Closed orbits of non-singular Morse-Smale flows on S^{3}

By Masaaki WADA

(Received Sept. 19, 1986)
(Revised March 11, 1988)

The closed orbits of a non-singular Morse-Smale flow ([8], p. 798) on S^{3} form an indexed link, that is, a link with the index 0,1 or 2 attached to each component. Although closed orbits are naturally oriented, we do not consider oriented links since the orientation of a closed orbit of a non-singular MorseSmale flow can be easily reversed by modifying the flow near the closed orbit.

In this paper, we characterize the set of indexed links which arise as the closed orbits of a non-singular Morse-Smale flow on S^{3} in terms of a generator and six operations. The generator is the Hopf link with indices 0 and 2 attached to the components, and the operations are, roughly speaking, split sum, connected sum, and cabling.

Since the author first obtained the result, several papers dealing with the topic have appeared ([6], [7], [9]). Of these, the works of Sasano [7] and Yano [9] were independently done, and are contained in the results in this paper.

The author is greatly thankful to the referee for many helpful suggestions.

§ 1. Results.

The Hopf link with indices 0 and 2 attached to the components is called the (0,2)-Hopf link. We prove the following:

Theorem. Every indexed link which consists of all the closed orbits of a non-singular Morse-Smale flow on S^{3} is obtained from (0, 2)-Hopf links by applying the following six operations. Conversely, every indexed link obtained from (0, 2)-Hopf links by applying the operations is the set of all the closed orbits of some non-singular Morse-Smale flow on S^{3}.

Operations. For given indexed links l_{1} and l_{2}, we define six operations as follows. We denote by $l_{1} \cdot l_{2}$ the split sum of l_{1} and l_{2}, and by $N(k, M)$ the regular neighborhood of k in M. For other terminologies of knot theory, refer to [5].
I. To make $l_{1} \cdot l_{2} \cdot u$, where u is an unknot with index 1 .
II. To make $l_{1} \cdot\left(l_{2} \backslash k_{2}\right) \cdot u$, where k_{2} is a component of l_{2} of index 0 or 2 .
III. To make $\left(l_{1} \backslash k_{1}\right) \cdot\left(l_{2} \backslash k_{2}\right) \cdot u$, where k_{1} is a component of l_{1} of index 0 ,
and k_{2} is a component of l_{2} of index 2.
IV. To make $\left(l_{1} \# l_{2}\right) \cup m$. The connected sum $l_{1} \# l_{2}$ is obtained by composing a component k_{1} of l_{1} and a component k_{2} of l_{2} each of which has index 0 or 2 . The index of the composed component $k_{1} \# k_{2}$ is equal to either ind $\left(k_{1}\right)$ or ind $\left(k_{2}\right)$. Finally, m is a meridian of $k_{1} \# k_{2}$, and is of index 1 .
V. Choose a component k_{1} of l_{1} of index 0 or 2 , and replace $N\left(k_{1}, S^{3}\right)$ by $D^{2} \times S^{1}$ with three indexed circles in it; $\{0\} \times S^{1}, k_{2}$, and k_{3}. Here, k_{2} and k_{3} are parallel (p, q)-cables on $\partial N\left(\{0\} \times S^{1}, D^{2} \times S^{1}\right)$. The indices of $\{0\} \times S^{1}$ and k_{2} are either 0 or 2 , and one of them is equal to $\operatorname{ind}\left(k_{1}\right)$. The index of k_{3} is 1 .
VI. Choose a component k_{1} of l_{1} of index 0 or 2 . Replace $N\left(k_{1}, S^{3}\right)$ by $D^{2} \times S^{1}$ with two indexed circles in it ; $\{0\} \times S^{1}$, and the $(2, q)$-cable k_{2} of $\{0\} \times S^{1}$. The index of $\{0\} \times S^{1}$ is 1 , and $\operatorname{ind}\left(k_{2}\right)=\operatorname{ind}\left(k_{1}\right)$.

We prove the theorem in §3. As an easy consequence of our Lemma 1 in $\S 2$ and Corollary 2.5 in [3], we also get the following:

Corollary. Every link which consists of closed orbits of a non-singular Morse-Smale flow on S^{3} is a graph link [4]. Conversely, given a graph link, we can always construct a non-singular Morse-Smale flow for which each component of the link is a closed orbit.

§ 2. Round handle decompositions of S^{3}.

The proof of our theorem is based on round handle decomposition. We have the following by Asimov [1]:

Proposition. If a manifold M admits a round handle decomposition

$$
\varnothing=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=M,
$$

there is a non-singular Morse-Smale flow on M such that (1) the closed orbits of the flow coincide with the cores of round handles, and (2) the flow is pointing outward on ∂M_{j}. Conversely, if M has a non-singular Morse-Smale flow, then M admits a round handle decomposition satisfying (1) and (2).

We will analyze round handle decompositions of S^{3} together with the cores. For our purpose, it is more convenient to use the fat round handle decomposition described in [3], § 3 :

$$
\begin{aligned}
& \varnothing=M_{0} \subset M_{1} \subset \cdots \subset M_{n}=S^{3}, \\
& M_{i}=\bigcup_{j=1}^{i} C_{j} \quad(i=1,2, \cdots, n) .
\end{aligned}
$$

Each C_{j} has the form

$$
C_{j}=A \times[0,1] \bigcup_{\varphi} B_{s} \oplus B_{u},
$$

where A is a union of components of $\partial M_{j-1}, B_{s} \oplus B_{u}$ is the Whitney sum of disk bundles B_{s} and B_{u} over S^{1}, and the image of $\varphi:\left(\partial B_{s}\right) \oplus B_{u} \rightarrow A \times\{1\}$ intersects every component of $A \times\{1\}$. Let us put $\partial_{-} C_{j}=A \times\{0\}$, and consider C_{j} together with $\partial_{-} C_{j}$ and the core k_{j} which is the 0 -section of $B_{s} \oplus B_{u}$. The component C_{j} associated to a round 0 - or 2-handle is just a solid torus.

Lemma 1. The triple ($C_{j}, \partial_{-} C_{j}, k_{j}$) associated to a round 1-handle is of one of the following types:
(a) $C \cong T_{1} \times[0,1] \# T_{2} \times[0,1]$ where T_{1} and T_{2} are tori, $\partial_{-} C=T_{1} \times\{0\} \cup T_{2} \times\{0\}$, and k is an unknot in C.
(b) $C \cong T^{2} \times[0,1] \# D^{2} \times S^{1}, \partial_{-} C=T^{2} \times\{0\}$ or $T^{2} \times\{0\} \cup \hat{o} D^{2} \times S^{1}$, and k is an unknot in C.
(c) $C \cong V_{1} \# V_{2}$ where V_{1} and V_{2} are solid tori, $\partial_{-} C=\partial V_{1}$, and k is an unknot in C.
(d) $C \cong F \times S^{1}$ where F is a disk with two holes, $\partial_{-} C$ is a component or a union of two components of ∂C, and $k=* \times S^{1}$ for some point $*$ in $\operatorname{Int} F$.
(e) $C \cong D^{2} \times S^{1} \backslash \operatorname{Ind} W$ where W is a tubular neighborhood of the (2,1)-cable of $\{0\} \times S^{1}$ in $D^{2} \times S^{1}, \partial_{-} C=\partial W$, and $k=\{0\} \times S^{1}$.

Proof. We make case-by-case observations of the attaching map

$$
\varphi:\left(\partial B_{s}\right) \oplus B_{u} \longrightarrow A \times\{1\} .
$$

The image of φ is an annulus or a union of two annuli, depending on whether the round handle is untwisted or twisted. Since each component of ∂C is a torus (Lemma 3.1, [3]), A is a torus or a union of two tori. We call a component of $\varphi\left(\partial B_{s} \oplus\{0\}\right)$ an attaching circle.

Let us first suppose that the round 1 -handle is untwisted. Then, it is diffeomorphic to $[-1,1]_{s} \times[-1,1]_{u} \times S^{1}$. We denote the two attaching circles by $c_{1}=\varphi\left(\{-1\} \times\{0\} \times S^{1}\right)$ and $c_{2}=\varphi\left(\{1\} \times\{0\} \times S^{1}\right)$.

Case 1. Suppose that c_{1} and c_{2} are contained in different components. Then, A is a disjoint union of two tori T_{1} and T_{2}, where $c_{j} \subset T_{j}(j=1,2)$.

Case 1.1. If both c_{1} and c_{2} are essential, we get type (d), where $\partial_{-} C$ is a union of two components of ∂C.

Case 1.2. If one of c_{1} and c_{2} is essential and the other is inessential, we get type (b), where $\partial_{-} C=T^{2} \times\{0\} \cup \partial D^{2} \times S^{1}$.

Case 1.3. Suppose that both c_{1} and c_{2} are inessential. For $j=1,2$, let D_{j} be a 2 -disk in $T_{j} \times\{1\}$ which bounds c_{j}. We may assume that D_{1} contains $\varphi\left(\{-1\} \times\{-1\} \times S^{1}\right)$. Then, D_{2} must contain $\varphi\left(\{1\} \times\{1\} \times S^{1}\right)$, for otherwise we
would have a 2 -sphere as a component of ∂C. Let D_{j}^{\prime} be a properly embedded 2 -disk in $T_{j} \times[0,1]$ which bounds c_{j}. Then, C splits along the 2 -sphere $D_{1}^{\prime} \cup\left([-1,1] \times\{0\} \times S^{1}\right) \cup D_{2}^{\prime}$ as a connected sum of $T_{1} \times[0,1]$ and $T_{2} \times[0,1]$. This leads to (a).

Case 2. Suppose that c_{1} and c_{2} are contained in the same component.
Case 2.1. If both c_{1} and c_{2} are essential, they are parallel circles in $T^{2} \times\{1\}$. Let E be a properly embedded annulus in $T^{2} \times[0,1]$ which bounds $c_{1} \cup c_{2}$. Since the surface $E \cup\left([-1,1] \times\{0\} \times S^{1}\right)$ embeds in S^{3}, it can not be a Klein bottle, hence is a torus, and is 2 -sided. From this fact, the attaching map φ is determined up to diffeomorphisms of $T^{2} \times\{1\}$. We then get type (d), where $\partial_{-} C$ is a component of ∂C.

Case 2.2. Suppose that one of c_{1} and c_{2} is essential and the other is inessential. In this case, the attaching map φ is unique up to diffeomorphisms of $T^{2} \times\{1\}$, since there is a diffeomorphism of $T^{2} \times\{1\}$ to itself which preserves c_{1} and c_{2} setwisely, preserves an orientation of the essential one, and reverses an orientation of the other. We then get (c).

Case 2.3. Suppose that both c_{1} and c_{2} are inessential. For $j=1,2$, let D_{j} be a 2 -disk in $T^{2} \times\{1\}$ which bounds c_{j}. We first assume that D_{1} and D_{2} are disjoint. Let E be a properly embedded annulus in $T^{2} \times[0,1]$ which bounds $c_{1} \cup c_{2}$. From that $E \cup\left([-1,1] \times\{0\} \times S^{1}\right)$ is a 2 -sided torus, the attaching map φ is determined up to diffeomorphisms of $T^{2} \times\{1\}$. But in this case, a 2 -sphere appears as a component of ∂C. Therefore, D_{1} and D_{2} must intersect. We may assume that D_{1} contains D_{2}. Since ($\left.D_{1} \backslash \operatorname{Int} D_{2}\right) \cup\left([-1,1] \times\{0\} \times S^{1}\right)$ is a 2 -sided torus, C is uniquely determined, and is of type (b) where $\partial_{-} C=T^{2} \times\{0\}$.

If the round 1-handle is twisted, B_{s} and B_{u} are non-orientable D^{1}-bundles over S^{1}. The attaching circle is $c=\varphi\left(\partial B_{s} \oplus\{0\}\right)$. If c bounded a 2-disk D in $T^{2} \times\{1\}$, then $D \cup\left(B_{s} \oplus\{0\}\right)$ would be a project plane embedded in S^{3}. Hence, c is essential in $T^{2} \times\{1\}$. This leads to (e).

These cases cover all the possibilities, and this completes the proof.
In each case, it is easily verified that both C and $C \backslash \operatorname{Int} N(k, C)$ are graph manifolds. This proves the former part of the corollary.

§ 3. Proof of Theorem.

We denote by r the number of closed orbits of index 1 of the non-singular Morse-Smale flow. We prove the former part of our theorem by induction on r. Associated to the non-singular Morse-Smale flow is a decomposition

$$
S^{3}=\bigcup_{j=1}^{n} C_{j} .
$$

We denote by l the indexed link which consists of the cores of this decomposition.
First, if there is no closed orbit of index 1 , it is easily seen that $n=2, C_{1}$ is a round 2 -handle, and C_{2} is a round 0 -handle. Hence, l is a (0,2)-Hopf link.

Let us assume $r \geqq 1$ and that every indexed link which consists of all the closed orbits of a non-singular Morse-Smale flow and which has less than r components of index 1 is obtained from (0,2)-Hopf links by applying the operations I-VI. Since $r \geqq 1$, there is a component $C=C_{j}$ associated to a round 1handle. We divide the proof into five cases according to the type of C in Lemma 1.

Case (a). Suppose that $C \cong T_{1} \times[0,1] \# T_{2} \times[0,1]$ where T_{1} and T_{2} are tori. For $j=1,2$, let N_{j-} and N_{j+} be the components of the complement of C in S^{3} which bound $T_{j} \times\{0\}$ and $T_{j} \times\{1\}$ respectively. Since the 2 -sphere splitting C as a connected sum of $T_{1} \times[0,1]$ and $T_{2} \times[0,1]$ bounds 3 -balls on both sides by Schönflies' theorem, we see that $C \cup N_{2-} \cup N_{2+} \cong T^{2} \times[0,1]$. Therefore, $N_{1-} \cup N_{1+}$ $\cong S^{3}$. This gives a round handle decomposition of S^{3}. Let l_{1} denote the indexed link which consists of the cores of this round handle decomposition. Similarly, we get $N_{2-} \cup N_{2+} \cong S^{3}$. Let l_{2} be the indexed link which consists of the cores of this round handle decomposition. Both l_{1} and l_{2} have fewer components of index 1 than l. By the assumption of induction, l_{1} and l_{2} are obtained from (0, 2)-Hopf links by applying operations I-VI. We have $l=l_{1} \cdot l_{2} \cdot u$, where u is an unknot with index 1 . Namely, l is obtained from l_{1} and l_{2} by the operation I.

Case (b). Suppose that $C \cong T^{2} \times[0,1] \# D^{2} \times S^{1}$. Let N_{-}, N_{+}, and N_{0} be the components of the complement of C in S^{3} whose boundaries are $T^{2} \times\{0\}, T^{2} \times\{1\}$, and $\partial D^{2} \times S^{1}$ respectively. In the same manner as in Case (a), we get $N_{-} \cup N_{+}$ $\cong S^{3}$. Let l_{1} denote the indexed link which consists of the cores of this round handle decomposition. We also obtain $C \cup N_{-} \cup N_{+} \cong D^{2} \times S^{1}$. Hence N_{0} together with a round i-handle ($D^{2} \times S^{1}, k_{2}$) form a round handle decomposition of S^{3}, where $i=0$ or 2 according as $\partial D^{2} \times S^{1} \subset \partial_{-} C$ or not. Let l_{2} denote the indexed link which consists of the cores of this decomposition. Then, $l=l_{1} \cdot\left(l_{2} \backslash k_{2}\right) \cdot u$.

Case (c). Suppose that $C \cong V_{1} \# V_{2}$, where V_{1} and V_{2} are solid tori. Let N_{1} and N_{2} be the components of the complement of C in S^{3} which bound ∂V_{1} and ∂V_{2} respectively. Since $C \cup N_{2} \cong D^{2} \times S^{1}$, we can construct a 3 -sphere by attaching a round 0 -handle $\left(D^{2} \times S^{1}, k_{1}\right)$ to N_{1}. Let l_{1} denote the indexed link which consists of the cores of this round handle decomposition. Similarly, let l_{2} denote the indexed link which consists of the cores of the round handle decomposition made by attaching N_{1} and a round 2 -handle ($D^{2} \times S^{1}, k_{2}$) to each other. Then,
$l=\left(l_{1} \backslash k_{1}\right) \cdot\left(l_{2} \backslash k_{2}\right) \cdot u$.
So far we have proved the induction step for the cases where there is a component C of type (a), (b), or (c). Now, let us assume that there is no component of type (a), (b), or (c). To proceed further, we have to choose C more carefully.

Let Ω be the collection of all the submanifolds of S^{3} each of which is a union of C_{j} 's including at least one C_{j} of index 1 , and whose boundary is a torus.

Assertion 1. The set $\because \operatorname{lontains}$ a solid torus.

Proof. Let $C=C_{j}$ be a component in our decomposition of S^{3} which is associated to a round 1-handle. First, assume that C is of type (d) in Lemma 1. Namely, $C \cong F \times S^{1}$ where F is a disk with two holes. Let $\partial_{0}, \partial_{1}$ and ∂_{2} be the boundary components of C. For $j=0,1$ and 2 , let N_{j} be the component of the complement of C in S^{3} whose boundary is ∂_{j}. If one of N_{0}, N_{1} and N_{2} is not a solid torus, by the solid torus theorem ([5], p. 107), its complement in S^{3} is a solid torus which belongs to η. Hence, we may assume that N_{0}, N_{1} and N_{2} are solid tori.

We fix our notation for $\pi_{1}(C)$ as follows: $\partial_{1} \cap(F \times\{1\})$ represents $d_{1}, \partial_{2} \cap$ $(F \times\{1\})$ represents $d_{2}, \partial_{0} \cap(F \times\{1\})$ represents $d_{1} d_{2}$, and $* \times S^{1}$ represents t. Then, we have

$$
\pi_{1}(C) \cong\left\langle d_{1}, d_{2}, t \mid\left[d_{1}, t\right]=\left[d_{2}, t\right]=1\right\rangle,
$$

where $[d, t]$ denotes the commutator of d and t.
Suppose that the meridians of N_{0}, N_{1} and N_{2} represent $\left(d_{1} d_{2}\right)^{p_{0} t^{q_{0}}}, d_{1}{ }^{p_{1}} t^{q_{1}}$, and $d_{2}{ }^{p} t^{q}{ }^{q 2}$ respectively. Then, $\pi_{1}\left(C \cup N_{0} \cup N_{1} \cup N_{2}\right)$ is isomorphic to

$$
G=\left\langle d_{1}, d_{2}, t \mid\left[d_{1}, t\right]=\left[d_{2}, t\right]=\left(d_{1} d_{2}\right)^{p_{0}} t^{q_{0}}=d_{1}{ }^{p_{1}} t^{q_{1}}=d_{2}^{p_{2}} t^{q_{2}}=1\right\rangle .
$$

Since $C \cup N_{0} \cup N_{1} \cup N_{2} \cong S^{3}, G$ is trivial. By the Coxeter's theorem ([2], p. 67), the triviality of the group

$$
\begin{aligned}
G /\langle t\rangle & \cong\left\langle d_{1}, d_{2} \mid d_{1}^{p_{1}}=d_{2}^{p_{2}}=\left(d_{1} d_{2}\right)^{p_{0}}=1\right\rangle \\
& \cong\left\langle d_{1}, d_{2}, d_{3} \mid d_{1}^{p_{1}}=d_{2}{ }^{p_{2}}=d_{3}^{p_{0}}=d_{1} d_{2} d_{3}=1\right\rangle
\end{aligned}
$$

implies that at least one of p_{1}, p_{2} and p_{0} is equal to 1 . We may assume $p_{1}=1$. Since there is a diffeomorphism $f: C \rightarrow C$ which preserves $\partial_{0}, \partial_{1}$ and ∂_{2} setwisely such that $f_{*}: \pi_{1}(C) \rightarrow \pi_{1}(C)$ satisfies $f_{*}\left(d_{1}\right)=d_{1} t^{q_{1}}, f_{*}\left(d_{2}\right)=d_{2}$, and $f_{*}(t)=t$, we may also assume that the meridian of N_{1} represents d_{1}. Then, $C \cup N_{1} \cong T^{2} \times[0,1]$. Therefore, $C \cup N_{1} \cup N_{0}$ and $C \cup N_{1} \cup N_{2}$ are solid tori which belong to \Im.

The proof for the case where C is of type (e) is similar to the above.

We take a solid torus N in Ω which consists of the least number of C_{j} 's. Let C be the component C_{j} contained in N which contains ∂N. The component C is associated to a round 1 -handle.

Case (d). Suppose that $C \cong F \times S^{1}$ where F is a disk with two holes. Let us follow the same notation as in the proof of Assertion 1, and assume that $\partial N=\partial_{0}$. Then, $N=C \cup N_{1} \cup N_{2}$.

Assertion 2. Either N_{1} or N_{2} is a solid torus.
Proof. If both N_{1} and N_{2} are not solid torus, they are non-trivial knot complements. Hence, ∂_{1} and ∂_{2} are incompressible in N_{1} and N_{2} respectively. Since ∂_{1} and ∂_{2} are also incompressible in C, every incompressible surface in C is incompressible in $N=C \cup N_{1} \cup N_{2}$. Especially, ∂_{0} is incompressible in N. This contradicts the fact that N is a solid torus.

Then, there are two possibilities.
Case (d.1). Suppose that one of N_{1} and N_{2} is a solid torus, and the other is not.

We may assume that N_{2} is a solid torus. Since N consists of the least number of C_{j} 's, N_{2} is not in $ク$. Hence, N_{2} is either a round 0 -handle or a round 2 -handle depending on whether $\partial_{2} \sqsubset \partial_{-} C$ or not.

Let α be an essential arc properly embedded in $F \times\{1\}$ whose end points lie in ∂_{2}. The properly embedded annulus $E=\alpha \times S^{1}$ cuts C into two components P_{0} and P_{1} which contain ∂_{0} and ∂_{1} respectively. The two components of ∂E, a_{1} and a_{2}, are meridians of N_{2}, since otherwise $C \cup N_{2}$ would be a Seifert fibered space over an annulus, and each component of the boundary would be incompressible. Then, $\left(C \cup N_{2}\right) \cup N_{1}$ would not be a solid torus. Let D_{1} and D_{2} be disjoint meridian disks of N_{2} bounding a_{1} and a_{2} respectively. We also assume for $j=1,2$ that $D_{j} \cap k^{\prime}$ is a point, where k^{\prime} is the core of N_{2}. Two disks D_{1} and D_{2} together split N_{2} into two 3-balls B_{0} and B_{1}. Since $\partial\left(N_{0} \cup P_{0} \cup B_{0}\right)=$ $E \cup D_{1} \cup D_{2}$ is a 2 -sphere, by the Schönflies' theorem, $N_{0} \cup P_{0} \cup B_{0}$ is a 3-ball.

We can make a 3 -sphere by attaching the standard ball pair (D^{3}, D^{1}) to $\left(N_{0} \cup P_{0} \cup B_{0}, k^{\prime} \cap B_{0}\right)$ by a diffeomorphism $\varphi:\left(\partial D^{3}, \partial D^{1}\right) \rightarrow\left(E \cup D_{1} \cup D_{2}, k^{\prime} \cap\left(D_{1} \cup D_{2}\right)\right)$. Then, $P_{0} \cup B_{0} \cup D^{3}$ is a solid torus, and $\left(k^{\prime} \cap B_{0}\right) \cup D^{1}$ is its core. Regard this solid torus as a round 0 -handle or a round 2 -handle according as $\partial_{0} \subset \partial_{-} C$ or not. Then, we obtain a round handle decomposition for S^{3}. Let l_{1} denote the indexed link which consists of the cores of this round handle decomposition.

Since $N_{1} \cup P_{1} \cup B_{1}$ is also a 3-ball, we can obtain an indexed link l_{2} in the same way as the above. We see that l is obtained from l_{1} and l_{2} by the operation IV.

Case (d.2). Suppose that both N_{1} and N_{2} are solid tori. Since $N_{j}(j=1,2)$
contains fewer C_{j} 's than N, N_{j} does not contain a piece of index 1. Hence, N_{j} is a round 0 -handle or a round 2 -handle according as $\partial_{j} \subset \partial_{-} C$ or not. Let us assume that the meridians of N_{1} and N_{2} represent $d_{1}{ }^{p_{1}} t^{q_{1}}$ and $d_{2}{ }^{p_{2}} t^{q_{2}}$ respectively. Then, $\pi_{1}(N)$ is isomorphic to

$$
G=\left\langle d_{1}, d_{2}, t \mid\left[d_{1}, t\right]=\left[d_{2}, t\right]=d_{1}{ }^{p_{1}} t^{q_{1}}=d_{2}{ }^{p_{2}} t^{q_{2}}=1\right\rangle .
$$

Since N is a solid torus, G is isomorphic to Z, and

$$
G /\langle t\rangle \cong\left\langle d_{1}, d_{2} \mid d_{1}{ }^{p_{1}}=d_{2}^{p_{2}}=1\right\rangle \cong \boldsymbol{Z} / p_{1} * \boldsymbol{Z} / p_{2}
$$

is a factor group of \boldsymbol{Z}. Hence, either p_{1} or p_{2} is equal to 1 . We may assume $p_{2}=1$. We may also assume that the meridian of N_{2} represents d_{2}, and hence $C \cup N_{2} \cong T^{2} \times[0,1]$. Therefore, N is as an indexed link equivalent to $D^{2} \times S^{1}$ with three indexed circles $\{0\} \times S^{1}, k_{2}$ and k_{3}, where k_{2} and k_{3} are parallel (p, q) cables on $\partial N\left(\{0\} \times S^{1}\right)$. It is now easily seen that l is obtained from an indexed link which has fewer components of index 1 than l by applying the operation V .

Case (e). In this case, we put $P=C \backslash \operatorname{Int} N(k, C)$. Then, $P \cong F \times S^{1}$, where F is a disk with two holes. Let N_{2} be the complement of C in N. We denote the components of ∂P by $\partial_{0}, \partial_{1}$ and ∂_{2}, so that $\partial_{0}=\partial N, \partial_{1}=\partial N(k, C)$, and $\partial_{2}=$ ∂N_{2}. We may assume that the meridian of $N(k, C)$ represents $d_{1}{ }^{2} t$. If N_{2} is not a solid torus, the same argument as in Case (d.1) shows that $* \times S^{1}$ represents d_{1}. But, this contradicts the fact that the meridian of $N(k, C)$ represents $d_{1}{ }^{2} t$. Hence, N_{2} is a solid torus. Let $d_{2}{ }^{p} t^{q}$ be represented by the meridian of N_{2}. We can show as in Case (d.2) that $p=1$. We obtain $P \cup N_{2} \cong T^{2} \times[0,1]$. Therefore, $C \cup N_{2}$ is equivalent to $D^{2} \times S^{1}$ with two indexed circles $\{0\} \times S^{1}$ of index 1 , and k_{2}, the ($2, q$)-cable around $\{0\} \times S^{1}$ of index i, where $i=0$ or 2 according as $\partial_{0} \subset \partial_{-} C$ or not. We can construct a round handle decomposition of S^{3} by replacing $C \cup N_{2}$ by a round i-handle ($D^{2} \times S^{1}, k_{1}$). Let l_{1} denote the indexed link which consists of the cores of this round handle decomposition. Then, l is obtained from l_{1} by the operation VI.

It only remains to prove the latter part of Theorem. Obviously, (0, 2)-Hopf link is the set of cores of a round handle decomposition of S^{3}.

Suppose that we have two round handle decomposition of S^{3},

$$
S^{3}=\bigcup_{j=1}^{s} C_{j}
$$

whose cores form l_{1}, and

$$
S^{3}=\bigcup_{j=1}^{t} C_{j}^{\prime}
$$

whose cores form l_{2}. First, suppose that l is obtained from l_{1} and l_{2} by the operation I. Replace C_{1} by $C_{1} \cup\left(\partial C_{1} \times[0,1]\right)$, and C_{1}^{\prime} by $C_{1}^{\prime} \cup\left(\partial C_{1}^{\prime} \times[0,1]\right)$. Then,
perform the connected sum operation using $\partial C_{1} \times[0,1]$ and $\partial C_{1}^{\prime} \times[0,1]$. We obtain a decomposition

$$
S^{3}=C_{1} \cup C_{1}^{\prime} \cup\left(\partial C_{1} \times[0,1] \# \partial C_{1}^{\prime} \times[0,1]\right) \cup\left(\bigcup_{j=2}^{s} C_{j}\right) \cup\left(\bigcup_{j=2}^{t} C_{j}^{\prime}\right) .
$$

If we regard $\left(\partial C_{1} \times[0,1] \# \partial C_{1}^{\prime} \times[0,1]\right)$ in this decomposition as C of type (a) in Lemma 1, we have a round handle decomposition of S^{3}. The set of cores of this round handle decomposition is $l=l_{1} \cdot l_{2} \cdot u$. A similar argument applies to l obtained by the operation II, III, or IV by using C of type (b), (c) or (d) respectively. For l obtained from l_{1} by applying V or VI, it is easy to construct a round handle decomposition of S^{3} which has l as the set of cores, since there is a round handle decomposition of $D^{2} \times S^{1}$ whose cores are $\{0\} \times S^{1}, k_{2}$ and k_{3} defined in V , or $\{0\} \times S^{1}$ and k_{2} defined in VI.

References

[1] D. Asimov, Round handles and non-singular Morse-Smale flows, Ann. of Math., 102 (1975), 41-54.
[2] H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, Springer, 1957.
[3] J. Morgan, Non-singular Morse-Smale flows on 3-dimensional manifolds, Topology, 18 (1978), 41-53.
[4] D. Eisenbud and W.D. Neumann, Three dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110 (1985), Princeton University Press.
[5] D. Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, 1976.
[6] K. Sasano, Links of closed orbits of non-singular Morse-Smale flows, Proc. A.M.S., 88 (1983), 727-734.
[7] K. Sasano, Links in some simple flows, J. Fac. Sci. Univ. Tokyo, Sect. IA, 31 (1984), 247-270.
[8] S. Smale, Differentiable dynamical systems, Bull. A. M. S., 73 (1967), 747-817.
[9] K. Yano, A note on non-singular Morse-Smale flows on S^{3}, Proc. Japan Acad., 58 (1982), 447-450.
Masaaki WADA
Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104
U.S.A

