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A recursive calculation of the Arf invariant of a link
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The Arf invariant of a knot was introduced in [1I], and it can be cal-
culated from its Alexander polynomial or its Conway polynomial [6]. The Arf
invariant of a proper link (a link L is proper if 1k(K, L—K) is even for every
component K in L, where lk means a linking number) is defined to be that of a
knot which is related to it (a knot K is related to a link L if there is a smoothly
and properly embedded disk with holes D in R*x[0, 1] with DNR3*x {0}=K and
DNR*x{1}=—L [11]). K. Murasugi found a relation between the Arf in-
variants and the Alexander polynomials of two-component links [10]. The author
showed in that for some classes of proper links the Arf invariants can be
expressed in terms of their Conway polynomials. See also [3].

In this paper we consider V.(z), where V(t)is V. F.R. Jones’ trace invariant
and 7/=+/—1. He proposed there that one is allowed to define an Arf in-
variant of L as V.(z), and here we show that

(v 2)#-1 if L is proper and Arf(L)=0,
Vi)=1—(/2)¥ -1, if L is proper and Arf(L)=1, and
0, if L is not proper,

where #(L) is the number of components in L, Arf(L) is the Arf invariant of
L, and /7 1is chosen to be ¢®/®2%% ijn V. (7). This gives an answer to the
Problem 12 in [2].

Using a recursive definition of V(t) introduced by several people ([4], [8]),
we can calculate the Arf invariant of any proper link recursively as follows.

DEFINITION. For any oriented link L, a numerical link type invariant I(L)
is defined so that it satisfies the following two axioms.
" (i) For the trivial knot O, I(0)=1, and
(i) If three links L, L’, and [ are related as in Figure 1 (the other parts
are identical), then

I(L)+I(L)=~2-1().
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Figure 1.

REMARK. Vi(¢) is defined so that 1/t Vi @#)—t- Vo ()= —=1/+/T) Vi)
with Vo({)=1. A simple calculation shows that I(L)=V_.(7), and so the above
definition is well-defined. For another proof of well-definedness see [4], [8].

Then we have
THEOREM.

(W2)¥D=1 . if [ is proper and Arf(L)=0,
I(L)y={—(v/2)¥P-1  {f L is proper and Arf(L)=1, and
0, if L is not proper.

Before proving the theorem, we show the following.

LEMMA. Suppose that L, L’, and | are given as in Figure 1 and that #(L)
=#(LN=#{)—1. If L and L’ are proper and [ is not proper, then Arf(L)+
Arf(L").

Proor. Let K, K’, k;, and k, be knots in L, L’, or [ as indicated in Figure 2.

Figure 2.

Let 2 be a knot obtained from /—k, after a fusion, [ be the resulting two-
component link obtained from /, and L and L’ be the corresponding knots ob-
tained from L and L’ respectively.

We will show that lk(k,, £) is odd. Since L is proper, 0=Ilk(K, L—K)=
1k(ky, {—Fk)+1k(k,, [—ky) (mod2). Thus we have 1k(k,, £)=1 (mod 2) since other-
wise 1k(k,, [—Fk,)=1k(k,, [—k,)=0 (mod2) and / cannot be non-proper.

Now it follows from Theorem 10.7 in (see also Lemma 3.1 in [12]) that
Arf(L)+Arf(L)=Arf(L)+Arf(L")=1k(k,, B)=1(mod2). Thus Arf(L)#Arf(L’),
completing the proof.
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PrROOF OF THE THEOREM. If L, L’, and [ are given as in Figure 1, then we
write L=L'&! and also L'=LPl. Contin'uing this, we can write L=L,PL,D
L, (here we omit parentheses), where L; is a trivial link (j=1, 2, ---, m)
[7] We define d(L) to be the minimum number of such m’s (d(L)=1).

We will induct on d(L). If d(L)=1, L is a trivial link.

OO0

Figure 3.

Figure 3 and a simple induction will show that [(L)=(4/2)¥® " in this case,
while Arf(L)=0.

Now suppose that the theorem is proved for every link L’ with d(L")<m
and consider a link L with d(L)=m. We may assume that L, L/, and / are as
in Figure 1 and that d(L")<m and d{(/)<m. There are two cases.

Case 1. Suppose that #(L)=#(L")=#()—1.

(A) First assume that L is proper. Then L’ is also proper. If /is proper,
then Arf(L)=Arf(L")=Arf(). So from the inductive hypothesis I(L)=
V2 W DED (/2NN =4 (4/2)¥ -1 gecording to whether Arf(L) is
0 or 1. If [ is not proper, then from the above lemma Arf(L)=Arf(L’). So I(L)
=F(4/2)*-1 gccording to whether Arf(L) is 1 or 0.

(B) Next assume that L is non-proper. Then L’ is also non-proper. It is
easily shown that / is non-proper and so I(L)=0.

Case 1. Suppose that #(L)=#(L")=#({)+1.

(A) Assume that L is proper. Then L’ is non-proper and / is proper. Since
Arf(L)=Arf(l), I(L)=+/2 =~/ 2)¥P1=+4(4/2)¥ -1 according to whether
Arf(L) is 0 or 1.

(B) Assume that L is non-proper. If L’ is proper, then [ is proper and
Arf(L)=Arf(l). So I{L)=+/2-I()—I(L")=0. If L’ is non-proper, then it is
easily proved that / is also non-proper and so [(L)=0.

Now the proof is complete.
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