each prime factor.

PROOF. “ If “ part follows from the fact that the connected sum of two
solid tori is a graph manifold.

Suppose that $M$ is $a$ graph manifold and thus admits an $\mathcal{R}$ -decomposition.
Let $\mathcal{D}$ be $a$ minimal one. If there are no $S’ s$ in $\mathcal{D}$ with $w(S)=0$ , then Lemma
2.2 and Proposition 2.4 imply that $M$ is irreducible or is diffeomorphic to $S^{1}\cross S^{2}$ .
Suppose now that there is an $S\in \mathcal{D}$ such that $w(S)=0$ with $S\sim HT$ Then
$S\cup {}_{\tau}H\simeq S^{1}\cross D^{2}\# S^{1}\cross D^{2}$ . Replacing $S\cup {}_{\tau}H$ by two disjoint solid tori, we have
$a$ new manifold $M’$ , which may be disconnected, and an $\mathcal{R}$ -decomposition $\mathcal{D}’$ of
$M’$ with $h(\mathcal{D}’)<h(\mathcal{D})$ . If $M’$ is disconnected, then $M$ is the connected sum of
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the two components of $M’$ , and if $M’$ is connected, then $M$ is the connected
sum of $M’$ and $S^{1}\cross S^{2}$ . Thus the result is proved by induction on $h(\mathcal{D})$ . $\square$

3. Characterization of graph links.

In this section we give a constructive characterization of global graph links.
For an $\mathcal{R}$ -decomposition $\mathcal{D}=\{S_{1}, \cdots , S_{m} ; H_{1}, \cdots , H_{n}\}$ of a manifold $M$ with

$h(\mathcal{D})\geqq 1$ , we let $\partial \mathcal{D}$ denote the family of disjointly embedded tori {connected
components of $\partial\hat{H}_{j}\}_{j=1\ldots..n}$ , where $\hat{H}_{j}’ s$ are elements of the induced decomposition
$\Phi$ . Note that if $\mathcal{D}$ is minimal, each element $T$ of $\partial \mathcal{D}$ is an incompressible torus

in $M$ (see the proof of Proposition 2.4). We say that a link $L= \bigcup_{i=1}^{l}k_{i}$ in $M$ lies

on $T\in\partial \mathcal{D}$ , if there is a collar $T\cross[0,1]$ of $T$ in $M$ and $k_{i}$ is a knot on $T\cross\{i/l\}$

not null homotopic in $T\cross\{i/l\}$ (Figure 7).

DEFINITION. A graph link $L$ in a manifold $M$ is elementary if the pair
$(M, L)$ satisfies one of the following:

(i) $M$ is a graph manifold and $L$ is empty,
(ii) $M$ is diffeomorphic to one of $S^{3},$ $S^{1}\cross S^{2}$ , lens spaces and $S^{1}\cross D^{2}$ , and

$L$ is the knot given by the core of $a$ solid torus element of some minimal
$\mathcal{R}$ -decomposition $\mathcal{D}$ of $M$ with $h(\mathcal{D})=0$, or

(iii) $M$ is an irreducible graph manifold not diffeomorphic to any of $S^{3}$ ,
lens spaces and $S^{1}\cross D^{2}$ , and $\mathcal{D}=\{S_{1}, \cdots , S_{m} ; H_{1}, \cdots , H_{n}\}$ is some minimal $\mathcal{R}-$

decomposition of $M$ with $\partial \mathcal{D}=\{T_{1}, \cdots , T_{l}\}$ . For subsets $I’$ of $\{$ 1, $\cdots$ , $m\}$ and $J’$

of $\{$ 1, $\cdots$ , $l\}$ , the link $L$ is given by $L= \bigcup_{j\in J},$ $L_{j’} \cup,\bigcup_{i\in I},$
$k_{i’}$ , where the sublink $L_{j’}$

lies on $T_{j’}\in\partial \mathcal{D}$ and the knot $k_{i’}$ is the core of $S_{i’}\in \mathcal{D}$ .
Note that each component of an elementary graph link is essential unless

the ambient manifold is $S^{3}$ .
Now the main result of this section is stated as follows:

THEOREM 3.1 (Characterization of global graph links). Every graph link is
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obtained from elementary ones by a finite number of operatjons of
(1) disjoint union,
(2) adding a cable knot of some component,
(3) replacjng one comp0nent by its cable knot,
(4) link connected sum, and
(5) self link connected sum.

COROLLARY 3.2. Every graph link in $S^{3}$ is obtained from the unknot by a
finite number of operati0ns of disjoint union, adding a cable of some component,
replacjng one comp0nent by its cable, and link connected sum.

COROLLARY 3.3. Every full graph knot in a manifold prime to $S^{1}\cross S^{2}$ is
obtained from elementary graph knots by a finite number of operatjOns of replacing
by a cable and knot connected sum.

Corollaries 3.2 and 3.3 are generalizations of a characterization of graph
knots in $S^{3}$ due to Gordon [4] and Ue [18] (see also Soma [13]), and the former
is obtained also by Eisenbud-Neumann [3].

PROOF OF THEOREM 3.1. (Compare with the proof of Corollary 2.7.) Let $L$

be a graph link in a manifold $M$. Since each prime factor of a graph manifold
is also a graph manifold, we can assume without loss of generality that $L$ is
nonsplittable, full and nonempty. This implies that the exterior $E(L)$ is $irrearrow$

ducible. We set $h(L)$ to be min $h(\mathcal{D})$ , where $\mathcal{D}$ runs over all minimal $\mathcal{R}$ -decom-
positions of $E(L)$ , and we prov $e$ the theorem by induction on $h(L)$ . If $h(L)=0$,
then $E(L)$ is a solid torus by Lemma 2.3, and thus the link $L$ is an elementary
graph knot corresponding to (ii) of the definition. Suppose now that $h(L)\geqq 1$

and that the theorem is veriPed for every graph link $L’$ with $h(L’)<h(L)$ . Let
$\mathcal{D}=\{S_{1}, \cdots , S_{m} ; H_{1}, \cdots , H_{n}\}$ be a minimal $\mathcal{R}$-decomposition of $E(L)$ with $h(\mathcal{D})$

$=h(L)$ . Note that there are no $S’ s$ in $\mathcal{D}$ such that $w(S)=0$, since $E(L)$ is
irreducible. By adding $N(L)$ to $\mathcal{D}$ , we have an $\mathcal{R}$ -decomposition $\overline{\mathcal{D}}=\{S_{1},$ $\cdots$ , $S_{m}$ ,
$\overline{S}_{1},$

$\cdots$ , $\overline{S}_{l}$ ; $H_{1},$ $\cdots$ , $H_{n}$ } of $M$ where $\overline{S}_{1},$
$\cdots$ , $\overline{S}_{l}$ denote components of $N(L)$ . The

rest of the proof is divided into six cases.
Case 1. There are no $S’ s$ and $\overline{S}’ s$ such that $w(S)=0,$ $\pm 1$ and $w(\overline{S})=0,$ $\pm 1$ .

By Proposition 2.4, the $\mathcal{R}$ -decomposition $\Phi$ of $M$ is minimal, and the link $L$

consists of the cores of some solid tori of $\Phi$ . Since $h(\Phi)=h(\mathcal{D})\geqq 1$ , we see that
$L$ is an elementary graph link corresponding to (iii) of the definition.

Case 2. There is an $\overline{S}\in\overline{\mathcal{D}}$ with $w(\overline{S})=0$ . Let $\overline{S}\sim HT$ Then $\overline{S}\cup {}_{T}H\simeq S^{1}\cross D^{2}\#$

$S^{1}\cross D^{2}$ and the core of $\overline{S}$ is as in Figure 8. Replacing ( $\overline{S}\cup {}_{T}H$, the core of $\overline{S}$)

by the disjoint union ( $S^{1}\cross D^{2}$ , the $core$) $\cup$ ( $S^{1}\cross D^{2}$ , the core), we get a graph link
$L’$ in a manifold $M’$ , which may be disconnected, such that $h(L’)<h(L)$ . If $M’$

is disconnected, $L$ is a link connected sum of two components of $(M’, L’)$ , and
if $M’$ is connected, $L$ is a self link connected sum of $L’$ .
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Figure 8.

Case 3. There is an $S\in \mathcal{D}$ with $w(S)=\pm 1$ . By Lemma 2.2, $E(L)$ is diffeo-
morphic to $T^{2}\cross I$ and thus the number of components of $L$ is one or two. If $L$

has only one component, then it is an elementary graph knot in $S^{1}\cross D^{2}$ . If $L$

has two components, then it is a link in one of $S^{3},$ $S^{1}\cross S^{2}$ and lens spaces,
consisting of the cores of two solid tori of some minimal $\mathcal{R}$ -decomposition.
Hence $L$ is obtained from an elementary graph knot which is in one of $S^{3}$ ,
$S^{1}\cross S^{2}$ and lens spaces, by adding a cable knot.

Case 4. There are $\overline{S},$ $S$ and $H$ in $\Phi$ such that $\overline{S}\sim H,$ $S\sim H$ and $w(\overline{S})=\pm 1$ .
In this case $\overline{S}\cup H\cup S\simeq S^{1}\cross D^{2}$ and since $w(S)\neq 0_{;}$ the knot given by the $c$ore of
$\overline{S}$ is $a$ cable knot of the core of this $S^{1}\cross D^{2}$ . Thus the link $L$ is obtained from
a graph link $L’$ with $h(L’)<h(L)$ by replacing one component by its cable.

Case 5. There are $\overline{S},\overline{S}’$ and $H$ in $\Phi$ such that $\overline{S}\sim H,\overline{S}’\sim H$ and $w(\overline{S})=\pm 1$ .
We can assume $w(\overline{S}’)\neq 0$ . Then $\overline{S}\cup H\cup\overline{S}’\simeq S^{1}\cross D^{2}$ , and the link given by the
cores of $\overline{S}$ and $\overline{S}’$ consists of the core of this $S^{1}\cross D^{2}$ and its cable. Thus $L$ is
obtained from a graph link $L’$ with $h(L’)<h(L)$ by adding a cable knot of one
component.

Case 6. We assume that Cases 1-5 do not occur and rearrange $\overline{S}’ s$ and $H’ s$

such that $\overline{S}_{j}\sim H_{j}$ and $w(\overline{S}_{j})=1$ for $j=1,2,$ $\cdots$ , $i_{l}-1$ and $H_{j}\sim H_{j+1}$ for $j=$

$i_{0},i_{0}+1,$ $\cdots$ , $i_{1}-2,$ $i_{1},$ $i_{1}+1,$ $\cdots$ , $i_{2}-2,$ $\cdots$ , $i_{l-1},$ $i_{l-1}+1,$ $\cdots$ , $i_{l}-2$ , where $1=i_{0}<i_{1}<$

$<i_{l}$ and $l\geqq 0$ , and each $\overline{S}$ with $w(\overline{S})=1$ is one of $\overline{S}_{j}’ s$ above (Figure 9). For
$k=0,$ $\cdots$ , $l-1$ , the union $\bigcup_{i_{k}\xi j\leqq i_{k+1}-1}\overline{S}_{j}\cup H_{j}$ in $M$ is diffeomorphic to $T^{2}\cross I$ or to

a $T^{2}$-bundle over $S^{1}$ . Therefore, in the case where $\overline{\mathcal{D}}\neq\{\overline{S}_{j}, H_{j’}\}_{1\leqq j.j’\leqq i_{l}-1}$ , we
can get a new $\mathcal{R}$ -decomposition $\Phi’$ of $M$ by deleting $\{\overline{S}_{j}, H_{j’}\}_{1\leqq j,j’\Rightarrow i_{l^{-1}}}$ from $\Phi$ .
Since none of $H_{j},$ $j=i_{0},$ $i_{1}-1,$ $i_{1},$ $i_{2}-1,$ $\cdots$ , $i_{l-1},$ $i_{l}-1$ is a neighbor of $S$ or $\overline{S}\in\Phi$

other than $\overline{S}_{j}’ s$ above, we see that $\Phi’$ contains no $S’ s$ with $w(S)=0,1$ or $\overline{S}’ s$

with $w(\overline{S})=0,1$ and that there exists an $H\in\Phi$ other than $H_{j}’ s$ above. This
implies that $\Phi$ is minimal and $h(\overline{\mathcal{D}}’)\geqq 1$ . Since $L$ consists of some of the cores
of solid tori in $\Phi’$ and sublinks each of which lies on some element of $\partial\Phi’$ , we
see that $L$ is an elementary graph link corresponding to (iii) of the definition.
In the case when $\Phi=\{\overline{S}_{j}, H_{j’}\}_{1\leq j,j’\leqq i_{l}-1}$ , a similar argument shows that $L$ is $an$
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$H_{1}$ $H_{2}$ $H_{i_{1^{-1}}}$

$\overline{S}_{1}$ $\overline{S}_{2}$
$\overline{S}_{i_{1}-1}$

$111$

$\overline{S}_{i_{l-1}}$ $\overline{S}_{i_{l^{-1}}}$

Figure 9.

elementary graph link in $T^{2}\cross I$ or in a $T^{2}$-bundle over $S^{1}$ .
Thus we have checked all the cases and proved the theorem by induction. $\square$

4. Properties of support.

In this section we study how the support changes by operations in Theorem
3.1. We begin with an easy lemma.

LEMMA 4.1. Let $L$ be a link obtained from another link $L_{1}$ by adding a
cable knot of one component. Then $supp(L)=supp(L_{1})$ , and when the ambient
manifold is prime to $S^{1}\cross S^{2},$ $h- supp(L)=h- supp(L_{1})$ .

In the following lemmas, links $L_{1}$ and $L_{2}$ are assumed to be nonempty,
nonsplittable and full. Note that then $E(L_{i})$ is irreducible and that, by the loop
theorem (see Hempel [6], for example), either $E(L_{i})$ is diffeomorphic to $S^{1}\cross D^{2}$

or every component of $\partial N(L_{i})$ is incompressible in $E(L_{i})$ . In proving our lemmas,
by abuse of notation, we use the winding number $w(S)$ of a solid toral compo-
nent $S$ of any decomposition of a manifold, if $S$ is a neighbor of a component
diffeomorphic to $S^{1}\cross$ (two punctured disk). (See section 2 for the definition.)

Let $k_{1}$ be an elementary graph knot in a lens space $L(P, q)$ . Then the
exterior $E(k_{1})$ is a solid torus and, for $a$ fixed identification $N(k_{1})\simeq S^{1}\cross D^{2}$ , the
meridian curve of $E(k_{1})$ is the $(m_{0}, p)$ -cable knot of $k_{1}$ for some $m_{0}$ .

LEMMA 4.2. Let $k_{1}$ and $m_{0}$ be as above and let $k$ denote the $(m, n)$ -cable knot
of $k_{1}$ . Then

(i) $suPp(k)=S^{3}i.e.,$ $k$ is local if $(m, n)=\pm(m_{0}, p)$ , and $supp(k)=L(p, q)$

otherwise, and
(ii) $h- supp(k)=S^{3}$ if $n$ is divisible by $p$ , and $h- supp(k)=L(P, q)$ , otherwise.
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PROOF. Since (ii) is trivial, we only prove (i). There is an $\mathcal{R}$ -decomposi-
tion $\mathcal{D}=\{S_{1}, S_{2}, H\}$ of $E(k)$ such that $S_{1}$ corresponds to $N(k_{1})$ and $S_{2}$ to $E(k_{1})$ .
(See Figure 10 for the diagram.) Since $w(S_{1})=\pm n$ and $w(S_{2})=\pm(pm-m_{0}n)$ , it
follows that $E(k)$ is irreducible if and only if $(m, n)\neq\pm(m_{0}, p)$ . $\square$

Figure 10.

LEMMA 4.3. Let $L$ be the link obtained from $L_{1}$ by replacjng a component
$k_{1}$ by its cable $k$ . Then $supp(L)=supp(L_{1})$ unless $L_{1}$ is an elementary graph knot
in a lens space.

PROOF. Let $k$ be an $(m, n)$-cable knot of $k_{1}$ . The $n$ , for $a$ decomposition
$E(L)=E(L_{1})\cup S^{1}\cross$ ($two$ punctured $disk$) $\cup N(k_{1})$ , the winding number $w(N(k_{1}))$ is
$\pm n$ and thus $S^{1}\cross$ (two punctured $disk$) $\cup N(k_{1})$ is irreducible with incompressible
boundary. This implies that if $\partial N(k_{1})$ is incompressible in $E(L_{1})$ , then $E(L)$ is
irreducible. In this case $L$ is full and $supp(L)=supp(L_{1})$ . If not, $E(L_{1})$ is a
solid torus and thus $L_{1}$ is an elementary graph knot in $S^{3}$ , $S^{1}\cross S^{2}$ or a lens
space. If $L_{1}$ is in $S^{3}$ , this lemma is trivial and if $L_{1}$ is in $S^{1}\cross S^{2}$ , every cable
of it is essential and thus is full in $S^{1}\cross S^{2}$ . $\square$

LEMMA 4.4. Let $k_{1}$ be an elementary graph knot in $S^{1}\cross S^{2}$ . Then, for any link
$L_{2}$ and any component $k_{2}$ of $L_{2}$ , we have $supp(k_{1}\# L_{2}(k_{1}, k_{2}))=S^{1}\cross S^{2}\#supp(L_{2}-k_{2})$ ,

where $L_{2}-k_{2}$ denotes the sublink of $L_{2}$ consisting of all the compOnents of $L_{2}$ but $k_{2}$ .
PROOF. There is $an$ embedded $S^{2}$ in the ambient manifold of $k_{1}\# L_{2}$

which separates $k_{1}\# k_{2}$ an$dL_{2}-k_{2}$ (Figure 11). $\square$

$S^{1}\cross S^{2}$

Figure 11.
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LEMMA 4.5. SuppOse that neither of $L_{1}$ and $L_{2}$ is an elementary graph
knot in $S^{1}\cross S^{2}$ and let $L$ be a link connected sum of $L_{1}$ and $L_{2}$ . Then $supp(L)$

$=supp(L_{1})\#suPp(L_{2})$ , and when the ambient manifold is prime to $S^{1}\cross S^{2},$ $h- supp(L)$

$=h- supp(L_{1})\#h- supp(L_{2})$ .
PROOF. Since the statement for the homotopy support is trivial, we only

deal with the support. Let $L=L_{1}\# L_{2}(k_{1}, k_{2})$ . Then $E(L)=E(L_{1}) \bigcup_{\partial N(k_{1})}S^{1}\cross(two$

punctured $disk$ ) $\bigcup_{\partial N(k_{2})}E(L_{2})$ . There are four cases correspondi$ng$ to whether
each $\partial N(k_{i})$ is incompressible or not. Suppose, for example, that $\partial N(k_{1})$ is com-
pressible and $\partial N(k_{2})$ is incompressible. Then $E(L_{1})$ is a solid torus and, since
$L_{1}$ is not $an$ elementary graph knot in $S^{1}\cross S^{2}$ , the winding number $w(E(L_{1}))$

for the decomposition above is not zero. It follows that $E(L_{1})\cup S^{1}\cross(two$ punc-
tured disk) is irreducible, and $\partial E(L_{1})$ is incompressible in $E(L_{1})$ . Hence $E(L)$ is
irreducible. Similar proof can be applied for the other cases. $\square$

LEMMA 4.6. The supp0rt of a self link connected sum $\#_{L_{1}}$ of $L_{1}$ is
supp $(L_{1})\# S^{1}\cross S^{2}$ .

PROOF. Let $L=\# L_{1}(k_{1}, k_{2})$ . Then $E(L)=E(L_{1}) \bigcup_{\partial N(k_{1})\cup\partial N(k_{2})}S^{1}\cross(two$ punc-
tured disk). Since $E(L_{1})$ is not a solid torus, both $\partial N(k_{1})$ and $\partial N(k_{2})$ are incom-
pressible in $E(L_{1})$ ; thus the result follows. $\square$

LEMMA 4.7. Let $L$ be the disjoint union $L_{1}\cup L_{2}$ , and let $k_{i}\subset L_{i}$ be a com-
ponent of $L_{i}$ for $i=1,2$ . Then $supp(\# L(k_{1}, k_{2}))=supp(L_{1}\# L_{2}(k_{1}, k_{2}))$ .

Finally we give $an$ example that indicates the difficulty for defining the
homotopical position of links in manifolds not prime to $S^{1}\cross S^{2}$ .

EXAMPLE 4.8. Let $k_{0}$ be an elementary graph knot in $S^{1}\cross S^{2}$ and $k_{1}$ be its
cable. Let $k$ be any knot in any manifold. Then by Lemmas 4.4 and 4.5,
$supp(k\# k_{0})=supp(k_{1})=S^{1}\cross S^{2}$ $butsupp(k\# k_{0}\cup k_{1})=supp(k)\# S^{1}\cross S^{2}$ .

5. Support of global graph links.

In this section we study the support of graph links. First we prove the
following, which is the main result of this paper.

THEOREM 5.1. The suppOrt of a graph link in a manifold prime to $S^{1}\cross S^{2}$

is a connected sum of its homotoPy support and graph manifolds with finite funda-
menial groups.

It is easy to see that this theorem implies the results stated in the introduction
which are concerned with the support of graph links.

PROOF OF $T$HEOREM 5.1. We prove this by induction $on$ the number of
operations in Theorem 3.1. If $L$ is an elementary graph link, then either
$supp(L)=S^{8}$ or each component of $L$ is essential. Thus this theorem holds for
such links. The operations (1) and (4) in Theorem 3.1 make no difference
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between the support and the homotopy support by the definition and Lemma 4.5,
and the operation (2) does not change them by Lemma 4.1. Since the operation
(5) does not appear in this case, we only need to treat with the operation (3).

This operation reduces the homotopy support only if the component represents
a torsion element in the fundamental group and the difference between the
support and the homotopy support is produced only if this reduction occurs. It
is known that if the fundamental group of an irreducible manifold has a non-
trivial torsion, then the group is of finite order (see, for example, Hempel [6]).

Thus this reduction takes place only by cutting off a manifold with finite
fundamental group. This completes the induction and we get the theorem. $\square$

Although the homotopy support is not defined for links in manifolds not
prime to $S^{1}\cross S^{2}$ , for a class of such graph links containing inessential ones, we
have

THEOREM 5.2. Suppose that $L$ is a graph link in a manifold $M$ and that
each componmt of $L$ represents a torsion element in the fundamental group of $M$.
Then the support of $L$ is a connected sum of $S^{1}\cross S^{2}’ s$ and graph manifolds with
finite fundamental groups.

While the proof of this theorem needs Lemmas 4.6 and 4.7, it is done by
induction similar to that of Theorem 5.1 and we omit it.

COROLLARY 5.3. The support of an inessential graph link is a connected sum
of $S^{1}\cross S^{2}’ s$ and graph manifolds with finite fundamental groups.

We remark here that the conclusion of Corollary 5.3 is best possible; more
precisely, we have

PROPOSITION 5.4. Let $M$ be a connected sum of $S^{1}\cross S^{2}’ s$ and graph manifolds
with finite fundamental groups. Then there exzsts a graph knot which is inessential
and full in $M$.

PROOF. For $M=S^{1}\cross S^{2}$ , the self link connected sum of the Hopf link in $S^{3}$

gives an example. For $a$ graph manifold $M$ with finite fundamental group, some
cable of an elementary graph knot is a required example by Lemmas 4.2 and
4.3. In general, one can take $a$ knot connected sum of these. $\square$

We give a figure of lifts to $S^{8}$ of a counterexample in $L(3,1)$ (Figure 12).

It is natural to ask: if one assumes the localness of each component instead
of inessentiality, what is the support of a link ? In general, the characterization
of $S^{3}$ due to Bing [2] implies the $e$xistence of a full link consisting of local
knots as well as that of an inessential full knot in any manifold as in the
introduction. For graph links, however, we have the following

THEOREM 5.5. Supp0se that $L$ is a graph link and that the supp0rt of each
comp0nent of $L$ is a connected sum of lens spaces. Then the supp0rt of $L$ is a
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Figure 12.

connected sum of $S^{1}\cross S^{2}’ s$ and lens spaces.
PROOF. We prove this by induction on the number of operations in Theorem

3.1. For elementary graph links, this theorem obviously holds. The operations
in Theorem 3.1 add new factors to the support of the link only in the case that
the operation (5) adds $S^{1}\chi S^{2}$ . They reduce the support of some component only
in the following two cases: either the operation (2) reduces it by a lens space
$or$ the operation (4) reduces it by any manifold when the connected sum is taken
by $an$ elementary graph knot in $S^{1}\cross S^{2}$ . In the latter case, however, there
remains $a$ component the support of which is $S^{1}\cross S^{2}$ . This completes the induc-
tion and we get the theorem. $\square$

Note that by Example 4.8, there exists a graph link $L$ such that the support
of each component of $L$ is $S^{1}\cross S^{2}$ but the support of $L$ is not a connected sum
of $S^{1}\cross S^{2}’ s$ and lens spaces.

COROLLARY 5.6. The suPport of a graph link consisting of local knots is a
connected sum of $S^{1}\cross S^{2}’ s$ and lens spaces.

The conclusion of Corollary 5.6 is best possible. More precisely, we have

PROPOSITION 5.7. Let $M$ be a connected sum of $S^{1}\cross S^{2}’ s$ and lens spaces.
Then there exists a full graph link in $M$ consisting of local knots.

In a solid torus of a minimal
$\mathcal{R}$ -decomposition of $L(3,1)$

Figure 13.
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We give here figures of such links in $L(3,1)$ and $S^{1}\cross S^{2}$ instead of the proof
(Figure 13).

6. Dehn surgery along full graph knots.

As an application of $\mathcal{R}$ -decompositions, we study Dehn surgeries along full
graph knots in this section.

A knot $k$ is called framed if we are given an identification $S^{1}\cross D^{2}\simeq N(k)$ ,

where $S^{1}$ and $D^{2}$ are oriented. Then the basis $\{\lambda, \mu\}$ for $H_{1}(\partial N(k);Z)$ is given
by $\mu=[\{*\}\cross\partial D^{2}]$ and $\lambda=[S^{1}\cross\{*\}]$ under this identification. For a framed knot
$k$ in a manifold $M$ and $a$ number $r\in Q\cup\{\infty\}$ , we let $\chi_{M}(k, r)$ or simply $\chi(k, r)$

denote the manifold obtained from $M$ by Dehn surgery of type $r$ on $k$ . That is,

$\chi_{M}(k, r)=(M-N(k))\bigcup_{\varphi_{r}}S^{1}\cross D^{2}$ ,

where $\varphi_{r}$ : $\partial N(k)arrow\partial(S^{1}\cross D^{2})$ satisfies $\varphi_{r*}(p\mu+q\lambda)=0$ in $H_{1}(S^{1}\cross D^{2} ; Z)$ for coprime
integers $P$ and $q$ with $r=P/q$ .

The main result of this section is the following, and a motivation of proving
this is Thurston’s theory of hyperbolic Dehn surgery ([16], \S 5). (See Ue [18]

for Dehn surgery along graph knots in $S^{3}.$ )

THEOREM 6.1. Let $k$ be a framed full graph knot in a manifold M. Then
there are at most two values of $r$ such that $\chi_{M}(k, r)$ is not irreducible. Moreover,

if there exzst two such values, then one of the resulting manifolds is the connected
sum of a lens space and an irreducible manifold.

For the proof of this theorem, we need some lemmas. Let $H=S^{1}\cross(S^{2}-$

$intD_{A}^{2}-intD_{B}^{2}-intD_{C}^{2})=S^{1}\cross$ (two punctured disk), where $S^{1}$ and $S^{2}-intD_{A}^{2}-$

int $D \frac{9}{B}-intD\partial$ are oriented, and let $T_{A}=S^{1}\cross\partial D_{A}^{2},$ $\tau_{B}--S^{1}\cross\partial D_{B}^{2},$ $T_{c}=S^{1}\cross\partial D_{C}^{2}$ be
components of $\partial H$. Let $\alpha,$ $\beta,$

$\gamma$ and $\delta$ denote the homology classes of $H$ given
by $[\{*\}\cross\partial D_{A}^{2}],$ $[\{*\}\cross\partial D_{B}^{2}],$ $[\{*\}\cross\partial D_{C}^{2}]$ and $[S^{1}\cross\{*\}]$ , respectively. Fix pairs
$(b_{1}, b_{2})$ and $(c_{1}, c_{2})$ of coprime integers with $b_{1}\geqq 2$ and $c_{1}\geqq 2$ , and let $\psi_{B}$ : $T_{B}arrow$

$\partial(S^{1}\cross D^{2})$ and $\psi_{C}$ : $T_{C}arrow\partial(S^{1}\cross D^{2})$ be diffeomorphisms which satisfy $\psi_{B*}(b_{1}\beta+b_{2}\delta)$

$=0$ and $\psi_{C*}(c_{1}\gamma+c_{2}\delta)=0$ in $H_{1}(S^{1}\cross D^{2} ; Z)$ , respectively. For coprime integers $x$

and $y$ , we let $\varphi:T_{A}arrow\partial(S^{1}\cross D^{2})$ be $a$ diffeomorphism which satisfies $\varphi_{*}(x\alpha+y\delta)$

$=0$ in $H_{1}(S^{1}\cross D^{2} ; Z)$ .

LEMMA 6.2. Let $N=H \bigcup_{\varphi}S^{1}\cross D^{2}$ . Then
(1) $N\simeq S^{1}\cross D^{2}\# S^{1}\cross D^{2}$ if $(x, y)=(O, \pm 1)$ , and
(2) $N$ is irreducible with $inco7npres\alpha ble$ boundary, otherwise.

LEMMA 6.3. Let $N=(H \bigcup_{\psi_{B}}S^{1}\cross D^{2})\bigcup_{\varphi}S^{1}\cross D^{2}$ . Then
(1) $N\simeq L(b_{1}, b_{2})\# S^{1}\cross D^{2}$ if $(x, y)=(O, \pm 1)$ ,
(2) $N\simeq S^{1}\cross D^{2}$ if $(x, y)=\pm(1, n)$ , and
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(3) $N$ is irreducible with $incomP^{\gamma eS\mathfrak{N}}ble$ boundary, otherwise.
In case of (1), the men&an curve of the prjme factor $S^{1}\cross D^{2}$ of $N$ represents $\pm\delta$

in $H_{1}(T_{C} ; Z)$ and in case of (2), the meridian curve of $N\simeq S^{1}\cross D^{2}$ represents
$\pm(b_{1}\gamma+(b_{2}+nb_{1})\delta)$ in $H_{1}(T_{C} ; Z)$ . In particular, no pair of such homology classes
in $H_{1}(T_{C} ; Z)$ have intersection number $\pm 1$ .

LEMMA 6.4. Let $N=(H \bigcup_{\psi_{B}}S^{1}\cross D^{2}\bigcup_{\psi_{C}}S^{1}\cross D^{2})\bigcup_{\varphi}S^{1}\cross D^{2}$ . Then
(1) $N\simeq L(b_{1}, b_{2})\# L(c_{1}, c_{2})$ if $(x, y)=(O, \pm 1)$ ,
(2) $N\simeq S^{1}\cross S^{2}$ if there exests an integer $n$ such that $(c_{1}, c_{2})=(b_{1}, b_{2}+nb_{1})$ and

$(x, y)=\pm(1, n)$ for this $n$ , and
(3) $N$ is irreducrble, otherwise.
The proof of Lemmas 6.2-6.4 are immediate and are omitted.
PROOF OF THEOREM 6.1. Let $\mathcal{D}$ be a minimal $\mathcal{R}$ -decomposition of $E(k)$ .

If $h(\mathcal{D})=0$ , then this theorem is obvious. Suppose that $h(\mathcal{D})\geqq 1$ . Then there is
a unique $H\in \mathcal{D}$ such that $H\supset\partial N(k)$ . We divide the proof into three cases.

Case 1. There are no $S’ s$ of $\mathcal{D}$ such that $H\sim S$ . Let $M’=N(k)\cup H$. Then,
since $\partial M’$ is incompressible in $M$–int $M’$ , we see by Lemma 6.2 that $\chi(k, r)$ is
irreducible for all but one value of $r$ .

Case 2. There are $S$ and $S’$ of $\mathcal{D}$ such that $H\sim S$ and $H\sim S’$ . Since $M=$

$N(k)\cup H\cup S\cup S’$ , the result follows from Lemma 6.4.
Case 3. There is a unique $S$ of $\mathcal{D}$ such that $H\sim S$ . Rearrange $S’ s$ and $H’ s$

in $\mathcal{D}$ such that the diagram of $\mathcal{D}$ is as in Figure 14. Here 1 is taken to be
maximal, $i.e.$ , either $H_{l}\supset B$ for some boundary component $B$ of $M$ or $H_{l}\sim H_{l+1}$

with $H_{l+1}$ as in Case 1 or 2. Note that there exists a unique $r_{1}$ such that
$w(S^{1}\cross D^{2})=0$ with respect to $S^{1}\cross D^{2}\sim H_{1}$ , where $S^{1}\cross D^{2}$ is the attaching solid

torus of this Dehn surgery. Let $(M_{m}, k_{m})$ denote the pair $(N(k) \cup\bigcup_{n=1}^{m}(H_{n}\cup S_{n}), k)$ .
Then for $r\neq r_{1},$ $\chi(k, r)$ is not irreducible only if there exists an $m$ such that
$\chi(k_{n}, r)\simeq S^{1}\cross D^{2}$ for all $n\leqq m$ and $w(\chi(k_{m}, r))=0$ with respect to $\chi(k_{m}, r)\sim H_{m+1}$ .
Let $r_{2}$ be such a value of $r$ with the number $m$ minimal. Then for every $r$

with $r\neq r_{1},$ $r_{2}$ , Lemma 6.3 implies that either $\chi(k_{m}, r)$ is irreducible with incom-
pressible boundary or $\chi(k_{m}, r)\simeq S‘\cross D^{2}$ and also that, in the latter case,
$w(\chi(k_{m}, r))\neq 0,$ $\pm 1$ with respect to $\chi(k_{m}, r)\sim H_{m+1}$ even if there is an $H_{m+1}$ with
$H_{m}\sim H_{m+1}$ . Thus in both cases, $\chi(k, r)$ is irreducible.

$\partial N(k)$ $H_{1}$ $H_{2}$ $H_{l}$

$S_{1}$ $S_{2}$ $S_{l}$

Figure 14.
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Now suppose that there are two such values and let $r_{1}$ and $r_{2}$ be as above.
Then $\chi(k_{1}, r_{2})\simeq S^{1}\cross D^{2}$ and $w(\chi(k_{1}, r_{2}))=0$ or $\pm 1$ with respect to $\chi(k_{1}, r_{2})\sim H_{2}$ .
Therefore Lemma 6.3 implies that $\chi(k_{1}, r_{1})\simeq$ (a lens space) $\# S^{1}\cross D^{2}$ and $w(S^{1}\cross D^{2})$

$\neq 0,$ $\pm 1$ with respect to $S^{1}\cross D^{2}\sim H_{2}$ for the prime factor $S^{1}\cross D^{2}$ of $\chi(k_{1}, r_{1})$

above. This completes the proof of Theorem 6.1. $\square$

This, together with Thurston’s uniformization theorem [17], implies the
following

COROLLARY 6.5. Let $k$ be a framed full knot in a closed manifold M. Then
$\chi(k, r)$ is irreduczble for all but finitely many $r$ .

This is proved by Gordon [4] for knots in $S^{3}$ , and the proof we give here
is similar to that in [4]. We remark that this corollary also follows from a
result of Hatcher [5].

PROOF. If $\partial E(k)$ is compressible in $E(k)$ , then $E(k)$ is $a$ solid torus and the
result follows easily. Otherwise, $E(k)$ is irreducible and $\partial E(k)$ is an incom-
pressible torus. Then, by the torus decomposition theorem due to Jaco-Shalen
[7] and Johannson [8] and by Thurston’s uniformization theorem, we see that
there exists a family of disjointly embedded incompressible tori in $E(k)$ such
that each connected component of the manifold obtained by cutting $E(k)$ along
these tori is either $a$ graph manifold or “ hyperbolic “ in the sense of Thurston
[16]. Let $P$ denote the component of this decomposition which contains $\partial E(k)$

and let $(\overline{P},\overline{k})=(P\cup N(k), k)$ . There are two cases.
Case 1. $P$ is a graph manifold. If $\partial P$ consists only of $\partial E(k)$ , then $k$ is a

graph knot and the result follows from Theorem 6.1. Suppose that $\partial P$ consists
of more than two components. Then the proof of Theorem 6.1 says that, for
all but two values of $r$, the manifold $\chi_{\overline{p}}(\overline{k}, r)$ is irreducible with incompressible
boundary and thus $\chi(k, r)=x_{\overline{p}}(\overline{k}, r)\cup$ ($M$–int $P$ ) is irreducible. Suppose that $\partial P$

consists of two components. Let $\partial P=\partial E(k)\cup\partial {}_{0}P$ and let $P’$ denote the other
component of the decomposition above which contains $\partial_{0}P$. We can assume that
$P’$ is hyperbolic. Now the proof of Theorem 6.1 says that for all but two
values of $r$, the manifold $\chi_{\overline{P}}(\overline{k}, r)$ is either irreducible with incompressible bound-
ary or diffeomorphic to $S^{1}\cross D^{2}$ . In the latter case, however, the meridian curves
represent different homology classes of $\partial_{0}P$ for different values of $r$, and thus
the result follows from Thurston’s theory of hyperbolic Dehn surgery ([16], \S 5),

since $P’$ is hyperbolic.
Case 2. $P$ is hyperbolic. In this case, the result follows directly from

Thurston’s theory of hyperbolic Dehn surgery. $\square$
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