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§1. Introduction.

In this paper we study the structure of the scattering operator for time-
periodic Schrodinger equations with period w:

(1.1) z'—gt—gb(t, x)=(—A+V(t, x)p, x), o, HYed=L R"),

(1.2) Vitto, x)=V({, x)ER, (teR, x€R").

Under suitable conditions on V(¢, x) to be specified below, generates a
unitary evolution operator U(t, s), —oo<t, s<oo, and for each s=R, the wave
operators defined by

(1.3) W .(s)=s-lim U(s, t)e-t¢-8Ho, Hy=—A,

t—too

exist and are complete: RanW.(s)=42°(U(s+w, s)) (see Yajima [14], Howland
[6], Kitada-Yajima [8], Nakamura [11]). Then the scattering operator defined by

(1.4) S(s)=W . (s)*W _(s)
is unitary, and by virtue of the time-periodicity, it satisfies
(1.5) S(s)e~teHo=g-t®HoS(s),

It follows that, if we denote a spectral representation of H, by (F(1), 2(2), d2),
S(s) is decomposed as

S(S)ZZS,,,
(1.6) (2—*#)5,4& S, WFQ¢ (ae ),

SuneB(x, x(z—z’iy))

for any ¢=4. We call (S «(A)} S-matrices (see §2 for details).
In this paper we are concerned with the structure of S(s) or {§ A}, and
show that the decay of S «(4) as p tends to infinity is completely determined by
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the smoothness property of V(¢, x) in {. We assume that the potential V(¢ x)
satisfies

ASSUMPTION (A)sz. For some p> n, a>1/2, and ﬂ>0, t—¥(1—|—1x]2)a-V(t, x) is
an (L2(R™)+ L=(R™)-valued C**#-function. ‘

We denote the eigenvalues of U(s+w, s) by {e*“%i},_;, .., and set the ex-
ceptional set & as

2 . \ 2r
(L.7) a_{z-pwj P peZ, j=1,2, -} 7,
Under Assumption (A)g, it is known that € is a closed set with no accumula-

tion points except (2rx/w)Z (see Nakamura Theorem 2.18). Our main result
is formulated as follows.

THEOREM 1. Let (A)g be satisfied. Suppose that | is a compact subset of R
such that JNE€=@, and that e<p is a positive constant. Then

(1.8) 1P as>m (H)S($)Py(Ho)l| <CE-4* - (E>0),

where {Po(H,)} is the spectral measure of H,.

Scattering theory for time-periodic Schridinger equations has been studied
by Schmidt [13], Yajima [14], Howland [6], Kitada-Yajima [8], and others ([1],
[3] [11]), and the existence and the completeness of the wave operators have
been proved by them. To prove these properties, Schmidt used the trace class
method of Birman-Kato; Yajima and Howland employed a time-periodic version
of the Howland stationary theory for time-dependent Hamiltonians ([5]); and
Kitada-Yajima used a variation of Enss time-dependent method ([2]). See Yajima
for further references. On the other hand, representation of the scattering
operator for time-independent Schrédinger operators had been known in the
physical literature since 1950’s, and proved rigorously by stationary scattering
theory (see the note for XII-§6 of Reed-Simon [12], and Kuroda for ex-
ample). Here we shall combine an abstract representation formula given by
Kuroda [9] with the method of Yajima-Howland to obtain a representation of
S(s) (see [Theorem 2).

In §2 we review the method of Yajima-Howland, and construct an explicit
representation of S(s). In §3 we estimate {S,(2)} and prove [Theorem 1.

NoTtATIONS. We shall use the following notations throughout the paper.

We denote the set of natural numbers by N, integers by Z, and reals by R.
We write R™ for the Euclidian n-space.

For a Hilbert space % and a measure space M, we write L?(M, 4) for the
H-valued L?-space on M, and write [(4)=L?(Z, %). For a pair of Banach
spaces (X, Y), B(X, Y) denotes the Banach space of all bounded operators from
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X to Y, and we write B(X)=B(X, X).
H7(R™) is the Sobolev space of order y on R"”, and HJ(R") denotes the
weighted Sobolev space:

(L.9) HIR")={gp=S"(R") : (1+|x|)**¢p(x)=H'(R")}.

We write L2(R")=HJR") for the weighted L*space. For meN and 0<f<],
C™*B(R) denotes the class of C™-functions whose m-th derivative is Holder con-
tinuous of order B.

For a function F=F(x), we denote the multiplication operator by F(x) by
the same symbol F. We write {x>=+/1-+[x]? for x=R".

9 ,.¢ denotes the Fourier transform from R?%-space to RZ-space and is de-
fined by :

(1.10) (@O =@ =2m) ™| e~ =Fp(x)dr.

F,..¢ denotes the Fourier series expansion of ¢ on [0, ) and is defined by
(L.11) (Et“b#qi)#:w"”zg:e‘””/‘”‘”qi(t)dt.

We define the energy support of ¢ = L*R") by

(1.12) E-suppg={[§]* : §Esupp(F._:0)}.

§2. Representation of the scattering operator.

In this section we assume (A);. Then it is known that generates a
unitary evolution operators.

PROPOSITION 2.1. There exists a set of unitary operators {U(t, s): t, SER}
such that

(2.1) t, s)— U, s): strongly continuous.

(2.2) U, s)y=Ut(, »nU(r, s) i, 7, sER).

(2.3) Uit+o, s+w)=U(, s) (t, s€R).

(2.4) U, s)H¥R™)=H*R") (t, sER).

(2.5) %U(t, )P=i(H,+-V)U({, s)¢  (t, seR, ¢=H¥R"),

4 U, 9g=—it, AV ¢, =R, JSHYR),
where the derivatives are taken in the strong sense.
For the proof see Kato [7], Yajima [14].

It is known also that the wave operators exist and are complete (Kitada-
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Yajima [8], see also Yajima [14], Howland [6], Nakamura [117]).
PROPOSITION 2.2. The wave operators defined by
(2.6) Wi(s)zst-lirn U(s, t)e 1t -9Ho

exist and are complete:
2.7 RanW .(s)=42<(U(s, s+w)).

Now, following Yajima and Howland [6], we introduce
2.8) K=LXT, %)=L T)Qd4, H=L¥R"), T=R/w,
and we define the propagators U,(c), U(g) by
(2.9) (U@ )(t)=e" "W (t—0a),

(2.10) (U(@T))y=U(t, t—a)¥(t—a),

for ={T@):teT, Tt)es} =K. It follows easily from [Proposition 2.1 that
{Uso):0€R} and {U(e):oc=R} are one parameter unitary groups on XK.
Then by Stone’s theorem, there exist self-adjoint operators K, and K such that
Uylg)=e %o and VU(g)=e "X,

We define U,, and U,eB(4, X) by

(2.11) (Uosp)B)=e "ty (0=t<w),
(2.12) (Usp)t)=U(t, s)p  (0=t<w),
for ¢ =4, where we identify 7T with [0, w).
LeMMA 2.3 (Yajima [14], Howland [6]). Wave operators defined by
(2.13) W*:SLIEE U(—0)U,(a)
exist and are complete: RanW.=XK**(K). Thus the scattering operator defined by
S=WtW_ is unitary. Moreover,
(2.14) W Ups=UsW .(3),
(2.15) UESUss=wS(s).
PrRoOF. From the definitions (2.9)~(2.12), we see for ¥ X,
(2.16) (U(e)*Uo(a)¥)1)  (0=t<w)
=U(t, t+a)e "l (¢)
=U(t, sHU(s, t+a)e-tott=Ho) pit= Holll (1) |

By this formula, we obtain the existence of 9y., (2.14) and [2.15). If we set
(UTO=U(t, s)T(t) (0<t<w), we see also
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2.17) (V@) )=U{t+o, )T(t)
=U(t, s)U(s+o, s)U(s, HT)

=(U,(IQU(s+w, )NU)1).
Thus we have

(2.18) H(K)=K2(U(w))

=KV, UQU(s+w, $)T¥)

=V, H(QU(s+w, s))

=V (LAT)QRanW.(s))  (by [Proposition 2.2).
The completeness follows from [2.16) and [2.18). O

Let us consider K,. Denote by 7(p) the trace operator: y(o)¢(x)=¢(x)
(x€pS™ ), H*(R™)—L*pS™"'), and define F): LYR™—L¥AV2S™)=%(2) by
Fay=2-122-118209)F , . if =0, and F(2)=0 if 2<0. Then it is well-known
that (F(2), 2(), d2) provides a spectral representation of H, i.e.

2.19) Pg(Ho)———SZEQF(l)*ﬁ(l)dl (2: a Borel set of R)

where the integral is a Riemann integral of B(LZ(R"), L%,(R™))-valued con-
tinuous function.

LEMMA 2.4. K, can be represented as

2
(2.20) (9,*#KOW)#:(HO+AQT” 2N TEDK).
Further, if we define
2
Fy: LXT, L) — & x(i—"p)=U@

p<(w/2m) A

by
(O, =F(1=F 3,0,

then (F(R), Y(A), dA) provides a stectral representation of K, i.e.
(2.21) PQ(KO):SX QF(X)*F(Z)dZ (2: a Borel set of R)
(=

where the integral is a Riemann integral of B(L¥T, L), LXT, L2,))-valued con-
tinuous function.

PROOF. follows easily from the definition [2.9) From [2.20) we have

27
(2.22) gt—-yf(Ko>’:f(Ho+—(;'#)gt-»p,
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for any bounded Borel function f on R. So we see

2
2.23) (D, oK)= ((F1u @) Pa(Hort - 2)(F i)

=3 (F D)y FQHEANT ., W),)d2

# glﬂzzlw)yeg

Sle!)%(ﬁ(z—%@iﬂyg"%@)w ﬁ<2-——257r“#>(9:t—»yw.)‘u>d/2

Il

=S1€Q(F<z)@, FOWYd2,
for @, U= LXT, L2). This proves [2.21). O

Next we consider the potential function V (¢, x). We define an operator V
on X by (VA x)=V({, x)f(t, x), and set

(2.24) V,,(x):wl/%ng)ﬁ:S:'e-mw/wvu, x)dt.

LEMMA 2.5. For y such that n/p<y<l1, and for e<p,

(2.25) F§Z<#>EH<X>“VA!B(H7, 12) <0,
and for ¥ LXT, HT),
(2.26) (EF,_,;,VW),,Zy;ZV#_,,(S‘t,#W),,.

Proor. By Assumption (A)s, we have

(2.27) sup <RIV ()| Lpa e < 0.
ue
Thus,
(2.28) LU IKxD*V ((x) || psre< o0,
HEZ

Since for any multiplication operator F=F(x) and for n/p<y<l, |Flpwr 1=

C|F|lzp+1 by Sobolev embedding theorem, we obtain [2.25). is obvious. I

We fix 7 in the above lemma.

LEMMA 2.6 (Yajima-Kitada [16]). V is Ky-bounded with zero Ky-bound and
K:K0+V.

Proor. The lemma follows from [2.26) and the fact that {x)>~*(H,+1)*»7
is K,-bounded with zero K -bound (see Lemma 4.2 of Yajima-Kitada [16], see
also Proposition 2.4 of Nakamura [11]). O

LEMMA 2.7. G-(A=lim.,(1+(K,—(A+7¢€)) V)t  exists for A&EE in
B(L¥T,H!(R"™)), and G-(A) is uniformly bounded in A&] if ] satisfies the as-
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sumptions of [Theorem 1.
For the proof, see Nakamura [11], or Appendix of this paper.

We define T(A)=VG_(A), then T(4) is a bounded operator from L*T, HI,)
to LXT, L}) if A¢¢&, by Lemma 2.5 and Lemma 2.7 We denote by 7(4),, the
(¢, v)-matrix element of ¢,.,T(A)F2,. Now we can state our main result of
this section.

THEOREM 2. Suppose ¢, = C5(R™) and E-suppdpN\E=, then
(2.29) (9, S(s)P)=(9, ¢)
2n

27 S ewwng da(F(i—=2 #) F(a- %f- 2)$, TP @ F )

rEZ
or, in the form of S-matrices defined by

2
@

2.30)  Su(D)=8y—2mi et tmion F(2— Z ) T(D) o ()%

Y pls(27 /@ 271- T4 27[ /2 - -
=3 40— i 02/ >ﬂ(z—z— #) 7((1—? ﬂ) )F 0t T(R) o T 2 (RH12)¥ 27104
where 04, is the Kronecker’s delta symbol.

REMARK. The integrant in the right hand side of (2.29) is continuous in A
because F(A)*F(2) is a continuous B(LZ, H?,)-valued function as is easily seen
from the definition of F(1), and T(2) is continuous in A&E&.

Proor. If we set
(2.31) S(A)=1—2ri FA)TA)F(A)*,
Theorem 6.3 of Kuroda [9] yields
(2.32) FRQSOP=SAFQ)D (a.e. A)

for @= L¥(T, L2). Hence if ® and ¥ = LT, H}) satisfy dist(\J, E-supp(ZF;.,.¥),, &)
>0, we see

(2.33) (9, (S—l)w'):——Zm'Sdl(F(l)¢, (SQ—=DFQQY)
. 2 \* 2r
:—27;12_‘; Sdi(ﬁ(l—?y) ﬁ‘(i—?;o(gtﬁ#@)ﬂ,

o 2 * 2
T<z>,wF(z—§y) F(Z—%u)(gtquy")o.
Note that F,.,U.¢ is given by

(2.34) (gtﬁyCZ]osgb)#:Z'w-l/?(Ho_!_ i)_ﬂ' ‘u>~1(e_in0_1)eisHo¢ .



268 S. NAKAMURA

Combining (2.33) and [2.34), we have
(2.35) (@, (SG)—D)=0"(Ussp, (S—1)Uos¢h)

— 2”; Egdl le w; 1 oS @m/@) (u-w)
" p,v
(Pl ) B2 )0 T o= 520 P ).

Then observing the property: T(E),,=T(E—Q2x/w)M)y-m,,-m, W€ can write the
right hand side of (2.35) as

2.36) —oni Egdl{ 1 5

!eiwl__1’2

(A+(2r/w)v)*

} is(2m/w)p

(ﬁ‘(z—~2£ #) F(a- Z)’i #)p, T, F D+ F2g).

M =1 by Plancherel’s theorem since — 'w'1’2~£:1— are
A+ Qrjopy 7 o0 e Wy

Fourler coefficients of ¢**4. Thus the theorem is proved. [

Note —- 1 E

REMARK. holds under a slightly weaker assumption:

ASSUMPTION (A). For some p>n and a>1/2, t—<{(x>**V(t, x) is an
(L?P(R™)+ L=(R™))-valued absolutely continuous function.

In fact, [Lemma 2.6l and Lemma 2.7 still remains valid under (A)’. Moreover
if we employ a different formulation of 7°(1), we can obtain an analogous rep-
resentation formula of S(s) under

ASSUMPTION (A)”. For some p>n/2 and a>1/2, t—<{x>*V(t x) is an
(LP(R™)+ L~(R™))-valued absolutely continuous function. 3

§3. Proof of Theorem 1.

In this section, we assume (A)z and suppose that / and e satisfy the as-
sumption of the theorem. We begin with

LEMMA 3.1. Let W be a multiplication operator by W(x). Suppose {x>2**W(x)
€ LP(R™)4-L=>(R") for a>1/2 and p>n. Then for n/p<y<l and >0, there
exists €,>0 such that

CRY I(H=O) " Wl ar ,rny) SCIC =IO Wl epaz=  (IL]>0).
PROOF. It is sufficient to prove
3.2) ICH 172> = (Ho—=8) 7 W x> (Hy+1) 77| g 12
SCIEI [ <x > W o s 1o (IC1>d).
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Now we have
3.3) (Ho+ 1)1 x>~ (Ho—= )W x> (Ho+1)772
={(Ho+1)7"*Cx>“(Hy—8) " xp - H<x ) W (Ho+-1) 7772}
By Sobolev embedding theorem, we see
3.4) (<o W H A1) T = CIKO* W p g
Hence it remains only to prove
(3.5) I(Hy+1)172x >~ (Hy—0)"Kx>~ | =CIEI= (IT1>9).
If y=0, by Proposition 2.3.2 of Ginibre-Moulin [4],
(3.6 <>~ *(Hy—0) )| = CIEI 2.
On the other hand, if y=2,
3.7 I(Hy+1)<{xd>~*(Ho— )~ <xo |l
SITH,, <xo~*1(Hy—=07 oo 1<~ {14+ D(H— O )=«
SCCx> NV (Hoe—8) o)™+ CUL D[ <x >~ (Ho—8) " x > [ +C
=CIg® ({C1>a),

where we have used the relation ||{x)> *V.(H,—{) ' x>~*|<C for any {. Using
interpolation theorem of Calderén-Lions (Reed-Simon [12], Theorem IX-20) be-
tween and (3.7), we obtain [3.5] O

We denote by G-(4),, the (g, v)-matrix component of &,.,G-()F:3,. Then
{G_(A)} are estimated as follows:

PROPOSITION 3.2. For ¢ HI (R") and A€/,
(3.8) (p§Z<p>2s 1G-(D)popllirr ) =Clliar .

ProOF. Let @< LXT, H!,) be ®(t)=¢<=H?,, and let ¥'=G_(1)@. We denote
(F o ®)y=G-(A)pop by ¢,€HI,. Then obviously

. 2 \-!
(3.9 bu=dup— B (Ho—(Hi0) + " ) Vs
On the other hand implies
(3.10) 2 Ngular =Clolar,.
ueZ

By and we see
3.11) Ippllnr S0 poll @llmr , +C<p>7 2 <222V posllzpsr=lullar -
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Using Young’s inequality, [3.10) and [3.11] we obtain

(3.12) (B gl ) SCU+ B Vil un Bl
§C||¢”Hla .

Similarly, for ¢,<e and 2¢,<f3, using Young’s inequality, and (3.12), we
obtain

(3.19 (Bl )
SC+ B Vil glar,
<Clgllar,.

Repeating this procedure, we have

(3.14) (Z @ mailgulin ) =Clglar,

provided me,<f. Replacing ¢, by smaller one if necessary, we can find meN
such that e<me,<B. This completes the proof. [

PROPOSITION 3.3. For ¢=HI(R") and A€/,
(3.15) (E/’D% IT(A) @l i2)*<Cll @l -
Proor. If we observe that

(3 16) ” T('D‘uofb” L2§C<ﬂ>_sy§2(<#—v>s ” V/z~u“ L17+L"°)<V>5 ” G~<l)vo¢” HZ,a, »

the proposition follows from Young’s inequality and [Proposition 3.2l [

Proor or THEOREM 1. We may assume without loss of generality that JC
(2r/w)k, 2r/w)(k+1)) for some k&N, then the ranges of {S,P,(H,} are
mutually orthogonal where S, is defined by [1.6) By S,.P;(H,)
has a representation:

BD (G, SuPAHM)=0,0l$, PoHI)—rieomwn|  di(1— pr)“/“z—1/4

x(ater((a— 27: 1)) E(= 2 g, T,uT @ Fag)

for ¢, ¢ L3(R"). Because 7(p) is uniformly bounded in p as operators from
H*(R™) to L*(pS™""), we see

(3.18) (@, SuP,(Ho))|
<00l Pl
el P )

@

1T (D) poF e T A2 F AP 12

X(A-(2x/w) )
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=0ullollel
. 1/2
repnolgl]] | diwHIT@wa @ gl
by Schwartz inequality.
Hence we obtain for m>#% and ¢ Li(R"),

(319) “Ijl,l:Z>’(27‘E/m)TIH(f{O)S‘u[JJ(I—IO)(;/"“:2
B ISuPHgl?

I

=C_ 5 ool i IT DT st F Rl by (3.18)

-pzme-k

SCamy=ar+0 | A S ITR T 27 F gl )

§C<m>‘2‘”“”gl gz @m*F(Oglr,  (by Proposition 3.3)
(<3

=Cmy=*4 2| gl 2s.

This proves the theorem. [

Appendix.

Here we sketch the proof of Lemma 2.7
At first, we prove the existence of G_(1) for almost every 1 by Lemma 3.1.

LEMMA A.1. There exists a closed null set & CR such that for AEE, G-(R)
=limg, o (1 4+ (Ko—(A-+2¢))*V)™! exists in B(LXT, HI(R™)). Moreover G-(A) is
locally uniformly bounded in R~\&’.

Proor. ByLemma 3.1, it is obvious that (K,—)='V is bounded in L% 7T, HI (R™))
if {LeC~R, and is uniformly bounded if { is away from (2z/w)Z. Further, since
(Hy—§)'V, is compact for each p, [Lemma 31 implies the compactness of
(Ky—0)'V. Then the theorem of F. and M. Riesz can be applied and we obtain
the assertion. [

Now it remains only to prove £2¢&’. To prove that, we follow the trace
method due to Agmon (see Reed-Simon [12], § XIII-8).

LEMMA A.2. Let 0>1/2 and suppose that ¢ L¥T, L} R™)) satisfies
(A1) Im(¢p, (Ko—(4+10))"'¢)=0
for AeR\2r/w)Z. Then (Ky—(1+10))"'¢€ L¥T, H{H(R™)).

Lemma A.2 can be proved analogously to [Lemma 3.1 using Proposition 2.6.1
of Ginibre-Moulin [4] and interpolation.
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PrROOF OF LEMMA 2.7. If A=&’ and 1< (2x/w)Z, the Fredholm theorem im-
plies that there exists ¢ = L* T, HI,(R")) such that

(A.2) -+ (Ky—(14i0)) 1V §=0.

If we set ¢=Vge L T, L, (R")), we can see easily that ¢ satisfies (A.1). Hence
¢=—(K,—(4+i0)"'¢ is an element of LX7T, Hi:(R")=LXT, H!} 2a-1,(R™).
Repeating this procedure m-times, we have ¢g<= L3T, H2} nia-n(R™Y), and ¢
L¥T, HY % a-1(R™). Thus we obtain ¢= X and it is clear from (A.2) that ¢
is a A-eigenfunction of K. This implies ie&. [
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