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Introduction.

In this paper, we shall show two results in the affine geometry.
The first theorem is on the structures of affine spheres in 3-dimensional real

vector space $R^{3}$ . The complete affine spheres have been already classified by
Calabi [2], Pogorelov [8], Cheng and Yau [4] and Sasaki [9]. On the other
hand, we know little on the structures of affine spheres without the condition
of completeness. We study non-complete affine spheres which satisfy a certain
curvature condition for their affine metric.

In the second theorem, we shall study the hypersurfaces obtained as the
graphs of the affine normal vector fields of affine hypersurfaces. It will be
shown that the hypersurfaces thus obtained satisfy an integral formula in terms
of the affine invariants. Conversely, it will be proved the integral formula is
also the sufficient condition for affine hypersurfaces to be constructed in this
way.

To explain our results more precisely, we review here some notations and
facts in the affine geometry. (For more details, see [1], [2] and [5].) Let $x$ ;
$Marrow R^{n+1}$ be a strictly convex hypersurface of $R^{n+1}$ . If we choose a vector
field $\xi$ of $R^{n+1}$ along $M$ such that $T(R^{n+1})|M=T(M)+R\cdot\xi$ , we can define the
induced affine connection $\nabla$ and the second fundamental form $h$ as follows: for
arbitrary vector fields $X$ and $Y$ on $M$,

$D_{X}Y=\nabla_{X}Y+h(X, Y)\cdot\xi$ ,

where $D$ is the standard affine connection of $R^{n+1}$ , and the vector field $\nabla_{X}Y$ is
tangent to $M$.

Because of the strict convexity of $M,$ $h$ is definite and we can determine $\xi$

uniquely by the following two conditions:

(i) For any vector field $X$ of $M$, the vector field $A(X)=-\nabla_{X}\xi$ is tangent
to $M$.

(ii) Let vol be the standard volume element of $R^{n+1}$ , and $(e_{1}, \cdots , e_{n})$ the
frame field of $M$. Then
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$vol(e_{1}, \cdots e_{n}, \xi)=\sqrt{\det((h(e_{i},e_{j}))_{ij=1,n})}$.
The $\xi$ satisfying (i) and (ii) is called the affine normal vector field. When we
take the affine normal vector field as $\xi$, then $h$ and $A$ defined as above are
called the affine metric and the affine shape operatOr, respectively. In this paper
$\xi$ always means the affine normal vector field.

Affine hyPerspheres are by definition such strictly convex hypersurfaces that
the affine shape operator is proportional to the identity operator. On affine
hyperspheres, the affine mean curvature $L=(1/n)\cdot trace(A)$ is constant.

Our first result concerns the local structure of affine spheres in $R^{3}$ satisfy-
ing a curvature condition. We have:

THEOREM I. Suppose that $M$ is an affine sphere in $R^{3}$ with constant Gausstan
curvature $Kwi$ th respect to its affine metric. Then, $M$ is a quadric surface or
$M$ is affinely equivalent to an open submanifold of the surface

$S(c)=$ { $(x^{1},$ $x^{2},$ $x^{3})\in R^{a}$ ; $x^{1}x^{2}x^{3}=c$ , and $x^{1},$ $x^{2},$ $x^{3}>0$ },

where $c$ is some $po\alpha tive$ real number.

In the recent paper, Nomizu and Pinkall classified the hypersurfaces whose
induced connections are complete and flat for a suitable choice of the vector
field $\xi([7])$ . For a strictly convex hypersurface, the induced connection coincides
with the Levi-Civita connection for the affine metric if and only if the hyper-
surface is a hyperquadric and $\xi$ is proportional to the affine normal vector field.
Hence, it remains a problem to classify complete affine hypersurfaces with
the flat affine metric. We shall give a result in this direction as a corollary to
Theorem I.

COROLLARY. Suppose that a strictly convex surface $M$ of $R^{3}$ is flat with
respect to its affine metric. If $M$ is affinely homogeneous, that is, $M$ admits a
transt tive group of ummodular affine iransformations, then $M$ is a parabOlOjd or
$M$ is affinely equivalent to $S(c)$ for some $po\dot{\alpha}tive$ real number $c$ .

REMARK. Affinely homogeneous surfaces of $R^{3}$ were classified by Guggen-
heimer ([6], Theorem 12-4). We can also obtain the same result as in Corollary
from this theorem with some calculations. In our proof, we do not need the
classification theorem.

A strictly convex hypersurface $x:Marrow R^{n+1}$ is called affinely strictly convex
if the affine shape operator has only positive eigenvalues. In this case, $\tilde{x}=-\xi$ :
$Marrow R^{n+1}$ is also a strictly convex hypersurface. It is a natural problem what
properties $\tilde{x}$ has. In order to give an answer to this problem, we define two
notations.
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Let $R_{n+1}$ be the dual space of $R^{n+1}$ . The affine conormal vector field $\chi$ of
$M$ is the $R_{n+1}$-valued function on $M$ uniquely determined by $\langle\chi\xi\rangle\equiv 1$ on $M$ and
$\chi$ vanishes on $T(M)$ . For a point $P$ of $M$, the affine distance 1 at $P$ is defined
by the following equation:

$l=-vol(e_{1}, \cdots e_{n}, p)$ ,

where $(e_{1}, \cdots , e_{n})$ is the orthonormal frame for $T_{p}(M)$ with respect to the affine
metric. Our second result is as follows:

THEOREM II. SuppOse that $x;S^{n}arrow R^{n+1}$ is an affinely stnctly convex hyper-
surface. Then

$\int_{S^{n}}\frac{\tilde{\chi}}{\tilde{l}^{n+2}}d\hat{V}=0$ ,

where $l\sim and$ $\tilde{\chi}$ are the affine distance and the affine conormal vector field of $\tilde{x}=$

$-\xi:S^{n}arrow R^{n+1}$ , and $d\hat{V}$ is the volume element with respect to the affine metric
of $\tilde{x}$ .

Conversely, if a stnctly convex hypersurface $\tilde{x}:S^{n}arrow R^{n+1}$ is given and satisfies
the above integral formula, then there exists an affinely strictly convex hyper-

surface $x;S^{n}arrow R^{n+1}$ such that $\tilde{x}=-\xi$ . Moreover, the $x$ is unique up to parallel

transformations.
In Section 1, we collect some more notations and facts in the affine hyper-

surface theory which are used in the proof of Theorem I. We shall give the
proof of Theorem I and its corollary in Section 2 and the proof of Theorem II
in Section 3.
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his continuous encouragement and advice, and Prof. T. Sasaki whose lecture
note invites the author to study the affine hypersurface theory.

\S 1. Preliminaries.

Let $x;Marrow R^{n+1}$ be a strictly convex hypersurface of $R^{n+1},$ $h$ the affine
metric of $M$ and $A$ the affine shape operator of $M$. We define $\Phi$ , which is
called the Fubini-Pick form, as follows: let $X,$ $Y$ and $Z$ be arbitrary vector
fields on $M$.
(1.1) $\Phi(X, Y, Z)=(\nabla h)(X, Y;Z)$ .

It is easily verified that $\Phi$ is a symmetric $(0,3)$-tensorfield on $M$, and that
at any point $P$ of $M,$ $\Phi$ satisfies the apolarity condition:

(1.2) $\Sigma^{n}\Phi(e_{i}e_{i}, e_{j})=0$

$t=1$

$(j=1, \cdots n)$ ,
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where $(e_{1}, \cdots , e_{n})$ is an orthonormal frame of $T_{p}(M)$ with respect to the affine
metric $h$ .

The Fubini-Pick form plays an important role in the affine geometry. It
measures the difference between the hypersurface and hyperquadrics. In fact,
we know:

FACT 1. A stnctly convex hypersurface is a hyPerquadncs if and only if
the Fubm-Pick form vamshes everywhere.

We denote by V and $R$ the Levi-Civita connection and the Riemannian
curvature tensor of the Riemannian manifold $(M, h)$ . As in the Euclidean
hypersurface theory, there are some relations among $h,$ $A,$ $\Phi$ and $R$ : for arbi-
trary vector fields $X,$ $Y,$ $Z$ and $W$ on $M$,

(1.3) (the Gauss equation)

$R(X, Y)Z= \frac{1}{2}\cdot\{h(Y, Z)\cdot A(X)-h(X, Z)\cdot A(Y)+h(A(Y), Z)\cdot X$

$-h(A(X), Z) \cdot Y\}+\frac{1}{4}\cdot\{F(Y, F(X, Z))-F(X, F(Y, Z))\}$ ,

(1.4) (the first Codazzi-Mainardi equation)

$(\tilde{\nabla}\Phi)(X, Y, Z ; W)-(\tilde{\nabla}\Phi)(X, Y, W ; Z)=-h(Z, Y)\cdot h(A(W), X)$

$+h(W, Y)\cdot h(A(Z), X)-h(Z, X)\cdot h(A(W), Y)+h(W, X)\cdot h(A(Z), Y)$ ,

(1.5) (the second Codazzi-Mainardi equation)

$( \tilde{\nabla}A)(Y;X)-(\tilde{\nabla}A)(X;Y)=\frac{1}{2}\cdot\{F(X, A(Y))-F(Y, A(X))\}$ ,

where $F$ is a $(1, 2)$-tensor on Mwhich is defined by $h(F(X, Y),$ $Z$ ) $=\Phi(X, Y, Z)$ .
Conversely, the above equations are the sufficient condition of the existence of a
hypersurface with given affine invariants. We have:

FACT 2. (The fundamental theorem of the affine geometry.) Let $(M, h)$ be
a simPly connected and connected Riemannian mamfold of dimenston $n$ . SuppOse
that a $(1, 1)$-tensor $A$ , whuch is symmetric with resPect to $h$ , and symmetric $(0,3)-$

tensor $\Phi$ are given on $M$ and satisfy the equations (1.2), (1.3), (1.4) and (1.5).

Then there exists a strictly convex immersion of $M$ into $R^{n+1}$ such that $h,$ $A$

and $\Phi$ are the affine metric, the affine shape operatOr and the Fufnni-Pick form
for tfus immersion, respectjvely. Moreover, such immersions are unique up to
unimodular affine transformations of $R^{n+1}$ .

\S 2. Proof of Theorem I.

Suppose that an affine sphere $x;Marrow R^{3}$ has constant curvature $K$ with
respect to the affine metric $h$ of $M$.
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Let $\Phi$ be the Fubini-Pick form of $M$. We take a local orthonormal frame
field $(e_{1}, e_{2})$ for the affine metric and write $\Phi(e_{i}, e_{j}, e_{k})=h_{ijk}$ and $(\tilde{\nabla}\Phi)(e_{i},$

$e_{j},$ $e_{k}$ ;
$e_{l})=\tilde{\nabla}_{l}h_{ijk}(jj, k, l=1,2)$ .

Because of the symmetricity and the apolarity condition for $\Phi$ , any $h_{ijk}$ is
equal to either $\pm h_{111}$ or $\pm h_{222}$ . Then the Gauss equation and the first Codazzi-
Mainardi equation are:

(2.1) $K=L+ \frac{1}{2}\cdot\{(h_{111})^{2}+(h_{222})^{2}\}$ ,

(2.2) $\tilde{\nabla}_{1}h_{111}=\tilde{\nabla}_{2}h_{222}$ , and $\tilde{\nabla}_{2}h_{111}+\tilde{\nabla}_{1}h_{222}=0$ ,

where $L$ is the affine mean curvature of $M$. The second Codazzi-Mainardi
equation is trivial since $M$ is an affine sphere.

Fact 2 in the section 1 says that affine spheres with constant curvature $K$

are determined by $h_{111}$ and h222 satisfying (2.1) and (2.2) for some constant $L$ .
First, we shall show that $\Phi$ is parallel on $M$, that is, $\tilde{\nabla}_{l}h_{ijk}=0$ for any

$i,$ $j,$ $k$ and $l$ . For $K$ and $L$ are constant on $M$, by derivating the both sides
of (2.1), we get

(2.3) $\tilde{\nabla}_{i}h_{111}\cdot h_{111}+\tilde{\nabla}_{i}h_{222}$ . h222 $=0$ .

Substituting (2.2) into (2.3) with $i=1$ , we have

(2.4) $\tilde{\nabla}_{1}h_{222}$ . h222 $=-\tilde{\nabla}_{2}h_{222}\cdot h_{111}$ .

We multiply h222 to the both sides of (2.4) and use (2.3) with $i=2$ , we obtain

(2.5) $\tilde{\nabla}_{1}h_{222}$ . (h222)2 $=\tilde{\nabla}_{2}h_{111}\cdot(h_{111})^{2}$ .
(2.2) and (2.5) imply

(2.6) $\nabla_{2}h_{111}\cdot\{(h_{111})^{2}+(h_{222})^{2}\}=0$ .
We may assume $\Phi$ is not a zero tensor field. Then $(h_{111})^{2}+(h_{222})^{2}\neq 0,$ $(2.6)$

and (2.2) imply

(2.7) $\tilde{\nabla}_{2}h_{111}=-\tilde{\nabla}_{1}$ h222 $=0$ .

For either $h_{111}$ or h222 is not zero, it follows from (2.7), (2.3) and (2.2) that

(2.8) $\tilde{\nabla}_{1}h_{111}=\tilde{\nabla}_{2}h_{222}=0$ .
(2.7) and (2.8) mean that $\Phi$ is parallel on $M$.

Now, we shall prove Theorem I. We divide the proof into two cases ac-
cording to the value of $K$.

Suppose that $K\neq 0$ . In this case, the local holonomy group of the Rieman-
nian manifold $(M, h)$ is isomorphic to $SO(2)$ . Since $\Phi$ is parallel on $M,$ $\Phi$ must
be invariant under the action of this group. To see the action on $\Phi$ , we set:



544 T. KUROSE

(2.9) $e_{1}’=\cos\theta\cdot e_{1}+\sin\theta\cdot e_{2}$ , $e_{2}’=-\sin\theta\cdot e_{1}+\cos\theta\cdot e_{2}$ .
Substituting (2.9) into $h_{ifk}’=\Phi(e_{i}’, e_{j}’, e_{k}’)$ , we have:

(2.10) $h_{111}’=\cos 3\theta\cdot h_{111}+\sin 3\theta$ . h222, $h_{222}’=-\sin 3\theta\cdot h_{111}+\cos 3\theta\cdot h_{222}$ .
(2.10) means that $\Phi$ is invariant if and only if $\Phi$ is zero. Therefore, $M$ is an
open submanifold of a quadric surface by Fact 1 of the section 1.

Next suppose that $K=0$ . We may assume $\Phi\neq 0$ . The parallel tensor field
$\Phi$ is determined by the value of a point $p$ of M. (2.10) implies that we can
choose a suitable orthonormal frame $(e_{1}, e_{2})$ at $P$ such that $h_{222}=0$ and $h_{111}>0$ .
By (2.1), $h_{111}$ is equal to $\sqrt{-L}$. This means that $\Phi$ is unique up to $rotation_{S}$

around a point of $M$ for each $L$ . On the other hand, the surface $S(c)$ has a
flat affine metric and a non-zero Fubini-Pick form (cf. [2]). Hence, $M$ must be
affinely equivalent to $S(c)$ for some positive real number $c$ . This completes the
proof.

The corollary is directly deduced from Theorem I and the following lemma.

LEMMA. Suppose that a stnctly convex surface $x;Marrow R^{3}$ is flat un th respect
to its affine metnc. Then $M$ is a complete affine sphere if and only if $M$ is
affinely homogeneous.

PROOF. First, we assume that $M$ is a complete affine sphere. By Theorem
I, $M$ is a paraboloid or $M$ is affinely equivalent to $S(c)$ . It is easy to show
that these two surfaces are affinely homogeneous.

Conversely, let $M$ be an affinely homogeneous surface with flat affine metric
$h$ . Let $G$ be the group of unimodular affine transformations acting on $M$ transi-
tively. Then $G$ preserves the affine invariants of $M$, especially the affine metric
$h$ . This means the Riemannian manifold $(M, h)$ admits a transitive group of
isometries. Therefore, $(M, h)$ is a complete flat space, so that it is isometric
to the 2-dimensional Euclidean space $E^{2}$ . Since $G$ acts on $E^{2}$ transitively, $G$

contains all parallel transformations of $E^{2}$ . Hence, the Fubini-Pick form, which
is invariant under the action of $G$ , must be parallel on $M$. It follows im-
mediately from the first Codazzi-Mainardi equation (1.4) that the affine shape
operatorA is proportional to the identity operator. This implies $M$ is an affine
sphere. $q.e.d$ .

\S 3. Proof of Theorem II.

We shall show Theorem II by reducing the problem to that of the Euclidean
geometry. Suppose that $x:Marrow R^{n+1}$ is an affinely strictly convex hypersurface

and $\tilde{x}=-\xi;Marrow R^{n+1}$ . Note that $\tilde{x}_{*}=x_{*}\circ A$ .
First, we represent the affine invariants of $\tilde{x}$ in terms of those of $x$ . We
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denote by $\xi$ the affine normal vector field of $\tilde{x}$ . We take a vector field $W$ of $M$

and a function $\psi$ on $M$ such that

(3.1) $\xi=\psi\cdot\xi+\tilde{x}_{*}W$ .

Let $\tilde{\chi}$ be the conormal vector field and $1\sim$ the affine distance of $\tilde{x}$ . It follows
from (3.1) and the definitions of $\tilde{\chi}$ and $\tilde{l}$ that:

(3.2) $\tilde{x}=\frac{1}{\psi}\cdot x$ ,

(3.3) $l= \frac{1}{\psi}$ .

Substituting (3.1) into the definition of the affine metric $\tilde{h}$ of $\tilde{x}$ , we have

$h(X, A(Y))=\psi\cdot\tilde{h}(X, Y)$

for any vector fields $X$ and $Y$ on $M$. Hence,

(3.4) $\sqrt{\det(A)}\cdot dV=\psi^{n/2}\cdot dV$ ,

where $dV$ and $d\tilde{V}$ are the volume elements of $(M, h)$ and $(M,\tilde{h})$ , respectively.
On the other hand, the condition (ii) on the affine normal vector field im-

plies that: let $(e_{1}, \cdots , e_{n})$ be a frame field of $M$. Then

$vol(x_{*}e_{1}, \cdots , x_{*}e_{n}, \xi)=dV(e_{1}, \cdots , e_{n})$ ,

$vol(\tilde{x}_{*}e_{1}, \cdots , \tilde{x}_{*}e_{n}, \xi)=d\tilde{V}(e_{1}, \cdots , e_{n})$ .

Using (3.4), we find

(3.5) $\det(A)=\psi^{-(n+2)}$ .
Combining (3.2), (3.3), (3.4) and (3.5), we obtain:

(3.6) $\int_{M}\frac{\tilde{\chi}}{l^{n+2}\sim}d\tilde{V}=\int_{M}\chi dV$ .

Next, we shall represent the right-hand side of (3.6) in terms of the Eucli-
dean invariants of $x:Marrow R^{n+1}$ . Let $g$ be the standard metric of $R^{n+1}$ and $\nu$

the Euclidean normal vector field of $x$ . We take a vector field $Z$ of $M$ and a
function $\varphi$ on $M$ such that

(3.7) $\xi=\varphi\cdot\nu+x_{*}Z$ .
When we identify $R^{n+1}$ and $R_{n+1}$ by $g$ , the $\chi$ can be written as follows:

(3.8) $x= \frac{1}{\varphi}\cdot\nu$ .

We denote by $dV_{\nu}$ the volume element of $M$ with respect to the induced metric.
For a frame field $(e_{1}, \cdots , e_{n})$ of $M$,
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$dV_{\nu}(e_{1}, \cdots , e_{n})=vol(x_{*}e_{1}, \cdots , x_{*}e_{n}, p)$ ,

$dV(e_{1}, \cdots , e_{n})=vol(x_{*}e_{1}, \cdots , x_{*}e_{n}, \xi)$ .
Hence, using (3.7), we have

(3.9) $dV=\varphi\cdot dV_{\nu}$ .

(3.8) and (3.9) yield

(3.10) $\int_{M}\chi dV=\int_{M}\nu dV_{\nu}$ .

We note that, by (3.7) and the definition of the second fundamental form $h_{\nu}$ of
$x$ , we have

$h_{\nu}=\varphi\cdot h$ .
With (3.9), this equation yields

(3.11) $K=\varphi^{n+2}$ ,

where $K$ is the Gauss-Kronecker curvature of $x$ . Finally, combining (3.6) and
(3.10), we get:

(3.12) $\int_{M}\frac{\tilde{\chi}}{l^{n+2}\sim}d\tilde{V}=\int_{M}\nu dV_{\nu}$ .

Now we are in position to prove Theorem II. When $x;S^{n}arrow R^{n+1}$ is the
strictly convex hypersurface, it is easy to show that the right-hand side of
(3.12) is zero (cf. [3]). Then the integral formula in Theorem II is satisfied.

Conversely, suppose that a strictly convex hypersurface $\tilde{x}$ ; $S^{n}arrow R^{n+1}$ is
given and satisfies the integral formula. To show the existence of a hyper-
surface $x;S^{n}arrow R^{n+1}$ such that $\tilde{x}=-\xi$ , we use the following theorem due to
Cheng and Yau.

THEOREM ([3]). Let $K$ be a $po\alpha$ tive function on $S^{n}$ . $SuPPose \int_{S^{n}}x^{\alpha}\cdot K^{-1}=0$

for all coordinate functions $x^{\alpha}$ . Then we can find a compact stnctly convex hy-
Persurface in $R^{n+1}$ whose Gauss-Kronecker curvature is K. Moreover, any two
such hypersurfaces must coincide after a translation.

Let $\tilde{\nu}$ be the Euclidean normal vector field of $\tilde{x}$ . We set

$K=(g(\overline{\chi}/f\hat{\nu}))^{-(n+2)}$ .
Then, the following equality holds:

(3.13) $\int_{S^{n}}\frac{\tilde{\nu}}{K}\nu^{*}dV_{s}=0$ ,

where $dV_{s}$ is the standard volume element of the n-dimensional sphere. In fact,
by the definition of the Gauss-Kronecker curvature $\tilde{K}$ of $\tilde{x}$ ,
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$\tilde{\nu}^{*}dV_{s}=\tilde{K}\cdot dV_{\tilde{\nu}}$ .
Using (3.7), (3.8) and (3.11) for $\tilde{x}$ , we have

$\tilde{\nu}^{*}dV_{S}=(g(\tilde{\chi}\tilde{\nu}))^{-(n+2)}\cdot dV_{\tilde{\nu}}$ .
Then

$\int_{s^{n}}\frac{\tilde{\nu}}{K}\nu^{*}dV_{s}=\int_{S^{n}}\frac{\tilde{\nu}}{l^{n+2}\sim}dV_{\tilde{\nu}}=\int_{S^{n}}\frac{\tilde{\chi}}{\tilde{l}^{n+2}}d\hat{V}=0$ .
By the theorem of Cheng and Yau, (3.13) means that there exists a strictly

convex hypersurface $x;S^{n}arrow R^{n+1}$ such that the Gauss-Kronecker curvature of
$x$ is equal to $K$ and the Euclidean normal vector field $\nu$ of $x$ coincides with $\tilde{\nu}$ .

We shall show that $-\tilde{x}$ is the affine normal vector field of $x$ . By (3.8)

and (3.11), the conormal vector field $\chi$ of $x$ satisfies:

(3.14) $x=K^{-1/(n+2)}\cdot\nu=K^{-1/(n+2)}\cdot\tilde{\nu}$ .
Therefore, for any vector field $X$ on $S^{n}$ ,

(3.15) $g(\chi D_{X}\tilde{x})=g(\chi\tilde{x}_{*}X)=0$ .
Here, we claim that

(3.16) $g(\chi\tilde{x})=-1$ .
If (3.16) holds, it follows from (3.15) that:

(3.17) $g(D_{X}\chi\tilde{x})=0$ .

On the other hand, by the definition of $\chi-\xi$ also satisfies (3.16) and (3.17).

Since (3.14) implies that $\chi_{*}$ is non-degenerate, $\tilde{x}$ must coincide with $-\xi$ .
Let us prove (3.16). By (3.14), we have

(3.17) $g(\chi\tilde{x})=K^{-1/(n+2)}\cdot g(\nu,\tilde{x})=g(\tilde{\chi}/\tilde{l},\overline{\nu})\cdot g(D,\tilde{x})$ .
By (3.8), we get

(3.18) $g(\tilde{\chi},\tilde{\nu})=\tilde{\varphi}^{-1}$ .

To represent $\iota^{\sim}$ in terms of the Euclidean invariants, we take an orthonormal
frame field $(e_{1}, \cdots , e_{n})$ with respect to $\tilde{h}$ . Then, using (3.9), we obtain

(3.19) $l\sim=-\det(e_{1}, \cdots , e_{n},\tilde{x})=-g(\tilde{\nu},\tilde{x})\cdot\det(e_{1}, \cdots , e_{n},\tilde{\nu})$

$=-g(D,\tilde{x})\cdot dV_{l}(e_{1}, \cdots e_{n})=-\tilde{\varphi}^{-1}\cdot g(\hat{\nu},\tilde{x})$ ,

(3.16) follows from (3.17), (3.18) and (3.19).

Finally, we show the uniqueness part of Theorem II. Assume that two
affinely strictly convex hypersurfaces $x$ and $y:S^{n}arrow R^{n+1}$ have the same affine
normal vector field $\xi$ . The Euclidean normal vector field at a point $P$ of $S^{n}$ is
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perpendicular to $\xi_{*}(T_{p}(S^{n}))$ . Since $\xi_{*}$ is non-degenerate, the Euclidean normal
vector field is determined by $\xi$ . Moreover, $\xi$ determines the Gauss-Kronecker
determined by $\xi$ . Moreover, (3.11) implies that the Gauss-Kronecker curvature
is equal to $(g(\xi, \nu))^{n+2}$ . Hence, the two hypersurfaces $x$ and $y$ have the same
Euclidean normal vector field and the same Gauss-Kronecker curvature. Cheng
and Yau’s theorem says the $y$ is obtained from the $x$ by a parallel translation
of $R^{n+1}$ . This completes the proof.
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