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I. Main theorem.

Let $L$ be the first order classical predlcate logic without equality. We
assume that $L$ has a fixed binary predicate symbol $R$ , unary predicate symbols
$P_{1},$ $P_{N}$ and no other non-logical constant symbols. $R$ -free formulas are
formulas in $L$ which has no occurrences of R. $R$ -positive formulas are formulas
in $L$ which has no negative occurrences of R. $R$-formulas are formulas defined
inductively as follows:

(1) All $R$-free formulas are R-formulas;
(2) If $A$ and $B$ are $R$-formulas, then $\neg A,$ $A\Lambda B,$ $A\vee B,$ $A\supset B$ are all R-

formulas;
(3) If $A(x)$ is an $R$-formula and $x$ is a free variable not occurring in $A(v)$ ,

then $\forall vA(v)$ , $\forall v(R(x, v)\supset A(v))$ , $\forall v(R(v, x)\supset A(v))$ , $\exists vA(v)$ , $\exists v(R(x, v)\wedge A(v))$ ,
$\exists v(R(v, x)\wedge A(v))$ are all R-formulas.

By $R$ -quantifiers, we denote the quantifiers of the form:

$\forall v(R(x, v)\supset\cdots v\cdots)$ , $\forall v(R(v, x)\supset\cdots v\cdots)$ ,

$\exists v(R(x, v)\wedge$ $v\cdots)$ , $\exists v(R(v, x)\wedge$ $v\cdots)$ ,

where . $v\cdots$ has no occurrences of the free variable $x$ . Then, $R$-formulas are
formulas obtained from $R$-free formulas by applying propositional connectives,
quantifiers and R-quantifiers.

For each $R$ -formula $A$ , let $R-\deg(A)$ be the non-negative integer, called
the $R$-degree of $A$ , defined as follows:

(1) $R-\deg(A)=0$ if $A$ is R-free.
(2) $R-\deg(\neg A)=R-\deg(A)$ ,

$R- \deg(A\wedge B)=R-\deg(AVB)=R-\deg(A\supset B)=\max\{R-\deg(A), R-\deg(B)\}$ ,
(3) $R-\deg(\forall vA(v))=R-\deg(\exists vA(v))=R-\deg(A(x))$ , and
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$R-\deg(\forall v(R(x, v)\supset A(v)))=R-\deg(\forall v(R(v, x)\supset A(v)))$

$=R-\deg(\exists v(R(x, v)\wedge A(v)))=R-\deg(\exists v(R(v, x)\wedge A(v)))=R-\deg(A(x))+1$ .
Also, Tr is the sentence $\forall u\forall v\forall w(R(u, v)\wedge R(v, w)$ . $\supset R(u, w))$ and Sym is the
sentence $\forall u\forall v(R(u, v)\supset R(v, u))$ . Let $F$ be the set of finite conjunctions of
sentences: $R$-sentences, $R$ -positive sentences, Tr and Sym. For each sentence
$A$ in $F$, let $R-\deg(A)$ be $\max\{R-\deg(A_{i});$ $A$ is $A_{1}\wedge A_{2}\wedge\cdots\wedge A_{m}$ and $A_{i}$ is
an $R$-sentence}. For each non-negative integer $n$ , let $K_{n}$ be the integer defined
by; $K_{0}=2^{N},$ $K_{n+1}=K_{n}\cross(2^{Kn})\cross(2^{Kn})$ . Then, our main theorem is:

MAIN THEOREM. For each sentence $A$ in $F$, if $A$ has a model, then it has a
model whose cardinality is at most $K_{n}$ , where $n=R-\deg(A)$ .

Suppose that $X$ is a set of sentences in $L$ . Then, a decision method for $X$

is a method by which, given a sentence in $X$, we can decide in a Pnite number
of steps whether or not it has a model. $X$ is said to be decidable if there is a
decision method for $X$. It is well-known that the set of all $R$-free sentences is
decidable, but the set of all sentences in $L$ is not. Our main theorem clearly
implies:

COROLLARY. $F$ is decidable.

In II below, we shall give some applications of our main theorem to decision
problems of non-classical propositional logics. In III below, we shall give a
proof of our main theorem.

II. Applications.

Suppose that $L’$ is a formal logic. Then a decision method for $L’$ is a
method by which, given a formula of $L’$ , we can decide in a finite number of
steps whether or not it is provable in $L’$ .

1) Intuitionistic propositional logic. Let IPL be the intuitionistic proposi-
tional logic whose ProPositional variables are $p_{1},$ $p_{2},$ $\cdots$ , $p_{N}$ . For each formula
$A$ in IPL, and each free variable $x$ in $L$ , let $(A, x)$ be the formula in $L$ defined
by;

$(p_{i}, x)$ is $P_{t}(x)$ , $(\neg A_{f}x)$ is $\forall v(R(x, v)\supset\neg(A, v))$ ,
$(A\wedge B, x)$ is $(A, x)\wedge(B, x)$ , (A $VB,$ $x$ ) is $(A, x)\vee(B, x)$ , and
$(A\supset B, x)$ is $Vv(R(x, v)\supset((A, v)\supset(B, v)))$ .

Then, by Kripke’s completeness theorem, we have:

COMPLETENESS THEOREM FOR IPL ([2]). $A$ is provable in IPL iff the sentence
$Tr\wedge Tr(P_{1})\wedge\cdots\wedge Tr(P_{N})\wedge\exists v\neg(A, v)$ has no models, where $Tr(P_{i})$ is the R-sentence
Vu $(P_{i}(u)\supset\forall v(R(u, v)\supset P_{i}(v)))$ , for each fomula $A$ in IPL.
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Since Tr A $Tr(P_{1})\Lambda\cdots$ A $Tr(P_{N})\Lambda\exists v\neg(A, v)$ belongs to $F$, our main theorem
clearly implies that the logic IPL is decidable.

2) Modal propositional logics. Let MPL be the modal propositional lan-
guage whose logical constants are $\neg\Lambda,$ $\vee,$ $\supset$ and $\square$ , and whose propositional
variables are $p_{1},$ $p_{2},$ $\cdots$ , $p_{N}$ . For each formula $A$ in MPL, and each free variable
$x$ in $L$ , let $(A, x)$ be the formula in $L$ defined by; $(p_{i}, x)$ is $P_{i}(x),$ $(\neg A, x)$ is
$\neg(A, x),$ $(A\wedge B, x)$ is $(A, x)A(B, x),$ (A $VB,$ $x$ ) is $(A, x)V(B, x),$ $(A\supset B, x)$ is
$(A, x)\supset(B, x)$ , and $(\square A, x)$ is $\forall v(R(x, v)\supset(A, v))$ . Let $M$ , S4, $B$ , S5 be modal
propositional logics in Kripke [1], whose language is MPL. Then, by Kripke’s
completeness theorem for modal logics, we have:

COMPLETENESS THEOREM FOR MODAL LOGICS ([1]). For any formula $A$ in
MPL,

(i) $A$ is provable in $M$ iff $\forall uR(u, u)\Lambda\exists v\neg(A, v)$ has no models,
(ii) $A$ is provable in S4 iff $\forall uR(u, u)\wedge$ Tr $\wedge\exists v\neg(A, v)$ has no models,
(iii) $A$ is provable in $B$ iff $\forall uR(u, u)\Lambda$ Sym $\wedge\exists v\neg(A, v)$ has no models,
(iv) $A$ is provable in S5 iff $\forall uR(u, u)\wedge Tr$ ASym $\Lambda\exists v\neg(A, v)$ has no models.

Since $\forall uR(u, u)$ , Tr, Sym, $\exists v\neg(A, v)$ belong to $F$, our main theorem clearly
implies that four logics $M$ , S4, $B$ , S5 are all decidable.

III. A proof.

For each non-negative integer $n$ , let $\Sigma_{n}$ be the set defined as follows:
$\Sigma_{0}=Pow($ {1, 2, $\cdot$ . , $N\})$ , and $\Sigma_{n+1}=\Sigma_{n}\cross Pow(\Sigma_{n})\cross Pow(\Sigma_{n})$ , where $Pow(Z)$ is
the power set of $Z$ . Let $\Sigma=\cup\{\Sigma_{n} ; n<\omega\}$ . Then the cardinality of $\Sigma_{n}$ is $K_{n}$ .
For each $\sigma$ in $\Sigma$ , let $A(\sigma, x)$ be the unary formula defined as follows:

If $\sigma$ belongs to $\Sigma_{0},$ $A(\sigma, x)$ is A $\{P_{i}(x);i\in\sigma\}\Lambda\wedge\{\neg P_{i}(x);i\not\in\sigma\}$ and if
$\sigma=\langle\nu, 1, r\rangle\in\Sigma_{n+1}$ ,

$A(\sigma, x)$ is
$A(\nu, x)\Lambda\wedge\{\exists v(R(v, x)\wedge A(\alpha, v));\alpha\in l\}\wedge\wedge$ { $\neg\exists v(R(v,$ $x)$ A $A(a,$ $v));\alpha\not\in l$ }

A $\wedge\{\exists v(R(x, v)\wedge A(\alpha, v));\alpha\in r\}\wedge\wedge\{\neg\exists v(R(x, v)\wedge A(\alpha, v));\alpha\not\in r\}$ .
Then $A(\sigma, x)$ is an $R$ -formula whose $R$-degree is $n$ if $\sigma$ belongs to $\Sigma_{n}$ . From
this definition we have:

COROLLARY 1. (i) Suppose that $a$ belongs to $\Sigma_{n}$ . Then, $A(\sigma, x)$ is equivalent
to the $dis_{J}unction$ of the formulas: $A(\langle\sigma, l, r\rangle, x)$ , where $l\subseteqq\Sigma_{n}$ and $r\subseteqq\Sigma_{n}$ , in $L$ .

(ii) The disjunction of the formulas: $A(a, x),$ $a\in\Sigma_{n}$ , is provable in $L$ for
each non-negative integer $n$ .

(iii) If $\sigma$ and $\nu$ are distinct elements of $\Sigma_{n}$ , then the sentence $\neg\exists v(A(\sigma, v)$
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A $A(v, v))$ is provable in $L$ .

LEMMA 2. Every $R$-formula $A(x, -- , y)$ of $R- degree\leqq n$ , whose free variables
are among $x,$ $\cdots$ , $y$ , is equivalent to a Boolean combination $B(x, \cdots , y)$ of formulas
of the forms: $\exists v(A(\sigma, v)),$ $A(\sigma, x)$ , , $A(\sigma, y),$ $\sigma\in\Sigma_{n}$ . Moreover $B$ is obtained
from $A$ , concretely. Therefore every $R$-sentence of $R- degree\leqq n$ , is equivalent to
a Boolean combination of sentences of the forms: $\exists v(A(\sigma, v)),$ $a\in\Sigma_{n}$ .

Suppose that su and 8 are $L$ -structures and $f$ is a homomorphism of $\mathfrak{R}$

onto 8. Then $f$ is said to be a strong $n$ -homomorphism of $\mathfrak{R}$ to 8 if the
following two conditions (a) and (b) hold: (a) For any elements $a,$

$b$ in 8, if
8 : $R(a, b)$ , then there are $a’,$ $b’$ in SC such that $f(a’)=a,$ $f(b’)=b$ and $\mathfrak{R}\models R(a’, b^{f})$ .
(b) For any $\sigma\in\Sigma_{n}$ and $a$ in $\mathfrak{R}$ , SC $kA(a, a)$ iff E8 $\models A(\sigma, f(a))$ .

From this definition and Lemma 2, we have:

COROLLARY 3. Suppose that $f$ is a strong $n$ -homomorphism of En to 8.
(iv) For each $R$-sentence $A$ of $R- degree\leqq n$ , if $\mathfrak{R}$ is a model of $A$ , then 8

is also a model of it.
(v) For each $R$-positive sentence $A$ , if SC is a model of $A$ , then 8 is

also a model of it.
(vi) If $\mathfrak{R}$ is a model of Sym, then 8 is also a model of it.

But it is not generally true that if $\mathfrak{R}$ is a model of Tr, then 8 is also a
model of it.

For each $L$ -structure En, let $tr(\mathfrak{R})$ be the $L$ -structure defined by:

$|tr(\mathfrak{R})|=|\mathfrak{R}|$ , $tr(\mathfrak{R})(P_{i})=\mathfrak{R}(P_{i})$ , $i=1,$ $\cdots$ , $N$, and

$tr(\mathfrak{R})(R)=\{\langle a, b\rangle$ ; there is a finite sequence $\langle a_{1}, a_{2}, \cdots , a_{m}\rangle$ such that

$a_{1}=a,$ $a_{m}=b$ and $\langle a_{i}, a_{i+1}\rangle\in \mathfrak{R}(R)$ for each $i-1,$ $\cdots$ , $m-1$ }.

Then, we have:

COROLLARY 4. (vii) $tr(\mathfrak{R})$ is a model of Tr.
(viii) If $\mathfrak{R}$ is a model of Sym, then tr(Wt) is also a model of it.
( ix) For any $R$-positive sentence $A$ , if Wt is a model of $A$ , then tr(SC) is

also a model of it.

But it is not generally true that if $\mathfrak{R}$ is a model of $A$ , then tr(Wt) is also a
model of it, for each $R$-sentence $A$ . For each $L$ -structure Wt, each element $a$

of En and each non-negative integer $n$ , let $LI(\mathfrak{R}, a, n)$ (resp. $RI(\mathfrak{R},$ $a,$ $n)$ ) be the
set of the elements $\sigma$ in $\Sigma_{n}$ such tbat Wt is a model of $\exists v(R(v, a)\Lambda A(\sigma, v))$

(resp. $\exists v(R(a,$ $v)\wedge A(\sigma,$ $v))$). Wt has the $n$ -weak transitive property (abbreviated

by n-w. $t$ . $p.$ ) if $LI(\mathfrak{R}, a, k)$ is a subset of LI(E)I, $b,$ $k$) and $RI(\mathfrak{R}, b, k)$ is a subset
of RI(Wt, $a,$

$k$ ), for each $a$ and $b$ in Wt such that Wt is a model of $R(a, b)$ and each
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$k<n$ . Then clearly if ee is a model of Tr, then it has the n-w. t. $p$ . for each
$n$ and every $L$ -structure has O-w. $t$ . $p$ . On the other hand, we have:

LEMMA 5. SuPPose that $E$)$1$ has the n-w. t. P. Then;
(x) For each element $a$ in Wt and $\sigma$ in $\Sigma_{n}$ , Wt is a model of $A(a, a)$ iff $tr(\mathfrak{R})$

is a model of it.
(xi) For each $R$-sentence $A$ of $R- degree\leqq n,$ $\mathfrak{R}$ is a model of $A$ iff tr(Wt) is

a model of it.

PROOF. By Lemma 2, it is obvious that (xi) follows from (x) immediately.
So we prove (x) by induction on $n$ .

If $n=0$ , then (x) is trivial by the definition of tr(Wt). Assume that (x) is
true for $n$ . We shall show that (x) is also true for $n+1$ . By the definition of
$A(a, x),$ $a\in\Sigma_{n+1}$ , it is sufficient to prove the following two facts:

(a) Wt is a model of $\exists v(R(v, a)\wedge A(\nu, v))$ iff tr(Wt) is a model of it, for each
element $a$ in Wt and each $v$ in $\Sigma_{n}$ .

(b) Wt is a model of $\exists v(R(a, v)\wedge A(\nu, v))$ iff tr(Wt) is a model of it, for each
element $a$ in Wt and each $\nu$ in $\Sigma_{n}$ .

Since “only if” parts of (a) and (b) above are obvious, we prove “if” parts
of them. Assume that tr(Wt) is a model of $\exists v(R(v, a)\wedge A(v, v))$ . Then there is
an element $b$ in tr(Wt) such that tr(Wt) is a model of $R(b, a)\wedge A(\nu, b)$ . By the
definition of tr(SJI), there is a finite sequence $\langle a_{1}, a_{2}, \cdots , a_{m}\rangle$ such that $a_{1}=b$ ,
$a_{m}=a$ and $\langle a_{i}, a_{i+1}\rangle\in \mathfrak{R}(R)$ for each $i=1,$ $\cdots,$ $m-1$ . Since Wt has the $(n+1)- w$ . $t$ . $p.$ ,

$v\in LI(\mathfrak{R}, a_{2}, n)\subseteqq LI(\mathfrak{R}, a_{3}, n)\subseteqq\cdots i$ LI(E)I, $a_{m},$ $n$ ) $=LI(\mathfrak{R}, a, n)$ .
Hence we have that $v\in LI(\mathfrak{R}, a, n)$ . This means that Wt is amodel of $\exists v(R(v, a)$

$\wedge A(\nu, v))$ . Therefore (a) holds. Similarly (b) holds. $(q.e. d.)$

On the other hand, we have the following:

LEMMA 6. If $\mathfrak{R}$ has the n-w. $t$ . $p$ . and there is a strong n-homomorphism of
Wt to 8, then 8 has also the n-w. $t$ . $p$ .

PROOF. By induction $n$ . If $n=0$ , then this lemma is obvious. Assume
that this lemma holds for $n$ , and $\mathfrak{R}$ has the $(n+1)- w.t$ . $p$ . Let $f$ be a strong
$(n+1)$-homomorphism of $\mathfrak{R}$ to ee and $a,$

$b$ be two elements of % such that
8 $kR(a, b)$ . By the hypothesis of induction, it is sufficient to prove that

(a) $LI(8, a, n)iLI(B, b, n)$ ; (b) $RI(8, a, n)\supseteqq RI(8, b, n)$ .
Let $a\in LI(8, a, n)$ . Then, E8 is a model of $\exists v(R(v, a)\Lambda A(\sigma, v))$ . Let $a^{f},$ $b’$ be
two elements of $\mathfrak{R}$ such that $f(a’)=a,$ $f(b’)=b$ and $\mathfrak{R}\models R(a’, b’)$ . Since, $f$ is a
strong $(n+1)$-homomorphism of Wt to 8 and $\exists v(R(v, x)\wedge A(\sigma, v))$ is a formula of
$R-\deg\leqq n+1,$ $\mathfrak{R}isamodelof\exists v(R(v, a’)\Lambda A(\sigma, v))$ . $Thismeansthat\sigma\in LI(\mathfrak{R}, a^{f}, n)$ .
Since Wt has the $(n+1)- w$ . $t$ . $p.,$ $\sigma\in LI(\mathfrak{R}, b^{f}, n)$ . Hence Wt is a model of $\exists v(R(v, b’)$
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$AA(\sigma, v))$ . Therefore, 8 is a model of $\exists v(R(v, b)\Lambda A(\sigma, v))$ . This means that
$a\in LI(8, b, n)$ . This shows that (a) above holds. Similarly (b) above holds.

$(q. e. d.)$

For each $L$ -structure Wt and non-negative integer $n$ , let $f_{n}$ be the mapping
from ee to $\Sigma_{n}$ defined by: $f_{n}(a)=\sigma$ such tbat Wt is a model of $A(a, a)$ for each
element $a$ in Wt. By Corollary 1, there exists such $\sigma$ uniquely for each $a$ . Using
this mapping, we define a new $L$ -structure $Wt_{n}$ as follows: The universe of $\mathfrak{R}_{n}$

is the range of the mapping $f_{n}$ and, $\mathfrak{R}_{n}(P_{i}),$ $(1\leqq i\leqq N),$ $\mathfrak{R}_{n}(R)$ are images of $\mathfrak{R}(P_{i})$ ,
$(1\leqq i\leqq N),$ $\mathfrak{R}(R)$ under $f_{n}$ , respectively. Then, we can easily prove the following:

LEMMA 7. $f_{n}$ is a strong $n$ -homomorphism of En to $\mathfrak{R}_{n}$ .
Combining these results we have:

THEOREM 8. Suppose that $\mathfrak{R}$ is an $L$-sfructure and $n$ is a non-negative integer.
Then;

(xii) The cardinality of the universe of $\mathfrak{R}_{n}$ and $tr(\mathfrak{R}_{n})$ are no more than $K_{n}$ .
(xiii) $tr(Wt_{n})$ is a model of Tr.
(xiv) If Wt is a model of Sym, then $Wt_{n}$ and $tr(Wt_{n})$ are models of it.
(xv) For any $R$-positive sentence $A$ , if $\mathfrak{R}$ is a model of $A$ , then $\mathfrak{R}_{n}$ and

$tr(\mathfrak{R}_{n})$ are models of it.
(xvi) For each $R$-sentence $A$ of $R- degree\leqq n$ , if $\mathfrak{R}$ is a model of $A$ , then

$\mathfrak{R}_{n}$ is a model of it.
(xvii) For each $R$-sentence $A$ of $R- degree\leqq n$ , if SC is a model of $A$ and

Tr, then $tr(\mathfrak{R}_{n})$ is a model of $A$ .

From Theorem 8 above we can easily prove our main theorem as follows:
Suppose that $A$ is a sentence in $F$. If $A$ has a model or, then by Theorem 8
above, at least one of $tr(\mathfrak{R}_{n})$ and $\mathfrak{R}_{n}$ is a model of $A$ , whose cardinality is no
more than $K_{n}$ , where $n=R-\deg(A)$ . This completes a proof of our main theorem.
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