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Introduction.

We consider the motion of an ideal incompressible fluid past a finite number
of isolated rigid bodies Oy, ---, 0, in R:. The velocity v=((x,1), v%(x,1), v*(x, 1))
and the (scalar) pressure p=p(x, t) of the fluid motion are governed by the
Euler equation in Q=R*\(0,U --- UO,)

¢y % +-VNw+Vp =f, divoe =0 te[0, T]

subject to the following conditions at infinity and on the boundary S=a£

2) lim v(x, ) = Ve, v.nlg=0 te[0, T]

|z [—oo

satisfying the initial condition
(3) v(-x, 0) = Uo(x);

where F=f(x, t) is a given external force vector, v,(x) is a given initial velocity
and v. is a given constant vector.

The purpose of the present paper is to prove the existence of a solution
{v, p} of (1), (2) and (3) which satisfies the asymptotic condition at infinity that
v converges to U. faster than |x|-%*® for a certain §=0.

The problem of existence and uniqueness of solutions of the Euler equation
has been considered by several authors. Recently, when Q2=R? this problem
was studied by Swann [20], Kato [15], Bardos and Frisch [2] and Cantor [5].
When £ is bounded in R? the problem was studied by Ebin and Marsden [8],
Swann [21], Bourguignon and Brézis [4], Temam and Kato and Lai [16].

In the two-dimensional case, the existence of a global solution was studied by
Judovié and Kato (in a bounded case), and by Kikuchi (in an
unbounded case). Among the above quoted papers, the works of Cantor and
Swann especially inspire the idea of our proof. In [5], Cantor constructed
solutions introducing the weighted Sobolev space over R? on which the Laplacian
is an isomorphism. This work suggested to the author to use the corresponding
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space on the exterior domains; this space makes possible the construction of
solutions of linear elliptic system (see and [Proposition 2.11). Our
proof is essentially a modified form of that of Swann [2I], who constructed
solutions by considering the vorticity equation, with suitable treatment of the
exterior problem (see [Proposition 3.2).

The contents of this paper are as follows. In Section 1 we introduce the
notations and state the main theorem. In Section 2 we study some properties of
M? ; and study linear elliptic system. In Section 3 we construct a solution of
(1), (2) and (3) by considering the vorticity equation.

ACKNOWLEDGEMENT. The author wishes to express his sincere gratitude to
Professor K. Masuda, who suggested the problem, for his valuable advice, help
and unceasing encouragement. The author also expresses his sincere thanks to
Professor H. Fujita for pointing out the redundancy in the assumptions in the

original form of and to Professor S.T.Kuroda for his valuable
advice and suggestions.

§1. Theorem.
We begin with the assumption on the domain £.

(i) & is simply connected and R*\Q consists of m numbers of
(A) compact components Oy, -+, O,.

(i) The boundary S=S;+ :-- +S, (5;=00,) is sufficiently smooth.

Before stating our results more precisely, we introduce some notations. In
what follows we consider real scalar or vector functions defined on 2 (or 2X
[0, T1) or on their closures 2 (or 2x[0, T1). In this paper we use the same
notations for scalar and vector functions as there will be no fear of ambiguity.

The length of the vector w=(u?, u?% u®) is denoted by |u|=(Z}.(u’)?)'2
For 1=p<co, the norm in L?(2) is denoted by |-|,. The scalar product in
L*(£) is denoted by (-, -). For s=0 (integer) and 1=<p<oco, W*?(2) is the
Sobolev space of LP?-functions on £ such that all their derivatives up to order s
belong to L?(2). The norm in W*?(Q2) is denoted by |-|, ,. For s=0 (integer),
C3(R) (resp. C*(2)) is the set of all s times continuously differentiable functions
on Q (resp. 2) and C§(Q2) is the set of all x=C%(2) such that all their derivatives
up to order s are bounded. The norm in C(2) is denoted by

l]se= 23 sup|Du(x)]  (|+]oe=]"]w).

lalss 20
Cs(Q), s being ‘non-negative integer, is the set of all functions that belong to
C*(2) and have compact support in 2.
Let a(x)=(1+]x|)"%. For p=1, A=0 and s=0 (integer), M? ; denotes the



Incompressible flow 577

closure of C$(2) with respect to the norm
[ulp s = X la*H D% ,.
lal1ss

If X is a Banach space, then L?(0, T ; X) (1=p=co) denotes the set of all L?*-
functions of t=(0, T) with values in X. Let C([0, T]; X) (resp. C¥{[0, T]; X))
denotes the set of all X-valued continuous (resp. continuously differentiable)
functions of . We write for fixed t<[0, T] |ull(.), ;=SupPsero, s1]u(-, t)](., for
various norms (-).

For a vector-valued function u, u-n|s is the outward normal component of
u on S and u,.|s is the tangential component of u on S, and also we write

2

D“:(“g%; i=1,2,3), DZu:(afja"xk; i k=1,2,3).

Now we can state our main result.

THEOREM 1.1. Let p>3 and 0=<6<1—3/p. Assume that
() v, belongs to CH(2)NCHD),  1Otv, € ME 5403

divo, = 0; vo'n|ls=0; lim v, = Ve,

12 ] —c0

(i) £ belongs to C([0, T]; Co(Q)NCYD)), rotf € L=(0, T ; M?s4s).

Then there exists Ty>0, To=T, depending only on rotv,, v., rotf and 2, such
that (1), (2) and (3) have a solution {v, p} on [0, T\] satisfying

v—Ue € C([0, Tol; MR, 5:)NL=0, To; M35 541,
b e L0, To; Mis),  Vp & L0, Tus Co()).

Such a solution is unique up to an arbitrary function of t which may be added to p.

§2. Preliminaries.
2.1. Properties of M3 ;.

LEMMA 2.1. Let A>p=0. If c'usL?(Q), then a*ucs L (2) provided that
3p/{A—wp+3}<r=p.

PROOF. p=r is a trivial case. If p>r, then by the Holder inequality

/q

r!
SQ lotu|"dx < (go Iozu]pdx> p(SQa““F‘”qu)l ,
where ¢=p/(p—r) and A—p)rg>3.
REMARKS. (i) If s<s* and A=1* then

(2.1) ]\C{:gt' A C ;M‘z;, A
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(ii) Let 3<p<6 and let 0 be as in [Theorem 1.1. Then
(2.2) MZ;,5+1 - Ws’2<Q)-
LEMMA 2.2 (The Sobolev imbedding theorem). Let s=1, p>3 and 1=0.
Then M2 ,CC5(2) and
2.3) luls—l,wéC1|u]s,p§01|u|p,s,l-
In particular, if A>0, then
(2.4) lu(x)| = 0(lx|=*)  as |x|—00.
PROOF. |u(x)| = 0(x)*0%ulw = cy(14+ 1215721l 6.2,
LEMMA 2.3 (Cantor [5, Proposition 1.17). If p>1, s>3/p, 0=0and 0=k=<s,

then the pointwise multiplication of functions : MB sX MB_; 5:x2(p, ¢)— ¢ Q<
MB_, ser tnduces a continuous map.

LEMMA 2.4. (Cantor [6, Theorem 2]. Also see Nirenberg and Walker [19,
Theorem 2.1].) Let p>3, s=0and 0=0<1—3/p. Then the Laplacian A: M., s(R?)
— M3 ;.o(R?) is an isomorphism. Moreover, there is a positive constant ¢ depending
only on s such that

(25) |§D| p.s+2,0,R3 é CIA(Pl p.8,0+2, R3 f07’ all QDEMg+2,5(R3) .

COROLLARY 2.5. Let p, s, & and ¢ be as in the above lemma. Then the fol-
lowing tnequality holds: for all ve MB,, 5+, (R)

(2.6) V] p, 5104183 = c([TOtU] p 5,542, 3+ |diVU] 5 5,542, r3) -

PrROOF. The above lemma implies that there is a solution usM3%,,; of
—Au=rotv such that

2.7) |u!p,s+2,5,R3 = C|r0tvip.s,5+2,lz3-
Furthermore, there is a solution g= M2,, ; of —Ag=divuv such that
(2.8 1q]p s+2.0,R8 = cidivu| p.s, 0+2.R3 -

We can easily see that v is represented as v=rotu—Vgq (see (i) in
this paper). Hence by and we have [2.6).

LEmMMmA 2.6 (Cantor [7, Theorem 2.17). Let p, s and 6 be as in Lemma 2.4.
Then the map N defined by

9
Ny = (=8, 5] ) 1 MBags —> Mg g WH-12:2(S)
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s an isomorphism.
2.2. The boundary value problem.

LEMMA 2.7. Let usC(8) be a vector function such that rotu=0 (generalized).
Then there is a scalar function g=CY(2) such that u=Ngq. If, in addition, divu=0
(generalized) and lim, ;. .u(x)=0 then g satisfies

(2.9) lim ¢(x) = const.

| X |-+00

REMARK. By virtue of below we see that the constant in is
independent of the direction in which x tends to infinity.

PRrROOF. As is well known, if ueC(Q), then (A) and rotu=0, together with

the Stokes theorem, imply that ¢(x) given by the following equation is well-
defined.

2.10) 90 = | u(y)-e0)d, M +q(x),

where the integral of u is along any path in £ from a fixed point x, to x, and
g(x,) is an arbitrarily given constant. This ¢ satisfies Vg=u. For uesC(2)
with rotu=0 (generalized), ¢(x) is still well-defined by as can be seen by
approximating it with smooth flows (see e.g. [17, Lemma 2.13]).

To prove [2.9), by virtue of it suffices to show that

(2.11) Vg(x) =0(|x|°% as |x|—oo.

Let R>0 such that B(0, R)DS (B(0, R) denotes the ball with center 0 and
radius R). Let a cut-off function n%(x) be

(2.12) 7&(x) = &l x]),

where 9x(r)eC>[0, o) such that ng(r)=1 if »r=2R, ng(r)=0 if »r<R. We may
regard ¢*(x)=7%%(x)g(x) as a function on R®. Define g(x) on R® by

0 L0 Xy
0x; 4lx) = 471‘5123 Ix—ylaAq ()dy
1 XiT Vi Ak, x, P
= T”SBW)\BM s Akt Ty (=1,2,9).

(We note that Ag=div(Vg)=divu=0.) Then 0§/0x;—0¢*/dx; is harmonic on R?
and

(2.13) §(x)=0(x|"*  as |x|-co.

axj
On the other hand, we see that lim,;,.«(0/0x;)¢*(x)=0 because lim, ..u(x)=0.
This implies by virtue of the Liouville theorem for harmonic functions that
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07/0x;—0q¢*/dx;=0 (=1, 2, 3). Hence follows from [2.13).

COROLLARY 2.8. Let u be a harmonic field (i.e. rot u=0, divu=0) satisfying
u-n|s=0 and tending to zero at infinity. Then u=0.

ProOF. It follows from the above lemma that there is a scalar function ¢
such that V¢g=wu and

Ag =divVg =0; =u-nlg=0; lim ¢(x) = const.

99
an S | Z | —o0

Therefore we see that g=const. by the uniqueness theorem for the exterior
Neumann problem. Hence u=0.

- Similar proof applies to the following cases.

LEMMA 2.9. (i) If a harmonic field u on R® tends to zero at infinity, then
u=0. (ii) When 2 is a bounded and simply connected domain, a harmonic field
u such that u-nlz;o=0 satisfies that u=0 in Q.

Next we shall study the following elliptic system:
(2.14) rotv = w, dive =0, v-nls=0.
To this end we introduce subspaces of M2 ;.
DEFINITION. Let p and 0 be as in Theorem 1.1 and s=1. We define
XB 541 = {vEME 54y @ dive=0, v-n|s=0},

Y2500 = {we M 31, : divee=0, SS_(w-n)dS:O (=1, -, m)}.
J

REMARK. We can easily see that
(2.15) {rotv : rotveM? 5.} T YE 54s.

We have the following inequality.

LEMMA 2.10. There is a positive constant c, depending only on £ and s (s=1)
such that
(2.16) |U|p,s,6+1§ Cz]rOtvlp,s~1,5+2 for all ve X3 ;544.

(The proof is given in Subsection 2.3.)

PROPOSITION 2.11. Let wsY? 5.,. Then there exists a unique solution ves
X%,aﬂ Uf

(2.17) rotv = w.

Proor. The uniqueness follows from (2.4) and [Corollary 2.8 To prove the
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existence, we need to show that w can be extended to a solenoidal vector o<
Mz 5.,(R®. Following Itd [12, Lemma 2.9] we shall construct vector functions
w; (j=1, -+, m) such that

(2.18) w, € W20y, divw,=0;  wls; = wls,.

It follows from the definition of Y2 ;,, that there is a solution ¢,€W?*?(0;) of
the Neumann problem:

(2.19) —Ag; =0 on Oy, g%i—‘sjz(wlsj)-nlsj for each s

(see Agmon, Douglis and Nirenberg [1]). Using the inverse theorem on traces
(see Besov, II'in and Nikol’skii [3, Theorem 25.2]), we have u,esW?*?(0;) (j=
1, ---, m) satisfying the boundary condition:

Ouy
on

Furthermore, there exist smooth scalar functions ¢; such that

(2.20)

Sj:w]SJ—<vqj)|Sj; u;ls; =0.

(2.21) Vo;,=n onS; (G=1,--,m).
We put
(2.22) w; = rot Nop;A\u;)+Vg;,

where uAv denotes the ‘vector product’ of u with v. Then we have
w; = (Vgoj 'V)llj‘*(llj'V)Vng‘{—(diV u])Vgoj—(Agoj)uJ+Vq]
(Itd’s identity).

Hence, since it follows from (2.19) and that (diva,)|s,=0, we can easily
see that holds.

Now we define a vector function @ on R? by

w in £

(2.23) w= {w] on O] (]:1’ Tty m)'

Then implies that we M2 ;,,(R® and divie=0. From it fol-
lows that there exists a solution ues M3 ;(R? of —Au=ib. In addition, we can
see that divu=0 since @ is solenoidal. Writing &=rot (u|g), we have

(2.24) e M 5., rotd =w; dive =0.
yields that there is a solution ¢ of the Neumann problem:

9 _
(2.25) geMz,;, —Ag=0; a—zszv-nls.

We put
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(2.26) v=10—-Vgq.

Then it follows from [2.24) and [2.25) that v belongs to X3 5., and is a solution
of (2.17).

DEFINITION. Let weY?2 54, Let ve X3 54, be the solution of (2.17). We
define the operator F as

(2.27) Fw) =v.
Then Lemma 2.10 implies that

(2.28) |F@W) | p, 0,041 = CalW] p,1,542-
Furthermore, we have the following corollary.

COROLLARY 2.12. The operator F is a continuous map from C([0,T] ;Y3 5:2)
to C([0, TJ; X% 541) with

(2.29) IF@)llp,2041.7 = Collwllp 1,60e.7 for any weC([0, T1; Y3 5:0).

Using F we shall rewrite the initial condition in the form that is easier to
handle.

LEMMA 2.13. The initial velocity v, satisfies
(2.30) Vo— Ve € M3 54,1
In addition, there is a constant c; depending only on v and £2 such that
(2.31) [ 0o 1,003 €11 D?0g| p,0, 548 = 2¢1€2 |10tV 5, 1, 542 C5.

PROOF. Let V be a harmonic function satisfying

(2.32) V| o penls,  lim V(x)=0.
6n S | T 1 -0

Then v, is represented as

(2.33) Uy = vm—VV—i- F(I‘Otvo) .

Indeed, putting u=v,—v.+VV—F(rotv,) and using (2.4), [2.27) and [2.32), we
see that u is a harmonic field satisfying u#-n|s=0 and lim,; ..u=0. Hence u=0
follows from This yields [2.33). As is well known, the harmonic
function V satisfying is given by the single layer potential. This implies
that D*V(x)=0(] x|~ "*"#D) as |x|—>co (Ja|=0, 1, ---), which yields VV & M3 ;...
Hence we obtain [2.30). It follows from and that

[V |1, €11 D?00 ] 5,0,5+3
é 2616‘2}1'0“)0[],,1,5”‘{— lVV]1,w+61[D2(VV) | p,0,5+3+voo.
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Noting that V depends only on v. and £ we have [2.31).

2.3. Proof of In order to obtain the inequality (2.16) we
need estimates in bounded domains.

LEMMA 2.14. Let D be a bounded and simply connected domain with smooth
boundary. Let s be a non-negative integer and let p=2 for s=0 and p>1 for
s=1. Then there is a positive constant ¢ depending only on s and D such that

(2.34) [0 541,p = c([rOtO]4, o+ 1diVO] s, p+ |0 R ws+1-1/p. pop))
for all veWstt-2(D).

REMARK. When p=2, see Foias and Temam ([9, Proposition 1.4]).
Proor. For s=1, we know by [4, Lemma 5] that

(2.35) |0]s41,p = c(lrotvls, p+ |divels, p+ vl o+ VR ws+1-1/5 pap))
for all veWs*+t?2(D).

Hence since the imbedding of W*+':?(D)—-W#*?(D) is compact, it follows from
that (2.35) can be replaced by [2.34).
We shall prove for s=0. Put

y?= {we L?(D) : divw=0, Sap (w-n)dS=0 for all j},
Jj

where 0D; denotes a connected component of dD. The results of Fujiwara and
Morimoto ([10, Lemmas 1 and 3]) yield that Y? is a closed subspace of L?(D).
Moreover, any weY? satisfies (w, h)=0 for all he {roth=0, divh=0, h.|;p=0}
(see Foias and Temam [9, Propositions 2 and 3]). Hence we can use the result
of Morrey ([18, Theorem 7.7.4]): for any weY?, there is a solution u of
—Au=w; u.l;p=0; (divu)|;p=0 such that u, rotu and divu belong to W*?(D).
Writing Fp(w)=rotu, we can easily see that Fp(w) satisfies

(2.36) rot Fp(w) = w, div Fp(w) = 0, Fpw)-n|z;p = 0.

It follows from (ii) that Fp, is a closed operator from Y? to
{veW?(D) : divv=0, v-n|;p=0} (a closed subspace of W*?(D)). Hence by the
closed graph theorem we have

(2.37) |Fpw) !y, p = clw]p.

Given any veW*?(D), there is a solution n,€W? ?(D) of the Neumann problem :
) 0T, .

(2.38) Ar, = divo, an lop = v-nlsp

with
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(2.39) V7|1, p = c(ldivolpt+|v-nlwi-vp.20p)

(see Agmon, Douglis and Nirenberg [1]). Since rotveY? holds for any ve
W ?(D) (see [9, Proposition 1.3]), it follows from [2.36), and
(ii) that v=Fp(rotv)+Vx, Hence combining [2.37) and [2.39] we obtain [(2.34
for s=0.

ProoOF OoF LEMMA 2.10. Assume that the inequality (2.16) is false. Then
there is a sequence {v,}C X% s+, such that
(240) (1) ]vn | p.8,0+1 — 1’
(ii) |rotvy,| p,s-1,642 — 0 as n-—oo,

Letting 7% be as [2.12), we may regard 7%-v, as a function on R®’. We have
rot (9} -v,)=n%-rotv,+(VpP Av, and div(nk-v,)=V9%-v, (divv,=0). Noting
that u,=(9¥ Av, and ¢,=Vy%-v, have the same compact support in By p=
B, 2R)\B(0, R), we may regard u, and ¢, as functions on Bz Then
implies that

(2.41) | 9% Unlp,s.041, 88 = ([ DE-TOLUL] p,5-1,642, RS
+ g ws-1. PBopp T lonlws-1, p(Bm\m) .

Since (2.40) (i) implies that {u,} and {¢,} are uniformly bounded in W* ?(B;g.g),
it follows from the Rellich theorem that there are subsequences {u,,} and {¢,,}
which are Cauchy sequences in W**?(B,r.z). On the other hand, (2.40) (ii)
implies that

[9R-TOtUL] 5 s 1.642,88 = C|TOtUL | p s-1,542—0  as n—o0,

Hence it follows from that {n%-v,,} is a Cauchy sequence in M3 ;..
Using and by the similar argument to the above we can prove
that the sequence {(1—%¥%)v,} has a subsequence which converges strongly in
M?Z ;+,. Hence we see that there is a subsequence which converges strongly to
v* in M2 ;s.,. This, together with (2.40) (i), implies that |v*|, ;s s+:=1. Fur-
thermore, since X3 ;., is closed in M3 ;.,, we have rotv*=0, divv*=0, v*-nlg
=0 and lim,, ..v*=0. This contradicts Corollary 2.8, This completes the proof.

§3. Construction of solutions.

In this section we shall prove [Theorem 1.I. To this end we consider the
vorticity equation obtained by taking the rotation of the first equation of (1) and
using dive=0. We note that the following identity holds:

3.1) rot[(v-Wv] = (v-V)rotv—(rotv-V)v+dive rotv.
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Precisely, in Subsections 3.1 and 3.2 we shall construct a solution {v, w} of the
following equations:

3.2) rotv = w,
(3.3) dive =0,
(3.4) —aai;lﬂu-V)w—(w-V)u — rotf

with the boundary conditions (2) for v and the initial condition
(3.5) wlt=0 B rotvo

for w. (Note that the initial condition (3) for v is not required in the construc-
tion, but will be satisfied automatically (see Subsection 3.3).)
will be proved in Subsection 3.3.

3.1. Preliminaries for iteration. A solution {v, w} of the above equations
(3.2)-(3.5), (2) will be constructed by means of iteration (Subsection 3.2). In the
iteration these equations will be split into two systems of linear equations (one
is elliptic and the other hyperbolic) and these systems will be solved successively
in alternation. In this subsection we deal with these linear systems.

The first system consists of (3.2) and (3.3) with the boundary condition (2).
Here we regard w=w(-, t) as given.

PROPOSITION 3.1. Suppose that w=C([0, T1;YZ% 5+5). Let F be the operator
defined by (2.27). Then

(3.6) v = Flw)+v,— F(rotv,)

gives a unique solution of (3.2), (3.3) under the boundary condition (2). The solu-
tion v satisfies

3.7 V—U. € C([0, T]; M% 541,
(3.8) “U_‘Um”p,z,aﬂ,z' = Cz(“w”p, 1,3+2, 7T |TOt VG| p,1,542) + | Vo—Veol| p. 2,541,

(3.9) ”v“m,T+“DU”°°,T+CIHD2UHp,0,5+3,T = C1Cz(3uw“p.1,6+2,T+4|f0tU0|p,1,5+2)+03,

where vy=v(-, 0) is the initial velocity.

PROOF. The uniqueness follows from It follows from
that gives a solution of (3.2), (3.3) and (2). Using and (2.29) we have

||U”°°.T+“DU”°°,T = 51(2”F(w)”p.2,5+1,T+|F(r0t00)|p,2,6+1)+lvoll.w
= 0102(2||wwp.1,5+2,1‘+ |r0tvo|p,1,5+2)+ 0] 1,00

Similarly (2.29) implies that
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||Dzv“p,0,5+3,1' = Cz('lwlip,1,5+2,T+ |r0tvolp,1,6+2)+ IDZUOIp,o,Hs .
Hence by we have (3.9). Similarly (3.8) follows from (2.29).

The second system is the vorticity equation with the initial condition
3.5). Here we regard v and f as given. We construct a solution following

Swann’s argument (see [21], also see Kato and Judovi¢ [13]) and obtain
the following result.

PROPOSITION 3.2. Let vEv.+C(0, T]; M3 5:,) be such that dive=0 and
v-n|ls=0. Then there exists a unique solution wsC([0, T];Y?% 5:+2) of (3.4) and
(3.5) satisfying

(3.10) [w(®)] 50,340 = 2/ P{L+(T [0l 1)} (170t s | 5,0,545
¢ t
+ 150t (5)1 . 0,svas 1 D0l | 10 0.00d5) L0, T,
This solution also satisfies

3.11) | Dw(t)| p,0,5+5 < 20+3-1/P.exp (3T || DO, 1) * {14 (T |00, 7)°**}

X (1DE0t0 | . ,315 | 1 DEOLF(5) 50,0015
t
F1DOle, | 1 D) 5.0,504ds

t
e 1D |0 50sds [0l 5.1,0000) €0, T,
The proof of this proposition is divided into several parts.

(1) Define a family of curves (X(x, ¢;s), s) in 2x[0, T] by

d
(3.12) —d;—X(x, t;s)=v(X(x, 1t;s),s) 0<s, t£T
X(x, t;t)=x.

Then, since vEv.+C([0, T]; MZ 5..)CC(0, T1; C+(2)),
(3.13) X(x, t;s) € CN[0, T];CH*(2)  (0<6<1—3/p).

Accordingly, gives a unique local curve in 2x[0, 7] for each (x, t)e
Qx[0, T]. It follows from v-n|s=0 that

(3.14) (X(x, t;s),s)in 2%[0, T] cannot reach SX[0, T].

Hence all solutions of in 2x[0, T] exist globally (see Kato [14, Lemma

2.2]). Furthermore the definition and the uniqueness of stream lines imply
that

(3.15) X(X(x,1t;8), s;7)=X(x,t;71) for 0Zs, t, tT.
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We put G(x, t;s)=D(X(x, t;s))/D(x), where D(u(x))/D(x) denotes the Jacobi
matrix of u(x). Then differentiating [3.12) with respect to x; (=1, 2, 3), we
see that G(x, t;s) satisfies the following equation :

4 gy = Dy, ) .
(316) ds G(X, iz S) - D(y) y=X(z.t;9) G(x’ £ )
G(x, t;t) = E (identity matrix).

Since divv=0 on 2x[0, T], (3.16) implies that
(3.17) detG(x, t;s)=1.

We now define

(3.18) w(x, t) = G(x, t;0)'a(X(x, t;O))—}-S:G(x, t; o) 0(X(x, t; 1), v)dr,

where a=rotv, and b=rotf.

In the following parts we shall prove that w defined by (3.18) satisfies the
required properties.

(1) Let u(x)eM?’ 5.5. Then u(X(x, t;s)) belongs to ME 54, for fixed s, ts
[0, T] and satisfies

3.19) u(X(-, 25 )] p.o.ore = 277V 2{LH(T [0llw, )2} %] 0,542,
(3.20) | Du(X(-, ;)| p,0,545 = 2°+°1/2-exp (3T || D|len, 1)
ALH(T (0l )’} Dtt] 50,545+
Proor. It follows from that
3.21) | X(x, s;O) = | x| +T[vlle,r.
This implies that
3.22) o(X(x, s;t)*? = 222" Ho(x) P+ (T |vlw)*?}  (Ap=2).

Therefore, using the change of variables y=X(x, t;s) and using [[3.15) and [3.17)
we have

1o (- u(X(-, t5 )1, = [a(X(+, s; 0 u()]p
= 2202 VP {1 (T |0lleo, 1)} | ] .0, 542 -

This proves [3.19). By the chain rule we have

‘guﬂxu, ts) = Sue(Xlx, 1590
x] k=1 ax]

where u,,=0u/dx,. By the Gronwall inequality we deduce from

k

(x,t;5) (7=1,2,3),

g%(.,t;s) <exp@T|Dvl.r) (=1,2,3) for s, t[0, T1.
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Using we can prove that
Ve (XCy 155D pooass = 207V P{1H(T [0llee, )2 Uz, ()] p, 0,648
in a similar way to the proof of [3.19). Hence we have [3.20).

() Let w(x,t) be defined by [3.17). Then
(3.23) w e C([0, T]; M3 5+5),

and w satisfies the estimates (3.10) and (3.11). Moreover, w is a weak solution of
(3.4), i.e. for any vector function usCNQ)

(3.24) 4w, w) = @, 0D+ (T, w6, w).
Proor. We shall first show that
(3.25) Glx, t;5)1—E € C[0, T1; MZ.515).

It follows from (I) that Duv(y, $)|y=x,t:5SC([L0, T1; M3 542). Accordingly,
Lemma 2.3 implies that the operator : z—(D(v(y, $))/D(Y)|y=x(z.¢;5 2 is bounded
from M2 ;.. into itself. Hence by we have G(x, t;s)—E=CY[0, T];
M2 ;.5). On the other hand implies that G(x, t; s)~! is the cofactor matrix
of G(x, t;s). Furthermore, a simple calculation yields that for any 3x3 matrix,
cof(G)—E=cof(G—E)—(G—E)+(trace(G—E))E, where cof(A4) denotes the co-
factor matrix of A. Hence by we obtain [3.25). w(x, t) is written

as follows:

w= (G"——E)a(X)—}—a(XH—S:{(G*1~E)b(X)+b(X)}dr.
Hence from (1), and we deduce [3.23).

We shall show that w(X(x, t;s), s) satisfies the inhomogeneous ordinary
differential equation :

753, w(X(x,t;8), s) = WwX(x, t;8), $)- VU, S)ly=xz.t:9
(3.26) FB(X(x, 1 8), §) = I(x, t: 5),
w(X(x,t;0), 0) = a(X(x, t;0).

Since it follows from and the chain rule that G(X(x, t;s), $;7)G(x, t; )
=G(x, t;7), we have

(3.27) G X(x,t;8),s;7)'=G(x, t;9G(x, t; 7).
This, together with implies that w(X(x, t;s), s) can be written as
(3.28) wX(x,1t;8), 8)=G(x,t;9G(x, t;0)a(X(x, t;0)

+G(x, t; s)SZG(x, ;o) 0(X(x, t; ), T)dT.



Incompressible flow 589

On the other hand, means that G(x, t;s) is a fundamental matrix solu-
“tion of the homogeneous ordinary differential equation: dz(s)/ds=
(2(s)-V)v(y, $)ly=x(z,t;5- Hence a well-known result from ordinary differential
equations yields that w(X(x, ¢;s), s) given by (3.28) is a solution of (3.26).
Then (3.26) and the second equation of imply that w(x, t) is represented as

(3.29) w(x, H—a(X(x, t;0)) = S »%Aw(X(x, t;s), S)ds = S:I(x, t;s)ds.

t
o d

We shall now prove the estimates (3.10) and (3.11). (3.29) gives

i
(3.30) lw(-, )]p0642 = la(X(-, t;O))Ip,0,5+2+lS I(-, t; s)ds .
0 P,0,0+2
It follows from that
3.31) la(X(-, t;00) 50,542 = 2872 VP {1 4-(T|0]loo, 7)°*2} | @] p, 0,542 -

Using the extended Minkowski inequality and we have

t t
(3.32) [Sou-, s s)dsl < SO (-, £38)] 505405

p,0,0+2

< 2042 1P {1+ (T |0, T)BH}(S; [b(-, )| p,o,6+2dS

1D,z 1200, 5)15.0,51605) .

Combining and (3.32) with [3.30), we have (3.10). Applying to (3.29),
(3.11) can be proved in a way similar to the proof of (3.10).

Finally we shall prove [3.24). Let J,=1/h)(w(-, t+h)—w(-, 1), u). We
divide J, into two parts:

339 o= (T X, 450 b, R —w(XC, t+R3 0, ), u)

'i'_%(w(X(’ t+h;t>) t)*—ll?(‘, t)’ u) = ]1h+j2h"

(Note that X(x, t+h;t+h)=x.) It follows from (3.26) that

(3.34) lim /5 = ((disw()«-, £59), 9)) | i )

= ((w-V)v+b, u).
Changing variables y=X(x, t+h;t) and using and [3.17) we have
WX+, t+h; ), ), u())=w(-, 1), u(X(-, t;t+h))). Hence from we see that
(3.35) tim Jor = tim(w(-, 0, - (WX, 1514 R)—u(XC-, 1)}
n—0 R0 h
= (w, (v-Nu).
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Combining (3.33), and we obtain
& w, w) =lim ] = (0 T)o, W)+, 0 Dw+b, w.
This proves [3.24).
(IV) For any scalar function ¢=C§£),
(3.36) (w, Vo) = 0.
PrOOF. We shall prove that
(3.37) I=(G(+, t;0)'a(X(-, 1;0), Vo) =0.

Using the change of variables y=X(x, ¢;0) and using [3.17), and the
second equation of we have

(3.38) 1=1,G(X(x, 050, 1;00a(x)-Fy9(3) | = z.0; 0
= {,6(x, 03000 T, 0| y-x.0,0dx

- SQa(x)-Vx(p(X(x, 03 1)dx.

By virtue of and we note that o(X(x, 0;1)=Ci2) and
o(X(x, 0;1)s=0. Hence, since diva=div(rotv,)=0, from an integration by
parts we see that the right-hand side of vanishes. This proves [3.37).
Similarly we can prove that

(S:G(-, t;8)"b(X(-, t; ), s)ds, Vgo) =9.
Hence we obtain [3.36).
(V) For all j=1, -, m
(3.39) Ss,-(“’(" D-mdS=0  for all te[0, T].

Proor. Let g; (j=1, -+, m) be scalar functions on the boundary S such
that ‘

. 1 _
(i) (Ssgj(y)'———]x__y| dyS> res, = Gt (G, k=1, -, m),

(3.40) where ¢;, are constants,

(11) det(c,-k)j,k=1,...,m #+ 0.
(For the existence of such functions g,, see e.g. Giinter [11, Sections 11 and 13

in Chapter IV].) We put ej(x):gsgj(y) -d,S. Then we have

lx—y|
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(3.41) (rotvy, Ve;) =0 for all j=1, ---, m.

Indeed, (2.15), (3.40) (i) and an integration by parts implies that
Ia= SMR, (rotw,- Ve)dx = Sm:R e;((rotwv,)-n)dsS.

Since it follows from (2.4) that rotv,(x)=0(|x|¥%*®) as |x|—c and since
ej(x)=0(|x|"") as |x|—oco, we have (rotv,, Ve;)=limg..lr=0. Similarly we can
prove that

(3.42) (rotf(-, t), Ve;) =0 (=1, -+, m) for all t=[0, T].

Since Ve;(x)=0(]x|%) as |x|—oco, we note that u=Ci(2) in [3.24] can be re-
placed by Ve;. Hence implies that

(3.43) —;t—(w, Ve;) = (w, 0-VVe)+((w-Vv, Ye;)  for all j=1, -, m.

We shall show that the right-hand side of (3.43) vanishes. Since it follows
from v-n|s=0 and (Ve;).|s=0 that (v-Ve;)|s=0, an integration by parts and
divww=0 yield

(3.44) (w-Vv, Ve,) = —(v, w-V)Ve,).

(Note that (w(x, :)-v(x, -))Ve;(x)=0(] x| ) as |x|—oo by virtue of (2.4).)
Rewriting the right-hand side of (3.43) by [3.44), we have

da B v of 0% _ 32ej_ . NP
3.45) (w,w»_Sngwv(axiaxk P Yir=0 (=1, -, m).

(3.41) and (3.45) imply that (w, Ve,)=0 for all j=1, .-, m. Hence noting that
ej(x)w(x, )=0(|x|~9*») as |x|—oo and using an integration by parts and divw
=0, we have

0= (w, Ve,;) = ?‘_,lgskej(w-n)ds.

Hence we easily see that (3.40) (i) and (ii) imply [3.39).

(VI) We shall finally prove the uniqueness. Suppose that there is another
solution w=C([0, T]; M3 5.,) of and [3.5). Writing w*=w—w and using
the stream line X(x, ¢;s) defined by [3.12), we see that w*(X(x, ¢;s), s) satisfies
the following equation :

d

ds
Hence repeating the arguments used to deduce (3.10) from (3.26) (in this case
a=0 and b=0), the following inequality can be obtained :

w*(X(x, t;s), s) = W*(X(x, t;5), $)V)U(¥, )| y=xz.t:9-
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t
(3.46)  |w*(®)] p,0,542 = 29" VP {14+(T |0]le, r)***} || DU, TSO [w*(8)] p,0,5+205.
This, together with w*(0)=0, implies that w*(-, t)=0.

3.2. Existence of solutions of the vorticity equation. We construct solu-
tions of (3.2)-(3.5) and (2) by means of the following iterative process. The
vectors vo(x) and wy(x)=rotv,(x), which are the initial velocity and the initial
vorticity respectively, are taken as the zeroth approximations. When the n-th
approximation for the vorticity w,(x, t) is known, then the n-th approximation
for the velocity v,(x, t) is determined as follows:

(3.47) rotv, = w,, divv, =0, Un,n|ls=0, lim v, = V.

| T | -0
(For the zeroth approximation (3.47) is automatically satisfied.) And when the
n-th approximation for the velocity v,(x, t) is known, the (n+1)-th approxima-
tion for the vorticity w,+.(x, f) is a solution of the following equations:
0
(3.48) ”é't—wnﬂ“i‘(Un'v)wnﬂ_(wnﬂ'v)vn =rotf,

divwn+1 == O, wn+1];=0 - rOtUo.

For all n (n=0, 1, 2, ---), (3.47) and are solvable on [0, T'] by Propositions
and

First we shall give an estimate for w, which is uniform in n.

LEMMA 3.3. Let p and 0 be as in Theorem 1.1. Let

T
<3.49) K — 25+5—1/1’g(|r0tvglp,1,5+2+S0 ll‘Otf(S) l p,1,5+2ds),
(3.50) y = min{T, 1/[22*5YP¢{c,c,(3K+4|r0tvo] p,1,542)+Cs} ]}
Then we have

(3.51) lwillp 1,642,r, = K for all n.

PROOF. We shall prove (3.51) by induction. It is clear that (3.51) holds for
w,. Assume that (3.51) holds for w,. Then (3.47) implies that v, satisfies (3.9).
(We note that T in the estimates (3.8)-(3.11) can be replaced by T,.)3F Hence by
(3.50) we have

(3.52) T1(lon]lee, 2,4+ DO llee, 7,4 €11 D0l p, 0, 545, 7,)
= T1{c1c:BK+41r0t g p, 1,540)+ s} < 1/(25+5-1/2¢),
On the other hand, implies that w4, satisfies (3.10) and (3.11). It fol-

lows from that exp(3T .| Dv,lle,r,)<e. Hence using (3.49), (3.50) and (3.51)
we have for any t<[0, T,]
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Was1() p, 1,642 = [Was1(D) ] 50,602 | DWrt1() ] p, 0,543
= 2i-117( | rotuy | "‘””LS:, ITOLF(S)] p.1.54ads
D0, Tolnsallp 1,502, 7,+ ToI D0l 0,550 3 10l .1, 542,
< o+-117¢( | ot uox,,,l,5+2+8: |FOLF(S) 5.1, 34205)
+2044-120. T (| DU loo, 7, €1l D*0n ]l p, 0,545, 7)) * [ Wriall p, 1,542, 7,
1,1

= 7K+7”wn+1”p.1,5+2,1'1-

This proves ||wa+illp,1,6+2,7, =K. This completes the proof.
From (3.8) and the above lemma immediately follows the following
COROLLARY 3.4. v, (n=0, 1, 2, ---) satisfies

(3.53) 02—Vl 52,501, 7, = oK+ |10t U] 5, 1,542) + | Vo= Vo] 5, 2,541 -
PROPOSITION 3.5. Let p and 6 be as in Theorem 1.1 and let T, be as in

Lemma 3.3. Then there exists a unique solution {v, w} of (3.2)-(3.5) and (2) on
[0, Ty], which satisfies

w < C([0, T11; M%,502)NL20, T1; MR 540),

(3.54)
V—Ve € C([0, T11; M2 5.)NL=0, T1; M3 541).

ProOF. We shall first show that as n—oo

(3.55) w,(-, t) converges in M3 ;., uniformly in t=[0, T,],
(3.56) v.(-, t) converges in M2 5., uniformly in t<[0, T;].

Let w¥=w,,,—w, and u,=v,,;—v, Then it follows from Propositions 3.1 and
that

(3.57) wy € C([0, T1]; Y% 540), u, € C([0, T11; X3 5+1).
Furthermore, from (3.47) and we deduce

(3.58) rotu, = wy,
3.59) 2w wa, wD) = Wl wn ) wilx, O =0,

where ¥'(u, w)=(u-V)w—(w-V)u. Since [3.59] means that w* satisfies the equa-
tion [3.4) in which rotf is replaced by ¥ (w,, u,-,), the estimate (3.10) holds for
w}. Therefore, noting wk(x, 0)=0 and using we have

(3.60) JwED)|p,0642 = c4S: VW, Un-1)(+, $)|p.os+2ds  for any t[0, T,],
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where ¢,=22*5-"/?¢/(4e—1). On the other hand, it follows from [(3.57), (3.58) and
Lemma 2.10 that for all »

(3.61) [Un®)] p, 1,641 = C2|WEE) | 0,042 for any t<[0, Ty].
This, together with and (3.51), yields that
(3.62) 1 (wWn, Un-1)(+, )] 5,042
= llwalle, 7, | Dttn-1(8) | p,0,5+2F | 8n-1() oo | Dwrl p,0,545,7,
= 201K Tw¥-1(8)] 50,542 for any t<[0, T,].

Combining (3.60) and [3.62) we have for all n
i
(3.63) fwi ()] p.o,o4e = CGSO 1wﬁ—1<3)|p,0,5+2d3 for any t<[0, T.],

where ¢;=2c¢,c,¢,K. Furthermore, it follows from (3.51) that |[w¥ll; 05+.=2K.
Hence repeating successively, we obtain
(est)® ...
2! 1 2
for any t<[0, T,].

(3.64) |wi(t)| p.0,5r2 = 2Kcit, |wi(®)| P06+ = 2K
' |50 50000 = 2K

From the above estimate we see that w,=w,+ 2 7-tw7 satisfies (3.55). Combin-
ing and (3.64), we also see that v,=v,+X2tu, satisfies (3.56).

Let w=lim,.-w, and v=Ilim,..U,. Then (3.54) follows from (3.55), (3.56),
Lemma 3.3 and [Corollary 3.4 In addition, taking the limit n—oo in (3.47) and
(3.48) we conclude that {v, w} is a solution of the vorticity equation (in the
sense of [3.24)) satisfying (3.54).

In order to show the uniqueness, suppose that there is another solution
{D, w} satisfying

(3.65) 0 € vt+C([0, Ti]; MR 541), w0, Til; ME 540).

Writing w*=w—w and u=v—0 and using the stream line X(x,¢;s) of v
defined by [3.12), we have from and

d
—d;w*<X<x, £;8), 8) = W*(X(x, t;9), $)-V v, )l y=xcz.t;0

(3.66) +¥(w, u)(X(x,t;s),s),

w*(X(x, t;0),0)=0.

Hence repeating the arguments used to deduce (3.10) from (3.26) and noting that
(3.52) holds for v in place of v, we have

(3.67)  |w*®)|p.o042 = 6452 [T (w, u)(+, $)|pos+ds  for any t<[0, T,].
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Furthermore, from (3.2), (3.3) and (2),
(3.68) u<s C(J[0, T.]; X% 541), rotu =w*.

Hence repeating the arguments used to deduce [3.61) and from and
(3.58) we have for any t<[0, T,]

(3.69) lu(t)] 2,1,8+1 = ¢ |w*()| 2,0,0+25
(3.70) [V (w, u)(-, )] p.0,0+2 = 2c162”wl|p,1,5+2,T1' |w*(@)] P,0,0+2

It follows from (3.67) and (3.70) that for any t<[0, T,]

¢
3.71) lw*(@)| ,0,0+2 = 2C102C4Hw”p,1,5+2, TI‘SO lw*(s)| p,o,6+2d5 .

This, together with w*(-, 0)=0, proves that w*(-, {)=0. From [3.69) we also
see that u(-, 1)=0. This completes the proof.

3.3. Proof of Theorem 1.1. Let {v, w} be as in [Proposition 3.5 and let
T,=T,. Then the velocity v satisfies (2). We shall prove that v satisfies the
other conditions. It follows from that v is represented in the form:

(3.72) v(t) = Flw()—rotv,)+v,.
Hence from [3.5) and [2.28)] we see that lim,,v(t)=v,.

LEMMA 3.6. 0v/dt exists and belongs to L=(0, Ty; MB 51).

Proor. Using (3.54) and and noting M2 ;,,C M2 5., (see [Z.1)),
we have

3.73) (Vv € L=, To; M3 541).

This implies that div{(v-V)v)e L=, T,; M3 ;) and ((v-V)v)-n|ss L=0, T,;
wi-12.2(S)), Hence applying to the Neumann problem:

(3.74) —Ag, = div((v-V)v); gg = —((v-V)v)-nls,
we have

(3.75) g0 € L0, To: M2,).

We put

(3.76) u(t) = v(t)—-vo—l—S: {(0-W)vo+-Vg,— F(rotf)}ds.

Then it follows from [2.27), (3.73)-(3.75) and [Proposition 3.5 that

(3.77) u < C([0, Ty]; M% 5., divue =0; u-nls=20.

Furthermore, u satisfies
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(3.78) rotu = 0.

Indeed, by virtue of [2.27), [3.1) and (3.3), an integration by parts implies that
for any »=C3(2)

{w-Vv+Vg,—F(rotf)}, roty) = —({(v-VYw—(w-Vyv—rotf}, 5).

Hence from [Proposition 3.5, we see that for any »<C%(2)

d
‘df<u’ roty)

= %‘w, rot)+({(0-Mo+g,—F(rotf)}, roty)

— ——5?(w, 7)—{@-VNYw—w-Vv—rotf}, ») =0.

This, together with (rotu)|,-,=0, proves (3.78). Hence combining (3.77) and

(3.78) with we have u=0. This yields that
v _
ot
Noting the right-hand side of belongs to L=(0, T,; M2 s,;) we obtain the
desired result.

3.79) —{(v-VNv+Vgq,— F(rotf)}.

Let U=0v/ot+(v-V)v—Ff. Then we have rotU=0 since v satisfies (3.2)-
(3.4). In addition, since it follows from and that U+fe

L=, To; M2 5.1), implies that U L0, T,;Cy(L2)). Hence from
there is a scalar function p such that

(3.80) U= —Vpe L0, Ty;Cs2)).

This proves that {v, p} satisfies the first equation of (1).

Suppose that there is another solution {o, p} of (1)-(3) satisfying the condi-
tions of the theorem. Then we easily see that u=v—0 and w*=w—rot¥ satisfy
(3.66). Hence we can prove the uniqueness in a similar way to the proof of
the uniqueness in [Proposition 3.5

REMARKS. (i) From we see that the uniqueness is valid for ve
UetC([0, To]; ME 541).

(ii) If 3<p<6, then from we easily see that ov/ot+(v-Vyve L=, T,;
Wrr(2)). 1f, in addition to the assumption of the theorem, fe L%0, T,; L¥Q)),
then ‘the pressure term’ Vp belongs to L*0, T,; L%£)). Hence the uniqueness
holds in the set of all & such that the following energy identity holds:

o) —80) 13+ (09 —8(s), [w(s)=8()-Te(s)ds = 0.
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