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\S 1. Introduction.

In [1], J. Baumgartner introduced the class of partial orderings for Axiom $A$

which includes $c.c.c$ . $p.0$ . sets, $\omega_{1}$ -closed $p.0$ . sets and various notions of forc-
ing which add new subsets of $\omega$ . If partial orderings which satisfy Axiom $A$

are iterated under countable support, then the iteration, regardless of its length,
satisfies the following covering property: If $X^{o}$ is a countable subset of the
ordinals in the generic extension via the iteration, then there is $X\in V$ (the

ground model) which is countable in $V$ with $X^{o}\subseteqq X$. This covering property
implies that $\omega_{1}$ is preserved. The main procedure involved in showing this is
to produce what we call a fusion sequence which has a lower bound. It is not
plausible, however, that the iteration itself satisfies Axiom $A$ .

In this paper we generalize the class of partial orderings for Axiom $A$ so
that our generalization is iterable under countable support. The difference be-
tween these two classes is that: When we construct a nice descending sequence
(fusion sequence) $\langle p_{n}\rangle_{n<\omega}$ , the choice of $p_{n+1}$ depends only on $p_{n}$ for Axiom $A$

and depends on $p_{0},$ $\cdots$ , $p_{n}$ for our generalization.
Let us begin with a quick review of definitions.

\S 2. Preliminaries.

A binary relation $(P, \leqq)$ is a preordering if $(P, \leqq)$ is reflexive and transi-
tive. A preordering $(P$, $ $)$ satisfies Axiom $A$ if there is a sequence $\langle\leqq_{n}\rangle_{n<\omega}$

such that
(1) $(P, \leqq_{n})$ is a preordering for all $n<\omega$ ,
(2) if $p\leqq_{n}q$ , then $P\leqq q$ ,
(3) if $p\leqq_{n+1}q$ , then $p\leqq_{n}q$ ,
(4) if $\langle p_{n}\rangle_{n<\omega}$ is a sequence of conditions from $P$ with $p_{n+1}\leqq_{n}p_{n}$ for each

$n<\omega$ , then there is a condition $P$ in $P$ such that $p\leqq_{n}p_{n}$ for all $n<\omega$ ,
(5) for any $n$ in $\omega$ , any $p$ in $P$ and any dense subset $D$ of $P$ below $p$ (i.e.
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for any $r$ in $P$, if $r\leqq p$ , then there is a condition $d$ in $D$ with $d\leqq r$), there are
$q$ in $P$ and a countable subset $D’$ of $D$ such that $q\leqq_{n}P$ and $q\leqq\vee D’$ (i. e. for
any condition $r$ with $r\leqq q$ , there are $d$ in $D’$ and $a$ in $P$ with a$r and a$d).

An infinite game $G$ for a preordering $P$ is played by two players I and II.
I initiates a play by choosing a condition $p_{0}$ in $P$, then II follows by choosing
a condition $p_{1}$ with $p_{1}\leqq p_{0}$ , then I picks a condition $p_{2}$ with P2$Pi, and II picks
$p_{3}$ with $p_{3}\leqq p_{2},$ $\cdots$ etc. This way, they finish the play $\langle p_{n}\rangle_{n<\omega}$ . If the play
had a lower bound, then II wins, otherwise I wins the play. By a winning
strategy $a$ for II, we mean a function from the collection of finite sequences of
$P$ into $P$ such that any play of the form:

$p_{0}\geqq\sigma(p_{0})\geqq p_{2}\geqq\sigma(p_{0}, p_{2})\geqq p_{4}\geqq\ldots$

has a lower bound.
For a regular uncountable cardinal $\theta,$ $H(\theta)$ denotes the collection of sets

which are hereditarily of size less than $\theta$ . For each countable ordinal $\delta$, let
$S(\delta, H(\theta))$ be the collection of sequences $\langle a_{i}\rangle_{i\leq\beta}$ such that

(1) $\beta\leqq\delta$,
(2) for each i$\beta $a_{i}$ is a countable subset of $H(\theta)$ and
(3) $\langle a_{i}\rangle_{i\leq\beta}$ is continuously increasing. ( $i$ . $e$ . $j\leqq i\leqq\beta$ implies $a_{j}\subseteqq a_{i}$ and if

$i\leqq\beta$ is a limit ordinal, then $a_{i}= \bigcup_{J<i}a_{j}.$ )

A sequence $\langle N_{i}\rangle_{i\leqq\delta}$ is nice if
(1) for each $i\leqq\delta(N_{i}, \in)$ is a countable elementary substructure of $(H(\theta), \in)$ ,

which we denote by $N\prec H(\theta)$ ,
(2) for each $i<\delta,$ $\langle N_{j}\rangle_{j\leq i}\in N_{i+1}$ and
(3) $\langle N_{i}\rangle_{i\leq\delta}$ is continuous.

Note that since $N_{i}\in N_{i+1}$ and $N_{i}$ is countable, $N_{i}\subseteqq N_{i+1}$ holds. For a condition
$q$ in $P$ and a set $N,$ $q$ is $(P, N)$-generic if for each dense subset $D$ of $P$ in $N$,
$q\leqq\vee(D\cap N)$ holds.

For any uncountable set $A$ , let $[A]^{\omega}$ be the collection of subsets of $A$ which
has size $\omega$ . A subset $D$ of $[A]^{\omega}$ is closed unbounded if $D$ is closed ($i.e$ . for
$\langle X_{n}\rangle_{n<\omega}$ with $X_{n}\in D$ and $X_{n}\subseteqq X_{n+1}$ for all $n<\omega,$ $U_{n<\omega}X_{n}\in D$) and cofinal (i.e.

for any $X\in[A]^{\omega}$ , there is $Y\in Ds.t$ . $X\subseteqq Y$ ).

A preordering $(P, \leqq)$ is $\delta$-ProPer if there are a regular uncountable cardinal
$\theta$ with $P\in H(\theta)$ and a function $C$ from $S(\delta, H(\theta))\cup\{\emptyset\}$ into the collection of
closed unbounded sets of $[H(\theta)]^{\omega}$ such that for any nice sequence $\langle N_{i}\rangle_{i\leq\delta}$ with
$N_{0}\in C(\emptyset)$ and $N_{i+1}\in C(\langle N_{j}\rangle_{j\leq i})$ for all $i<\delta$ and for any $P\in N_{0}\cap P$, there is a
condition $q$ in $P$ such that $q\leqq p$ and $q$ is $(P, N_{i})$-generic for all $i\leqq\delta$ .

$((P_{\beta}, \leqq_{\beta}, 1_{\beta})_{\beta\leq\alpha}, (Q_{\beta}^{o}, \leqq_{\beta}^{O}, 1_{\beta})_{\beta<a})\circ$ is a countable suPPort iteration of length
$a+1$ if
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(1) the elements of $P_{\beta}$ are sequences of length $\beta$ and $(P_{\beta}, \leqq_{\beta})$ is a pre-
ordering with a greatest element $1_{\beta}$ ,

(2) $|\vdash_{P_{\beta}}$

$(\mathring{Q}_{\beta}, \leqq_{\beta}^{O})$ is a preordering with a greatest element $1_{\beta}0$

(3) $P_{\beta+1}\subseteqq$ { $p^{-}\langle\tau\rangle:p\in P_{\beta}$ and $|\vdash_{P}\beta\tau\in Q_{\beta}^{O}$ },
(4) if $P1\vdash_{P_{\beta}}\tau\in Q_{\beta}^{O}$ , then there is a condition $q$ in $P_{\beta+1}$ such that $q\lceil\beta=p$ and

$p|\vdash_{P}\beta q(\beta)=\tau$ ,
(5) if $p\in P_{\beta}$ and $q\in P_{\beta+1}$ , then $P^{arrow}\langle q(\beta)\rangle\in P_{\beta+1}$ ,
(6) $P\leqq_{\beta+1}q$ iff $P\lceil\beta\leqq_{\beta q}\lceil\beta$ and $P\lceil\beta|\vdash_{P_{\beta}}p(\beta)\leqq_{\beta q}^{o}(\beta)$ ,
(7) $1_{\beta+1}=1_{\beta}^{\wedge}\langle 1_{\beta}\rangle$ .

If $\beta$ is a limit ordinal, then

(8) $P_{\beta}$ is the collection of sequences of length $\beta$ such that for each $\rho<\beta$

$p\lceil\rho\in P_{\rho}$ holds and $supp(p)=\{\rho<\beta:p(\rho)\neq 1_{\rho}\}$ is countable,
(9) $p\leqq_{\beta q}$ iff for all $\rho<\beta P\lceil\rho\leqq_{\rho}q\lceil\rho$ and
(10) $1_{\beta}=\langle i_{\rho}\rangle_{\rho<\beta}$ .
If $G_{\beta}$ is a $P_{\beta}$-generic filter over $V$ (the ground model) and $\tau$ is a $P_{\beta}$ -name,

then the object decided by $\tau$ and $G_{\beta}$ is denoted by $\tau[G_{\beta}]$ . We simply write
$(P_{\beta},\mathring{Q}_{\beta})_{\beta\leq\alpha.\beta<\alpha}$ for an iteration.

\S 3. The Axiom C.

DEFINITION 1. A preordering $(P, \leqq)$ satisfies Axiom $C$ if there is a subset
$R$ of the collection of finite sequences of $P$ such that

(1) $R(p)$ for all $p$ in $P$,
(2) $R(p_{0}, \cdots , p_{n})$ implies $P_{0}\geqq\ldots\geqq p_{n}$ ,
(3) for any $n<\omega$ and any sequence of conditions $\langle p_{k}\rangle_{k<\omega}$ from $P$ if

$R(p_{0}$ , $\cdot$ .. , $p_{n}$ , $\cdot$ .. , $p_{n+i})$ holds for all $i<\omega$, then there is a condition $p$ in $P$ such
that $R(p_{0}, , p_{t}, p)$ holds for all $i\geqq n-1$ ,

(4) if $R(p_{0}, \cdots , p_{n})$ and $D$ is dense below $p_{n}$ , then there are a condition
$p_{n+1}\in P$ and a countable subset $D’$ of $D$ such that $R(p_{0}, \cdot.. , p_{n}, p_{n+1})$ and $p_{n+1}$

$VD’ hold.

We call the sequence $\langle p_{k}\rangle_{k<\omega}$ appeared in (3) a fusion sequence and the con-
dition $p$ , a fusion of the fusion sequence.

PROPOSITION 2.
(0) (4) in Definition 1 is equivalent to: If $R(p_{0}, \cdots , p_{n})$ and $p_{n}|\vdash_{P}\tau$ is an

ordinal”, then there are a condition $p_{n+1}$ in $P$ and a countable collection of ordinals
$X$ such that $R(p_{0}, p_{n}, p_{n+1})$ and $p_{n+1}|\vdash_{P}\tau\in X$.

(1) If $(P, \leqq)$ satisfies Axiom $A$ , then $(P, \leqq)$ satisfies Axiom $C$.
(2) If $(P, \leqq)$ satisfies Axiom $C$, then $(P, \leqq)$ is $\delta$-proper for all $\delta<\omega_{1}$ .
(3) Countable support iterations of Axiom $A$ of arbitrary length satisfy
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Axiom $C$.
(4) Countable support producis of perfect set forcing satisfy Axiom $C$ .
(5) If the player II has a winmng strategy in the game $G$ for $P$, then the

Preordenng $P$ satisfies Axiom $C$.

PROOF. (0) Suppose (4) in Definition 1. Suppose $R(p_{0}, \cdots , p_{n})$ and $p_{n}|\vdash\tau$

is an ordinal”. Define $D=tp\in P$ : there is an ordinal $\alpha$ s.t. $p|\vdash\tau=\alpha$ }. $D$ is
dense below $p_{n}$ . Thus by (4) in Definition 1, we have $p_{n+1}$ in $P$ and a counta-
ble subset $D’$ of $D$ such that $R(p_{0}, \cdot.. , p_{n}, p_{n+1})$ and $p_{n+1}\leqq\vee D’$ hold. Let $X=$

$\{\alpha:\exists d\in D’d|\vdash\tau=\alpha\}$ . $X$ works.
Conversely, assume $R(p_{0}, \cdots , p_{n})$ and $D$ is dense below $p_{n}$ . We want to

show that the conclusion of (4) in Definition 1 holds. Let $\langle d_{\xi}\rangle_{\xi<\rho}$ be an enu-
meration of $D$ . Since $D$ is dense below $p_{n}$ , we have a $P$-name $\xi$ s. t. $p_{n}|\vdash d_{\xi}^{\circ}$

$\in C$ , where $C$ is the canonical name for a $P$-generic filter. Therefore there is
a condition $p_{n+1}$ in $P$ and a countable collection of ordinals $X$ such that
$R(p_{0}, \cdots , p_{n}, p_{n+1})$ and $p_{n+1}|\vdash\xi\in X$. Let $D’=\{d_{\xi} : \xi\in X\cap\rho\}$ . $D’$ works.

(1) Suppose $(P, \leqq)$ satisfies Axiom $A$ with $\langle\leqq_{n}\rangle_{n<\omega}$ . We define $R$ as fol-
lows: $R(p)$ if and only if $p\in P$ ; and for $p_{0},$ $\cdots$ , $p_{n+1}$ in $P,$ $R(p_{0}, \cdots , p_{n+1})$ if
and only if $p_{n+1}\leqq_{n}...\leqq_{1}p_{1}\leqq_{0}p_{0}$ . This $R$ works.

(2) SuPpose $(P, \leqq)$ satisfies Axiom $C$ with $R$ . Take a regular uncountable
cardinal $\theta$ with $P\in H(\theta)$ and define the function $C$ with the domain $S(\delta, H(\theta))$

$\cup\{\emptyset\}$ such that $C(\emptyset)=$ { $N\prec H(\theta):N$ is countable and $P,$ $\leqq,$ $R\in N$ } and for any
$\sigma\in S(\delta, H(\theta)),$ $C(\sigma)=$ { $N\prec H(\theta):N$ is countable}. Let $\langle N_{i}\rangle_{i\leq\delta}$ be a nice sequence
with $N_{0}\in C(\emptyset)$ and $N_{\ell+1}\in C(\langle N_{j}\rangle_{j\leqq i})$ for all $i<\delta$ . It suffices to show that

(a) For any $p$ in $P\cap N_{0}$ , there is a condition $p_{0}$ such that $p_{0}\leqq p$ and $p_{0}$ is
$(P, N_{0})$-generic.

(b) For all $\alpha,$ $\beta$ with $\alpha<\beta\leqq\delta$ , if $R(p_{0}, \cdots , p_{n})$ with $p_{0},$ $\cdots$ , $p_{n}\in N_{\alpha+1}$ and
$p_{n}$ is $(P, Nt)$-generic for all i$a, then there is a condition $p_{n+1}$ such that
$R(p_{0}, \cdots , p_{n}, p_{n+1})$ and $p_{n+1}$ is $(P, N_{i})$-generic for all $i\leqq\beta$ .

TO show (a), let $p$ be a condition in $P\cap N_{0}$ and let $\langle D_{n}\rangle_{n<\omega}$ enumerate the
dense subsets of $P$ which belong to $N_{0}$ . By (1) and (4) in Definition 1 we have
a condition $a_{0}$ and a countable subset $D_{0}’$ of $D_{0}$ such that $R(p, a_{0})$ and $a_{0}\leqq\vee D_{0}’$

hold. Since $p,$ $R,$ $\leqq,$ $D_{0}$ and $P$ are all in $N_{0}$ , there are $a_{0}$ and $D_{0}’$ in $N_{0}$ as such.
Since $D_{0}’$ is countable, $D_{0}’$ is a subset of $N_{0}$ . Therefore, we have $a_{0}\leqq\vee(D_{0}\cap N_{0})$ .
We repeat this argument for $D_{1},$ $D_{2},$ $D_{3}$ and so forth to get $\langle a_{n}\rangle_{n<\omega}$ and $\langle D_{n}’\rangle_{n<\omega}$

such that $R(p, a_{0}, \cdots, a_{n})$ and $a_{n}\leqq\vee(D_{n}\cap N_{0})$ for all $n<\omega$ . By (3) in Defini-
tion 1, we have a condition $p_{0}$ such that $R(p, a_{0}, \cdot , a_{n-1}, p_{0})$ for all $n<\omega$ .
By (2) in Definition 1 we have $a_{n}\geqq Po$ for all $n<\omega$ . Thus $p_{0}\leqq\vee(D_{n}\cap N_{0})$ for
all $n<\omega$, and so $p_{0}$ is $(P, N_{0})$-generic. Note that we can retake such a $p_{0}$ in
$N_{1}$ , if $1\leqq\delta$ .



A generalization of Axiom $A$ 69

TO show (b), we proceed by induction on $\beta$ (for all $\alpha<\beta$ ). Notice that if
x$y and $y$ is $(P, M)$-generic, then so is $x$ . Also notice that if $x$ is $(P, M_{j})-$

generic for all $j<i$, then $x$ is $(P, U_{j<i}M_{j})$-generic. We use these facts. The
rests are similar to the above argument.

(3) We assume that the reader is familiar with Lemmas 7.2 and 7.3 in [1].
Let $(P_{a},\mathring{Q}_{a})_{\alpha\leq v.\alpha<v}$ be a countable support iteration of preorderings such that
$|\vdash_{Pa}\mathring{Q}_{\alpha}$ satisfies Axiom $A$ with $\langle\leqq_{n}^{O}\alpha\rangle_{n<\omega}$ for all $\alpha<\nu$ . For each $P,$ $q\in P_{\nu}$ ,
$n<\omega$ and a finite subset $F$ of $\nu$ , we define as in [1] $q\geqq_{F.n}P$ if $q\geqq P$ and for
any $\alpha$ in $Fp\lceil\alpha|\vdash_{P_{\alpha}}P(\alpha)\leqq_{n}^{\alpha}q(\alpha)\circ$ holds. For each $p$ in P., let us fix a func-
tion $f_{p}$ from $\omega$ such that $\nu\supseteqq f_{p}$ $\omega\supseteqq supp(p)$ . (Here we assume $\nu\neq 0.$ ) We de-
fine $F_{p_{0}\ldots..p_{n}}=f_{p_{0}}(n+1)\cup$ $\cup f_{p_{n}}(n+1)$ for each $p_{0}$ , , $P_{n}\in P_{\nu}$ and define
inductively a subset $R$ of the finite sequences of P..

(a) $R(p)$ if $p\in P_{\nu}$ .
(b) $R(p_{0}$ , $\cdot$ . , $p_{n+1})$ if $R(p_{0}, , p_{n})$ and $p_{n}\geqq_{F.n}p_{n+1}$ holds, where $F=$

$F_{p_{0}\ldots..p_{n}}$ .
This $R$ works.

(4) Similar to (3) using Lemma 1.6 and Corollary 1.10 in [2].
(5) Let $a$ be a winning strategy for the player II. We define $R$ as follows:

$R(p)$ if and only if $p$ in $P$ ; and for $p_{0},$ $\cdots$ , $p_{n+1}$ in $PR(p_{0}, \cdots , p_{n+1})$ if and
only if $p_{0}\geqq\sigma(p_{0})\geqq p_{1}\geqq a(Po, p_{1})\geqq\ldots\geqq a(p_{0}, \cdots , p_{n})\geqq p_{n+1}$ . This $R$ works.

Q. E. D.

It is known concerning Axiom $A$ :

THEOREM (J. Baumgartner, unpublished). Let $(P_{a},\mathring{Q}_{a})_{a\leq\nu.a<\nu}$ be a countable
suPPort iteration such that $|\vdash_{P_{\alpha}}\mathring{Q}_{\alpha}$ satisfies Axiom $A$ ’ for all $\alpha<\nu$ . If $v<\omega_{1}$ ,
then we may show that P. satisfies Axiom $A$ .

PROOF. Since $\nu$ is countable, we may fix a sequence of finite sets $\langle F_{n}\rangle_{n<\omega}$

such that $F_{n}\subseteqq F_{n+1}\subseteqq\nu$ for all $n<\omega$ and $\bigcup_{n<\omega}F_{n}=\nu$ . Suppose that $|\vdash_{P_{a}}\mathring{Q}_{a}$

satisfies Axiom $A$ with $\langle\leqq_{n}^{O}\alpha\rangle_{n<\omega}$ for all $\alpha<\nu$ . For $p,$ $qEP$. define $q\leqq_{n}P$ if and
only if $q\leqq p$ and for any $\alpha$ in $F_{n}$ $q\lceil\alpha|\vdash_{P_{\alpha}}q(\alpha)\leqq_{n}^{O}\alpha p(\alpha)$ . This is the same as
(3) in Proposition 2. The difference is that the choice of the $F_{n}$ is this time
independent of $p,$ $q\in P_{\nu}$ . This $\langle\leqq_{n}\rangle_{n<\omega}$ works. Q. E. D.

THEOREM 3. Let $(P_{a},\mathring{Q}_{\alpha})_{a\leq\nu.a<v}$ be a countable suPPort iteration such that
$I\vdash_{P_{\alpha}}$

“
$Q_{a}$ satisfies Axiom $C$ ’ for all $\alpha<\nu$ . We can show that P. satisfies Axiom $C$.

TO show Theorem 3, we fix a countable support iteration $(P_{a},\mathring{Q}_{\alpha})_{a\leq\nu.a<\nu}$

and a sequence of names $\langle R_{\alpha}^{o}\rangle_{a<\nu}$ such that $|\vdash_{P_{\alpha}}Q_{\alpha}^{o}$ satisfies Axiom $C$ with
$\mathring{R}_{\alpha}$ for each $\alpha<\nu$ . We first observe the following fusion lemma:

LEMMA 4. Given a sequence $\langle E_{n}\rangle_{n<\omega}$ of disjoint finite subsets of $\delta$ with $\delta\leqq\nu$
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and a sequence of conditions $\langle p_{n}\rangle_{n<\omega}$ from $P_{\delta}$ . If we assume that:
(1) $i<\omega$ ,
(2) $\forall n<\omega p_{n}\geqq p_{n+1}$ ,
(3) $U_{n<\omega}supp(p_{n})$ El $U_{n<\omega}E_{n}$ ,
(4) $\forall n\geqq i\forall k<n\forall\alpha\in E_{k}$ $p_{n}\lceil\alpha|\vdash\mathring{R}_{a}(p_{k}(\alpha), \cdots , p_{n}(\alpha))$ , then there is a con-

dition $p$ in $P_{\delta}$ such that
(5) $\forall n<\omega$ $p_{n}\geqq p$ ,
(6) $\forall n\geqq i\forall k<n\forall\alpha\in E_{k}$ $p\lceil\alpha|\vdash\mathring{R}_{\alpha}(p_{k}(\alpha), \cdots , p_{n-1}(\alpha), p(\alpha))$ .
PROOF. We construct the condition $p$ by induction on $\alpha<\delta$ . Suppose we

have constructed $p\lceil\alpha$ such that
(7) $\forall n<\omega$ $p_{n}\lceil\alpha\geqq p\lceil\alpha$ ,
(8) $\forall n\geqq i\forall k\leqq n\forall\beta\in E_{k}\cap\alpha$ $P\lceil\beta|\vdash\mathring{R}_{\beta}(p_{k}(\beta), \cdots p_{n-1}(\beta),$ $p(\beta))$ .

It suffices to get $p(\alpha)$ : If $\alpha$ is not in any of $E_{n}$ , then we put $p(a)=1_{\alpha}$ . If $\alpha$

is in some $E_{k}$ , let us fix such a unique $k$ . If $k<i$ holds, then for all $n\geqq i$ and
for all $\beta$ in $E_{k}$ $p_{n}\lceil\beta|\vdash\mathring{R}_{\beta}(p_{k}(\beta), \cdots , p_{n}(\beta))$ holds. But by (7) we have
$p\lceil\alpha|\vdash R_{\alpha}^{o}(P_{k}(\alpha), \cdots , p_{n}(\alpha))$ for all $n\geqq i$ . Applying fusion inside the forcing re-
lation, we have $p(\alpha)$ such that $p[\alpha|\vdash\mathring{R}_{\alpha}(p_{k}(\alpha), , p_{n-1}(\alpha), p(\alpha))$ for all $n\geqq i$ .
And so it is easy to see $p\lceil a|\vdash p_{n}(\alpha)\geqq p(\alpha)$ for all $n<\omega$ . If $i\leqq k$ holds, then
this time for all $n>k$ and for all $\beta$ in $E_{k}p_{n}\lceil\beta|\vdash R_{\beta}^{o}(p_{k}(\beta), \cdot. , P_{n}(\beta))$ holds.
But by (7) again, we have $p\lceil\alpha 1\vdash R_{a}^{o}(p_{k}(\alpha), , p_{n}(\alpha))$ for all $n>k$ . Therefore
as in the previous case there is $p(\alpha)$ such that $P\lceil\alpha|\vdash\mathring{R}_{\alpha}(p_{k}(\alpha), \cdots , p_{n-1}(\alpha), p(a))$

holds for all $n>k$ and so $p\lceil\alpha|\vdash p_{n}(\alpha)\geqq p(\alpha)$ for all $n<\omega$ . Note that $supp(P)$

$\subseteqq U_{n<\omega}E_{n}$ . Q. E. D.

LEMMA 5. Suppose $\langle E_{i}\rangle_{\ell<n}$ is a sequence of disjoint finite subsets of $\rho$ with
$\rho\leqq\nu$ and $\langle p_{i}\rangle_{i\leq n}$ is a sequence of conditions from $P_{\rho}$ such that

(1) $p_{0}\geqq\ldots\geqq p_{n}$ ,
(2) $\forall k<n\forall\alpha\in E_{k}$ $p_{n}\lceil\alpha|\vdash\dot{R}_{\alpha}(p_{k}(\alpha), \cdots , p_{n}(\alpha))$ .
If $E_{n}$ is a finite subset of $\rho$ disjoint from $E_{0}$ through $E_{n-1}$ and $D$ is a dense

subset of $P_{\rho}$ below $p_{n}$ , then there are a condition $p_{n+1}$ in $P_{\rho}$ and a countable sub-
set $D’$ of $D$ such that

(3) $p_{n}\geqq p_{n+1}$ ,
(4) V $k<n+1\forall\alpha\in E_{k}$ $p_{n+1}\lceil\alpha|\vdash\mathring{R}_{a}(p_{k}(\alpha), \cdots p_{n+1}(\alpha))$ ,
(5) $p_{n+1}$ $ V $D’$ .
PROOF. We show by induction on $\rho\leqq\nu$ . There are two cases:
Case 1. $UE$ is bounded below $\rho$ , say by $\delta<\rho$ :
Since $D$ is dense below $p_{n}$ , we may fix a subset $E$ of $D$ such that
(6) $\forall e\in E$ $e\leqq p_{n}$ ,
(7) $\forall e,$ $e’\in E$ (if $e\neq e’$ , then $er\delta$ and $e’\lceil\delta$ are incompatible in $P_{\delta}$),

(8) $p_{n}\lceil\delta\leqq\vee\{e\lceil\delta:e\in E\}$ .
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Applying the induction hypothesis to $\langle E_{i}\rangle_{i\leq n},$ $\langle p_{i}\lceil\delta\rangle_{i\leq n}$ and { $b\in P_{\delta}$ : $\exists e\in E$

$b\leqq e\lceil\delta\}$ , we have a condition $p_{n+1}\lceil\delta$ (a notational abuse) and a countable
subset $D’$ of $E$ such that (4) and $p_{n+1}\lceil\delta\leqq\vee\{e\lceil\delta:e\in D’\}$ . Since $D’$ is counta-
ble we have a condition $p_{n+1}$ in $P_{\rho}$ such that $p_{n}\geqq p_{n+1}$ and $e\leqq e\lceil\delta^{\wedge}p_{n+1}\lceil[\delta, \rho)$

and $e\geqq e[\delta^{\wedge}p_{n+1} [ [\delta, \rho)$ for each $e$ in $D’$ . Now it is easy to check $p_{n+1}$ and
$D’$ work.

Case 2. $\rho=\delta+1$ and $\delta\in E_{k}$ for some $\delta$ and some $k$ with OS k$n:
Since $D$ is dense below $p_{n}$ , we have $p_{n}\lceil\delta|\vdash\overline{D}=\{d(\delta)[G_{\delta}]:d\in D$ and

$d\lceil\delta\in G_{\delta}\}$ is dense below $p_{n}(\delta)$ . Thus we may fix $P_{\delta}$-names $p_{n+1}(\delta)$ and $\overline{D}’$

such that $p_{n}\lceil\delta$ forces:
(9) $p_{n+1}(\delta)$ $ $\vee\overline{D}’$ ,
(10) $p_{n+1}(\delta)\leqq p_{n}(\delta)$ ,
(11) $\overline{D}’$ is a countable subset of $\overline{D}$,
(12) $\mathring{R}_{\delta}(p_{k}(\delta), p_{n}(\delta),$ $p_{n+1}(\delta))$ .
Since $\overline{D}’$ is countable, we may fix a sequence of $P_{\delta}$-names $\langle\mathring{d}_{m}\rangle_{m<\omega}$ such

that for each $P_{\delta}$-generic filter $G_{\delta}$ over $V$ with $p_{n}\lceil\delta\in G_{\delta}$ :
(13) $\forall m<\omega$ ( $d_{m}[G_{\delta}]\in DQ$ and $d_{m}[G_{\delta}]\circ\lceil\delta\in G_{\delta}$) and
(14) $\overline{D}’[G_{\delta}]=\{d_{7n}^{\circ}[G_{\delta}](\delta)[G_{\delta}]:m<\omega\}$ hold.
And so for each $m<\omega D_{m}=\{q\in P_{\delta} : \exists d\in Dq|\vdash d_{\pi\iota}=do\}$ is dense below $p_{n}\lceil\delta$ .

By applying the induction $hyPOthesis$ to $\langle E_{i}\cap\delta\rangle_{i<n},$ $\langle p_{l}\lceil\delta\rangle_{i\leq n}$ and $\langle D_{m}\rangle_{m<\omega}$

repeatedly and by Lemma 4, we take a sequence $\langle D_{m}’\rangle_{m<\omega}$ and a condition
$p_{n+1}[\delta$ in $P_{\delta}$ such that

(15) $\forall m<\omega$ ( $D_{m}’$ is a countable subset of $D_{m}$ ),
(16) $\forall m<\omega$ $p_{n+1}\lceil\delta\leqq\vee D_{m}’$ ,
(17) $p_{n}\lceil\delta\geqq p_{n+1}\lceil\delta$,
(18) $\forall l<n+1\forall\alpha\in E_{1}\cap\delta$ $p_{n+1}\lceil\alpha|\vdash\mathring{R}_{\alpha}(P\iota(\alpha), \cdots , p_{n+1}(a))$ .
Let $p_{n+1}=p_{n+1}\lceil\delta^{-}\langle p_{n+1}(\delta)\rangle$ , then it is easy to check that $p_{n+1}\leqq\vee\{d\in D$ :

$\exists m<\omega\exists q\in D_{m}’q|\vdash d_{m}^{\circ}=d\}$ and $p_{n+1}\lceil\alpha|\vdash\mathring{R}_{\alpha}(p_{\iota}(\alpha), \cdots , p_{n+1}(\alpha))$ holds for all $1<$

$n+1$ and for all $\alpha\in E_{l}$ . Q. E. D.

PROOF OF THEOREM 3. For each $p$ in $P_{\nu}$ , let us fix a function $f_{p}$ from $\omega$

with $\nu\supseteqq f_{p}\omega\supseteqq supp(P)$ . For each $P$ in $P_{v}$ , let $E_{p}=f_{p}1$ and for each $p_{0}$ , ,
$p_{n+1}\in P_{\nu}$ , let $E_{p_{0}\ldots..p_{n+1}}=[f_{p_{0}}(n+2)\cup\cdots\cup f_{p_{n+1}}(n+2)]-[f_{p_{0}}(n+1)\cup\cdots\cup f_{p_{n}}$

$u(n+1)]$ . We define a subset $R$ of the collection of finite sequences of $P_{\nu}$ such
that

(a) $R(p_{0})$ for all $p_{0}\in P_{\nu}$ and
(b) $R(Po, \cdots , p_{n+1})$ if $p_{0}\geqq\ldots\geqq P_{n+1}$ and $p_{n+1}\lceil a|\vdash\mathring{R}_{\alpha}(p_{k}(a), p_{n+1}(a))$

holds for all $k<n+1$ and for all $a\in E_{p_{0}\ldots..p_{k}}$ .
It is easy to check that this $R$ works using Lemmas 4 and 5. Q. E. D.

QUESTION. I do not know any example which is Axiom $C$ but not Axiom $A$ .
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