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\S 0. Introduction.

Let $G$ be a group and $\Lambda$ a G-ring. Then we introduce notions of a family
$F$ of $\Lambda G$-modules and of F-projective modules. For each family $F$, we define
two kinds of equivariant algebraic K-theories $K^{G}(A;F)_{d}$ and $K^{G}(\Lambda;F)_{e}$ . We
introduced these notions to get equivariant Swan isomorphisms [10].

Equivariant algebraic K-theory is studied along the line of Quillen [17] by
Fiedorowicz, Hauschild and May [5], while our approach is along the line of
the classical algebraic K-theory [3], [14] for the purpose of geometric applica-
tions.

The purpose of the present paper is to establish induction theorems for our
equivariant algebraic and topological K-theories and for equivariant J-theory as
promised in [11].

We will first show that our equivariant algebraic K-theory is a G-functor in
the sense of Green [6] in general (see also [22]). Accordingly the Dress induc-
tion theorem [4] is applicable. By a different approach, we have the Swan type
induction theorems [20] for the equivariant algebraic K-theory associated with
the largest family $F_{a}$ (for the definition of families see \S 1).

Next we study the relation between the Grothendieck group of representa-

tions over G-rings and the cohomology of groups with coefficients in non-abelian
groups in the sense of Serre [18]. Consequently we can express the equivariant
algebraic K-theory in terms of the cohomology in some special cases. An in-
teresting example is provided by Serre [18]. In fact, the example was a start-
ing point of the present investigation. Moreover the observation of the relation
above will be employed to prove the Swan type induction theorems for the
equivariant algebraic K-theory associated with the family $F_{t}$ .

On the other hand we define an induction homomorphism for equivariant
topological K-theory which corresponds to that for equivariant algebraic K-theory
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via the equivariant Swan isomorphism [10], [21]. Hence we have the Swan
type induction theorems for equivariant topological K-theories $KO_{G}(X),$ $K_{G}(X)$

and $KSp_{G}(X)$ where $X$ is a compact G-space.
By showing a relative Frobenius reciprocity formula, we have that the

Atiyah-Singer index homomorphisms [2] commute with our induction homomor-
phisms.

Lastly we have a Dress type hyperelementary induction theorem for the
equivariant J-theory [8]. One of its applications is provided by T. Petrie.

In [20], Swan obtained induction theorems for some Grothendieck group
$G(\Lambda\pi)$ where a group $\pi$ acts trivially on $\Lambda$ . In our case, a group $G$ acts non
trivially on $\Lambda$ in general. According to Swan [20], an induction theorem for a
Frobenius functor will automatically imply induction and restriction theorems for
a Frobenius module over the Frobenius functor (see also [12]). Moreover he
had an induction theorem for some Frobenius functor. Hence our task for the
proof of the Swan type induction theorems is to show that our equivariant
algebraic K-theories are Frobenius modules over the Frobenius functor due to
Swan. However the multiplication of the module structure is not well-defined
unfortunately for a general family $F$. Namely the key step is to show that the
multiplication is well-defined and the consideration of cohomology of groups
answers the purpose.

Once we conjecture the present results and become aware of the formula-
tions, the proofs are somewhat easy. So we omit the proofs occasionally.

The author wishes to thank Professors T. Petrie, T. Yoshida and A. Gyoja
for stimulating discussions.

\S 1. Families and equivariant algebraic K-theory.

The word ring will always mean associative rin$g$ with an identity element
1. Let $G$ be a group. A G-ring is a ring $\Lambda$ together with a G-action on $\Lambda$

preserving the ring structure. When $\Lambda$ is a G-ring, a $\Lambda G$-module is a module
$M$ over $\Lambda$ together with a G-action on $M$ such that

$(*)$ $g(\lambda_{1}m_{1}+\lambda_{2}m_{2})=(g\lambda_{1})(gm_{1})+(g\lambda_{2})(gm_{2})$ for any $g\in G,$ $\lambda_{i}\in\Lambda,$ $m_{i}\in M$ .
A collection $F$ of $\Lambda G$ -modules which are finitely generated over $\Lambda$ is called

a family if the following holds:
“if $M_{1},$ $M_{2}\in F$, then there exists an element $N\in F$ such that $M_{1}\oplus M_{2}$ is a

direct summand of $N’$ .
When $\Lambda$ is a commutative G-ring, we can consider a product of two $\Lambda G-$

modules as follows. If $M_{1}$ and $M_{2}$ are $\Lambda G$-modules, define $M_{1}\otimes M_{2}$ to be $M_{1}\otimes_{\Lambda}M_{2}$

as a $\Lambda$ -module with G-action by $g(m_{1}\otimes m_{2})=gm_{1}\otimes gm_{2}$ for $g\in G,$ $m_{i}\in M_{i}$ . Then
a collection $F$ of $\Lambda G$-modules which are finitely generated over $\Lambda$ is called a
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multiplicative family if in addition to the above condition the following holds;
“if $M_{1},$ $M_{2}\in F$, then there exists an element $N\in F$ such that $M_{1}\otimes M_{2}$ is a

direct summand of $N’$ .
Each element of $F$ is called F-free. A $\Lambda G$ -module $M$ is called F-projective,

if there exists a $\Lambda G$-module $N$ so that $M\oplus N$ is F-free.
We now introduce two kinds of equivariant algebraic K-groups as follows.

For each family $F,$ $K^{G}(\Lambda;F)_{d}$ (resp. $K^{G}(\Lambda;F)_{e}$) is defined to be the abelian $gro\iota_{tP}$

given by generators $[P]$ where $P$ is an F-projective $\Lambda G$ -module, with relations

$[P]=[P’]+[P’’]$

whenever $P\cong P’\oplus P’’$ (resp. $0arrow P’arrow Parrow P’’arrow 0$ is an exact sequence of $\Lambda G-$

modules).

If $\Lambda$ is a commutative G-rin$g$ and if $F$ is a multiplicative family of $\Lambda G-$

modules, the product above induces a structure of commutative rin$g$ in $K^{G}(\Lambda;F)_{d}$

(not in $K^{G}(\Lambda;F)_{e}$ in general).
$K^{G}($ ; $)_{d}$ is a covariant functor from pairs of G-rings and families to abelian

groups, while $K^{G}($ ; $)_{e}$ is not a functor in general, since the tensor product
$\Lambda’\otimes_{\Lambda}$ will not preserve the exactness in general.

Next we introduce a twisted group ring $\Lambda G\sim$ . As an additive group, $\Lambda G\sim$ is
the ordinary group ring and the multiplication is given by

$( \sum_{g}\lambda_{g}g)\circ(\sum_{S’}\lambda_{g’}g^{f})=\sum_{g,g’}\lambda_{g}(g\lambda_{g’})gg’$

for $g,$ $g’\in G,$ $\lambda_{g},$ $\lambda_{g’}\in\Lambda$ . It is quite easy to see the following

LEMMA 1.1. The notion of $\Lambda G$ -modules coincides with that of AG-modules.
In partjcular, $\Lambda G\sim$ is a $\Lambda G$-module.

Hereafter we omit $\sim$ from $\Lambda G\sim$ for notational convenience.
Let $H$ be a subgroup of $G$ of finite index and $\Lambda$ be a G-ring, which is also

regarded as an H-ring by restriction. Since $\Lambda H$ is a subring of $\Lambda G,$ $\Lambda G$ can
be regarded as a right $\Lambda H$-module. For a $\Lambda H$-module $M$, we define an induced
$\Lambda G$-module $Ind_{H}^{G}M$ by

$Ind_{H}^{G}M=\Lambda G\bigotimes_{\Lambda H}M$ .

On the other hand, any $\Lambda G$ -module $M$ can be regarded as a $\Lambda H$-module ${\rm Res}_{H}M$

by restriction. Let $i$ : $Harrow G$ be the inclusion map. Then we sometimes denote
$Ind_{H}^{G}M$ (resp. ${\rm Res}_{H}M$) by $i_{*}M$ (resp. $i^{*}M$) for convenience’ sake.

For each subgroup $H$ of $G$ of finite index, we consider a family $F(H)$ of
$\Lambda H$-modules which are finitely generated over $\Lambda$ . The collection $\{F(H)\}$ of
such families is denoted by $F$ and is also called a family. Then we set

$K^{H}(\Lambda;F)_{\epsilon}=K^{H}(\Lambda;F(H))_{\epsilon}$ for $\epsilon=d$ or $e$ .



176 K. KAWAKUBO

We call $F$ a closed family if for any $M\in F(H)$ (resp. $M\in F(G)$ ), $Ind_{H}^{G}M$ (resp.
${\rm Res}_{H}M)$ is $F(G)$-projective (resp. $F(H)$-projective). Since $\Lambda G$ is a finitely
generated free $\Lambda H$-module, we have induction and restriction homomorphisms:

$i_{*}=Ind_{H}^{G}$ : $K^{H}(\Lambda;F)_{\epsilon}arrow K^{G}(\Lambda;F)_{\epsilon}$

$i^{*}={\rm Res}_{H}$ : $K^{G}(\Lambda;F)_{\epsilon}arrow K^{H}(\Lambda;F)_{\epsilon}$

for a closed family $F$ where $\epsilon=d$ or $e$ .
We now give examples of closed families of a finite group $G$ which will be

used in the sequel:

$F_{a}=$ { $F_{a}(H)$ : all $\Lambda H$-modules $|H\leqq G$ }

$F_{t}=\{F_{t}(H)=\{(\Lambda H)^{n}|n=1, 2, \}|H\leqq G\}$

$F_{tf}=$ { $F_{tf}(H)$ : all torsion free $\Lambda H$-modules $|H\leqq G$ }

$F_{f}=$ { $F_{f}(H)$ : all $\Lambda H$-modules which are free over $\Lambda|H\leqq G$ }.

Here all $\Lambda H$-modules are assumed to be finitely generated.
Denote by $K_{0}()$ the ordinary algebraic $K_{0}$ group [14].

PROPOSITION 1.2. When $G$ is a finite group, we have the following isomor-
phisms of abelian groups:

$K^{G}(\Lambda;F_{t})_{d}\cong K^{G}(\Lambda;F_{t})_{e}\cong K_{0}(\Lambda G)(1)$

If $\Lambda$ is commutative, (I) is an isomorphjsm of rings.
PROOF. This is an immediate consequence of Lemma 1.1.

REMARK 1.3. Proposition 1.2 implies that our definition of an equivariant
algebraic K-group includes $K_{0}(\Lambda G)$ as a special case. However $K_{0}(\Lambda G)$ is in-
sufficient as an equivariant algebraic $K_{0}$-theory for various reasons. The follow-
ing is one of them. When $G$ is not a finite group, the notion of $\Lambda G$-projective
modules” is unsuitable for the equivariant Swan isomorphism [10]. For this
reason, we first introduced the notions of families $F$ and F-projective modules.
Moreover our definition includes $G(R\pi)$ and $G’(R\pi)$ of Swan [20] as special
cases as follows. If a group $\pi$ acts trivially on a ring $R$ , then our definition is
related with that of Swan by

$K^{\pi}(R;F_{a})_{e}=G(R\pi)$ , $K^{\pi}(R;F_{tf})_{e}=G’(R\pi)$ .

It will be useful to notice the following;

PROPOSITION 1.4. If a G-nng $\Lambda$ is senu-srmple and contains $1/|G|$ , then we
have an isomorPfusm

$K^{G}(\Lambda;F)_{d}\cong K^{G}(\Lambda;F)_{e}$



Equivariant K-theory 177

for any family $F$ where $|G|$ denotes the order of $G$ .

PROOF. Since $\Lambda$ is semi-simple, every short exact sequence

$0arrow M’arrow Marrow M’’arrow 0$

of $\Lambda G$-modules is split exact as $\Lambda$-modules. Since $\Lambda\ni 1/|G|$ , we can change
the splitting into that of $\Lambda G$-modules by the averaging argument. Hence the
short exact sequence relation coincides with the direct sum one. This completes
the proof.

In particular, we have

COROLLARY 1.5. If $\Lambda$ is a G-field such that the characteristic of $\Lambda$ is zero
or prime to $|G|$ , then

$K^{G}(\Lambda;F)_{d}\cong K^{G}(\Lambda;F)_{e}$

for any family $F$.

\S 2. Shapiro isomorphism, Mackey and Frobenius properties.

Let $H$ be a subgroup of $G$ of finite index. Fix a set $\{\sigma\}$ of coset represen-
tatives for $G/H$ (denoted $\{\sigma\}=G/H$ ). We now introduce the following notations.
For $g\in G$ , there exist unique $\sigma(g, \sigma)\in\{\sigma\}$ and $h(g, \sigma)\in H$ such that

$g\sigma=\sigma(g, \sigma)h(g, \sigma)$ .
Given an H-ring $\Lambda$ , we construct an induced G-ring $Ind_{H}^{G}\Lambda$ as follows.

Denote by $\Lambda_{\sigma}$ copies of $\Lambda$ indexed by the set $\{\sigma\}$ . As a ring $Ind_{H}^{G}\Lambda$ is the
direct sum $\oplus_{\sigma}\Lambda_{\sigma}$ . A G-action is given by

$g \circ(\bigoplus_{\sigma}\lambda_{\sigma})=\bigoplus_{\sigma(g.\sigma)}h(g, \sigma)\lambda_{\sigma}$

for $g\in G,$ $\lambda_{\sigma}\in\Lambda_{\sigma}$ . Here the right hand side means that we put $h(g, \sigma)\lambda_{\sigma}$ to the
$\sigma(g, \sigma)$ factor. It is easy to see that $Ind_{H}^{G}\Lambda$ becomes a G-ring. Note that
$Ind_{H}^{G}\Lambda$ is isomorphic to $Z[G]\otimes_{Z[H]}\Lambda$ as additive G-groups. The latter, how-
ever, is just an additive G-group (not a G-ring !).

Then we have the following “Shapiro isomorphism”.

PROPOSITION 2.1. There is $a$ one to one correspOndence between the set of
isomorphism classes of $\Lambda H$-modules and the set of isomorphism classes of $(Ind_{H}^{G}\Lambda)G-$

modules. In particular, we have an isomorphism

$\Phi_{1}$ : $K^{H}(\Lambda;F_{a})_{\epsilon}arrow K^{G}(Ind_{H}^{G}\Lambda;F_{a})_{\text{\’{e}}}$

for $\epsilon=d$ or $e$ .
PROOF. For a $\Lambda H$-module $M$, we set $\Phi_{1}(M)=\oplus_{\sigma}M_{\sigma}$ where $M_{\sigma}$ are copies

of $M$ indexed by the set $\{\sigma\}$ . An $Ind_{H}^{G}\Lambda$-module structure is given by
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$( \bigoplus_{\sigma}\lambda_{\sigma})\circ(\bigoplus_{\sigma}m_{\sigma})=\bigoplus_{\sigma}\lambda_{\sigma}m_{\sigma}$ for $m_{\sigma}\in M_{\sigma}$ .
A G-action is given by

$g^{0}( \bigoplus_{\sigma}m_{\sigma})=\bigoplus_{\sigma(g.\sigma)}h(g, \sigma)m_{\sigma}$ .

With these definitions, $\Phi_{1}(M)$ becomes an $(Ind_{H}^{G}\Lambda)G$-module. It is easily seen
that the correspondence $Marrowarrow\Phi_{1}(M)$ gives rise to the required one.

If $\Lambda$ is a G-ring, we define a homomorphism

$\Phi_{2}$ : $K^{G}(Ind_{H}^{G}\Lambda;F_{a})_{\text{\’{e}}}arrow K^{G}(\Lambda;F_{a})_{\epsilon}$

as follows. For an $(Ind_{H}^{G}\Lambda)G$ -module $M$, we put a new $\Lambda G$ -module structure
on $M$ by

$\lambda\circ m=(\bigoplus_{\sigma}\sigma^{-1}\lambda)\cdot m$ for $\lambda\in\Lambda,$ $m\in M$ ,

$g\circ m=g\cdot m$ for $g\in G,$ $m\in M$

where denote the old operations, while . denote the new ones. The corre-
spondence $[M]rightarrow[M]$ gives rise to the above homomorphism $\Phi_{2}$ .

LEMMA 2.2. When $\Lambda$ is a G-nng, the $compo\alpha$ tion $\Phi_{2}\cdot\Phi_{1}$ of the above two
homomorphsms is nothing but the induction homomorphism $Ind_{H}^{G}$ in \S 1.

PROOF. Let $M$ be a $\Lambda H$-module. Then

$\Phi_{2}\cdot\Phi_{1}(M)=\bigoplus_{\sigma}M_{\sigma}$

and the G-action is given by

$g \circ(\bigoplus_{\sigma}m_{\sigma})=\bigoplus_{\sigma(g,\sigma)}h(g, \sigma)m_{\sigma}$

and the $\Lambda$ operation is given by

$\lambda Q(\bigoplus_{\sigma}m_{\sigma})=\bigoplus_{\sigma}(\sigma^{-1}\lambda)m_{\sigma}$

for $g\in G,$ $m_{\sigma}\in M_{\sigma},$ $\lambda\in\Lambda$ . We now dePne a map

$f$ : $\bigoplus_{\sigma}M_{\sigma}arrow\Lambda G\bigotimes_{\Lambda H}M$

by $f(\oplus_{\sigma}m_{\sigma})=\Sigma_{\sigma}\sigma\otimes m_{\sigma}$ . It is easy to see that $f$ gives the required isomorphism.

Let $\Lambda$ be a G-ring. Let $H$ and $K$ be subgroups of $G$ and $\{s\}$ a set of
double coset representatives for $K\backslash G/H$ (denoted $\{s\}=K\backslash G/H$). We may as-
sume that $\{s\}$ is a subset of $\{\sigma\}=G/H$. Set $H_{s}=sHs^{-1}\cap K$. For a $\Lambda H$-module
$M$, we construct a $\Lambda H_{s}$-module $M_{s}$ as follows. As an additive group, $M_{s}$ is
given by $M$ itself and a $\Lambda H_{s}$-module structure is given by

$g\circ m_{s}=(s^{-1}gs)\cdot m_{s}$

and
for $g\in G,$ $m_{s}\in M_{s}$ ,
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$\lambda Qm_{s}=(s^{-1}\lambda)\cdot m_{s}$ for $\lambda\in\Lambda,$ $m_{s}\in M_{s}$

where denote the old operations, while $\circ$ denote the new ones. With these
definitions, $M_{s}$ becomes a $\Lambda H_{s}$-module and we have

PROPOSITION 2.3 (Mackey decomposition).

Res $K Ind_{H}^{G}M\cong\bigoplus_{s\in K\backslash G/H}Ind_{H_{S}}^{K}M_{s}$ .

PROOF. Paying attention to the G-action on $\Lambda$ , we can give an explicit
$\Lambda K$-module isomorphism by virtue of Lemma 2.2.

REMARK 2.4. It follows from Proposition 2.3 that $K^{G}(\Lambda;F)_{\epsilon}$ is a G-functor
in the sense of Green [6] and the Dress induction theorem is applicable to
$K^{G}(\Lambda;F)_{\text{\’{e}}}$ for any closed family $F$.

PROPOSITION 2.5 (Frobenius reciprocity). Let $\Lambda$ be a commutative G-ring and
$H$ a subgroup of G. Let $V$ be a $\Lambda H$-module and $W$ $a$ AG-module. Then

$Ind_{H}^{G}(V\bigotimes_{\Lambda}{\rm Res}_{H}W)\cong(Ind_{H}^{G}V)\bigotimes_{\Lambda}W$

as $\Lambda G$-modules.

PROOF. Define
$f$ : $\Lambda G\bigotimes_{\Lambda H}(V\bigotimes_{\Lambda}{\rm Res}_{H}W)arrow(\Lambda G\bigotimes_{\Lambda H}V)\bigotimes_{\Lambda}W$

by
$f(g\otimes(v\otimes w))=(g\otimes v)\otimes gw$

for $g\in G,$ $v\in V,$ $w\in W$ . Paying attention to the G-action on $\Lambda$ , we can prove
that $f$ is well-defined and gives the required isomorphism.

\S 3. GR-algebras and Frobenius modules.

In this section, we introduce notions of GR-algebras and Frobenius modules
for the Purpose of induction theorems in \S 4 and \S 6.

DEFINITION 3.1. Let $R$ be a commutative G-ring. Then a G-ring $\Lambda$ is
called a GR-algebra if $\Lambda$ is an RG-module as well as an R-algebra.

REMARK 3.2. Our GR-algebra is different from an algebra over the twisted
group ring $RG$ .

Let $\Lambda$ be a GR-algebra. Let $A$ (resp. $B$ ) $|$ be an RG- (resp. $\Lambda G-$) module.
Define $A\otimes B$ to be $A\otimes_{R}B$ where $R$ acts on $B$ by

$r\circ b=(r\cdot 1)b$ for $r\in R,$ $b\in B,$ $1\in\Lambda$ .
We now set
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$( \sum_{g}\lambda_{g}g)\circ(a\otimes b)=\sum_{g}(ga\otimes\lambda_{g}gb)$

for $\lambda_{g}\in\Lambda,$ $g\in G,$ $a\in A,$ $b\in B$ . Since $\Lambda$ is a GR-algebra, one verifies that the
operation $\circ$ is well-dePned and gives a $\Lambda G$-module structure on $A\otimes B$ .

Then we have the following equivariant version of Lemma 3.1 of [20].

LEMMA 3.3. Let $R$ be a Dedekind G-ring and $\Lambda$ a GR-algebra. Then
$K^{G}(\Lambda;F_{a})_{\text{\’{e}}}$ is a module over $K^{G}(R;F_{a})_{\epsilon}$ . If $i;H\subset G$ , then

(i) $i^{*}(x\cdot y)=i^{*}(x)\cdot i^{*}(y)$ for $\chi\in K^{G}(R;F_{a})_{\epsilon},$ $y\in K^{G}(\Lambda;F_{a})_{\epsilon}$ ,

(ii) $i_{*}(i^{*}(x)\cdot y)=x\cdot i_{*}(y)$ for $x\in K^{G}(R;F_{a})_{\epsilon},$ $y\in K^{H}(\Lambda;F_{a})_{\epsilon}$ ,

(iii) $i_{*}(x\cdot i^{*}(y))=i_{*}(x)\cdot y$ for $x\in K^{H}(R;F_{a})_{\epsilon},$ $y\in K^{G}(\Lambda;F_{a})_{\epsilon}$ .
PROOF. We consider only the case where $\epsilon=e$ , since the proof is easier for

$\epsilon=d$ . It is easy to see that the equivariant versions of Propositions 1.1 and 1.2
and Corollaries 1.1 and 1.3 in [20] hold for a Dedekind G-ring $R$ . In particular,
$K^{G}(R;F_{a})_{e}$ is a commutative ring for a Dedekind G-ring $R$ and it is sufficient
to make $K^{G}(\Lambda;F_{a})_{e}$ a module over $K^{G}(R;F_{tf})_{e}$ . This is done by setting $[A]\cdot[B]$

$=[A\otimes_{R}B]$ . Since $A$ is a torsion free RG-module, $A$ is projective over $R$ .
Hence the multiplication $[A]\cdot[B]$ is well-defined.

We now prove the assertion (iii). Let $A$ (resp. $B$ ) be an RH- (resp. $\Lambda G-$)

module. DePne
$f$ : $\Lambda G\bigotimes_{\Lambda H}(A\bigotimes_{R}B)arrow(RG\bigotimes_{RH}A)\bigotimes_{R}B$

by
$f(( \sum_{g}\lambda_{g}g)\otimes(a\otimes b))=\sum_{g}(g\otimes a)\otimes\lambda_{g}gb$

for $g\in G,$ $\lambda_{g}\in\Lambda,$ $a\in A,$ $b\in B$ . Since $G$ acts non trivially on $R$ and on $\Lambda$ in
general, it is not obvious that $f$ is well-defined. In the following, we give a
portion of its proof. For $g\in G,$ $h\in H,$ $\lambda_{g},$ $\lambda_{h}\in\Lambda,$ $a\in A,$ $b\in B,$ $r\in R$ , we have
four expressions for an element:

$( \sum_{g}\lambda_{g}g)\cdot(\sum_{\hslash}\lambda_{h}h)\otimes(a\mathfrak{G}(r\cdot 1)b)$
. . . . . . . . . . . . . . . . . . . .(I)

$( \sum_{g}\lambda_{g}g)\otimes(\sum_{h}\lambda_{h}h)\cdot(a\otimes(r\cdot 1)b)$
. . . . . . . . . . . . . . . . . . . . (n)

$( \sum_{g}\lambda_{g}g)\cdot(\sum_{h}\lambda_{\hslash}h)\otimes(ra\otimes b)\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(m)$

$( \sum_{g}\lambda_{g}g)\otimes(\sum_{h}\lambda_{h}h)\cdot(ra\otimes b)\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$ (IV).

Then we have

$f( I)=f(\sum_{g.h}\lambda_{g}(g\lambda_{h})gh\otimes a\otimes(r\cdot 1)b)$

$= \sum_{g.h}gh\otimes a\otimes\lambda_{g}(g\lambda_{h})gh((r\cdot 1)b)$
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$= \sum_{g,}g\otimes ha\otimes((gh)r)\cdot\lambda_{g}(g\lambda_{h})(gh)b$

$= \sum_{g.h}((gh)r)g\otimes ha\otimes\lambda_{g}(g\lambda_{h})(gh)b$

$= \sum_{g.h}g((hr)e)\otimes ha\otimes\lambda_{g}g(\lambda_{h}hb)$

$= \sum_{g,}g\otimes(hr)(ha)\otimes\lambda_{g}g(\lambda_{h}hb)$

$=f( \sum_{g,}\lambda_{g}g\otimes h(ra)\otimes\lambda_{h}hb)$

$=f(( \sum_{g}\lambda_{g}g)\otimes\sum_{h}(h(ra)\otimes\lambda_{h}hb))$

$=f(( \sum_{g}\lambda_{g}g)\otimes(\sum_{h}\lambda_{h}h)\cdot(ra\otimes b))=f$(VI).

Similarly we can prove that

$f(I)=f(II)=f(m)$ .
Thus $f$ is well-defined. Next we show that $f$ is a $\Lambda G$-module homomorphism.
For $g,$ $g’\in G,$ $\lambda_{g},$ $\lambda_{g’}\in\Lambda,$ $a\in A,$ $b\in B$ , we have

$f(( \sum_{g’}\lambda_{g’}g’)\cdot(\sum_{g}\lambda_{g}g\otimes a\otimes b))$

$=f( \sum_{g’,}\lambda_{g’}(g’\lambda_{g})g’g\otimes a\otimes b)$

$= \sum_{g’.g}g’g\otimes a\otimes\lambda_{g’}(g’\lambda_{g})((g’g)b)$

$= \sum_{g’.g}g’g\otimes a\otimes\lambda_{g’}g^{f}(\lambda_{g}gb)$

$=( \sum_{g’}\lambda_{g’}g’)\cdot(\sum_{g}g\otimes 0\otimes\lambda_{g}gb)$

$=( \sum_{g’}\lambda_{g’}g’)\cdot f(\sum_{g}\lambda_{g}g\otimes a\otimes b)$ .
Define

$f^{f}$ : $(RG \bigotimes_{RH}A)\bigotimes_{R}Barrow\Lambda G\bigotimes_{\Lambda H}(A\bigotimes_{R}B)$

by
$f’(( \sum_{g}r_{g}g)\otimes a\otimes b)=\sum_{g}(r_{g}\cdot 1)g\otimes a\otimes g^{-1}b$

for $g\in G,$ $r_{g}\in R,$ $a\in A,$ $b\in B$ . One verifies that $f$ is well-defined and satisfies

$f’\cdot f=identity$ and $f\cdot f’=identity$.
Hence we have the assertion (iii). The assertion (ii) will be shown similarly
while (i) is trivial.

This makes the proof of Lemma 3.3 complete.

REMARK 3.4. A module with the property (iii) in Lemma 3.3 is called a
Frobenius module [12].

Let $G$ be a finite group and $\Lambda$ a G-ring. Let $S$ be some class of subgroups
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of $G$ . For a closed family $F$, we define $K_{S}^{G}(\Lambda;F)_{\text{\’{e}}}$ to be the sum of the images
of the maps

$i_{*}$ : $K^{H}(\Lambda;F)_{\epsilon}arrow K^{G}(\Lambda;F)_{\epsilon}$ for all $i:H\subset G$ with $H\in S$ .

Let $k$ be an integer. Following Swan [20], we say $K_{S}^{G}(\Lambda;F)_{\epsilon}$ has exponent
$k$ in $K^{G}(\Lambda;F)_{\epsilon}$ if

$k\cdot K^{G}(\Lambda;F)_{\epsilon}\subset K_{S}^{G}(\Lambda;F)_{\epsilon}$ .

COROLLARY 3.5. $K_{S}^{G}(R;F_{a})_{\epsilon}\cdot K^{G}(\Lambda;F_{a})_{\epsilon}\subset K_{S}^{G}(\Lambda;F_{a})_{\epsilon}$ .
COROLLARY 3.6. If K\S $(R;F_{a})_{\epsilon}$ has exponent $k$ in $K^{G}(R;F_{a})_{\epsilon}$ , then K\S $($ \Lambda ; $F_{a})_{\text{\’{e}}}$

has exponent $k$ in $K^{G}(\Lambda;F_{a})_{\epsilon}$ .

REMARK 3.7. For a general family $F$, the multiplication above does not
induce a multiplication

$K^{G}(R;F)_{\epsilon}\cross K^{G}(\Lambda;F)_{\epsilon}arrow K^{G}(\Lambda;F)_{\epsilon}$

in general, even if $R$ is a Dedekind G-ring. In \S 6, we deal with two special
families $F_{t}$ and $F_{f}$ in which case the multiplication above is well-defined.

The following lemma is well-known for a Frobenius module (see Theorem
9.2 of [20]).

LEMMA 3.8. SuPpose that K\S $($ \Lambda ; $F)_{\epsilon}$ has exponent $k$ in $K^{G}(\Lambda;F)_{\epsilon}$ . If $i^{*}(x)$

$=0$ for all $i:H\subset G$ un th $H\in S$ , then $kx=0$ .

\S 4. Induction and restriction theorems for $K^{G}(\Lambda;F_{a})_{e}$ .
We recall the following terminology. A finite group is called elementary if

it is the direct product of a p-group and a cyclic group. A finite group is called
hyperelementary if it has a cyclic normal subgroup such that the quotient of the
group by this subgroup is a p-group.

If $G$ is any finite group, $C$ will denote the class of all cyclic subgroups of
$G,$ $E$ will denote the class of all elementary subgroups of $G$ , while $HE$ will
denote the class of all hyperelementary subgroups of $G$ .

Let $n$ be the order of $G$ . Denote by $a(G)$ the Artin exponent for $G$ in the
sense of Lam [12]. Note that $a(G)$ divides $n$ . We write $d=(a(G), \phi(n))$ where
$\phi$ is the Euler function.

Denote by $Q,$ $Z$ or $Z_{p}$ ( $p$ : prime) the field of rational numbers, the ring of
integers, the field of integers modulo $P$ respectively. Let $G$ act trivially on them.

DEFINITION 4.1. I will say a G-ring $\Lambda$ contains a Primitive n-th root of
unity in the centre if there is an element $x$ in the intersection of the fixed point
set $\Lambda^{G}$ and the centre of $\Lambda$ such that $\Phi_{n}(x)=0,$ $\Phi_{n}$ being the n-th cyclotomic
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polynomial.

THEOREM 4.2. For any G-ring $\Lambda$ , we have

(a) $K_{C}^{G}(\Lambda;F_{a})_{e}$ has exponmt $a(G)^{2}$ in $K^{G}(\Lambda;F_{a})_{e}$ ,

(b) $K_{E}^{G}(\Lambda;F_{a})_{e}$ has expment $d^{2}$ in $K^{G}(\Lambda;F_{a})_{e}$ ,

(c) $K_{HE}^{G}(\Lambda;F_{a})_{e}=K^{G}(\Lambda;F_{a})_{e}$ .
If $\Lambda$ is a GQ- or $GZ_{p}$-algebra, we can replace $a(G)^{2}$ and $d^{2}$ in (a) and (b) by $a(G)$

and $d$ . If $\Lambda$ contains a pnnu tive n-th root of umty in the center, we can replace
$d^{2}$ in (b) by 1.

PROOF. Let $G$ act trivially on $Z[\zeta](\zeta=\exp 2\pi i/n)$ . It follows from [12]

and [20] that Theorem 4.2 holds for $\Lambda=Z,$ $Q,$ $Z_{p}$ and $Z[\zeta]$ . Note that any G-
ring is a GZ-algebra. If $\Lambda$ contains a primitive n-th root of unity in the center,
then $\Lambda$ is a $GZ[\zeta]$-algebra. Hence Theorem 4.2 follows from Corollary 3.6.

For a subgroup $H$ of $G$ , let $i_{H}$ : $Harrow G$ be the inclusion map. Then for a
class $S$ of subgroups of $G$ , we set

${\rm Res}_{S}= \prod_{H\in S}i_{H}^{*}$ : $K^{G}( \Lambda;F)_{\text{\’{e}}}arrow\prod_{H\in S}K^{H}(\Lambda;F)_{\epsilon}$ .

By combining Lemma 3.8 with Theorem 4.2, we have

THEOREM 4.3. For $F=F_{a}$ and $\epsilon=e$ , we have

(a) $a(G)^{2}Ker{\rm Res}_{C}=0$ ,

(b) $d^{2}Ker{\rm Res}_{E}=0$ ,

(c) $Ker{\rm Res}_{HE}=0$ .

If $\Lambda$ is a GQ- or $GZ_{p}$-algebra, we can replace $a(G)^{2}$ and $d^{2}$ in (a) and (b) by
$a(G)$ and $d$ . Moreover if $\Lambda$ contains a pnmitive n-th root of unity in the centre,
then $Ker{\rm Res}_{E}=0$ .

\S 5. Representations over G-rings and Galois cohomology.

In this section, we introduce a group $R(G, \Lambda)$ which is a generalization of
the representation ring $R(G)$ and we express $R(G, \Lambda)$ in terms of the cohomol-
ogy $H^{1}(G;\Gamma)$ of a group with coefficients in a non-abelian group (see [11] and
[18]). This observation will be used to prove induction theorems for the
equivariant K-theory associated with the family $F_{t}$ in \S 6.

$R(G, \Lambda)$ is defined to be the abelian group given by generators $[M]$ where
$M$ is a finitely generated $\Lambda G$-module which is free as a $\Lambda$ -module, with relations
$[M]=[M’]+[M’’]$ whenever $M\cong M’\oplus M’’$ .
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Let us recall the cohomology $H^{1}(G;\Gamma)$ of Serre [18]. A G-group is a group
$\Gamma$ together with a G-action preserving the group structure. Then a map $A:Garrow\Gamma$

is called a cocycle if $A(g^{f}g)=a(g^{f})\cdot(g’A(g))$ for any $g,$ $g’\in G$ . Set

$Z^{1}(G;\Gamma)=$ { $A:Garrow\Gamma$ cocycle}.

Two elements $A,$ $B\in Z^{1}(G;\Gamma)$ are cohomologous (denoted by $A\sim B$ ) if and only
if there exists $C\in\Gamma$ such that

$B(g)=C^{-1}\cdot A(g)\cdot(gC)$ for any $g\in G$ .
Then $H^{1}(G;\Gamma)$ is defined to be the quotient set $Z^{1}(G;\Gamma)/\sim$ .

Let $GL(n, \Lambda)$ be the group of invertible $n\cross n$ matrices over $\Lambda$ . The G-
action on each entry of a matrix induces a G-action on $GL(n, \Lambda)$ , which makes
$GL(n, \Lambda)$ a G-group.

If the ring $\Lambda$ is such that, given $m,$ $n>0,$ $\Lambda^{m}\cong\Lambda^{n}$ (forgetting G-action) only
if $m=n$ , we say that $\Lambda$ has invanant basis number (IBN).

THEOREM 5.1. SuPpose that $\Lambda$ has $IBN$. Let $M$ be a free $\Lambda$-module of rank
$n$ . Then the isomorphism classes of $\Lambda G$-module structures on $M$ are in one to one
correspondence with $H^{1}(G;GL(n, \Lambda))$ .

PROOF. Choose a basis $\{e_{i}\}$ for $M$ over $\Lambda$ . Given a $\Lambda G$-module structure
on $M$, the G-action is completely described by the matrix

$A(g)=(\alpha_{ij}(g))$

over $\Lambda$ , where
$ge_{i}= \sum_{j}\alpha_{ij}(g)e_{j}$ .

Following our definition of a $\Lambda G$-module, we have

$g’(ge_{i})=g’ \sum_{j}\alpha_{ij}(g)e_{j}=\sum_{j}(g’\alpha_{ij}(g))g’e_{j}$

$= \sum_{j}(g’\alpha_{ij}(g))\sum_{k}\alpha_{jk}(g’)e_{k}$

$= \sum_{k}\{\sum_{j}(g’\alpha_{ij}(g))\alpha_{jk}(g^{f})\}e_{k}$ .

On the other hand, we have

$(g’g)e_{i}= \sum_{k}\alpha_{ik}(g’g)e_{k}$ .

Since they must coincide, we have the following equality

(1) $A(g’g)=(g’A(g))\cdot A(g^{f})$ for any $g,$ $g’\in G$ .
In particular, we have

$I=gI=gA(g^{-1}g)=g\{(g^{-1}A(g))\cdot A(g^{-1})\}$

$=A(g)\cdot(gA(g^{-1}))$



Equivariant K-theory 185

and
$I=A(gg^{-1})=(gA(g^{-1}))\cdot A(g)$ .

Namely $A(g)$ is an invertible matrix with the two sided inverse matrix

$A(g)^{-1}=gA(g^{-1})$ .
Thus we have a map

$A$ : $Garrow GL(n, \Lambda)$

with the property (1) above.
Conversely given a map

$A$ : $Garrow GL(n, \Lambda)$

with the property (1) above, we give a G-action on $M$ by

$g( \sum_{i}\lambda_{i}e_{i})=\sum_{j}(\sum_{i}(g\lambda_{i})\alpha_{ij}(g))e_{j}$ .

It is easy to see that with this definition $M$ becomes a $\Lambda G$-module, which is
denoted by the pair $(M, A)$ . Let $(M, B)$ be another $\Lambda G$-module with $B(g)=$

$(\beta_{ij}(g))$ . Suppose that we are given a $\Lambda G$-module isomorphism

$f$ : $(M, A)arrow(M, B)$ ,

which is completely described by the matrix

$C=(\gamma_{ij})$

over $\Lambda$ , where
$f(e_{t})= \sum_{f}\gamma_{ij}e_{j}$ .

Since $f$ is a $\Lambda G$-map, we have

$f(ge_{i})=f( \sum_{j}\alpha_{ij}(g)e_{j})=\sum_{j}\alpha_{ij}(g)f(e_{j})$

$= \sum_{j}\alpha_{if}(g)\sum_{k}\gamma_{jk}e_{k}=\sum_{k}(\sum_{j}\alpha_{ij}(g)\gamma_{jk})e_{k}$

$=gf(e_{i})=g( \sum_{j}\gamma_{ij}e_{j})=\sum_{j}(g\gamma_{ij})ge_{j}$

$= \sum_{f}(g\gamma_{i}!_{l})X_{\lrcorner}\beta_{jk}(g)e_{k}=\sum_{k}(\sum_{j}(g\gamma_{ij})\beta_{jk}(g))e_{k}$ .
Thus we have

$A(g)\cdot C=(gC)\cdot B(g)$ for any $g\in G$ .

Since $C$ is invertible, we can express it as

(2) $A(g)=(gC)\cdot B(g)\cdot C^{-1}$ for any $g\in G$ .
Conversely given an invertible matrix $C$ over $\Lambda$ with the property (2) above,

we set
$f(\S^{\lambda_{i}e_{i})=\sum_{j}(F^{\lambda_{i}\gamma_{ij})e_{j}}}$ .
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It is easy to see that with this definition $f$ gives a $\Lambda G$-module isomorphism
between $(M, A)$ and $(M, B)$ .

We now introduce a new G-group $GL(n, \Lambda)^{o}$ as follows. As a G-set,
$GL(n, \Lambda)^{o}$ is given by $GL(n, \Lambda)$ . A new multiplication $A\circ B$ is given by the
reversed multiplication $B\cdot A$ . Clearly $GL(n, \Lambda)^{o}$ becomes a G-group with this
definition.

In the above, we have shown that the isomorphism classes of $\Lambda G$-module
structures on $M$ are in one to one correspondence with $H^{1}(G;GL(n, \Lambda)^{o})$ .

Since the correspondence $A-*A^{-1}$ gives rise to an isomorphism

$f$ : $GL(n, \Lambda)^{o}arrow GL(n, \Lambda)$

of G-groups, there is a one to one correspondence between

$H^{1}(G;GL(n, \Lambda)^{o})$ and $H^{1}(G;GL(n, \Lambda))$ .

This completes the proof of Theorem 5.1.

Next we put an abelian semi-group structure on the set

$\coprod_{n\geqq 0}H^{1}(G;GL(n, \Lambda))$

where $\coprod_{n\geq 0}$ denotes the disjoint union and we set $H^{1}(G;GL(O, \Lambda))=\{0\}$ .
Let $A:Garrow GL(m, \Lambda)$ and $B:Garrow GL(n, \Lambda)$ be cocycles. A summation

$A+B:Garrow GL(m+n, \Lambda)$ is defined by

$(A+B)(g)=(\begin{array}{ll}A(g) 00 B(g)\end{array})$ ,

and a multiplication $A\cross B:Garrow GL(mn, \Lambda)$ is defined by

$(A\cross B)(g)=A(g)\otimes B(g)$

where $\otimes denotes$ the tensor product of matrices. It is easy to see that $A+B$

is again a cocycle and that $A+B\sim B+A$ . Moreover if $A\sim A’$ and $B\sim B’$ , then
we have $A+B\sim A’+B’$ . Hence $\coprod_{n\geqq}{}_{0}H^{1}(G;GL(n, \Lambda))-$ becomes an abelian semi-
group. When $\Lambda$ is commutative, $A\cross B$ is again a cocycle and $\coprod_{n}{}_{\geqq 0}H^{1}(G;GL(n, \Lambda))$

becomes a semi-ring. The Grothendieck group associated with the abelian semi-
group above is denoted by

$K(\coprod_{n\geq 0}H^{1}(G;GL(n, \Lambda)))$ .

PROPOSITION 5.2. If $\Lambda$ has $IBN$, then we have

$R(G, \Lambda)\cong K(\coprod_{n\geq 0}H^{1}(G;GL(n, \Lambda)))$ .

When $\Lambda$ is commutative, both terms hav2 ring structures $and\cong stands$ for a nng
isomorphism.
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PROOF. Easy and omitted.

Let $\Lambda$ be a G-ring such that any projective module over $\Lambda$ is stably free.
Then we have easily that

$K^{G}(\Lambda;F_{f})_{d}\cong R(G, \Lambda)$ .

Hence, in view of [14], we have in particular,

PROPOSITION 5.3. If a G-nng $\Lambda$ is a field, a skew field, a pnncipal ideal
domain, or a local $nng$ , then we have

$K^{G}(\Lambda;F_{f})_{d}\cong K(\coprod_{n\geqq 0}H^{1}(G;GL(n, \Lambda)))$ .

When $\Lambda$ is commutative, both terms have $nng$ structures $and$ \cong stan& $for$ a ring
isomorphism.

Let $K/k$ be a Galois extension and $G$ the Galois group of $K/k$ . Then $K$

is a G-ring in our sense. According to Serre [18], the first cohomology
$H^{1}(G;GL(n, K))$ vanishes for all $n$ and hence we have

COROLLARY 5.4. Under the condition above, we have

$K^{G}(K;F_{a})_{d}\cong K^{G}(K;F_{f})_{d}\cong K^{G}(K;F_{tf})_{d}\cong Z$ .

If the characteristic of $K$ is zero or prime to $|G|$ , then $d$ in the formula can be
replaced by $e$ .

\S 6. Induction theorems for $K^{G}(\Lambda;F_{t})_{\epsilon}$ and $K^{G}(\Lambda;F_{f})_{e}$ .
In this section, we shall deal with two special families $F_{t}$ and $F_{f}$ , and have

induction theorems for $K^{G}(\Lambda;F_{t})_{\epsilon}$ and $K^{G}(\Lambda;F_{f})_{d}$ .
As an application, we shall have induction theorems for equivariant topo-

logical K-theory via the equivariant Swan isomorphism, which will be dealt
with in the next section.

First we show the following lemma on which the induction theorem is based.

LEMMA 6.1. Let $R$ be a commutative G-nng and $\Lambda$ a GR-algebra. Let $A$ be
an RG-module which is free as an R-module. Then $A\otimes_{R}\Lambda G$ is an $F_{t}$-free $\Lambda G-$

module. Here a $\Lambda G$-module structure on $A\otimes_{R}\Lambda G$ is given by

$( \sum_{g’}g’\circ$

for $g,$ $g^{f}\in G,$ $\lambda_{g},$ $\lambda_{g’}\in\Lambda,$ $a\in A$ .

PROOF. Choose a basis $\{e_{i}|i=1, 2, m\}$ for $A$ over $R$ . Then the G-action
on $A$ is completely described by the matrix

$A(g)=(\alpha_{ij}(g))$ , $\alpha_{ij}(g)\in R$
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over $R$ , where
$ge_{i}= \sum_{j}\alpha_{ij}(g)e_{j}$

Define a map
$\phi$ : $A \bigotimes_{R}\Lambda Garrow(\Lambda G)^{m}$

by the correspondence:

2 $r_{i}e_{i} \otimes\sum_{g}\lambda_{g}g-arrow\bigoplus_{jg}\sum_{i}r_{i}(g\alpha_{ij}(g^{-1}))\lambda_{g}g$

for $r_{i}\in R,$ $\lambda_{g}\in\Lambda,$ $g\in G$ . It is easy to see that $\phi$ is well-defined. We now show
that $\phi$ is a $\Lambda G$-module homomorphism. By definition, we have

$( \sum_{g’}\lambda_{g’}g^{f})\circ(\sum_{i}r_{i}e_{i}\otimes\sum_{g}\lambda_{g}g)$

$= \sum_{g’}\{\sum_{i}(g’r_{i})(g’e_{i})\otimes\sum_{g}\lambda_{g’}(g^{f}\lambda_{g})g^{f}g\}$

$= \sum_{S’}\{\sum_{j}(\sum_{i}(g’r_{i})\alpha_{ij}(g’))e_{j}\otimes\sum_{g}\lambda_{g’}(g’\lambda_{g})g’g\}$

which is mapped by $\phi$ to

$\bigoplus_{kg^{l}},\sum_{g.j,i}(g’r_{i})\alpha_{ij}(g’)(g’g\alpha_{jk}((g’g)^{-1}))\lambda_{g’}(g’\lambda_{g})g’g$ ,

which is computed by the observations in \S 5 as:

$\bigoplus_{k}$ $\sum_{g’.g.i.l}$ $(g’r_{i}) \sum_{j}\alpha_{ij}(g^{f})(g^{f}\alpha_{jt}(g^{f-1}))(g’g\alpha_{tk}(g^{-1}))\lambda_{g’}(g’\lambda_{g})g’g$

$= \bigoplus_{k}$ $\sum_{g’.g.i}$
$(g’r_{l})(g’g\alpha_{ik}(g^{-1}))\lambda_{g’}(g’\lambda_{g})g’g$ .

On the other hand, we have

$( \sum_{g’}\lambda_{g’}g’)\circ\phi(\sum_{i}r_{i}e_{i}\otimes\sum_{g}\lambda_{g}g)$

$=\oplus$ $\Sigma\lambda_{g’}[g’\{r_{i}(g\alpha_{ij}(g^{-1}))\}](g’\lambda_{g})g’g$

$jg’.g,i$

$= \bigoplus_{j}\sum_{g’.gi}.\lambda_{g’}(g’r_{i})(g^{f}g\alpha_{ij}(g^{-1}))(g’\lambda_{g})g^{f}g$ .

Since $\Lambda$ is an R-algebra, we may conclude that $\phi$ is a $\Lambda G$ -module homomorphism.
Define a map

$\psi$ : $( \Lambda G)^{m}arrow A\bigotimes_{R}\Lambda G$

by the correspondence

$\bigoplus_{i}\sum_{g}\lambda_{g}^{i}g-\Sigma ge_{i}\otimes\lambda_{g}^{l}g$

$g,t$

for $\lambda_{g}^{i}\in\Lambda,$ $g\in G$ . Then it is easily verified that

$\psi\phi=identity$ and $\phi\psi=identity$ .

This completes the proof of Lemma 6.1.

PROPOSITION 6.2. Let $R$ be a commutative $nng$ with tnvial G-action and $\Lambda$
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a GR-algebra. Let $A$ (resp. $P$) be an RG- (resp. $\Lambda G-$ ) module which is R-pro-
jective (resp. $F_{t}$-projectjve). Then $A\otimes_{R}P$ is an $F_{t}$-projective $\Lambda G$ -module.

PROOF. Let $A’$ be an R-module such that $A\oplus A’$ is R-free. Make $A’$ into
an RG-module by making $G$ act trivially on $A’$ . Let $P^{f}$ be a $\Lambda G$-module such
that $P\oplus P’$ is $F_{t}$-free. Then it follows from Lemma 6.1 that

$A \bigotimes_{R}P\oplus A\bigotimes_{R}P’\oplus A’\bigotimes_{R}P\oplus A’\bigotimes_{R}P’\cong(A\oplus A’)\bigotimes_{R}(P\oplus P^{f})$

is $F_{t}$-free. Therefore, $A\otimes_{R}P$ is $F_{t}$ -projective.

COROLLARY 6.3. If $R$ is a Dedekind nng with tnvial G-action and if $\Lambda$ is
a GR-algebra, then $K^{G}(\Lambda;F_{t})_{e}$ is a module over $K^{G}(R;F_{a})_{e}$ . If $i:H\subset G,$ $i_{*}$ and
$i^{*}$ satisfy the equalities (i), (ii) and (iii) in Lemma 3.3.

PROOF. According to [20], $K^{G}(R;F_{a})_{e}\cong K^{G}(R;F_{tf})_{e}$ . Define

$K^{G}(R;F_{tf})_{e}\otimes K^{G}(\Lambda;F_{t})_{e}arrow K^{G}(\Lambda;F_{t})_{e}$

by $[A]\otimes[P]->[A\otimes_{R}P]$ . Since $A$ is torsion free, it is R-projective. Therefore,
$A\otimes_{R}P$ is $F_{t}$-projective by Proposition 6.2. The rest of the proof is the same as
that of Lemma 3.3.

Hence we deduce the following induction theorem as in the manner of the
proofs of Theorems 4.2 and 4.3.

THEOREM 6.4. The statements in Theorems 4.2 and 4.3 hold for the families
$F_{t}$ and $F_{f}$ in place of $F_{a}$ .

PROOF. For the family $F_{f}$ , a similar proof works.

REMARK 6.5. Since $K^{G}(\Lambda;F_{t})_{e}$ is isomorphic to $K^{G}(\Lambda;F_{t})_{d}$ for a finite group
$G$ , we have a similar induction theorem for $K^{G}(\Lambda;F_{t})_{d}$ .

\S 7. Induction theorems for equivariant topological K-theories.

In this section, we define an induction homomorphism for equivariant
topological K-theory and show that it corresponds to the induction homomorphism
for equivariant algebraic K-theory via the equivariant Swan isomorphism in [10].
Accordingly induction theorems for equivariant topological K-theories follow
from that for equivariant algebraic K-theory in \S 6.

Let $\Delta$ be one of the classical fields $R$ (the real numbers), $C$ (the complex
numbers) or $H$ (the quaternions). Let $X$ be a compact Hausdorff G-space. A
$\Delta G$-vector bundle $\xi$ on $X$ is a $\Delta$-vector bundle together with a G-action on $\xi$

preserving the $\Delta$-vector bundle structure [1]. The set of isomorphism classes
of $\Delta G$-vector bundles on $X$ forms an abelian semi-group under the Whitney sum.
The associated abelian group is denoted by $K\Delta_{G}(X)$ . The tensor product of
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G-vector bundles induces a structure of commutative ring in $K\Delta_{G}(X)$ for $\Delta=R$

or $C$ .
Let $H$ be a subgroup of $G$ of finite index and $\xi$ a $\Delta H$-vector bundle on $X$.

Then an induced $\Delta G$-vector bundle $Ind_{H}^{G}\xi$ is defined as follows. In the follow-
ing, we employ the notations in \S 2. We assume that the coset $H$ is repre-
sented by the identity element $e$ of $G$ for simplicity.

As a $\Delta$-vector bundle, we set

$Ind_{H}^{G}\xi=\bigoplus_{\sigma}(\sigma^{-1})^{*}\xi$

where $(\sigma^{-1})^{*}\xi$ denotes the induced bundle of $\xi$ by the map $\sigma^{-1}$ : $Xarrow X$ of G-
action. For $x\in X$, we denote by $\xi_{x}$ the fiber over $x$ of the bundle $\xi$ . Since
the fiber over a point $x\in X$ of the bundle $Ind_{H}^{G}\xi$ is the direct sum

$( Ind_{H}^{G}\xi)_{x}=\bigoplus_{\sigma}\xi_{\sigma}$ -lx

a point $y$ in the fiber is expressed uniquely as

$y= \bigoplus_{\sigma}y_{\sigma}$ for $y_{\sigma}\in\xi_{\sigma- 1_{X}}$ .

Then a G-action is defined by

$g \circ y=g\circ(\bigoplus_{\sigma}y_{\sigma})=\bigoplus_{\sigma(g,\sigma)}h(g, \sigma)y_{\sigma}$

where $h(g, \sigma)y_{\sigma}$ is in the fiber over
$h(g, \sigma)\sigma^{-1}x=\sigma(g, \sigma)^{-1}gx$

of the vector bundle $\xi$ . Hence $g\circ y$ is in the fiber over $gx$ of the vector bundle
$Ind_{H}^{G}\xi$ .

It is easy to see that with these definitions, $Ind_{H}^{G}\xi$ becomes a $\Delta G$-vector
bundle.

REMARK 7.1. Note that our definition of $Ind_{H}^{G}\xi$ is different from that of
$tr_{H}^{G}\xi$ in McClure [13].

One verifies the following

LEMMA 7.2. $Ind_{H}^{G}\xi$ does not depend on the choice of the set of coset repre-
sentatives for $G/H$.

We now show a universal property of $Ind_{H}^{G}\xi$ . Let

$j$ : $\xiarrow Ind_{H}^{G}\xi=\bigoplus_{\sigma}(\sigma^{-1})^{*}\xi$

be the inclusion map onto the direct summand $e^{*}\xi\cong\xi$ of $Ind_{H}^{G}\xi$ . Then $i$ is a
$\Delta H$-vector bundle homomorphism.

PROPOSITION 7.3 (Universal property). For an arbitrary $\Delta G$-vector bundle $\eta$
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over $X$ and for an arbitrary $\Delta H$-vector bundle homomorphjsm $f;\xiarrow\eta$ , there
exists a unique $\Delta G$-vector bundle homomorpfusm

$F:Ind_{H}^{G}\xiarrow\eta$

such that $f=F\cdot i$ .

PROOF. As before, write an arbitrary point $y$ of the total space as

$y= \bigoplus_{\sigma}y_{\sigma}$ for $y_{\sigma}\in\xi_{\sigma-1_{X}}$ .

Then define the map $F:Ind_{H}^{G}\xiarrow\eta$ by

$F(y)=F( \bigoplus_{\sigma}y_{\sigma})=\sum_{\sigma}$ a $f(y_{\sigma})$ .

Since $\sigma f(y_{\sigma})$ is in the fiber $\eta_{x}$ over $x$ , the summation makes sense. By defini-
tion, we compute;

$F(g \circ y)=F(\bigoplus_{\sigma(g,\sigma)}h(g, \sigma)y_{\sigma})$

$= \sum_{\sigma}\sigma(g, \sigma)f(h(g, \sigma)y_{\sigma})$

$= \sum_{\sigma}\sigma(g, \sigma)h(g, \sigma)f(y_{\sigma})$

$= \sum_{\sigma}g\sigma f(y_{\sigma})=g(\sum_{\sigma}\sigma f(y_{\sigma}))$

$=gF(y)$ ,

which shows that $F$ is a G-map. The rest of the proof is routine.

REMARK 7.5. It is a routine work to see that such $Ind_{H}^{G}\xi$ with the universal
property is unique.

The correspondence $\xi-\rangle$ $Ind_{H}^{G}\xi$ gives rise to a homomorphism

$Ind_{H}^{G}$ : $K\Delta_{H}(X)arrow K\Delta_{G}(X)$

which we call an induction homomorphjsm.
Let $C_{\Delta}(X)$ be the rin$g$ of continuous $\Delta$-valued functions on $X$. Then $G$ acts

on $C_{\Delta}(X)$ by $(g^{0}a)(x)=a(g^{-1}x)$ for $g\in G$ , $a\in C_{\Delta}(X)$ . With these definitions,
$C_{\Delta}(X)$ becomes a G-ring. Then $\Delta$ is a G-subring of $C_{\Delta}(X)$ by regarding each
element $a\in\Delta$ as the constant function of value $a$ . We now introduce a new
family $F_{r}$ of $C_{\Delta}(X)G$-modules as follows. Let $V$ be a finite dimensional G-
representation space over $\Delta$ . Regarding $C_{\Delta}(X)$ as a right $\Delta$-module, we form a
finitely generated $C_{\Delta}(X)G$-module $C_{\Delta}(X)\otimes_{\Delta}V$ . Define $F_{r}$ to be the family con-
sisting of such modules $C_{\Delta}(X)\otimes_{\Delta}V$ .

PROPOSITION 7.5. The following diagram is commutative:
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$K\Delta_{H}(X)$

$arrow^{Ind_{H}^{G}}$

$K\Delta_{G}(X)$

$arrow^{{\rm Res}_{H}}$

$K\Delta_{H}(X$ ,

$|\cong$

$Ind_{H}^{G}$

$|\cong$

${\rm Res}_{H}$

$|\cong$

$K^{H}(C_{\Delta}(X);F_{\tau})_{d}arrow K^{G}(C_{\Delta}(X);F_{r})_{(}xarrow K^{H}(C_{\Delta}(X);F_{r})_{d}$ .

Here the vertical arrows denote the equivariant Swan isomorPhism [10].

PROOF. Easy and omitted.

For a class $S$ of subgroups of $G,$ $K\Delta_{G}^{s}(X)$ is defined similarly to $K_{S}^{G}(\Lambda;F)_{\epsilon}$

and the notion of exponent is defined similarly.

THEOREM 7.6. For a finite group $G$ , we have

(a) K\Delta \S (X) has exponent $a(G)$ in $K\Delta_{G}(X)$ for $\Delta=R,$ $C,$ $H$ ,

(b) K\Delta \S (X) has exponent $d$ in $K\Delta_{G}(X)$ for $\Delta=R$ or $H$ ,

(c) $KC_{G}^{E}(X)=KC_{G}(X)$ ,

(d) $K\Delta_{G}^{HE}(X)=K\Delta_{G}(X)$ for $\Delta=R,$ $C,$ $H$ .

PROOF. Since $G$ is a finite group, we have isomorphisms

$K^{G}(C_{\Delta}(X);F_{r})_{d}\cong K^{G}(C_{\Delta}(X);F_{t})_{d}\cong K^{G}(C_{\Delta}(X);F_{t})_{e}$

by Theorem 4.3 in [10]. It is trivial to see that these isomorphisms commute
with $Ind_{H}^{G}$ and ${\rm Res}_{H}$ . Hence it follows from Proposition 7.5 that showing the
formulae in Theorem 7.6 is equivalent to showing the corresponding formulae
for $K^{G}(C_{\Delta}(X);F_{t})_{e}$ . Since $C_{\Delta}(X)$ is a GQ-algebra, (a), (b) and (d) follow from
Theorem 6.4. Since $C_{C}(X)$ contains a primitive n-th root of unity in the centre,
(c) follows from Theorem 6.4 again.

REMARK 7.7. Theorem 7.6 will be proved differently as follows. We first
prove that concerning our induction homomorphism, $K\Delta_{G}(X)$ is a Frobenius
module over the real representation ring $RO(G)$ for $\Delta=R$ or $H$ and that $KC_{G}(X)$

is a Frobenius module over the complex representation ring $R(G)$ . It follows
from Swan [20] and Lam [12] that (a), (b) and (d) hold for $RO(G)$ . On the
other hand, it is well-known that (c) holds for $R(G)$ (see for example Serre [19]).

Hence the rest of the proof will be given similarly to that of Theorem 6.4.

The restriction homomorphism

${\rm Res}_{S}$ : $K \Delta_{G}(X)arrow\prod_{H\in S}K\Delta_{H}(X)$

is defined as before and we have

THEOREM 7.8. We have
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(a) $a(G)$ Ker ${\rm Res}_{C}=0$ for $\Delta=R,$ $C,$ $H$ ,

(b) $d$ Ker ${\rm Res}_{E}=0$ for $\Delta=R,$ $H$ ,

(c) $Ker{\rm Res}_{E}=0$ for $\Delta=C$ ,

(d) Ker ${\rm Res}_{HE}=0$ for $\Delta=R,$ $C,$ $H$ .

Let $f:Xarrow Y$ be a $G$-map between compact G-spaces. Let $S$ be a class of
subgroups of a finite group $G$ and $k$ a positive integer. Concerning the pair
$(S, k)$ , we consider the following statement:

“if $f_{H}^{*}$ : $K\Delta_{H}(Y)arrow K\Delta_{H}(X)$ is injective, surjective or an isomorphism for
every $H\in S$ , then $k\cdot Kerf_{G}^{*}=0,$ $k$ . Coker $f_{G}^{*}=0$ or $k\cdot Kerf_{G}^{*}=k$ . Coker $f_{G}^{*}=0$ re-
spectively”.

Then as an application of our induction and restriction theorems, we have

COROLLARY 7.9. The statement above is true for the pairs $(C, a(G)),$ $(E, d)$ ,
(HE, 1) where $\Delta=R,$ $C$ or H. When $\Delta=C$ , it is true for $(E, 1)$ .

PROOF. One verifies the commutativity of the following diagrams:

$f\not\in$

$K\Delta_{G}(Y)-K\Delta_{G}(X)$

$\downarrow{\rm Res}_{H}$

$ff_{i}$

$\downarrow{\rm Res}_{H}$

$K\Delta_{H}(Y)-K\Delta_{H}(X)$ ,

$f\not\in$

$K\Delta_{G}(Y)arrow K\Delta_{G}(X)$

$|Ind_{H}^{G} f\S|Ind_{H}^{G}$

$K\Delta_{H}(Y)arrow K\Delta_{H}(X)$ .

Hence Corollary 7.9 follows from Theorems 7.6 and 7.8.

REMARK 7.10. Corollary 7.9 holds for a G-map between compact G-space
pairs. When $\Delta=C$ , a stronger result is obtained in the category of G-CW
complexes by Jackowski as follows. He showed that if $f_{H}^{*}$ is an isomorphism
for every $H\in C$, then $f_{G}^{*}$ is an isomorphism [7].

The following proposition enables us to show that the Atiyah-Singer index
homomorPhisms [2] and our induction homomorphisms commute.

PROPOSITION 7.11 (Relative Frobenius reciprocity). Let $A$ be a G-invariant
closed subset of a compact $G$-space X. If $x\in K\Delta_{H}(X),$ $y\in K\Delta_{G}(X, A)$ , then

$Ind_{H}^{G}(x\otimes{\rm Res}_{H}y)=(Ind_{H}^{G}x)\otimes y$

where $\Delta=R$ or C. Similar for $x\in KR_{H}(X),$ $y\in KH_{G}(X, A)$ .
PROOF. Easy and omitted.

REMARK 7.12. For a finite G-covering $P:\tilde{X}arrow X$, there are two kinds of
homomorphisms: $K\Delta_{G}(\tilde{X})arrow K\Delta_{G}(X)$ . One is the homomorphism defined by the
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direct image construction [23] and the other is the transfer homomorphism in-
duced by the Becker-Gottlieb stable map [25]. According to [24], these two
homomorphisms agree with each other when $\Delta=C$ . This fact is kindly informed
to the author by Professor A. Kono.

For a subgroup $H$ of $G$ of finite index and for a finite G-CW complex $X$,

the map $G\cross_{H}Xarrow X$ defined by $[g, x]->gx(g\in G, x\in X)$ gives a finite G-covering.
Then our induction homomorphism

$Ind_{H}^{G}$ : $KC_{H}(X)arrow KC_{G}(X)$

coincides with the composition of the Shapiro isomorphism $KC_{H}(X)\cong KC_{G}(G\cross_{H}X)$

and the Becker-Gottlieb transfer homomorphism $KC_{G}(G\cross_{H}X)arrow KC_{G}(X)$ .

\S 8. Induction theorems for equivariant J-theory.

We first recall the definition of the equivariant J-group [8], [9]. Let $X$ be
a compact Hausdorff G-space. Let $\xi$ and $\eta$ be orthogonal G-vector bundles
over $X$. Denote by $S(\xi)$ (resp. $S(\eta)$ ) the sphere bundle associated with $\xi$ (resp.
$\eta)$ . Then $S(\xi)$ and $S(\eta)$ are said to be of the same G-fiber homotopy type if
there exist fiber preserving G-maps:

$f$ : $S(\xi)arrow S(\eta)$ , $f’$ : $S(\eta)arrow S(\xi)$

and fiber Preserving G-homotopies:

$h$ : $S(\xi)\cross Iarrow S(\xi)$ , $h’$ : $S(\eta)\cross Iarrow S(\eta)$

with
$h|S(\xi)\cross 0=f^{f}\cdot f$ , $h|S(\xi)\cross 1=identity$

$li’|S(\eta)\cross 0=f\cdot f’$ , $h’|S(\eta)\cross 1=identity$ .

We write $\xi\sim\eta$ if $S(\xi)$ and $S(\eta)$ are of the same G-fiber homotopy type.
Let $T_{G}(X)$ be the additive subgroup of $KR_{G}(X)$ generated by elements of

the form $[\xi]-[\eta]$ where $\xi\sim\eta$ We define

$J_{G}(X)=KR_{G}(X)/T_{G}(X)$ ,

which is called an equivariant $J$-group. The natural epimorphism $KR_{G}(X)arrow J_{G}(X)$

is denoted by $J_{G}$ .

LEMMA 8.1. $Ind_{H}^{G}(T_{H}(X))\subset T_{G}(X)$ .

PROOF. Let $\xi$ and $\eta$ be orthogonal H-vector bundles with $\xi\sim\eta$ . Let $f,$ $f’$ ,
$h,$ $h’$ be as above. Then we construct a fiber preserving G-map

$\overline{f}=Ind_{H}^{G}(f)$ : $S(Ind_{H}^{G}\xi)arrow S(Ind_{H}^{G}\eta)$

as follows. For a point $x\in X$, an arbitrary point of the fiber over $x$ can be
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written as $\oplus_{\sigma}a_{\sigma}y_{\sigma}$ where $y_{\sigma}\in S(\xi_{\sigma-1_{X}})$ and $\Sigma_{\sigma}a_{\sigma}^{2}=1$ . Then the correspondence

$\bigoplus_{\sigma}a_{\sigma}y_{\sigma}$ – $\bigoplus_{\sigma}a_{\sigma}f(y_{\sigma})$

defines a fiber preserving map

$f=Ind_{H}^{G}(f)$ : $S(Ind_{H}^{G}\xi)arrow S(Ind_{H}^{G}\eta)$ .

It is easy to see that $\overline{f}$ is a well-defined continuous map. We now show that
$\overline{f}$ is a G-map as follows:

$\overline{f}(g\circ(\bigoplus_{\sigma}a_{\sigma}y_{\sigma}))=\overline{f}(\bigoplus_{\sigma(g,\sigma)}a_{\sigma}h(g, \sigma)y_{\sigma})$

$= \bigoplus_{\sigma(g,\sigma)}a_{\sigma}f(h(g, \sigma)y_{\sigma})$

$= \bigoplus_{\sigma(g,\sigma)}a_{\sigma}h(g, a)f(y_{\sigma})$

$= \bigoplus_{\sigma(g,\sigma)}h(g, \sigma)a_{\sigma}f(y_{\sigma})$

$=g \circ(\bigoplus_{\sigma}a_{\sigma}f(y_{\sigma}))=g\circ\overline{f}(\bigoplus_{\sigma}a_{\sigma}y_{\sigma})$ .

Similarly we have a fiber preserving G-map

$\overline{f}^{f}=Ind_{H}^{G}(f^{f})$ : $S(Ind_{H}^{G}\eta)arrow S(Ind_{H}^{G}\xi)$

and fiber preserving G-homotopies:

$\overline{h}=Ind_{H}^{G}(h)$ : $S(Ind_{H}^{G}\xi)\cross Iarrow S(Ind_{H}^{G}\xi)$

and
$\overline{h}^{f}=Ind_{H}^{G}(h’)$ : $S(Ind_{H}^{G}\eta)\cross Iarrow S(Ind_{H}^{G}\eta)$ .

It is easy to see that the maps $\overline{f},\overline{f}^{f},\overline{h},\overline{h}^{f}$ give the relation $Ind_{H}^{G}\xi\sim Ind_{H}^{G}\eta$

COROLLARY 8.2. $Ind_{H}^{G}$ : $KR_{H}(X)arrow KR_{G}(X)$ induces $Ind_{H}^{G}$ : $J_{H}(X)arrow J_{G}(X)$ .
They are connected by the following commutative diagram:

$J_{H}$

$KR_{H}(X)arrow]_{H}(X)$

$\downarrow Ind_{H}^{G}$

$J_{G}$

$\downarrow Ind_{H}^{G}$

$KR_{G}(X)arrow J_{G}(X)$ .

Denote by $A(G)$ the Burnside ring of $G$ and by $\pi;A(G)arrow RO(G)$ the natural
ring homomorphism. Namely for a subgroup $H$ of $G,$ $\pi(G/H)$ is the permutation
representation over the G-set $G/H$. Denote by $\underline{\pi(G/H)}$ the G-vector bundle

$X\cross\pi(G/H)arrow X$ .
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LEMMA 8.3. Let $\xi$ and $\eta$ be G-vector bundles over X. If $\xi\sim\eta$ , then we have

$\underline{\pi(G/H)}\otimes\xi\sim\underline{\pi(\underline{G/H}})\otimes\eta-\cdot$

PROOF. Let $L$ be the trivial line bundle $X\cross Rarrow X$ where $G$ acts trivially
on $R$ . Then $L$ is a G-vector bundle and satisfies

$Ind_{H}^{G}L\cong\underline{\pi_{-}(G\underline{/H}})$ .

Since Frobenius reciprocity holds for G-vector bundles (cf. Lemma 7.9), we have

$Ind_{H}^{G}{\rm Res}_{H}\xi\cong Ind_{H}^{G}(L\otimes{\rm Res}_{H}\xi)$

$\cong(Ind_{H}^{G}L)\otimes\xi\cong\underline{\pi(G/H)}\otimes\xi$ .

Similarly we have

$Ind_{H}^{G}{\rm Res}_{H}\eta\cong\underline{\pi(G/H)}\otimes\eta$ .

Since $\xi\sim\eta$ , we have ${\rm Res}_{H}\xi\sim{\rm Res}_{H}\eta$ It follows from Lemma 8.1 that

$Ind_{H}^{G}{\rm Res}_{H}\xi\sim Ind_{H}^{G}{\rm Res}_{H}\eta$ .

This completes the proof of Lemma 8.3.

THEOREM 8.4. $J_{G}(X)$ is a Frobenius module over the subring $\pi(A(G))$ of
$RO(G)$ .

PROOF. By making use of Lemma 8.3, one verifies that $J_{G}(X)$ is a module
over $\pi(A(G))$ . Since $KR_{G}(X)$ is a Frobenius module over $RO(G),$ $J_{G}(X)$ is a
Frobenius module over $\pi(A(G))$ .

THEOREM 8.5. The homomorphism

$\sum_{H\cong HE}$
$Ind_{H}^{G}$ : $\bigoplus_{H\in HE}J_{H}(X)arrow J_{G}(X)$

is surjective and the homomorphjsm

${\rm Res}_{HE}= \prod_{H\in HE}{\rm Res}_{H}$ : $J_{G}(X)arrow$ $\prod_{H\in HE}J_{H}(X)$

is injective.

PROOF. Let $x$ be an element of $\pi(A(G))\subset RO(G)$ . If $i^{*}(x)=0$ for all $i:H\subset G$

with $H\in C$, then $x=0$ . It follows from the Dress induction theorem [4] that

$\sum_{H\in HE}$
$Ind_{H}^{G}$ : $\bigoplus_{H\in HE}\pi(A(H))arrow\pi(A(G))$

is surjective. Since $J_{G}(X)$ is a Frobenius module over $\pi(A(G))$ , the proof pro-
ceeds as in that of Corollary 3.6.
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COROLLARY 8.6. Let $f:Xarrow Y$ be a $G$ -map between compact $G$-spaces $X,$ $Y$ .
If $f^{*};$ $J_{H}(Y)arrow J_{H}(X)$ are isomorphisms for all $H\in HE$ , then $f^{*}:$ $J_{G}(Y)arrow J_{G}(X)$

is an isomorphism.

The following application of Theorem 8.5 was suggested to the author by
T. Petrie. Denote by $\Psi^{p}$ the p-th Adams operation.

COROLLARY 8.7. Let $G$ be a finite group of order $n$ such that every hyper-
elementary subgroup of $G$ is abelian. Let $p,$ $q$ be integers with $(p, n)=(q, n)=$

$(p, q)=1$ . Then for any G-vector bundle $\xi$ ,

$(\Psi^{p}-1)(\Psi^{q}-1)\xi\in KerJ_{G}$ .

PROOF. Note that ${\rm Res}_{H}J_{G}((\Psi^{p}-1)(\Psi^{q}-1)\xi)=J_{H}((\Psi^{p}-1)(\Psi^{q}-1){\rm Res}_{H}\xi)$ . Ac-
cording to Petrie [15] (see also [16]), $J_{H}((\Psi^{p}-1)(\Psi^{q}-1){\rm Res}_{H}\xi)=0$ for every
abelian subgroup $H$. Hence $J_{H}((\Psi^{p}-1)(\Psi^{q}-1){\rm Res}_{H}\xi)=0$ for every hyperelemen-
tary subgroup $H$ by assumption. It follows from Theorem 8.5 that

$J_{G}((\Psi^{p}-1)(\Psi^{q}-1)\xi)=0$ .

This completes the proof of Corollary 8.7.
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