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0. Introduction.

There seems to be few works on non-compact semi-simple Lie groups acting
on the sphere non-transitively. In the previous papers [7], [8] we have studied
analytic $SL(n, R)$ (resp. $SL(n,$ $C)$ ) actions on the standard k-sphere and we
have shown that such an action has been characterized by an analytic $R_{0}$ (resp.
$C_{0})$ action on a homotopy $(k-n+1)$ -sphere (resp. $(k-2n+2)$ -sphere) satisfying a
certain condition for $5\leqq n\leqq k\leqq 2n-2$ (resp. $n\geqq 7$ and $2n\leqq k\leqq 4n-2$). Here $R_{0}$

(resp. $C_{0}$) denotes the multiplicative group of all non-zero real (resp. complex)

numbers.
In this paper we study analytic $Sp(n, C)$ actions on integral homology k-

spheres and we shall show in Section 5 that such an action is characterized by
an analytic $C_{0}$ action on an integral homology $(k-4n+2)$ -sphere satisfying a
certain condition for $n\geqq 7$ and $4n\leqq k\leqq 8n-2$ . By an integral homology k-sphere
we mean a closed orientable analytic manifold whose homology with integer
coefficients is isomorphic to that of the standard k-sphere.

Our method and result are quite similar to that of the previous papers [7],

[8]. One difference here is the need to show that the fixed point set of the
restricted $L(n)$ action is an analytic submanifold of a given manifold with cer-
tain analytic $Sp(n, C)$ action, where $L(n)$ is a non-compact closed subgroup of
$Sp(n, C)$ defined in Section 1. To show it, we need to study certain analytic
$SL(2, C)$ actions. Theorem 2.1 is a key result.

In the final part of Section 5, we describe transitive $Sp(n, C)$ actions on
$(4n-1)$-sphere. Finally, we study analytic $SO(n, C)$ actions on $(2n-1)$ -sphere
and on the Brieskorn variety $W^{2n-1}(d)$ , and analytic $SL(n, R)$ actions on $(2n-1)-$

sphere in Section 6.

1. Certain closed subgroups of $Sp(n, C)$ .
1.1. Let $GL(m, C)$ and $U(m)$ denote the group of regular matrices of degree

$m$ with complex coefficients and the group of unitary matrices of degree $m$ ,
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respectively. Let $I_{n}$ denote the unit matrix of degree $n$ , and we put

$J_{n}=(\begin{array}{ll}0 I_{n}-I_{n} 0\end{array})$ .

Define $Sp(n, C)=\{A\in GL(2n, C):{}^{t}AJ_{n}A=J_{n}\}$ and $Sp(n)=U(2n)\cap Sp(n, C)$ . Then
$Sp(n, C)$ and $Sp(n)$ are connected closed subgroups of $GL(2n, C)$ . Let $L(n)$ and
$N(n)$ denote the subgroups of $Sp(n, C)$ consisting of all matrices of the form

( $0001$ $x_{21}^{0}X_{11}^{*}$

$1***$

$x_{22}^{0}X_{12}^{*}$) $(000*$ $x_{21}^{0}X_{11}^{*}$

$****$

$X_{12}^{*}x_{22}^{0})$

for $X_{ij}\in M_{n-1}(C)$ , respectively. Notice that $N(n)$ is the normalizer of $L(n)$ , in
fact, if $N(n)$ contains $gL(n)g^{-1}$ for some $g\in Sp(n, C)$ then $g\in N(n)$ ; the standard
$Sp(n, C)$ action on $C^{2n}-\{0\}$ is transitive, its isotropy groups are conjugate to
$L(n)$ , and each isotropy group of the restricted $Sp(n)$ action is conjugate to
$Sp(n-1)$ , where $Sp(n-1)=L(n)\cap Sp(n)$ . Put $Sp(n-1, C)={}^{t}L(n)\cap L(n)$ , where
${}^{t}L(n)=\{{}^{t}A:A\in L(n)\}$ .

THEOREM 1.1 (Uchida [10], Theorem 1.3). Let $G$ be a closed Proper subgroup
of $Sp(n, C)$ which contains $Sp(n-1)$ for $n\geqq 4$ . SuppOse that each isotropy group
of the restricted $Sp(n)$ action on the homogeneous space $Sp(n, C)/G$ contains a
subgroup conjugate to $Sp(n-1)$ . Then $L(n)\subset hGh^{-1}\subset N(n)$ for an element $h$ of
the centralizer of $Sp(n-1, C)$ in $Sp(n, C)$ .

REMARK. Let $a,$ $b,$ $c,$
$d$ be complex numbers with $ad-bc=1$ . Put

$M(\begin{array}{ll}a bc d\end{array})=(\begin{array}{llll}a 0 b 00 I_{n-1} 0 0c 0 d 00 0 0 I_{n-1}\end{array})$ .

Then $M(\begin{array}{ll}a bc d\end{array})$ is an element of the centralizer of $Sp(n-1, C)$ in $Sp(n, C)$ . In

fact, the centralizer consists of all matrices of the form $\pm M(\begin{array}{ll}a bc d\end{array})$ .

1.2. Let $X$ be a set with a transformation group $G$ . Denote by $F(H, X)$

the set of fixed points of the restricted $H$ action for a subgroup $H$ of $G$ .

LEMMA 1.2. Let $X$ be a Hausdorff space with a non-trivial continuous
$Sp(n, C)$ action. SuPpose that $n\geqq 4$ and each isotropy group of the restricted
$Sp(n)$ action contains a subgroup conjugate to $Sp(n-1)$ . Then

$F(Sp(n), X)=F(Sp(n, C),$ $X$ ), $F(Sp(n-1), X)=F(Sp(n-1, C),$ $X$ )

and
$F(ML(1)\cdot Sp(n-1, C),$ $X$ ) $=F(L(n), X)$ ,
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where $ML(1)$ consists of all matrices of the form $M(\begin{array}{ll}1 *0 1\end{array})$ .

PROOF. It is only necessary to show that $F(Sp(n), X)$ (resp. $F(Sp(n-1), X)$ ,
$F(ML(1)\cdot Sp(n-1, C),$ $X$ )) is contained in $F(Sp(n, C),$ $X$ ) (resp. $F(Sp(n-1, C),$ $X$),

$F(L(n), X))$ . Let $G$ denote the isotropy group at $x\in X$. Suppose first that $G$

contains $Sp(n)$ but $G$ is a proper subgroup of $Sp(n, C)$ . Then $G$ satisfies the
condition of Theorem 1.1, and hence $hGh^{-1}\subset N(n)$ for some $h$ . But $N(n)$ does
not contain any subgroup conjugate to $Sp(n)$ , this is a contradiction. Therefore,
if $G$ contains $Sp(n)$ , then $G$ coincides with $Sp(n, C)$ . This shows that $F(Sp(n), X)$

is equal to $F(Sp(n, C),$ $X$ ). In the following, suppose that $G$ is a proper sub-
group of $Sp(n, C)$ . Suppose that $G$ contains $Sp(n-1)$ . Then, $Sp(n-1, C)\subset$

$L(n)\subset hGh^{-1}$ for an element $h$ of the centralizer of $Sp(n-1, C)$ , and hence $G$

contains $Sp(n-1, C)$ . This shows that $F(Sp(n-1), X)$ is equal to $F(Sp(n-1, C),$ $X$).

SuPpose next that $G$ contains $ML(1)\cdot Sp(n-1, C)$ . Then there is an element

$h=M(\begin{array}{ll}a bc d\end{array})$ such that $L(n)\subset hGh^{-1}\subset N(n)$ . In particular, $hML(1)h^{-1}$ is contained

in $N(n)$ Then we see that $c=0$ by a routine work, and hence $h\in N(n)$ . There-
fore $G$ contains $L(n)$ , and hence $F(L(n), X)$ is equal to $F(ML(1)\cdot Sp(n-1, C),$ $X$ ).

$q$ . $e$ . $d$ .
COROLLARY 1.3. Under the hyp0theses of Lemma 1.2, the equality

$X=Sp(n, C)\cdot F(L(n), X)=\{gx : g\in Sp(n, C), x\in F(L(n), X)\}$

holds. Moreover if $F(Sp(n, C),$ $X$ ) is empty, then there is an equivariant homeo-
morphism

$X\cong(Sp(n, C)\cross F(L(n), X))/N(n)$ ,

where the normalizer $N(n)$ of $L(n)$ acts naturally on $F(L(n), X)$ .

1.3. Let $X$ be an analytic manifold with a non-trivial analytic $Sp(n, C)$

action. Suppose the hypotheses of Lemma 1.2 hold. Then each connected component
of $F(Sp(n, C),$ $X$ ) (resp. $F(Sp(n-1,$ $C),$ $X)$ ) is an analytic submanifold of $X$,

because there is an analytic Riemannian metric on $X$ which is invariant under
the restricted $Sp(n)$ action (cf. [7], Remark 3.2). We want to show that each
connected component of $F(L(n), X)$ is an analytic submanifold of $X$. By the
last equation of Lemma 1.2, it is sufficient to show that for the natural $SL(2, C)$

action on $Y=F(Sp(n-1, C),$ $X$ ), each connected component of $F(L(1), Y)$ is an
analytic submanifold of $Y$. Let $G$ be an isotropy group of the $SL(2, C)$ action
on $Y$. Notice that if $G\neq SL(2, C)$ then $L(1)\subset hGh^{-1}\subset N(1)$ for an element $h\in$

$SL(2, C)$ .
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2. Infinitesimal transformations.

2.1. Let $G$ be a connected Lie group and $\mathfrak{g}$ its Lie algebra of left invariant
vector fields. Let $\psi:G\cross Marrow M$ be an analytic $G$ action. Let $L(M)$ denote the
Lie algebra of analytic vector fields on $M$. Then we can define a Lie algebra
homomorphism $\psi^{+}:$ $\mathfrak{g}arrow L(M)$ as follows

$\psi^{+}(X)_{p}(f)=\lim_{tarrow 0}\frac{f(\psi(\exp(-tX),p))-f(p)}{t}$

for $X\in \mathfrak{g}$ , $p\in M$ and any analytic function $f$ defined on a neighborhood of $P$

(Palais [6], Chapter II, Theorem II). We shall show the above fact for com-
pleteness.

For each $p\in M$, we define $\psi^{p}$ : $Garrow M$ by $\psi^{p}(g)=\psi(g^{-1}, p)$ . If $X$ and $Y$ are
analytic vector fields on $G$ and $M$ respectively, then we obtain an analytic vector
field $X\oplus Y$ on $G\cross M$ defined by $(X\oplus Y)_{(g,p)}=X_{g}\oplus Y_{p}$ . For $X\in \mathfrak{g},$ $p\in M$ and an
analytic function $f$ defined on a neighborhood $U$ of $p$ , we see that

$((d\psi^{q})(X_{e}))(f)=X_{e}(f\circ\psi^{q})=(X\oplus 0)_{(e.q)}(f\circ\psi^{Q}(\nu\cross 1))$

for $q\in U$ , and hence the function $qarrow((d\psi^{q})(X_{e}))(f)$ is analytic on $U$. Here $e$ is
the identity element of $G$ and $\nu;Garrow G$ is defined by $v(g)=g^{-1}$ . Therefore the
correspondence $parrow(d\psi^{p})(X_{e})$ is an analytic vector field on $M$. Put $\psi^{+}(X)_{p}=$

$(d\psi^{p})(X_{e})$ . Then $\psi^{+}(X)\in L(M)$ . Let $p\in M$, $h\in G$ and let $q=\psi^{p}(h)$ . Define
$L_{h}$ : $Garrow G$ by $L_{h}(g)=hg$ . Then

$(\psi^{p_{Q}}L_{h})(g)=\psi^{p}(/\iota g)=\psi(g^{-1}h^{-1}, p)=\psi(g^{-1}, q)=\psi^{q}(g)$

and hence

$\psi^{+}(X)_{q}=(d\psi^{q})(X_{e})=(d\psi^{p})((dL_{h})(X_{e}))=(d\psi^{p})(X_{h})$ , $X\in \mathfrak{g}$ .
Therefore $X$ and $\psi^{+}(X)$ are $\psi^{p}$ related. If $Y\in \mathfrak{g}$ then of course $Y$ and $\psi^{+}(Y)$

are also $\psi^{p}$ related, and hence [X, $Y$] and $[\psi^{+}(X), \psi^{+}(Y)]$ are $\psi^{p}$ related
(Chevalley [1], Chapter III, \S VI, Proposition 2), $i$ . $e$ .

$\psi^{+}([X, Y])_{p}=(d\psi^{p})([X, Y]_{e})=[\psi^{+}(X), \psi^{+}(Y)]_{p}$ , $p\in M$ .
Since $\psi^{+}$ is obviously linear, this proves that $\psi^{+}:$ $\mathfrak{g}arrow L(M)$ is a Lie algebra
homomorphism. By definition, we see that

$\psi^{+}(X)_{p}(f)=((d\psi^{p})(X_{e}))(f)=X_{e}(f\circ\psi^{p})$

$= \lim_{tarrow 0}\frac{(f\circ\psi^{p})(\exp(tX))-(f\circ\psi^{p})(e)}{t}$

$= \lim_{tarrow 0}\frac{f(\psi(\exp(-tX),p))-f(p)}{t}$ .

2.2. Put
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$X_{1}=(\begin{array}{ll}0 1-1 0\end{array})$ , $X_{2}=(\begin{array}{ll}0 ii 0\end{array})$ , $X_{3}=(\begin{array}{l}0i0-i\end{array})$ ,

$Y_{1}=(\begin{array}{ll}0 10 0\end{array})$ , $Y_{2}=\theta_{0}$ $i0)$ , $Y_{3}=(\begin{array}{ll}1 00-1 \end{array})$ .

Then $\{X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\},$ $\{X_{1}, X_{2}, X_{3}\}$ and $\{Y_{1}, Y_{2}\}$ are bases of the Lie
algebras of $SL(2, C)$ , $SU(2)$ and $L(1)$ respectively. We have the following
relations:

$[X_{1}, X_{2}]=2X_{3}$ , $[X_{2}, X_{3}]=2X_{1}$ , [X,, $X_{1}$] $=2X_{2}$ , $[Y_{1}, Y_{2}]=0$ ,
$[X_{1}, Y_{1}]=[X_{2}, Y_{2}]=Y_{3}$ , $[X_{1}, Y_{2}]=[Y_{1}, X_{2}]=X_{3}$ ,

$[X_{3}, Y_{1}]=[Y_{3}, Y_{2}]=2Y_{2}$ , $[Y_{2}, X_{3}]=[Y_{3}, Y_{1}]=2Y_{1}$ ,

$[X_{1}, Y_{3}]=2X_{1}-4Y_{1}$ , $[X_{2}, Y_{3}]=2X_{2}-4Y_{2}$ , $[X_{3}, Y_{3}]=0$ .
Let $\{x_{1}, x_{2}, x_{3}\}$ be a canonical coordinates of the second kind at the identity

element of $SU(2)$ with respect to the base $\{X_{1}, X_{2}, -X_{3}\}$ such that

$x_{i}((\exp(-u_{3}X_{3}))(\exp(u_{2}X_{2}))(\exp(u_{1}X_{1})))=u_{i}$ for $i=1,2,3$ .

THEOREM 2.1. Let $\psi:SL(2, C)\cross Marrow M$ be an analytic $SL(2, C)$ action on $M$.
Under the following two conditions:

(1) the restricted $SU(2)$ action is almost free,
(2) each isotropy group contains a subgroup conjugate to $L(1)$ ,

the fixed point set $F(L(1), M)$ is an analytic submanifold of codimenszon two.

PROOF. We can find an analytic $SU(2)$ invariant Riemannian metric on $M$.
Then for each $p\in M$ there is an $SU(2)$ equivariant analytic local isomorphism
$f^{p}$ : $SU(2)\cross D^{m}arrow M$ such that $f^{p}(e, O)=P$ , by the condition (1) and the differen-
tiable slice theorem, where $m=\dim M-3$ and $D^{m}$ is the unit m-disk. Hence we
can find an analytic coordinate system $\{x_{1}, x_{2}, x_{3}, y_{1}, \cdots , y_{m}\}$ at $p\in M$ and a
cubic neighborhood $V$ of $p$ with respect to this system which satisfy the follow-
ing conditions:

(a) $x_{i}(p)=y_{j}(p)=0$ $(1\leqq i\leqq 3,1\leqq j\leqq m)$ ,

(b) $\psi^{+}(X_{3})_{q}=(\frac{\partial}{\partial x_{3}})_{q}$ $(q\in V)$ ,

(c) $\psi^{+}(X_{i})_{q}=\sum_{j=1}^{3}\lambda_{if}(x_{1}(q), x_{2}(q),$ $x_{3}(q))( \frac{\partial}{\partial x_{j}})_{q}$ $(q\in V;i=1,2)_{y}$

where $\lambda_{ij}’ s$ are analytic functions of three variables. In terms of these condi-
tions, we see that the equalities

$x_{3}(\psi(\exp(tX_{3}), q))=x_{8}(q)$ $t$ ,

$(\alpha)$ $x_{l}(\psi(\exp(tX_{3}), q))=x_{i}(q)$ $(i=1,2)$ ,

$y_{j}(\psi(\exp(tX_{3}), q))=y_{j}(q)$ ($j=1,2,$ $\cdots$ , m)
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hold whenever $q\in V$ and $|t|$ is sufficiently small. Since the vectors $\psi^{+}(X_{1})_{q}$ ,
$\psi^{+}(X_{2})_{q},$ $\psi^{+}(X_{3})_{q},$ $(\partial/\partial y_{1})_{q},$ $\cdots$ , $(\partial/\partial y_{m})_{q}$ form a base of the tangent space at $q\in V$ ,
by the condition (1), we can express

$\psi^{+}(Y_{i})_{q}=\sum_{j=1}^{3}\alpha_{ij}(q)\psi^{+}(X_{j})_{q}+\sum_{k=1}^{m}\beta_{ik}(q)(\frac{\partial}{\partial y_{k}})_{q}$ $(q\in V;1\leqq i\leqq 3)$ ,

where $\alpha_{ij}’ s$ and $\beta_{ik}’ s$ are analytic functions on $V$ .
To simplify the notation, we set $Z^{+}=\psi^{+}(Z)$ . We obtain the following

equations:

$X_{1}^{+}(\alpha_{13})=\alpha_{33}-2\alpha_{12}$ , $X_{2}^{+}(\alpha_{13})=2\alpha_{11}-1$ , $X_{3}^{+}(\alpha_{13})=2\alpha_{23}$ ,
$(\beta)$

$X_{1}^{+}(\alpha_{23})=1-2\alpha_{22}$ , $X_{2}^{+}(\alpha_{23})=\alpha_{33}+2\alpha_{21}$ , $X_{3}^{+}(\alpha_{23})=-2\alpha_{13}$ .

Since the computation is fairly similar, we shall show only the first equation.
We have

$[X_{1}^{+}, Y_{1}^{+}]= \sum_{j}X_{1}^{+}(\alpha_{1j})X_{j}^{+}+\sum_{j}\alpha_{1j}[X_{1}^{+}, X_{j}^{+}]+\sum_{k}X_{1}^{+}(\beta_{1k})\frac{\partial}{\partial y_{k}}+\sum_{k}\beta_{1k}[X_{1}^{+},$ $\frac{\partial}{\partial y_{k}}]$

where $[X_{1}^{+}, \partial/\partial y_{k}]=0$ by the condition (c). Since $\psi^{+}$ is a Lie algebra homomor-
phism, we obtain $X_{1}^{+}(\alpha_{13})=\alpha_{33}-2\alpha_{12}$ .

For an analytic function $f$ on $V$ , we can express

$f(q)=f^{*}(x_{1}(q), x_{2}(q),$ $x_{3}(q),$ $y_{1}(q),$ $\cdots$ $y_{m}(q))$ $(q\in V)$ ,

where $f^{*}$ is an analytic function of $m+3$ variables. Let us assume $P\in F(L(1), M)$

in the following. We obtain from the equations $(\beta)$

$( \frac{D(\alpha_{13}^{*},\alpha_{23}^{*},x_{3}^{*})}{D(x_{1},x_{2},x_{3})})_{0}\cross\det(\begin{array}{ll}\lambda_{11}(0) \lambda_{12}(0)\lambda_{21}(0) \lambda_{22}(0)\end{array})=1+( \alpha_{33}(p))^{2}\neq 0$ ,

because the equalities $\alpha_{1j}(p)=\alpha_{2j}(p)=0$ hold for $1\leqq j\leqq 3$ . The implicit function
theorem gives the following: there exist two analytic functions $h_{1},$ $h_{2}$ of $m$

variables defined on a neighborhood of the origin and there exists a small cubic
neighborhood $V_{1}$ of $P$ contained in $V$ such that $h_{1}(0)=h_{2}(0)=0$ and if $q\in V_{1}$ , then

(d) $-1<\alpha_{ii}(q)<1$ for $i=1,2$ ,
and

(e) $x_{3}(q)=\alpha_{13}(q)=\alpha_{23}(q)=0$ iff
$x_{3}(q)=0$ and $x_{t}(q)=h_{i}(y_{1}(q), \cdots , y_{m}(q))$ for $i=1,2$ .

Denote by $W$ the set of points $q\in V_{1}$ whose coordinates satisfy the conditions:

$x_{i}(q)=h_{i}(y_{1}(q), \cdots , y_{m}(q))$ for $i=1,2$ .

The set $W$ is an $(m+1)$-dimensional analytic submanifold of $V_{1}$ . By the
equalities $(\alpha)$ and the condition (e), we see that $W$ contains tbe intersection
$V_{1}\cap F(L(1), M)$ .

We shall show conversely that $W$ is contained in $V_{1}\cap F(L(1), M)$ . Let $q\in W$.
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There exists a real number $t$ such that for $q’=\psi(\exp(tX_{3}), q)$ the equations
$x_{3}(q’)=0,$ $x_{i}(q’)=x_{i}(q)$ for $i=1,2$ and $y_{j}(q’)=y_{j}(q)$ for $j=1,$ $\cdots$ , $m$ hold and $q’\in W$

from the equalities $(\alpha)$ , and hence $\alpha_{13}(q’)=\alpha_{23}(q’)=0$ by the condition (e). If
$q’\in F(L(1), M)$ then $q=\psi(\exp(-tX_{3}), q’)$ is also contained in $F(L(1), M)$ . So we
can assume $\alpha_{13}(q)=\alpha_{23}(q)=0$ without loss of generality. Let $\mathfrak{g}$ be the isotropy
algebra at $q$ , that is, the Lie algebra of the isotropy group at $q$ . By the condi-
tion (2), $\mathfrak{g}$ contains an abelian subalgebra $\mathfrak{g}_{1}$ conjugate to the Lie algebra of $L(1)$ .
We shall show that $\mathfrak{g}_{1}$ is equal to the Lie algebra of $L(1)$ .

First we assume that $\mathfrak{g}_{1}$ is generated by $Z_{1},$ $Z_{2}$ of the form

$Z_{i}=Y_{i}+ \sum_{j=1}^{3}a_{ij}X_{j}$ $(i=1,2)$ .

Since $\mathfrak{g}_{1}$ is abelian, we have $[Z_{1}, Z_{2}]=0$ and hence we obtain the following
identities: $a_{13}=a_{23}=0,$ $a_{12}=a_{21}$ . Then, since $\mathfrak{g}_{1}$ is conjugate to the Lie algebra
of $L(1)$ , we obtain

$a_{11}=a_{22}=a_{12}=a_{21}=0$ or $1+a_{11}=1+a_{22}=0$ .

Since $\mathfrak{g}_{1}$ is contained in the isotropy algebra at $q$ , we have $\psi^{+}(Z_{i})_{q}=0$ for $i=1,2$

and hence $a_{ii}=-\alpha_{ii}(q)$ for $i=1,2$ . Hence the second case does not occur by the
condition (d). The first case implies $Z_{i}=Y_{i}$ for $i=1,2$ and hence $\mathfrak{g}_{1}$ is equal to
the Lie algebra of $L(1)$ .

By the condition (1), it remains only to consider the case that $\mathfrak{g}_{1}$ is generated
by $Z_{1},$ $Z_{2}$ of the form

$Z_{1}=Y_{3}+a_{1}Y_{1}+a_{2}Y_{2}+ \sum_{j}b_{j}X_{j}$ , $Z_{2}=c_{1}Y_{1}+c_{2}Y_{2}+ \sum_{j}d_{j}X_{j}$ .

We have $d_{3}=0$ by $\psi^{+}(Z_{2})_{q}=0$ and $\alpha_{13}(q)=\alpha_{23}(q)=0$ . Then by the relation $[Z_{1}, Z_{2}]$

$=0$ we obtain the following identities:

$d_{1}=-b_{3}d_{2}$ , $d_{2}=b_{3}d_{1}$ , $c_{1}=c_{2}b_{8}-2d_{1}$ , $c_{2}=-c_{1}b_{3}-2d_{2}$ .
Then we obtin $d_{1}=d_{2}=0$ and $c_{1}=c_{2}=0$ which implies $Z_{2}=0$ . This is a con-
tradiction.

Consequently, we see that $W=V_{1}\cap F(L(1), M)$ and hence we see that
$F(L(1), M)$ is an analytic submanifold of codimension two. $q$ . $e$ . $d$ .

3. Certain $Sp(n)$ actions.

3.1. In this section, we shall show the following result.

THEOREM 3.1. Let $\Sigma^{k}$ be an integral homology $k$-sphere with a non-trivial
smooth $Sp(n)$ action. SuppOse $n\geqq 7$ . (i) If $k<4n$ , then $k=4n-1$ and the $Sp(n)$

manifold $\Sigma^{4n-1}$ is equivariantly $diff\alpha$ morPhic to the homogeneous space
$Sp(n)/Sp(n-1)$ . (ii) If $4n\leqq k\leqq 8n-2$ , then there is an equivariant decomposition
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$\Sigma^{k}\cong\partial(D^{4n}\cross Y)$ as a smooth $Sp(n)$ manifold, where $Y$ is a compact orientable acyclic
$(k-4n+1)$-manifold with a trivial $Sp(n)$ acfion, and $D^{4n}$ is the $4n$ -disk with a
standard $Sp(n)$ action.

In the following, let $X$ be a closed connected manifold with a non-trivial
smooth $Sp(n)$ action. Put

$F_{(i)}=\{x\in X : Sp(n-i)\subset Sp(n)_{x}\subset Sp(n-i)\cross Sp(i)\}$ ,

$F_{(i)}^{0}=\{x\in X : Sp(n)_{x}^{0}=Sp(n-i)\}$ ,

$X_{(i)}=Sp(n)\cdot F_{(t)}$ , $X_{(t)}^{0}=Sp(n)\cdot F_{(i)}^{0}$ .

Here $Sp(n)_{x}$ and $Sp(n)_{x}^{0}$ denote the isotropy group at $x$ and its identity com-
ponent, respectively. Here we state the followings.

PROPOSITION 3.2 (Nakanishi-Uchida [5], \S 1). Supp0se $n\geqq 7$ and dim $X<8n$ .
Then $X=X_{(i)}\cup X_{(i+1)}$ for some $i=0,1,2$ ; and if $X_{(i)}$ and $X_{(i+1)}$ are both non-
empty, then the codimenston of each connected comp0nent of $F_{(i)}$ in $X$ is equal to
$4(i+1)(n-i)$ .

PROPOSITION 3.3 (Wada [11], \S 1). SuppOse $X=X_{(0)}\cup X_{(1)}$ . Then there is a
compact connected $Sp(1)$ manifold $W$ such that the $Sp(1)$ action is free on the
boundary $\partial W$ and the $Sp(n)$ manifold $X$ is equivariantly diffeomorphic to
$\partial(D^{4n}\cross W)/Sp(1)$ . Here $Sp(n)$ acts naturally on $D^{4n}$ and trivially on $W$, and $Sp(1)$

acts on $D^{4n}$ as right scalar multipljcation.

PROPOSITION 3.4. Let $T_{i}$ be a maximal torus of $Sp(n-i)$ . If &<n, then
$F(T_{i}, X_{(i)}^{0})=F_{(i)}^{0}$ and $F(T_{l}, X_{(j)}^{0})$ is empty for $i<j$ .

LEMMA 3.5 (Hsiang-Hsiang [4], Proposition 2.3). Supp0se $2i<n$ . Let $K$ be
a closed connected subgroup of $Sp(i)$ . Let $\rho$ be a real representati0n of $K$ and
$\alpha_{\xi}(\rho)$ be the vector bundle assocrated with the principal bundle

$\xi$ : $Karrow Sp(n)/Sp(n-i)arrow Sp(n)/(Sp(n-i)\cross K)$ .
Then, $P_{1}(Sp(n)/(Sp(n-i)\cross K))+P_{1}(\alpha_{\xi}(\rho))=0$ if and only if $K$ consists of the
identity element alone.

PROPOSITION 3.6 (Hsiang-Hsiang [4], Theorem 2.3). If $P_{1}(X)=0$ for the
$Sp(n)$ manifold $X$, then $F_{(i)}=F_{(i)}^{0}$ and $X_{(i)}=X_{(i)}^{0}$ for each $i<n/2$ .

The proof of Proposition 3.4 is straightforward. The statements of Lemma
3.5 and Proposition 3.6 are simple modifications of the original results of Hsiang
brothers.

3.2. Now we shall prove Theorem 3.1. In the remaining of this section,
we suppose that $n\geqq 7$ , $k\leqq 8n-2$ and the $Sp(n)$ manifold $X$ is an integral
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homology k-sphere.
(i) Consider the case $X=X_{(0)}\cup X_{(1)}$ , such that $X_{(0)}$ is non-empty. By

Proposition 3.3, there is an equivariant decomposition $X\cong\partial(D^{4n}\cross W)/Sp(1)$ , where
$W$ is a compact connected orientable $Sp(1)$ manifold such that the $Sp(1)$ action
is free on the non-empty boundary $\partial W$. Put $B=(S^{4n-1}\cross W)/Sp(1)$ . Since $X$ is
an integral homology sphere, we obtain $H_{r}(B;Z)=0$ for $0<r<4n-1$ by a
standard method. Considering the Serre spectral sequence for the principal
$Sp(1)$ bundle $S^{4n-1}\cross W$ over $B$ , we obtain an isomorphism

$f_{*}^{x}$ : $H_{3}(Sp(1);Z)\cong H_{3}(W;Z)$

for each $x\in W$, where $f^{x}(g)=gx$ . Hence we see that the $Sp(1)$ action on $W$ is
free, and we can consider the sphere bundle

$S^{4n-1}arrow Barrow W/Sp(1)$ .

Put $Y=W/Sp(1)$ . Then $Y$ is a compact connected orientable manifold with
non-empty boundary and dim $Y\leqq 4n-1$ . Considering the Gysin sequence for the
above sphere bundle, we obtain $H_{r}(Y;Z)=0$ for $0<r<4n-1$ , and hence $Y$ is
integrally acyclic. Now we see that the principal $Sp(1)$ bundle $W$ over $Y$ bas
a cross-section by the obstruction theory. Hence $W$ is equivariantly diffeomorphic
to $Sp(1)\cross Y$. Then

$X\cong\partial(D^{4n}\cross W)/Sp(1)\cong\partial(D^{4n}\cross Y)$ .

(ii) Consider the case $X=X_{(i)}(i=1,2,3)$ . Then there is an equivariant
decomposition:

$X=X_{(i)}\cong((Sp(n)/Sp(n-i))\cross F_{(i)})/Sp(i)$ .
Since $P_{1}(X)=0$, we obtain $F_{(i)}=F_{(i)}^{0}$ and $X_{(i)}=X_{(i)}^{0}$ by Proposition 3.6. By
Proposition 3.4 and Smith’s theorem, we see that $F_{(i)}$ is an integral homology
$P$-sphere, where $p=k-4i(n-i)$ . Considering the Serre spectral sequence for
the fibration

$F_{(i)}arrow Xarrow Sp(n)/(Sp(n-i)\cross Sp(i))$ ,

we obtain $p=3$ . Then we see that $i=i$ and $k=4n-1$ , because $Sp(i)$ acts almost
freely on the 3-manifold $F_{(i)}$ . Since

$H_{1}(X;Z)\cong H_{3}(X;Z)\cong O$ ,

we obtain $X\cong Sp(n)/Sp(n-1)$ .
(iii) Finally we shall show that if $X=X_{(j)}\cup X_{(j+1)}(]^{=1},2$) and $X_{(j)}$ is non-

empty then $X_{(j+1)}$ is empty. The result is obvious for $j=2$ by the second state-
ment of Proposition 3.2. Now we assume that $X=X_{(1)}\cup X_{(2)}$ and both $X_{t1)}$ and
$X_{(2)}$ are non-empty. Since $P_{1}(X)=0$ , we obtain $F_{(i)}=F_{(i)}^{0}$ and $X_{(i)}=X_{(t)}^{0}$ for
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$i=1,2$ by Proposition 3.6. Let $T_{i}$ denote the standard maximal torus of $Sp(n-i)$ .
Then $F(T_{i}, X)$ is an integral homology $n_{i}$-sphere $(i=1,2)$ by Smith’s theorem.
By Proposition 3.4, we see

$F(T_{1}, X)=F_{(1)}$ , $F(T_{2}, X)=F(T_{2}, X_{(1)})\cup F_{(2)}$ .

Put $F_{1}=F(T_{2}, X_{(1)})$ and $F_{2}=F(T_{2}, X)$ . Considering the equivariant decomposi-
tion of $X_{(1)}$ , we obtain a fibration

$F_{(1)}arrow F_{1}arrow S^{4}$ .

By the Serre spectral sequence for this fibration, there is an isomorphism

(a) $H^{*}(F_{1};Q)\cong H^{*}(S^{n_{1}}\cross S^{4}; Q)$ or $H^{*}(F_{1}; Q)\cong H^{*}(S^{7} ; Q)$ .

Since codim $X_{(1)}=4n-4$ , we obtain an isomorphism $H^{r}(X;Z)\cong H^{r}(X_{(2)} ; Z)$ for
$r<4n-5$ . Considering the equivariant decomposition of $X_{(2)}$ , we obtain an
isomorphism

(b) $H^{r}(F_{(2)} ; Z)\cong H^{r}(Sp(2);Z)$ for $r<4n-5$ .

On the other hand, we see

(c) $n_{2}=n_{1}+8$ , $3\leqq n_{1}\leqq 6$ and dim $F_{1}=n_{1}+4$ .
Moreover, we obtain an isomorpbism

(d) $H^{r- 3}(F_{1};Z)\cong H^{r+1}(F_{2}, F_{(2)}; Z)\cong H^{r}(F_{(2)} ; Z)$

for $0<r<n_{2}-1$ , by the Thom isomorphism and the fact that $F_{2}$ is an integral
homology $n_{2}$-sphere. Combining (a), (b), (c) and (d), we obtain a contradiction.

Here we complete the proof of Theorem 3.1.

4. Analytic $Sp(n, C)$ actions.

4.1. Let $\psi:Sp(n, C)\cross Marrow M$ be a non-trivial analytic action on a connected
paracompact m-manifold. Suppose that $(*)$ each isotropy group of the restricted
$Sp(n)$ action contains a subgroup conjugate to $Sp(n-1)$ and $n\geqq 4$ . Put $F=$

$F(Sp(n, C),$ $M$ ) and let $p\in F$.
By a theorem of Guillemin and Sternberg [3], there exists an analytic system

of coordinates $(U;u_{1}, \cdots , u_{m})$ , with origin at $p$ , and there exists $a_{ij}\in \mathfrak{s}\mathfrak{p}(n, C)^{*}$

such that

$\psi^{+}(X)_{q}=-\sum_{i,j}a_{ij}(X)u_{j}(q)\frac{\partial}{\partial u_{i}}$ for $X\in \mathfrak{s}\mathfrak{p}(n, C),$ $q\in U$ .

Here the correspondence $Xarrow(a_{ij}(X))$ defines a Lie algebra homomorphism of
@p(n, $C$) into $\mathfrak{g}I(m, R)$ . Since $Sp(n, C)$ is simply connected, there is an analytic
homomorphism $\rho$ : $Sp(n, C)arrow GL(m, R)$ such that $(d\rho)(X)=(a_{ij}(X))$ for $X\in\wedge e\mathfrak{p}(n, C)$ .
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Since $Sp(n, C)$ is semi-simple, we see that $\rho$ is completely reducible. Let $V$ be
a representation space of a non-trivial irreducible factor of $\rho$ . From the as-
sumption $(*)$ , we obtain the following decomposition:

$V-\{0\}\cong(Sp(n, C)\cross(F(L(n), V)-\{O\}))/N(n)$ ,

by Corollary 1.3. Then we obtain $\dim_{R}V=4n$ by considering fundamental
groups, and hence $V$ is the representation space of the standard representation
$\nu_{n}$ by Weyl’s formula. Therefore we see that $\rho\cong\nu_{n}\oplus\theta^{m-4n}$ by the assumption
$(*)$ , where $\theta^{t}$ is a trivial real representation of degree $t$ . Consequently, we see
that there exists an analytic system of coordinates $(U;v_{1}, \cdots , v_{m})$ , with origin
at $p$ , such that

$\psi^{+}(X)_{q}=-\sum_{i,j\approx 1}^{2n}\{(\alpha_{ij}v_{j}-\beta_{ij}v_{2n+j})\frac{\partial}{\partial v_{t}}+(\alpha_{ij}v_{2n+j}+\beta_{lf}v_{j})\overline{\partial v}_{2n+i}^{-\}}\partial$

for X\in @p(n, $C$) and $q\in U$ , where $v_{k}=v_{k}(q)$ and $\alpha_{ij}+\sqrt{-1}\beta_{ij}$ is the $(i, j)$-com-
ponent of $X$. Let $k$ be an analytic isomorphism of $U$ onto an open set of $R^{m}$

defined by $k(q)=(v_{1}(q), \cdots , v_{m}(q))$ . There is a positive real number $r$ such that
$D_{r}^{4n}\cross D_{r}^{m-4n}$ is contained in $k(U)$ , where $D_{r}^{t}=\{x\in R^{t} : \Vert x\Vert<r\}$ . Then we see
that (cf. [7], Lemma 3.1) $k^{-1}$ : $D_{r}^{tn}\cross D_{r}^{m-4n}arrow U$ is extendable uniquely to an
$Sp(n, C)$ equivariant analytic isomorphism $h’$ of $R^{\iota n}\cross D_{r}^{m-4n}$ onto an open set
of $M$, because the standard $Sp(n, C)$ action on $R^{4n}-\{0\}$ is transitive and its
isotropy group is $L(n)$ . Then $W=h’(0\cross D_{r}^{m-4n})$ is an open neighborhood of $p$

in $F$. Define $h:C^{2n}\cross Warrow M$ by

$h(u_{1}+\sqrt{}-1v_{1}, \cdots , u_{2n}+\sqrt{-1}v_{2n}, h’(O, x))=h’(u_{1}, \cdots , u_{2n}, v_{1}, \cdots , v_{2n}, x)$

for $x\in D_{r}^{m-4n}$ . Then $h$ is an $Sp(n, C)$ equivariant analytic isomorphism of
$C^{2n}\cross W$ onto an open set of $M$ such that $h(O, q)=q$ for $q\in W$ .

Consequently, we obtain a family $\{(W_{\alpha}, h.), \alpha\in\Lambda\}$ such that $\{W_{\alpha}, \alpha\in\Lambda\}$ is
an open covering of $F$, and each $h_{a}$ is an $Sp(n, C)$ equivariant analytic iso-
morphism of $C^{2n}\cross W$. onto an open set of $M$ such that $h_{a}(0, q)=q$ for $q\in W_{a}$ .
Put

$N= \bigcup_{\alpha}h_{a}(C^{2n}\cross W_{\alpha})$ , $E=F(L(n), N-F)$ .

Then $N$ is the smallest $Sp(n, C)$ invariant open neighborhood of $F$ in $M,$ $E$ is
an analytic submanifold of $N$ and the multiplicative group $C_{0}$ of non-zero com-
plex numbers acts analytically on $E$ via the natural isomorphism $C_{0}\cong N(n)/L(n)$ .
Let $k_{a}$ be a $C_{0}$ equivariant analytic isomorphism of $C_{0}\chi W_{\alpha}$ onto an open set of
$E$ defined by

$k_{\alpha}(\lambda, q)=h_{a}(\lambda e_{1}, q)$ for $\lambda\in C_{0},$ $q\in W_{a}$ ,

where $e_{1}$ is the first vector of the standard base of $C^{2n}$ . Define $\pi:Earrow F$ by
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$\pi k_{\alpha}(\lambda, q)=q$ for $\lambda\in C_{0}$ and $q\in W_{\alpha}$ . We see that (cf. [7], Theorem 3.7) $\pi$ is an
analytic principal $C_{0}$ bundle, and we can define an $Sp(n, C)$ equivariant analytic
isomorphism $f$ of $(C^{2n}\cross E)/C_{0}$ onto $N$ by

$f([u, k_{\alpha}(\lambda, q)])=h_{\alpha}(\lambda u, q)$ for $u\in C^{zn},$ $\lambda\in C_{0},$ $q\in W_{\alpha}$ .
In particular, we see that $f([0, x])=\pi(x)$ for $x\in E$ .

Summing up the above discussion, we obtain the following.

THEOREM 4.1. Let $\psi;Sp(n, C)\cross Marrow M$ be a non-trivial analytic action on a
connected paracOmpact m-manifold. SuppOse that each isotroPy group of the re-
stricted $Sp(n)$ action contains a subgroup conjugate to $Sp(n-1)$ and $n\geqq 4$ . Put
$F=F(Sp(n, C),$ $M$). Then $F$ is an $(m-4n)$-dimensional analytic submanifold of $M$,
and there exist an analytic left principal $C_{0}$ bundle $\pi:Earrow F$ and an $Sp(n, C)$

equivariant analytic isomorphjm $f$ of $(C^{2n}\cross E)/C_{0}$ onto an open set of $M$ such that
$f([0, x])=\pi(x)$ for $x\in E$ . In addition, the image of $f$ is the smallest $Sp(n, C)$

invariant oPen neighborhood of $F$ in $M$.
4.2. Let $V$ be an analytic vector bundle over a connected Paracompact

analytic manifold $X$. Let $i:Xarrow V$ be the zero section. Then it follows from a
calculation of transition functions that there is an isomorphism $i^{*}\tau(V)\cong V\oplus\tau(X)$

as analytic vector bundles. Here $\tau()$ denotes the tangent bundle. Since $V$ is
a connected paracompact analytic manifold, there exists an analytic embedding
$f$ of $V$ into $R^{N}$ such that $f(V)$ is a closed analytic submanifold of $R^{N}$ (Grauert

[2], Theorem 3). It follows that there is an isomorphism $\tau(V)\oplus\nu\cong R^{N}\cross V$ as
analytic vector bundles. Here $\nu$ denotes the normal bundle. Therefore there
is an isomorphism

$V\oplus\tau(X)\oplus i^{*}\nu\cong R^{N}\cross X$

as analytic vector bundles. Hence we obtain the following.

LEMMA 4.2. Let $V$ be an analytic vector bundle over a connected Paracompact
analytic manifold X. Then $V$ is embedded in a product vector bundle as an
analytic subbundle.

COROLLARY 4.3. Let $V$ be an analytic vector bundle over a connected para-
comPact analytic manzfold X. If $V$ has a $C^{\infty}$ cross-section which is everywhere
non-zero, then $V$ has an analytic cross-section which is everywhere non-zero.

PROOF. By Lemma 4.2, there exist an analytic vector bundle $V’$ over $X$

and an isomorphism $V\oplus V’\cong R^{N}\cross X$ as analytic vector bundles. Let $\sigma:Xarrow V$

be a $C^{\infty}$ cross-section which is everywhere non-zero. Since $C^{\omega}(X, R^{N})$ is dense
in $C^{\infty}(X, R^{N})$ with respect to $C^{\infty}$-topology (Whitney [12], Part III), we can ap-
proximate $\sigma$ by an analytic cross-section which is everywhere non-zero by a
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standard method. Here $C^{r}(X, R^{N})$ denotes the set of $C^{r}$-mappings from $X$ into
$R^{N}$ . $q$ . $e$ . $d$ .

5. Analytic $Sp(n, C)$ actions on spheres.

5.1. Let $\psi;Sp(n, C)\cross\Sigmaarrow\Sigma$ be an analytic action on a closed orientable
analytic manifold $\Sigma$ which is an integral homology k-sphere. Suppose that $n\geqq 4$

and there is an $Sp(n)$ equivariant smooth decomposition $(*)\Sigma\cong\partial(D^{4n}\cross Y)$ , with
respect to the restricted $Sp(n)$ action (see Theorem 3.1).

Put $F=F(Sp(n, C),$ $\Sigma$ ) and denote by $N$ the smallest $Sp(n, C)$ invariant open
neighborhood of $F$ in $\Sigma$ . By Theorem 4.1, $F$ is a $(k-4n)$-dimensional closed
analytic submanifold of $\Sigma$ , and there exist an analytic left principal $C_{0}$ bundle $\pi_{1}$ :
$Earrow F$ and an $Sp(n, C)$ equivariant analytic isomorphism $f’$ of $(C^{2n}\cross E)/C_{0}$ onto
$N$ such that $f’([0, x])=\pi_{1}(x)$ for $x\in E$ .

Put $U=F(Sp(n-1, C),$ $\Sigma-F$ ) and $U_{1}=F(L(n), \Sigma-F)$ . We see that $U$ is
an analytic submanifold of codimension $4n-4$ in $\Sigma$ , the identity component
$MSL(2, C)$ of the centralizer of $Sp(n-1, C)$ acts naturally on $U$ and the re-
stricted $MSU(2)$ action on $U$ is free, by Lemma 1.2 and the decomposition $(*)$ .
Denote by $U^{*}$ the orbit space of the free $MSU(2)$ action on $U$ and $\pi’$ : $Uarrow U^{*}$

the natural projection. By Theorem 2.1 and a discussion in \S 1.3, we see that
$U_{1}$ is an analytic submanifold of codimension two in $U$ . By Corollary 1.3, there
is an $Sp(n, C)$ equivariant analytic isomorphism $\Sigma-F\cong(C_{0}^{2n}\cross U_{1})/C_{0}$ , where
$C_{0}^{2n}=C^{2n}-\{O\}\cong Sp(n, C)/L(n)$ .

By Theorem 1.1, for eacb $x\in U$ there exists $g\in MSU(2)$ such that $gx\in U_{1}$ ;
if $x\in U_{1}$ and $gx\in U_{1}$ for some $g\in MSU(2)$ then $g\in MSU(2)\cap N(n)$ . Put $\pi_{2}=$

$\pi’|U_{1}$ . By the above discussion, we see that $\pi_{2}$ ; $U_{1}arrow U^{*}$ is a projection of a
principal $U(1)$ bundle, where $U(1)$ acts on $U_{1}$ via the natural isomorphism $U(1)$

$\cong MSU(2)\cap N(n)$ . By the decomposition $(*)$ , we see that $U^{*}$ is homotopy equi-
valent to $Y$ which is acyclic, and hence $U^{*}$ is acyclic. Therefore $U_{1}\cong U(1)\cross U^{*}$

as a smooth $U(1)$ manifold. On the other hand, $F(L(n), N-F)$ is $C_{0}$ equivariantly
analytically isomorphic to $E$ via $f’$ . Since $F(L(n), N-F)$ is an open set of $U_{1}$ ,

we see that $E\cong U(1)\cross(E/U(1))$ as a smooth $U(1)$ manifold, and $E/U(1)$ is a
smooth principal $C_{0}/U(1)$ bundle over $F$. Since $C_{0}/U(1)$ is contractible, we see
that the projection $\pi_{1}$ has a smooth cross-section, and hence $\pi_{1}$ has an analytic
cross-section by Corollary 4.3. Therefore $E\cong C_{0}\cross F$ as an analytic $C_{0}$ manifold,
and there is an $Sp(n, C)$ equivariant analytic isomorphism $f$ of $C^{2n}\cross F$ onto $N$

such that $f(O, x)=x$ for $x\in F$.
Considering the Mayer-Vietoris sequence for the couple $\{U_{1}, F(L(n), N)\}$ ,

we see that $F(L(n), \Sigma)$ is an integral homology $(k-4n+2)$-sphere, because $F$ is
diffeomorphic to $\partial Y$ which is an integral homology $(k-4n)$-sphere.

Summing up the above discussion, we obtain the following.
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THEOREM 5.1. Let $\psi:Sp(n, C)\cross\Sigmaarrow\Sigma$ be an analytic action on a closed
orientable analytic manifold $\Sigma$ which is an integral homology k-sPhere. SuPpose
that $n\geqq 4$ and there is an $Sp(n)$ equivariant smooth $decompo\alpha$ tion $\Sigma\cong\partial(D^{4n}\cross Y)$

with respect to the restricted $Sp(n)$ action. Put $F=F(Sp(n, C),$ $\Sigma$ ). Then $F$ is
$a(k-4n)$-dimenstonal closed analytic submanifold of $\Sigma$ which is an integral homo-
logy sphere, and there is an $Sp(n, C)$ equivariant analytic isomorPhism $f$ of
$C^{an}\cross F$ onto an open set of $\Sigma$ such that $f(O, x)=x$ for $x\in F$. Moreover, $F(L(n), \Sigma)$

is a $(k-4n+2)$-dimensional closed analytic submanifold of $\Sigma$ which is an integral
homology sphere, $C_{0}$ acts on $F(L(n), \Sigma)$ via the natural isomorphjsm $c_{0}\cong$

$N(n)/L(n)$ , and there is an $Sp(n, C)$ equivariant analytic decomposition

$\Sigma\cong C^{2n}\cross F\bigcup_{\alpha}(C_{0}^{2n}\chi F(L(n), \Sigma-F))/C_{0}$ ,

where $\alpha$ is an equivariant analytic isomorphism of $C_{0}^{2n}\cross F$ onto an open set of
$(C_{0}^{2n}\cross F(L(n), \Sigma-F))/C_{0}$ defined by

$\alpha(u, x)=[u, f(e_{1}, x)]$ for $u\in C_{0}^{2n},$ $x\in F$ .
In addition, the restricted $U(1)$ action on $F(L(n), \Sigma-F)$ is free.

5.2. Let $\mu:C_{0}\cross\Sigma_{1}arrow\Sigma_{1}$ be an analytic action on a closed orientable analytic
manifold $\Sigma_{1}$ which is an integral homology m-sphere. Put $F=F(C_{0}, \Sigma_{1})$ . We
say that $(\Sigma_{1}, \mu)$ satisfies a condition (P) iff $F$ is an $(m-2)$-dimensional analytic
submanifold which is an integral homology sphere and there exists a $C_{0}$ equi-
variant analytic isomorphism $j$ of $C\cross F$ onto an open set of $\Sigma_{1}$ such that $j(O, x)$

$=x$ for $x\in F$. Such an action has been studied by Uchida ([8], \S 6).
Construct an analytic manifold $\Sigma$ by

$\Sigma=C^{2n}\cross F\bigcup_{\alpha}(C_{0}^{2n}\cross(\Sigma_{1}-F))/C_{0}$ ,

where $\alpha$ is an analytic isomorphism of $C_{0}^{2n}\cross F$ onto an open set of $(C_{0}^{ln}\cross(\Sigma_{1}-$

$F))/C_{0}$ defined by $\alpha(u, x)=[u, j(1, x)]$ for $u\in C_{0}^{2n},$ $x\in F$. We see that $\Sigma$ is an
integral homology $(m+4n-2)$-sphere by the Mayer-Vietoris sequence, because
the restricted $U(1)$ action on $\Sigma_{1}-F$ is free by the Smith theory and its orbit
manifold is acyclic by the Gysin sequence. Considering the natural $Sp(n, C)$

action on $\Sigma$ , we see that the induced $C_{0}$ action on $F(L(n), \Sigma)$ is naturally iso-
morphic to the action $\mu$ on $\Sigma_{1}$ . Combining Theorem 3.1 and Theorem 5.1, we
obtain the following.

COROLLARY 5.2. For $n\geqq 7$ and $2\leqq m\leqq 4n$ , each non-trivial analytic $Sp(n, C)$

action on an integral homology $(m+4n-2)- sphere\Sigma$ is characterized by the in-
duced $C_{0}$ action on $F(L(n), \sum)$ satisfying the condition (P), where $F(L(n), \sum)$ is an
integral homology $m$-sphere.

5.3. For each real number $y$ , we can define an analytic $GL(k, C)$ action
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$\xi_{y}$ on the unit $(2k-1)$-sphere $S^{2k-1}$ of $C^{k}$ by

$\xi_{y}(A, u)=\Vert Au\Vert^{-1-}"$ $Au$ for $A\in GL(k, C),$ $u\in S^{2k-1}$ .
Considering the restricted $Sp(n, C)$ action for $k=2n$ , we obtain an analytic
transitive $Sp(n, C)$ action $\chi_{y}$ on $(4n-1)$-sphere. Denote by $G_{y}$ its isotropy group
at $e_{1}$ . Then $L(n)\subset G_{y}\subset N(n)$ and the factor group $G_{y}/L(n)$ is isomorphic to the
subgroup $\{e^{t(1+iy)}, t\in R\}$ of $C_{0}\cong N(n)/L(n)$ . We see that any transitive $Sp(n, C)$

action on the $(4n-1)$-sPhere is one of the actions $\chi_{y}$ for some reaI number $y$ .
Similarly, if $k>2n$ , we obtain an analytic $Sp(n, C)$ action $\psi_{y}^{k}$ on the $(2k-1)-$

sphere. We see that the complement of the smallest $Sp(n, C)$ invariant open
neighborhood of the fixed point set of the action $\psi_{y}^{k}$ is equivariantly isomorphic
to the homogeneous space $Sp(n, C)/G_{y}$ . Therefore we see that if $y\neq y’$ then
$\psi_{\nu}^{k}$ and $\psi_{y’}^{k}$ are still not equivalent as continuous $Sp(n, C)$ actions, that is, there
is not any equivariant homeomorphism between tbe actions $\psi_{y}^{k}$ and $\psi_{y’}^{k}$ .

6. Analytic actions of $SO(n, C)$ and $SL(n, R)$ on spheres.

6.1. Denote by $SO(n)$ and $SO(n, C)$ the group of special orthogonal matrices
of degree $n$ , and the group of complex special orthogonal matrices of degree $n$ ,
respectively, that is

$SO(n)=$ { $A\in GL(n,$ $R)$ : ${}^{t}AA=I_{n}$ , det $A=1$ },

$SO(n, C)=$ { $A\in GL(n,$ $C)$ : ${}^{t}AA=I_{n}$ , detA $=1$ }.

By the similar way as the proof of Theorem 1.1, we can prove the follow-
ing: Let $G$ be a connected closed proper subgroup of $SO(n, C)$ which contains
$SO(n-1)$ for $n\geqq 6$ . Then $G$ is one of the following: $SO(n-1)$ , $SO(n)$ ,
$SO(n-1, C)$ or $hGL(n, R)h^{-1}\cap SO(n, C)$ , where $h$ is the diagonal matrix with
diagonal entries $i,$ $1,$ $\cdots$ , 1. Moreover, for each such group $G$ , there exists an
isotropy group of the restricted $SO(n)$ action on the homogeneous space
$SO(n, C)/G$ which does not contain a subgroup conjugate to $SO(n-1)$ .

On the other hand, we see that any non-trivial smooth $SO(n)$ action on an
integral homology k-sphere has $SO(n-1)$ as a principal isotropy group for $k\leqq$

$2n-2$ and $n\geqq 10$ (cf. [4], Theorem 3.1; [7], Theorem 4.11). Hence we obtain
the following: If $k\leqq 2n-2$ and $n\geqq 10$ , then $SO(n, C)$ does not act smoothly
and non-trivially on any integral homology k-sphere.

6.2. For each real number $y$ , we can define an analytic $SO(n, C)$ action $\zeta_{y}$

on the unit $(2n-1)$-sphere $S^{2n-1}$ of $C^{n}$ by the restriction of the $GL(n, C)$ action
$\xi_{y}$ . Let $e_{1},$

$\cdots$ , $e_{n}$ be the standard base of $C^{n}$ . Denote by $H_{y}$ and $\mathfrak{h}_{y}$ the iso-
tropy group of the action $\zeta_{J}\dagger$ at $(e_{1}+ie_{2})/\sqrt{2}$ and its Lie algebra, respectively.
By the definition of $\zeta_{y}$ , we see that $X\in \mathfrak{h}_{y}$ iff
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$X(e_{1}+ie_{2})=a(X)(1+iy)(e_{1}+ie_{2})$

for certain real number $a(X)$ . We see that dim $SO(n, C)/H_{y}=2n-3$ and each
isotropy group at $u$ is conjugate to $SO(n-1, C)$ if $u$ does not belong to the
orbit of $(e_{1}+ie_{2})/\sqrt 2^{-}$ With respect to the natural $|1_{y}$ action on $C^{n}$ , the complex
line generated by $e_{1}+ie_{2}$ is only $\mathfrak{h}_{y}$ invariant l-dimensional linear subspace for
$n\geqq 4$ . Therefore we see that if $y\neq y’$ then $\zeta_{y}$ and $\zeta_{y’}$ are still not equivalent
as continuous $SO(n, C)$ actions for $n\geqq 4$ .

6.3. Denote by $W_{n}(d)$ the complex hypersurface of $C^{n+1}-\{0\}$ determined by
the equation $z_{0}^{d}+z_{1}^{2}+\cdots+z_{n}^{2}=0$ for each positive integer $d$ . Since the natural
action of $SO(n, C)$ on $C^{n}$ leaves invariant the quadratic form $z_{1}^{2}+\cdots+z_{n}^{2}$ , we
can define naturally an action of $SO(n, C)$ on $W_{n}(d)$ .

For each real number $y$ , we can define an analytic one-parameter group $\nu_{y}$

on $W_{n}(d)$ by

$\nu_{y}(t, (z_{0}, \cdots z_{n}))=(e^{2t(1+ty)}z_{0}, e^{dt(1+iy)}z_{1}, \cdot.. , e^{dt(1+iy)}z_{n})$ .

Denote by $W_{y}^{2n-1}(d)$ the orbit manifold of the free $R$ action $\nu_{y}$ on $W_{n}(d)$ . We
see that $W_{y}^{2n-1}(d)$ is naturally isomorphic to the Brieskorn variety $W^{2n- 1}(d)$ .
Since the $R$ action $\nu_{y}$ and the $SO(n, C)$ action on $W_{n}(d)$ are commutative, we
can define naturally an analytic action of $SO(n, C)$ on $W_{y}^{2n-1}(d)$ . We see that
if $y\neq y’$ then the $SO(n, C)$ actions on $W_{y}^{2n-1}(d)$ and on $W_{y}^{2n,- 1}(d)$ are still not
equivalent as continuous actions for $n\geqq 4$ .

6.4. We have studied analytic $SL(n, R)$ actions on the k-sphere for $k\leqq$

$2n-2$ in the previous papers [7], [9]. Here we study analytic $SL(n, R)$ actions
on the $(2n-1)$-sphere.

For each real number $y$ , we can define an analytic $SL(n, R)$ action $\sigma_{y}$ on
the unit $(2n-1)$-sphere $S^{2n-1}$ of $C^{n}$ by the restriction of the $GL(n, C)$ action $\xi_{y}$ .
Let $e_{1},$ $\cdots$ , $e_{n}$ be the standard base of $C^{n}$ and suppose $n\geqq 3$ . Denote by $K_{y}$ and
$\mathfrak{k}_{y}$ the isotropy group of the action $\sigma_{y}$ at $(e_{1}+ie_{2})/\sqrt{2}$ and its Lie algebra,
respectively. By the definition of $\sigma_{y}$ , we see that $X\in \mathfrak{k}_{y}$ iff

$X(e_{1}+ie_{2})=a(X)(1+iy)(e_{1}+ie_{2})$

for certain real number $a(X)$ . With respect to the natural $f_{y}$ action on $R^{n}$ , the
subspace spanned by $\{e_{1}, e_{2}\}$ is only $f_{y}$ invariant 2-dimensional linear subspace.
We see tbat the orbit of $(e_{1}+ie_{2})/\sqrt{}\overline{2}$ is open and dense in $S^{2n-1}$ . Hence we
see that if $|y|\neq|y’$ , then $\sigma_{y}$ and $\sigma_{y’}$ are still not equivalent as continuous
$SL(n, R)$ actions. On the other hand, we see that $\sigma_{y}$ and $\sigma_{-y}$ are equivalent

as analytic $SL(n, R)$ actions, because the equation $\sigma_{-y}(A, u)=\sigma_{y}(A,\overline{u})$ holds
for $A\in SL(n, R),$ $u\in S^{2n-1}$ , where $\overline{u}=(\overline{u}_{1}, \cdots , \overline{u}_{n})$ for $u=(u_{1}, \cdots u_{n})$ .
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