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Introduction.

By a Projective manifold, we mean a connected compact complex manifold
which can be imbedded holomorphically into the complex projective space $P^{m}$

for some $m\geqq 1$ . Let $M$ be a projective manifold. A finite branched covering
(or simply a finite covering) of $M$ is by definition an irreducible normal complex
space $X$ together with a surjective proper finite holomorphic mapping $\pi;Xarrow M$.
In this case, $X$ is also projective by Grauert [3]. A morphism(resp. an iso-
morphjsm) of $\pi;Xarrow M$ to another finite covering $\pi’$ : $X’arrow M$ is by definition a
holomorphic (resp. biholomorphic) mapping $\phi:Xarrow X’$ such that $\pi’\cdot\phi=\pi$ . The
set $G_{\pi}$ of all automorphisms of $\pi:Xarrow M$ forms a group under composition and
is called the automorphism group of $\pi:Xarrow M$. G. acts on each fiber of $\pi$ .

$\pi:Xarrow M$ is called a Galois covering if G. acts transitively on every fiber
of $\pi$ . In this case, the quotient complex space $X/G_{\pi}$ is holomorphically iso-
morphic to $M$.

There is a natural one-to-one correspondence between the set of all iso-
morphism classes of finite Galois coverings $\pi:Xarrow M$ of $M$ and the set of all
isomorphism classes of finite Galois extensions $K/C(M)$ , where $C(M)$ is the
field of all meromorphic functions on $M$. In fact, the correspondence is given by

$\pi-K=C(X)$ ,

$K-$ the K-normalization of $M$,

(see Mumford [6, p. 396]).

Thus, to study finite Galois coverings of projective manifolds is nothing but
to study finite Galois extensions of algebraic function fields of several complex
variables.

In Namba [7, Theorem 3.5.7], we described the set of all isomorphism
classes of finite Galois coverings of $M$ in terms of the Tannaka algebraic sys-
tem of unitary flat generalized vector bundles on $M$.
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In this paper, we treat the problem of realization and existence of finite
Galois coverings. That is, we prove the following two theorems:

THEOREM 1. Let $M$ be a projectjve manifold. For any finite Galois covering
$\pi:Xarrow M$ of $M$, there are a finite subgroup $G$ with $G\cong G_{\pi}$ of the automorplnsm
group Aut $(P^{r})$ of $P^{r}$ for some $r\geqq 1$ , and a meromorphic mapmng $f:Marrow N=$

$P^{r}/Gs$uch that $\pi;Xarrow M$ is isomorpfu $c$ to the $C(M_{0}\cross {}_{N}P^{r})$-normalization of $M$,

where $f_{0}$ : $M_{0}arrow N$ is a resolution of indeterminacy of $f$ and $M_{0}\cross {}_{N}P^{r}$ is the fiber
pr0duct of $M_{0}$ and $P^{r}$ over N. ( $M_{0}\cross {}_{N}P^{r}$ is irreducible in this case.)

THEOREM 2. For any pr0jective manifold $M$ and any finite group $G$ , there
exists a finite Galois covering $\pi;Xarrow M$ such that $G_{\pi}\cong G$ .

It seems that Theorem 2 for the case dim $M=1$ was known among experts.

1. Solution of Riemann-Hilbert problem.

In order to prove Theorem 1, we need the solution by Deligne-Kita on
Riemann-Hilbert problem for (generalized) Fuchsian differential equations.

Let $M$ be a projective manifold and $\Omega=(\omega_{jk})$ be an $(m\cross m)$-matrix-valued
meromorphic l-form on $M$ such that $d\Omega+\Omega\wedge\Omega=0$ . Consider the differential
equation (Pfaffian system)

$dF=F\Omega$ , $\cdot$ ..... $(*)$

where $F$ is an $(m\cross m)$-matrix-valued unknown function. Let Supp $(D_{\infty}(\omega_{jk}))$ be
the support of the polar divisor $D_{\infty}(\omega_{jk})$ of $\omega_{jk}$ . Put

$B( \Omega)=\bigcup_{j.k}$ Supp $(D_{\infty}(\omega_{jk}))$ .
Then $B(\Omega)$ is a hypersurface of $M$. Put

$M’=M-B(\Omega)$ .
It is then well known that there is an $(m\cross m)$-matrix-valued holomorphic func-
tion $F$ on the universal covering space $\tilde{M}’$ of $M’$ with non-vanishing det $F$ such
that $F$ is a solution of the equation $(*)$ . Moreover other solutions can be
written as $AF$ for $A\in GL(m, C)$ . The fundamental group $\pi_{1}(M’, *)$ acts natu-
rally on $\tilde{M}’$ . For $\sigma\in\pi_{1}(M’, *)$ , there is $R(\sigma)\in GL(m, C)$ such that

$\sigma^{*}F=F\cdot\sigma=R(\sigma)F$ .
Then

$R:\sigma\in\pi_{1}(M’, *)-R(\sigma)\in GL(m, C)$

is a representation of $\pi_{1}(M’, *)$ and is called the monodromy represenfation for
the equation $(*)$ .



Finite Galois coverings 393

The equation $(*)$ is said to be Fuchsian if $\Omega$ has generically log pole along
$B(\Omega)$ . That is, for any point $p$ of the regular locus Reg $B(\Omega)$ of $B(\Omega)$ and any
local coordinate system $(z_{1}, \cdots , z_{n})$ around $p$ such that $B(\Omega)=\{(z_{1}, \cdots , z_{n})|z_{1}=0\}$

locally, $\Omega$ can be locally written as

$\Omega=A_{1}\frac{dz_{1}}{z_{1}}+A_{2}dz_{2}+\cdots+A_{n}dz_{n}$ ,

where $A_{j}(1\leqq j\leqq n)$ are $(m\cross m)$-matrix-valued holomorphic functions around $p$ .
The equation $(*)$ is said to be generalized Fuchsian if $B(\Omega)$ is a union of

hypersurfaces $B’$ and $B’’$ such that $\Omega$ has generically log pole along $B’$ and $(*)$

has apparent singularity along $B’’$ . That is, for any point $p\in B’-B’$ , there are
a neighborhood $W$ of $p$ in $M$ and an $(m\cross m)$-matrix-valued meromorphic func-
tion $G$ on $W$ such that (1) $G$ is holomorphic and has non-vanishing det $G$ on
$W-B’’$ and (2) $dG=G\Omega$ .

THEOREM 3 (Deligne [1]-Kita [5]). Let $B$ be a hypersurface of $M$ and
$R:\pi_{1}(M-B, *)arrow GL(m, C)$ be a representation. Then there are a (possjbly empty)
hypersurface $B’$ of $M$ whuch has no common irreducible comp0nent with $B$ and a
generalized Fuchsian differential equation $(*)$ such that (1) $B(\Omega)\subset B\cup B’$ , (2) the
equation $(*)$ has apparent singularity along $B’$ and (3) the monodromy group for
$(*)$ equals $R$ .

REMARK 1. The solution of Riemann-Hilbert problem in the form of Theo-
rem 3 can be obtained by the vanishing of the first cohomology group of some
coherent sheaf. See also Namba [7, Theorem 2.2.1].

2. Fixed points for group action.

Let $Y$ be a projective manifold and $G$ be a finite subgroup of the auto-
morphism group Aut $(Y)$ of $Y$. Let $N=Y/G$ and $\mu:Yarrow N$ be the quotient
complex space and the projection, respectively. $N$ is irreducible, normal and
projective (cf. Hartshorne [4, p. 84, Proposition 1.6]).

For $A\in G$ , put
Fix $(A)=\{p\in Y|A(p)=p\}$ .

If $A\neq 1$ , then Fix $(A)$ is a proper closed analytic subset of $Y$. Put

Fix $(G)= \bigcup_{A\neq 1}Fix$ $(A)$ .

Then Fix $(G)$ is a proper closed analytic subset of $Y$. We have clearly

LEMMA 1. Fix $(G)$ is a G-invariant set.

Now let $\pi;Xarrow M$ be a finite Galois covering of a projective manifold $M$
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and
$R$ : $G$. $arrow^{\sim}G$

be an isomorphism. Suppose that there is a holomorphic mapping $f:Xarrow Y$ such
that

$f(\sigma p)=R(\sigma)f(p)$ for all $(a, p)\in G.\cross X$ .
Then a holomorphic mapping $f:Marrow N=Y/G$ is induced and satisfies $f\cdot\pi=\mu\cdot\hat{f}$.

By Lemma 1, we have clearly

LEMMA 2. $f(X)\subset Fix(G)$ if and only if $f(M)\subset\mu(Fix(G))$ .

For the proof of Theorem 1, we also need

LEMMA 3. SuppOse that $;(X)$ is not contained in Fix $(G)$ . Then the fiber
product $M\cross NY$ is irreducible and $\pi:Xarrow M$ is isomorphic to

$\pi’$ : $X’arrow^{\alpha}M\cross NYarrow M$ ,
$\beta$

where $\alpha$ is the normalization of $M\cross NY$ and $\beta$ is the Projection.

PROOF. We define a holomorphic mapping $\Phi:Xarrow M\cross NY$ by $\Phi(p)=$

$(\pi(p),\hat{f}(p))$ . Then $\Phi$ is surjective. In fact, for any point $(q, y)\in M\cross NY$, we
take $p’\in X$ such that $\pi(P’)=q$ . Then $\mu f(p’)=f\pi(p’)=f(q)=\mu(y)$ . Hence there
is $\sigma\in G_{\pi}$ such that $R(\sigma)f(p’)=y$ . Put $p=\sigma(P’)$ . Then

$\Phi(p)=(\pi(p), f(p))=(\pi(p’), f(\sigma p’))=(q, R(\sigma)f(p’))=(q, y)$ .

Hence $\Phi$ is surjective, so $M\cross NY$ is irreducible.
Next, for distinct points $P$ and $P’$ of $X$, suppose $\Phi(p)=\Phi(p’)$ . Then $\pi(p)$

$=\pi(P’)$ and $f(p)=f(p’)$ . There is $\sigma\in G_{\pi}$ with $\sigma\neq 1$ such that $\sigma(P)=P’$ . Then

$f(p)=f(\sigma p)=R(\sigma)f(p)$ .
That is, $f(p)\in Fix(R(\sigma))$ . Hence, for a given $p\in x$ , there are at most ord $(G)-$

points $P’$ such that $\Phi(p’)=\Phi(p)$ . Thus $\Phi$ is a finite mapping.
By the assumption $f\hat{(}X$ ) $\not\subset Fix(G)$ , the set $f^{-1}(Fix(G))$ is a proper closed

analytic subset of $X$. By the above discussion, $\Phi$ is injective on $X-\hat{f}^{-1}(Fix(G))$ .
Note that $\beta\Phi=\pi$ . Put

$R_{\pi}=$ { $p\in X|\pi$ is not biholomorphic around $p$ },

$R_{\beta}=$ { $\xi\in M\cross NY|\beta$ is not biholomorphic around $\xi$ }.

Then $R_{\pi}$ is a hypersurface of $X$ and $R_{\beta}$ is a proper closed analytic subset of
$M\cross NY$. We have easily

$\Phi^{-1}(R_{\beta})\subset\hat{f}^{-1}(Fix(G))$ .
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Now, since $\Phi$ is locally written as $\Phi=\beta^{-1}\pi,$ $\Phi$ is biholomorphic on
$X-f^{-1}(Fix(G))-R_{Jt}$.

Thus, by Zariski main theorem (see Ueno [8, p. 9]), $\Phi$ induces an iso-
morphism of $\pi$ to

$\pi’$ : $X’Mx_{N}Y\underline{\alpha}arrow^{\beta}$

M. $q.e.d$ .
REMARK 2. $R_{\pi}$ and $B.=\pi(R_{n})$ are called the ramification locus and the

branch locus of $\pi$ , respectively. They are hypersurfaces of $X$ and $M$, respec-
tively, by the purity of branch loci (see Fischer [2, P. 170]). Moreover,
$\pi;X-R_{\pi}arrow M-B_{\pi}$ is an unbranched Galois covering, whose automorphism group
(that is, the covering transformation group) can be naturally identified with $G_{\pi}$ .

3. Proof of Theorem 1.

Let $\pi;Xarrow M$ be a finite Galois covering of a projective manifold $M$. Let

$R$ : $G_{\pi}arrow GL(m, C)$

be an injective representation of $G_{\pi}$ . (For example, let $R$ be the regular repre-
sentation of $G_{\pi}.$ ) Let $V$ be the complex vector space of all $(m\cross m)$-matrices.
Put

$r=\dim V=m^{2}$

$GL(m, C)$ acts on $V$ as follows:

$A(S)=AS$ (the product of matrices)

for $(A, S)\in GL(m, C)\cross V$. Since $A(1)=A$ , the action is effective. Thus we
have an injective representation

$G_{\pi}-GL(r, C)$

which we denote by $R$ again by abuse of notation. We regard $V$ as the finite
affine part of the projective space $P^{r}$ identifying $S\in V$ with $($ 1: $S)\in P^{r}$ . $GL(m, C)$

then acts on $P^{r}$ as follows:

$A(1:S)=$ ( $1:$ AS) , $A(O:S)=$ ($O:$ AS).

The action is again effective. Thus we have an injective homomorphism

$\hat{R}$ : $G$ . $arrow Aut(P^{r})$ .
Put $G=\hat{R}(G_{\pi})$ .

By Theorem 3, there are a hypersurface $B’$ and an $(mX m)$-matrix-valued
holomorphic function $F$ with non-vanishing det $F$ on the universal covering
space $\tilde{M}’$ of $M’=M-B_{\pi}\cup B’$ such that

$\sigma^{*}F=(R\cdot\psi)(\sigma)F$ for $\sigma\in\pi_{1}(M’, *)$ ,



396 M. NAMBA

where B. is the branch locus of $\pi$ (see Remark 2) and

$\psi$ : $\pi_{1}(M’, *)arrow\pi_{1}(M-B_{\pi}, *)arrow G_{\pi}$

is the natural homomorphism.
Consider the holomorphic mapping $f;\tilde{M}’arrow P^{r}$ defined by $f(p)=(1:F(p))$ .

Then, by the construction of $F$ in Theorem 3, $f$ can be easily extended to a
meromorphic mapping

$f$ : $X$–Sing $R_{\pi}arrow P^{r}$ ,

where Sing $R_{\pi}$ is the singular locus of the ramification locus $R_{\pi}$ of $\pi$ . By Levi’s
theorem (see Fischer [2, p. 185]), $f$ can be extended again to a meromorphic
mapping

$f$ : $Xarrow P^{r}$

which satisfies
$a^{*f}=R(a)f$ for $a\in G_{\pi}$ .

We show that $\hat{f}(X)$ is not contained in Fix $(G)$ . In fact, if $\hat{f}(X)\subset Fix(G)$ ,
tqhen $\hat{f}(X)\subset Fix(R(\sigma))$ for some $\sigma\in G_{\pi}$ such that $a\neq 1$ , because $f(X)$ is an irre-
ducible closed analytic subset of $P^{r}$ . Then

$\hat{f}(p)=\hat{R}(\sigma)f(p)$

for all $p\in X$ such that $f(p)$ is dePned. Hence

$F(p)=R(a)F(p)$

for all $p\in X$ such that $F(p)$ is defined. Then

$R(\sigma)=F(P)F(P)^{-1}=1$

for all $p\in X$ such that $F(p)$ is defined and det $F(p)\neq 0$ . Such a point $p\in X$

exists. Hence $a=1$ , a contradiction. Thus $\hat{f}(X)$ is not contained in Fix $(G)$ .
Now $f$ induces a meromorphic mapping $f:Marrow N=P^{r}/G$ such that the dia-

gram

$Xarrow^{f^{\hat}}P^{r}$

$\pi_{M}\downarrowarrow^{f}N\downarrow u$

commutes. Let $f_{0}$ : $M_{0}arrow N$ be a resolution of indeterminacy of $f$. There is a
commutative diagram
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where $\Gamma_{f}(\subset M\cross N)$ is the graph of $f$ and $M_{0}arrow\Gamma_{f}$ is a proper modification
(see Ueno [8, p. 13]). Let $\Gamma_{\hat{f}}(\subset X\cross P^{r})$ be the graph of $f$ and let

$\pi_{1}$ : $\Gamma_{\hat{f}}arrow\Gamma_{f}$

be the holomorphic mapping defined by $\pi_{1}(p, z)=(\pi(p), \mu(z))$ . Let $X_{0}arrow M_{0}\cross\Gamma$

be the normalization $M_{0}\cross\Gamma_{f}\Gamma_{\hat{f}}$ . Then we have the following commutative
diagram:

Note that the composite mapping $\hat{\rho}:X_{0}arrow X$ is a proper modification, since
$\rho:M_{0}arrow M$ is so. In particular, $X_{0}$ is irreducible and the composite mapping

$\pi_{0}$ : $X_{0}arrow M_{0}$

is a finite Galois covering such that $G_{\pi_{0}}\cong G_{\pi}$ naturally. We identify these groups
through the isomorphism.

Note that the composite holomorphic mapping $\hat{f}_{0}$ : $X_{0}arrow P^{r}$ satisfies

$\sigma^{*}\hat{f}_{0}=\hat{R}(a)\hat{f}_{0}$ for $\sigma\in G_{\pi_{0}}$ ,

and induces $f_{0}$ : $M_{0}arrow N$. Note also that $f_{0}(M_{0})=f(M)$ is not contained in
$\mu(Fix(G))$ by Lemma 2. Thus, by Lemma 3, $M_{0}\cross {}_{N}P^{r}$ is irreducible and $\pi_{0}$ is
isomorphic to
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$\pi’$ : $X’arrow^{\alpha}M_{0}\cross {}_{N}P^{r}arrow^{\beta}M_{0}$

,

where $\alpha$ is the normalization of $M_{0}\cross {}_{N}P^{r}$ and $\beta$ is the projection. Now

$C(M_{0}\cross {}_{N}P^{r})\cong C(X’)\cong C(X_{0})\cong C(X)$

over $C(M_{0})=C(M)$ (identified). Thus $\pi;Xarrow M$ is isomorphic to the $C(M_{0}\cross {}_{N}P\})-$

normalization of $M$.
This proves Theorem 1.

REMARK 3. The above proof shows that Theorem 1 can be in some sense
regarded as a geometric counterpart of Namba [7, Theorem 2.2.10].

4. $G$-indecomposable meromorphic mappings.

As in \S 2, let $Y$ be a projective manifold, $G$ be a finite subgroup of Aut $(Y)$ ,
$N=Y/G$ be the quotient complex space and $\mu:Yarrow N$ be the projection. Let
$f:Marrow N$ be a meromorphic mapping such that $f(M)$ is not contained in
$\mu(Fix(G))$ . Let $f_{0}$ : $M_{0}arrow N$ be a resolution of indeterminacy of $f$. $G$ acts on
$M_{0}\cross NY$ as follows:

$A(P, y)=(p, Ay)$

for $A\in G$ and $(p, y)\in M_{0}\cross_{N}Y$. By the assumption $f(M)\not\subset\mu(Fix(G))$ , we can
easily show that the action is effective. Moreover, $G$ acts transitively on every
fiber of the projection $M_{0}\cross NYarrow M_{0}$ .

In general, $M_{0}\cross_{N}Y$ may not be irreducible. Suppose that $M_{0}\cross_{N}Y$ is irre-
ducible. (As is easily seen, this assumption does not depend on the choice of
resolutions $f_{0}$ of indeterminacy of $f.$ ) Then $C(M_{0}\cross_{N}Y)$-normalization

$\pi$ : $Xarrow M$

of $M$ is a finite Galois covering such that $G_{\pi}$ is naturally isomorphic to $G$ .
This is one method for the realization of finite Galois coverings of $M$.

Theorem 1 asserts that every finite Galois covering of $M$ can be obtained in
this way. Thus the problem of realization is reduced to looking for mero-
morphic mappings $f:Marrow N=Y/G$ such that (1) $f(M)\not\subset\mu(Fix(G))$ and (2) $M_{0}\cross_{N}Y$

is irreducible.
Now we ask when $M_{0}\cross_{N}Y$ is irreducible.

DEFINITION. Let $f:Marrow N=Y/G$ be a meromorphic mapping such that
$f(M)\not\subset\mu(Fix(G))$ . $f$ is said to be G-decomposable if there are a proper subgroup
$H$ of $G$ and a meromorphic mapping $h:Marrow Y/H$ such that $f=\nu\cdot h$ , where
$\nu;Y/Harrow N=Y/G$ is the projection. Otherwise, $f$ is said to be G-indecomPosable.
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PROPOSITION 1. $M_{0}\cross_{N}Y$ is irreducible if and only if $f$ : $Marrow N=Y/G$ is G-
indecompOsable.

PROOF. Suppose that $M_{0}\cross NY$ is not irreducible. Note that $G$ acts transi..
tively on the set of irreducible components of $M_{0}\cross_{N}Y$. Let $W$ be an irreducible
component of $M_{0}\cross NY$. Put

$H=\{A\in G|A(W)=W\}$ .
Then $H$ is a proper subgroup of $G$ . Note that $H$ acts effectively on $W$ and
transitively on every fiber of the projection $Warrow M_{0}$ . Let $X^{J}arrow W$ be the normali-
zation of $W$ . The composite mapping

$\pi’$ : $X’arrow M_{0}$

is a finite Galois covering of $M_{0}$ such that $G_{\pi’}\cong H$ naturally. We denote this
isomorphism by $R:G_{\pi’}arrow^{\sim}H$. The composite mapping

$\hat{h}_{0}$ : $X’arrow W\subset M_{0}X_{N}Yarrow Y$

satisfies
$\sigma^{*}\hat{h}_{0}=R(a)\hat{h}_{0}$ for $\sigma\in G_{\pi’}$ .

Hence $\hat{h}_{0}$ induces a holomorphic mapping $h_{0}$ : $M_{0}arrow Y/H$ such that $f_{0}=\nu\cdot h_{0}$ . Now
$h_{0}$ induces a meromorphic mapping $h:Marrow Y/H$ such that $f=\nu\cdot h$ . Thus $f$ is
G-decomposable.

Conversely, suppose that $f$ is G-decomposable. Let $H$ and $h:Marrow Y/H$ be
as in the above definition. Note that $h(M)$ is not contained in $\mu’(Fix(H))$ ,
where $\mu’$ : $Yarrow Y/H$ is the projection. Let $h_{0}$ : $M_{0}arrow Y/H$ be a resolution of in-
determinacy of $h$ . Then $f_{0^{=)J}}\cdot h_{0}$ is that of $f$.

The fiber product $M_{0}\cross_{Y/H}Y$ can be regarded as a closed analytic subset of
$M_{0}X_{N}Y$. Since $G$ (resp. $H$ ) acts transitively on every fiber of the projection
$M_{0}\cross NYarrow M_{0}$ (resp. $M_{0}\cross_{Y/H}Yarrow M_{0}$ ), $M_{0}\cross Y/HY$ is in fact a union of some irre-
ducible components of $M_{0}x_{N}Y$, and $M_{0}\cross Y/HY$ does not equal $M_{0}\cross_{N}Y$. Hence
$M_{0}\cross NY$ is not irreducible. $q$ . $e$ . $d$ .

EXAMPLE 1. Put $Y=P^{2}$ and $G=$ { $1,$ $A,$ $B,$ AB}, where

$A$ : $(x, y)arrow(-x, y)$ ,

$B$ : $(x, y)arrow(x, -y)$ .

Here $(x, y)$ is an inhomogeneous coordinate system on $P^{2}$ . Then $N=Y/G$ and
$\mu:Yarrow N$ can be identified with $P^{2}$ and the holomorphic mapping

$(x, y)\mapsto(x^{2}, y^{2})$ ,

respectively. A meromorphic mapping $f:Marrow N$ is given by
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$f$ : $P\in M-(x, y)=(f_{1}(p), f_{2}(p))\in N=P^{2}$

where $f_{1}$ and $f_{2}$ are meromorphic functions on $M$.
It is clear that $f(M)$ is not contained in $\mu(Fix(G))$ if and only if neither of

$f_{j}(j=1,2)$ is a zero-function. In this case, we can easily show that $f$ is G-
decomposable if and only if there is a meromorphic function $h$ on $M$ such that
one of the following equalities holds: (1) $f_{1}=h^{2},$ (2) $f_{2}=h^{2},$ (3) $f_{1}f_{2}=h^{2}$ .

EXAMPLE 2. Put $Y=(P^{1})^{3}$ and $N=P^{3}$ . We regard $N=P^{3}$ as the symmetric
product $S^{3}P^{1}$ of $P^{1}$ . Then $N=P^{3}=Y/G$ , where $G$ is isomorphic to the sym-
metric group of degree 3. More precisely, $\mu:Yarrow N$ is given by

$(y_{1}, y_{2}, y_{3})-\geq(a_{0} : a_{1} : a_{2} : a_{3})=(1:y_{1}+y_{2}+y_{3} : y_{1}y_{2}+y_{2}y_{3}+y_{3}y_{1} : y_{1}y_{2}y_{3})$ ,

where $y_{j}$ (resp. $(a_{0}$ : $a_{1}$ : $a_{2}$ : $a_{3})$) is an inhomogeneous (resp. homogeneous)

coordinate system on $P^{1}$ (resp. $P^{3}$ ). Thus $y_{j}(1\leqq j\leqq 3)$ are the roots of the
equation

$a_{0}x^{3}-a_{1}x^{2}+a_{2}x-a_{3}=0$ .
Let $D(a_{0}, a_{1}, a_{2}, a_{3})$ be the discriminant of the equation. Then

$\mu(Fix(G))=\{(a_{0} : a_{1} : a_{2} : a_{3})\in P^{3}|D(a_{0}, a_{1}, a_{2}, a_{3})=0\}$

is an irreducible hypersurface of degree 4 in $N=P^{3}$ . A meromorphic mapping
$f:Marrow N=P^{a}$ is given by

$f$ : $Parrow(a_{0} : a_{1} : a_{2} : a_{3})=(1 : f_{1}(p):f_{2}(p):f_{3}(p))$ ,

where $f_{j}(1\leqq j\leqq 3)$ are meromorphic functions on $M$.
$f(M)$ is not contained in $\mu(Fix(G))$ if and only if $D(1, f_{1}, f_{2}, f_{3})$ is a non-

$z^{e^{ro}}$ meromorphic function on $M$. In this case, we can easily show that $f$ is
G-decomposable if and only if there is a meromorphic function $h$ on $M$ such
that one of the following equalities holds:

(1) $h^{3}-2f_{1}h^{2}+(f_{1}^{2}+f_{2})h+(f_{3}-f_{1}f_{2})=0$ ,
(2) $D(1, f_{1}, f_{2}, f_{3})=h^{2}$ .

PROPOSITION 2. Let $f$ : $Marrow N=Y/G$ be a $sur_{j}$ ective meromorphic mapting
with connected fibers. Then $f$ is G-indecomposable.

PROOF. Suppose that $f$ is G-decomposable. Let $H,$ $h:Marrow Y/H,$ $h_{0}$ : $M_{0}arrow Y/H$

and $f_{0}=\nu\cdot h_{0}$ be as in the proof of Proposition 1:
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Then $f_{0}$ is surjective. We show that $h_{0}$ is surjective. In fact, since

$\nu(h_{0}(M_{0}))=f_{0}(M_{0})=Y/G$ ,
the restriction

$\nu;h_{0}(M_{0})arrow Y/G$

of $\nu$ to $h_{0}(M_{0})$ is surjective and finite. Note that both $h_{0}(M_{0})$ and $Y/H$ are
irreducible and

dim $h_{0}(M_{0})=\dim Y/G=\dim Y/H$ .
Hence

$h_{0}(M_{0})=Y/H$ .
Now, since $\nu$ is a Pnite surjective mapping with the mapping degree greater

than one, $f_{0}=\nu\cdot h_{0}$ can not have connected fibers, a contradiction. $q.e$ . $d$ .

5. Proof of Theorem 2.

We divide the proof of Theorem 2 into two cases:

Case 1: dim $M=1$ . The following simple proof is due to Y. Morita: Let
$G$ be a finite group generated by $s$ elements. Take points $p_{1},$ $\cdots$ , $p_{m+1}$ on $M$.
As is well known, $\pi_{1}(M-\{p_{1}, \cdots , p_{m+1}\}, *)$ is generated by $\alpha_{1},$ $\beta_{1},$ $\cdots\alpha_{g},$ $\beta_{g},$ $\gamma_{1}$ ,
... , $\gamma_{m+1}$ with the unique relation

$\alpha_{1}\beta_{1}\alpha_{1}^{-1}\beta_{1}^{-1}\cdots\alpha_{g}\beta_{g}\alpha_{g}^{-1}\beta_{g}^{-1}\gamma_{1}\cdots\gamma_{m+1}=1$ ,

where $g$ is the genus of $M,$ $\alpha_{1},$ $\beta_{1},$ $\cdots$ , $\alpha_{g},$
$\beta_{g}$ are generators of $\pi_{1}(M, *)$ , and

$\gamma_{j}(1\leqq j\leqq m+1)$ is a loop rounding $p_{f}$ once in the positive sense:

$(\begin{array}{l}g=2m=l\end{array})$

Since
$\gamma_{m+1}=\gamma_{m}^{-1}\cdots\gamma_{1}^{-1}\beta_{g}\alpha_{g}\beta_{g}^{-1}\alpha_{g}^{-1}\cdots\beta_{1}\alpha_{1}\beta_{i}^{-1}\alpha_{1}^{-1}$

the group $\pi_{1}(M-\{p_{1}, \cdots , p_{m+1}\}, *)$ can be regarded as the free group generated
by $\alpha_{1},$ $\beta_{1},$ $\cdots$ , $\alpha_{g},$

$\beta_{g},$ $\gamma_{1},$ $\cdots$ , $\gamma_{m}$ . Taking $m$ so that $2g+m\geqq s$ , there is a sur-
jective homomorphism
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$\psi:\pi_{1}(M-\{p_{1}, \cdots p_{m+1}\}, *)arrow G$ .
Corresponding to $\psi$ , there is a finite unramified Galois covering

$\pi’$ ; $X’arrow M-\{p_{1}, \cdots p_{m+1}\}$

such that $G_{\pi’}\cong G$ . Let $W_{j}$ be a neighborhood of $p_{j}$ in $M$ with a local coordinate
$w_{j}$ such that $w_{j}(p_{j})=0$ and $W_{j}=\{w_{j}||w_{j}|<1\}$ . Consider the holomorphic
mapping

$\pi_{j}’$ ; $U_{j}=\{z_{j}\in C||z_{j}|<1\}arrow W_{j}$

defined by $z_{j}arrow w_{j}=z_{j^{j}}^{\nu}$ , where $\nu_{j}=ord\psi(\gamma_{j})$ . We can patch up $X’$ and (ord $(G)/\nu_{j}$) $-$

copies of $U_{j}(1\leqq j\leqq m+1)$ (resp. $\pi’$ and $\pi_{j}’$ ) and get a compact Riemann surface
$X$ (resp. a holomorphic mapping $\pi:Xarrow M$ ). Now

$\pi;Xarrow M$

is clearly a finite Galois covering of $M$ such that $G_{\pi}\cong G$ .

Case 2: dim $M\geqq 2$ . Let $\Lambda_{0}$ be a fixed component free linear system on $M$

such that dim $\Phi_{\Lambda_{0}}(M)\geqq 2$ , where

$\Phi_{\Lambda_{0}}$ : $Marrow P^{m}$

is the meromorphic mapping associated with $\Lambda_{0}$ . (For example, let $\Lambda_{0}$ be very
ample.) Let $S$ be a general member of $\Lambda_{0}$ . By Bertini’s theorem (see Ueno
[8, p. 45]), $S$ is irreducible. Let $\Lambda$ be a fixed component free linear pencil on
$M$ such that $S\in\Lambda$ and $\Lambda\subset\Lambda_{0}$ . Then

$f=\Phi_{\Lambda}$ : $Marrow P^{1}$

is a surjective meromorphic mapping with connected fibers.
By Case 1, there is a finite Galois covering

$\mu:Yarrow P^{1}$

such that $G_{\mu}\cong G$ . We identify these groups through the isomorphism. Then
we can identify $P^{1}$ with $Y/G$ .

By Proposition 2, $f$ is G-indecomposable. By Proposition 1, $M_{0}\cross P1Y$ is
irreducible, where $f_{0}$ : $M_{0}arrow P^{1}$ is a resolution of indeterminacy of $f$.

Now the $C(M_{0}\cross P1Y)$-normalization

$\pi;Xarrow M$

of $M$ is a finite Galois covering such that $G_{\pi}\cong G$ . This proves Theorem 2.

REMARK 4. The above proof shows that there exist infinitely many non-
isomorphic finite Galois coverings $\pi;Xarrow M$ of $M$ such that $G_{\pi}\cong G$ .
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