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I. Main theorem.

Let L be the first order classical predicate logic without equality. We
assume that L has a fixed binary predicate symbol R, unary predicate symbols
P, ---, Py and no other non-logical constant symbols. R-free formulas are
formulas in L which has no occurrences of R. R-positive formulas are formulas
in L which has no negative occurrences of R. R-formulas are formulas defined
inductively as follows:

(1) All R-free formulas are R-formulas;

(2) If A and B are R-formulas, then —A, AAB, AVB, ADB are all R-
formulas;

(3) If A(x) is an R-formula and x is a free variable not occurring in A®),
then VYvA@), Yv(R(x, v)DA®W)), Yu(R(@, x)DAW)), JvAW), Fv(R(x, v)NAW)),
Juv(R(v, x)ANA@)) are all R-formulas.

By R-quantifiers, we denote the quantifiers of the form:

Yo(R(x, v)D v --), Yu(R(v, x)D - v--),
Ju(R(x, V)N v ), Ju(R(w, X)A v ),

where --- v -+ has no occurrences of the free variable x. Then, R-formulas are
formulas obtained from R-free formulas by applying propositional connectives,
quantifiers and R-quantifiers.

For each R-formula A, let R-deg(A) be the non-negative integer, called
the R-degree of A, defined as follows: '

(1) R-deg(A)=0 if A is R-free.
(2) R-deg(—A)= R-deg(A),

R-deg(AAB) = R-deg(AV B) = R-deg(ADB) = max{R-deg(A), R-deg(B)},
(8) R-deg(VvA(v)) = R-deg(vA(v)) = R-deg(A(x)), and
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R-deg(Vv(R(x, v)DA®W))) = R-deg(Vu(R(v, x)DA[®)))
= R-deg(Fv(R(x, v) AAW))) = R-deg(Fv(R(, x)ANA®))) = R-deg(A(x))+1.

Also, Tr is the sentence YuVoVw(R(u, v)AR(v, w). DR(u, w)) and Sym is the
sentence VuVu(R(u, v)DOR(, u)). Let F be the set of finite conjunctions of
sentences: R-sentences, R-positive sentences, Tr and Sym. For each sentence
A in F, let R-deg(A) be max{R-deg(A;); A is A;ANA:N -+ NAn and A; is
an R-sentence}. For each non-negative integer n, let K, be the integer defined
by; K,=2%, K,..=K,xX2¥")x(2%™), Then, our main theorem is:

MAIN THEOREM. For each sentence A in F, if A has a model, then it has a
model whose cardinality is at most K,, where n=R-deg(A).

Suppose that X is a set of sentences in L. Then, a decision method for X
is a method by which, given a sentence in X, we can decide in a finite number
of steps whether or not it has a model. X is said to be decidable if there is a
decision method for X. It is well-known that the set of all R-free sentences is
decidable, but the set of all sentences in L is not. Our main theorem clearly
implies :

COROLLARY. F is decidable.

In II below, we shall give some applications of our main theorem to decision
problems of non-classical propositional logics. In Il below, we shall give a
proof of our main theorem.

II. Applications.

Suppose that L’ is a formal logic. Then a decision method for L’ is a
method by which, given a formula of L’, we can decide in a finite number of
steps whether or not it is provable in L’.

1) Intuitionistic propositional logic. Let IPL be the intuitionistic proposi-
tional logic whose propositional variables are p,, ps, «--, pn. For each formula
A in IPL, and each free variable x in L, let (A4, x) be the formula in L defined
by ;

(pi, x) is Py(x), (—A4, x) is Yu(R(x, v)D—(4, v)),
(ANB, x) is (A, x)A\(B, x), (AV B, x) is (A, x)VV(B, x), and
(ADB, x) is Yu(R(x, v)D((A4, v)D(B, v))).

Then, by Kripke’s completeness theorem, we have:
COMPLETENESS THEOREM FOR IPL ([2]). A is provable in IPL iff the sentence

TrATr(POA - ATr(Py)AIv—(A, v) has no models, where Tr(P,) is the R-sentence
Vu(Py(w)DVv(R(u, v)DP;(v))), for each formula A in IPL.



A decision method 129

Since TrATr(P)A -+ ATr(Py)AJv—(A4, v) belongs to F, our main theorem
clearly implies that the logic IPL is decidable.

2) Modal propositional logics. Let MPL be the modal propositional lan-
guage whose logical constants are —, A, VV, D and [1, and whose propositional
variables are p,, ps, =+, pn. For each formula A in MPL, and each free variable
x in L, let (A4, x) be the formula in L defined by; (p;, x) is Pi(x), (—A4, x) is
—(A4, x), (AAB, x) is (A4, x)A(B, x), (AVB, x) is (4, x)V(B, x), (ADB, x) is
(4, x)D(B, x), and (OA, x) is Yu(R(x, v)D(A4, v)). Let M, $4, B, S5 be modal
propositional logics in Kripke [1], whose language is MPL. Then, by Kripke’s
completeness theorem for modal logics, we have:

COMPLETENESS THEOREM FOR MODAL LOGICS ([1]). For any formula A in
MPL,

(i) A is provable in M iff YuR(u, u)AIv—(A4, v) has no models,

(ii) A is provable in S4 iff YuR(u, u) NTrATv—(A, v) has no models,

(iii) A is provable in B iff YuR(u, u) ASymAIv—(A, v) has no models,

@iv) A is provable in S5 iff YuR(u, u) ANTrASymAIv—(A, v) has no models.

Since VuR(u, u), Tr, Sym, dv—(A4, v) belong to F, our main theorem clearly
implies that four logics M, S4, B, S5 are all decidable.

III. A proof.

For each non-negative integer n, let 2, be the set defined as follows:
2,=Pow({l, 2, ---, N}), and 2X,,,=2,XxXPow(2,)xPow(2X,), where Pow(Z) is
the power set of Z. Let Y=\J{2,; n<w}. Then the cardinality of X, is K.
For each ¢ in %, let A(g, x) be the unary formula defined as follows:

If ¢ belongs to X, Ao, x) is A{Pi(x);d€a} AN{—Pi(x);i¢e} and if
o=, I, red, .,

Ala, x) is
Ay, DIAN TR, x)NAla, v); e AN{-T(R@, x)NAa, v); aEl}
AN{F(R(x, VINA(@, v)); asr} AN{—T(R(x, V)N Ala, v); agr}.
Then A(o, x) is an R-formula whose R-degree is n if ¢ belongs to Y,. From

this definition we have:

COROLLARY 1. (i) Suppose that ¢ belongs to X,. Then, A(c, x) is equivalent
to the disjunction of the formulas: A, , r), x), where I3, and vr<23,, in L.

(ii) The disjunction of the formulas: A(o, x), 6€2,, is provable in L for
each non-negative integer n.

(iil) If ¢ and v are distinct elements of X,, then the sentence —3v(A(g, v)
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NA(y, v)) is provable in L.

LEMMA 2. Every R-formula A(x, -+, ) of R-degree<n, whose free variables
are among x, -+, ¥, is equivalent to a Boolean combination B(x, ---, v) of formulas
of the forms: Jv(A(e, v)), A(a, x), -+, Ale, ¥), a2 ,.. Moreover B is obtained
from A, concretely. Therefore every R-sentence of R-degree<n, is equivalent to
a Boolean combination of sentences of the forms: Jv(A(e, v)), 62 ,.

Suppose that N and B are L-structures and f is a homomorphism of RN
onto B. Then f is said to be a strong n-homomorphism of N to B if the
following two conditions (a) and (b) hold: (a) For any elements g, b in 3B, if
BE=R(a, b), then there are a’, b’ in N such that f(a’)=a, f(b')=b and NE=R(a’, b’).
(b) For any ¢, and a in %, M=A(e, a) iff B=A(e, f(a)).

From this definition and Lemma 2, we have:

COROLLARY 3. Suppose that f is a strong n-homomorphism of N to B.

(iv) For each R-sentence A of R-degree<n, if RN is a model of A, then B
is also a model of it.

(v) For each R-positive sentence A, if W is a model of A, then B is
also a model of it.

(vi) If M is a model of Sym, then B is also a model of it.

But it is not generally true that if R is a model of Tr, then B is also a
model of it.

For each L-structure M, let tr(M) be the L-structure defined by:
[tr(N)] = [N, tr(W)(P;) = N(F;), =1, -, N, and
tr(N)}R) = {<a, b ; there is a finite sequence <{a,, as, *** , Any Such that
a,=da, an=>b ar;d {a;, @G> ENR(R) for each i=1, .-, m—1}.

Then, we have:

COROLLARY 4. (vii) tr(N) is a model of Tr.

(viii) If R is a model of Sym, then tr(RN) is also a model of it.

(ix) For any R-positive sentence A, if N is a model of A, then tr(RN) is
also a model of it.

But it is not generally true that if % is a model of A, then tr(R) is also a
model of it, for each R-sentence A. For each L-structure M, each element a
of N and each non-negative integer n, let LI®, a, n) (resp. RIGK, a, n)) be the
set of the elements ¢ in 2, such that M is a model of Fv(R(v, a)AA(s, v))
(resp. Iv(R(a, v)ANA(a, v))). R has the n-weak transitive property (abbreviated
by n-w.t.p.) if LI®R, a, k) is a subset of LI(R, b, £) and RI(N, b, &) is a subset
of RIM, a, %), for each a and b in M such that N is a model of R(a, b) and each
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k<n. Then clearly if 2t is a model of Tr, then it has the n-w.t.p. for each
n and every L-structure has O-w.t.p. On the other hand, we have:

LEMMA 5. Suppose that R has the n-w.t.p. Then;

(x) For each element a in M and ¢ in 2,, N is a model of A(e, a)iff tr(N)
is a model of it.

(xi) For each R-sentence A of R-degree<mn, M is a model of A iff tr(N) is
a model of it.

PrROOF. By it is obvious that (xi) follows from (x) immediately.
So we prove (x) by induction on n.

If n=0, then (x) is trivial by the definition of tr(R). Assume that (x) is
true for n. We shall show that (x) is also true for n+1. By the definition of
Ao, x), 62,4, it is sufficient to prove the following two facts:

(a) M is a model of Tv(R(v, a) \NAly, v)) iff tr(N) is a model of it, for each
element ¢ in N and each vy in X,.

(b) M is a model of Fv(R(a, vV)ANA(y, v)) iff tr(N) is a model of it, for each
element ¢ in N and each v in X,.

Since “only if” parts of (a) and (b) above are obvious, we prove “if” parts
of them. Assume that tr(RN) is a model of Iv(R(v, a)AA(v, v)). Then there is
an element b in tr(MN) such that tr(N) is a model of R(b, a)ANA(v, b). By the
definition of tr(M), there is a finite sequence <ai, a@., -, any such that a,=b,
an=a and <a;, a;.,>EN(R) for each 7=1, ---, m—1. Since N has the (n+1)-w.t.p.,

veLI®, a,, n)SLI®R, a;, n)& --- SLIMR, an, n)=LIN, a, n).

Hence we have that y<LI®N, a, n). This means that N is a model of (R, a)
ANA(y, v)). Therefore (a) holds. Similarly (b) holds. (g.e.d.)

On the other hand, we have the following:

LEMMA 6. If N has the n-w.t.p. and there is a strong n-homomorphism of
N to B, then B has also the n-w.t.p.

PRroOOF. By induction n. If n=0, then this lemma is obvious. Assume
that this lemma holds for n, and N has the (n41)-w.t.p. Let f be a strong
(n+1)-homomorphism of ft to B and a, b be two elements of B such that
B=R(a, b). By the hypothesis of induction, it is sufficient to prove that

(a) LI(B, a, n) S LI(B, b, n); (b) RI®B, a, n) 2 RI(B, b, n).
Let ¢<LI(®, a, n). Then, B is a model of Iv(R(v, a)AA(c, v)). Let a’, b’ be
two elements of R such that f(a’)=a, f(b’)=b and N=R(a’, b’). Since, f is a
strong (n-+1)-homomorphism of N to B and Fv(R(v, x)AA(eg, v)) is a formula of
R-deg=n-+1, Nis a model of Jv(R(v,a’)AA(a,v)). This means that ¢ =LI(R, a’, n).
Since M has the (n4+1)-w.t.p., ¢=LI(R, b’, n). Hence Nis a model of Fv(R(v, b’)
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NA(e, v)). Therefore, B is a model of Iv(Rw, b)ANA(s, v)). This means that
o=LI(B, b, n). This shows that (a) above holds. Similarly (b) above holds.
(q.e.d.)

For each L-structure M and non-negative integer », let f, be the mapping
from N to 2, defined by: f.(a)=¢ such that N is a model of A(g, a) for each
element a in N. By [Corollary 1, there exists such ¢ uniquely for each a. Using
this mapping, we define a new L-structure M, as follows: The universe of N,
is the range of the mapping f, and, N.(P.), (1<i<N), N,L(R) are images of N(F),
(1= N), N(R) under f,, respectively. Then, we can easily prove the following:

LEMMA 7. f, is a strong n-homomorphism of R to M.
Combining these results we have:

THEOREM 8. Suppose that R is an L-structure and n is a non-negative integer.
Then;

(xii) The cardinality of the universe of R, and tr(N,) are no more than K,.

(xiii) tr(M,) 7s a model of Tr.

(xiv) If R is a model of Sym, then N, and tr(N,) are models of it.

(xv) For any R-positive sentence A, if N is a model of A, then N, and
tr(N,) are models of it.

(xvi) For each R-sentence A of R-degree<n, if WM is a model of A, then
N, 7s a model of it.

(xvii) For each R-sentence A of R-degree<n, if W is a model of A and
Tr, then tr(R,) is a model of A.

From above we can easily prove our main theorem as follows:
Suppose that A is a sentence in F. If A has a model %, then by
above, at least one of tr(:M,) and N, is a model of A, whose cardinality is no
more than K,, where n=R-deg(A). This completes a proof of our main theorem.
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