J. Math. Soc. Japan Vol. 42, No. 3, 1990

Homogeneous Kähler manifolds of non-degenerate Ricci curvature

Dedicated to Professor N. Tanaka on his 60th birthday

By Kazufumi NAKAJIMA

(Received July 11, 1988) (Revised July 27, 1989)

Introduction.

Let M be a connected homogeneous Kähler manifold. Denote by Aut(M) the group of all holomorphic isometries of M. Let G be a connected subgroup of Aut(M) acting transitively on M and K the isotropy subgroup of G at a point of M. We denote by \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K respectively. Then there correspond to the invariant complex structure and the Kähler form of M a linear endomorphism j of \mathfrak{g} and a skew-symmetric bilinear form ρ on \mathfrak{g} such that $(\mathfrak{g}, \mathfrak{k}, j, \rho)$ becomes an effective Kähler algebra. (For the definition of a Kähler algebra, see § 1.)

According to Vinberg and Gindikin [8], the Kähler algebra $(\mathfrak{g}, \mathfrak{k}, j, \rho)$ is called *non-degenerate* if there exists a linear form ω on \mathfrak{g} such that $\rho = d\omega$ ([8]), where the operator d means the exterior differentiation under the identification of p-forms on \mathfrak{g} with left invariant p-forms on the Lie group G. Note that if the Kähler algebra $(\mathfrak{g}, \mathfrak{k}, j, \rho)$ is non-degenerate, then the system $(\mathfrak{g}, \mathfrak{k}, j)$ becomes a *j*-algebra. (For the definition of a *j*-algebra, see § 2.)

The purpose of the present paper is to investigate the structure of j-algebras and prove the following

THEOREM. Let M=G/K be a connected homogeneous Kähler manifold where G is a subgroup of Aut(M). Then the Ricci curvature of M is non-degenerate if and only if the corresponding Kähler algebra (g, t, j, ρ) is non-degenerate.

We explain our method. By [3] every connected homogeneous Kähler manifold M is a holomorphic fiber bundle over a homogeneous bounded domain in which the fiber is the product of a flat homogeneous Kähler manifold and a compact simply connected homogeneous Kähler manifold. Recall that the Ricci tensor of M corresponds to the canonical hermitian form introduced by Koszul [4] and it is expressed in terms of the Kähler algebra (g, \mathfrak{t}, j, ρ). Then by a simple calculation, we can see in §1 that *if the Ricci tensor of M is non*-

K. Nakajima

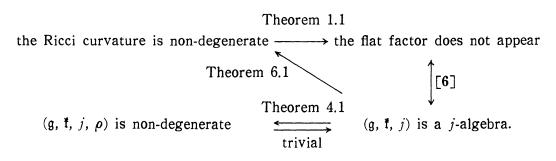
degenerate, then the flat factor of M does not appear (Theorem 1.1). On one hand we already know from [6, Theorems A and B] and from [7, Proposition 3.1] that the flat part of M vanishes if and only if the system (g, f, j) becomes a *j*-algebra. Therefore the study of homogeneous Kähler manifolds of nondegenerate Ricci curvature has great concern with the study of *j*-algebras.

In §§2 and 3, starting from the decomposition theorem of a *j*-algebra in [9] with respect to an abelian ideal and using the structure theorem of a homogeneous convex cone in [3], we will describe the structure of a *j*-algebra in more detail. From our descriptions, we can see in §4 that every closed 2-form ρ on an effective *j*-algebra (g, f, *j*) satisfying the conditions: $\rho(f, g)=0$ and $\rho(jx, jy)=\rho(x, y)$ for $x, y \in g$ is an exact form (Theorem 4.1). In particular, for an effective Kähler algebra (g, f, *j*, ρ) the non-degeneracy is equivalent to the condition that (g, f, *j*) is a *j*-algebra.

§ 5 is not needed for the proof of our theorem, but is devoted to giving an invariant meaning to the decomposition of a j-algebra obtained in §§ 2 and 3 (Theorem 5.3).

In §§ 6 and 7 we will prove that the canonical hermitian form of every effective *j*-algebra is non-degenerate (Theorem 6.1). This can be done by direct computations, using the root space decomposition due to [9].

Summing up our results, we have the following implications:



Thus we get our theorem. At the same time, we also obtain that the Ricci curvature of a connected homogeneous Kähler manifold M is non-degenerate if and only if M is a holomorphic fiber bundle over a homogeneous bounded domain in which the fiber is a compact simply connected homogeneous Kähler manifold. We would like to remark that the last condition is equivalent to say that M is, as a complex manifold, the product of a homogeneous bounded domain and a compact simply connected homogeneous complex manifold ([6], [3]).

Throughout this paper, we use the following notations: For a Lie algebra g, rad(g) and nil(g) mean the radical and the nilpotent radical of g respectively. Let A be a linear endomorphism of a real vector space V. Then A is uniquely decomposed as A=R+I+N, where all R, I and N commute, R (resp. I) is a semi-simple endomorphism with real (resp. imaginary) eigenvalues and N is a

nilpotent endomorphism. We denote by Re(A) the endomorphism R.

§1. Kähler algebras.

Let g be a finite dimensional Lie algebra over R, t a subalgebra of g, j a linear endomorphism of g and ρ a skew-symmetric bilinear form on g. We then call the quadruple (g, t, j, ρ) or simply g to be a Kähler algebra if the following conditions are satisfied:

(1.1)
$$j\mathfrak{k} \subset \mathfrak{k}, \quad j^2 x \equiv -x \pmod{\mathfrak{k}},$$

(1.2)
$$[x, jy] \equiv j[x, y] \pmod{\mathfrak{k}} \quad \text{for } x \in \mathfrak{k}, y \in \mathfrak{g},$$

(1.3)
$$[jx, jy] \equiv [x, y] + j[jx, y] + j[x, jy] \pmod{\mathfrak{k}} \quad \text{for } x, y \in \mathfrak{g},$$

- $(1.4) \qquad \qquad \rho(\mathfrak{k},\,\mathfrak{g})=0\,,\qquad d\rho=0\,,$
- (1.5) $\rho(jx, jy) = \rho(x, y) \quad \text{for } x, y \in \mathfrak{g},$
- (1.6) $\rho(jx, x) > 0 \quad \text{if } x \notin \mathfrak{k}.$

The subalgebra t will be called the isotropy subalgebra.

Let M=G/K be a connected homogeneous Kähler manifold of a Lie group G by a closed subgroup K, equipped with a G-invariant complex structure J and a G-invariant Kähler form Ψ . Denote by \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K respectively. Then there exists a linear endomorphism j of \mathfrak{g} such that $\pi_*(jx)_e = J_o(\pi_*x_e)$ for $x \in \mathfrak{g}$, where e denotes the identity element of G, π denotes the projection of G onto G/K and $o = \pi(e)$. We also set $\rho = \pi^* \Psi$. Then $(\mathfrak{g}, \mathfrak{k}, j, \rho)$ becomes a Kähler algebra.

Conversely let (g, f, j, ρ) be a Kähler algebra and let G be the simply connected Lie group with g as its Lie algebra. Denote by K the connected subgroup of G corresponding to f. Then as is proved in [3, Proposition 1.1], the group K is closed in G and the homogeneous space G/K admits a G-invariant Kähler structure.

Let g be a Kähler algebra with an isotropy subalgebra f and an operator j. We call g to be *effective* if f does not contain any non-trivial ideal of g. Let j' be another endomorphism such that $j'x \equiv jx \pmod{1}$ for all $x \in g$. Then g is also a Kähler algebra relative to j'. Changing j to such a j' will be said an *inessential change* and we will not distinguish two algebras which are related to each other by inessential changes. A subalgebra g' of g is called a Kähler subalgebra if it satisfies $jg' \subset g' + f$. In this case after an inessential change of j, we can assume that $jg' \subset g'$. Then g' itself is a Kähler algebra with the isotropy subalgebra $g' \cap f$. Similarly Kähler ideals are defined.

Let (g, t, j) be a system satisfying (1.1), (1.2) and (1.3). We further assume that Trace ad x=0 for all $x \in t$. For any $x \in g$, $ad jx - j \circ ad x$ leaves t invariant

K. Nakajima

and hence induces an endomorphism of g/\mathfrak{k} . According to Koszul [4], we define a linear form ϕ , called *the Koszul form*, by

 $\psi(x) = \operatorname{Trace}(\operatorname{ad} jx - j \circ \operatorname{ad} x)|_{\mathfrak{g}/\mathfrak{k}} \quad \text{for } x \in \mathfrak{g}.$

Let us set

$$\eta(x, y) = \phi([jx, y])$$
 for $x, y \in \mathfrak{g}$.

We can see that η is a symmetric bilinear form on g satisfying the following properties ([4]):

$$\eta(\mathfrak{f},\mathfrak{g})=0$$
 and $\eta(jx,jy)=\eta(x,y)$ for $x, y\in\mathfrak{g}$.

By the above properties, the form η induces a hermitian symmetric bilinear form on g/f, which will be called *the canonical hermitian form*. It is standard that for a Kähler algebra g, the canonical hermitian form thus obtained can be identified with the Ricci tensor of the homogeneous Kähler manifold corresponding to g. Using the result of [3], we will calculate the canonical hermitian form and prove the following

THEOREM 1.1. Let M be a connected homogeneous Kähler manifold. Assume that the Ricci curvature of M is non-degenerate. Then M is, as a complex manifold, the product of a homogeneous bounded domain and a compact simply connected homogeneous complex manifold.

PROOF. By [3, Theorems 2.1 and 2.5], we can find a subgroup G of Aut(M) acting on M transitively and having the following properties: Let us denote by $(\mathfrak{g}, \mathfrak{k}, j, \rho)$ the Kähler algebra attached to the expression M=G/K. Then \mathfrak{g} is decomposed as $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{h}$ where

(1) a is an abelian Kähler ideal of g;

(2) \mathfrak{h} is a Kähler subalgebra containing \mathfrak{k} and the homogeneous Kähler manifold associated with the Kähler algebra $(\mathfrak{h}, \mathfrak{k}, j, \rho)$ is, as a complex manifold, the product of a homogeneous bounded domain and a compact simply connected homogeneous Kähler manifold.

In order to prove our theorem it is sufficient to show that $\mathfrak{a}=0$. Let Ψ denote the Koszul form of the Kähler algebra $(\mathfrak{g}, \mathfrak{k}, j, \rho)$. After an inessential change of j, we can assume that \mathfrak{a} is j-invariant. Then it is clear that $\Psi(\mathfrak{a})=0$. Hence we have $\Psi([\mathfrak{a}, \mathfrak{g}])=0$. This means that $\mathfrak{a}\subset\mathfrak{k}$, because the canonical hermitian form is non-degenerate in our case. Since $\mathfrak{k}\cap\mathfrak{a}=0$ holds, we can conclude $\mathfrak{a}=0$, proving the theorem. q. e. d.

§ 2. The structure of j-algebras.

Let (g, \mathfrak{k}, j) be a system satisfying (1.1), (1.2) and (1.3). We call (g, \mathfrak{k}, j) or simply g *a j-algebra* if there exists a linear form ω on g such that $(g, \mathfrak{k}, j, d\omega)$

is a Kähler algebra. Such a form ω will be called *an admissible form* of the *j*-algebra (g, f, *j*). Clearly if (g, f, *j*, ρ) is a non-degenerate Kähler algebra, then (g, f, *j*) is a *j*-algebra. For the *j*-algebra (g, f, *j*), we can also define effectiveness, *j*-subalgebras, the Koszul form, etc, similarly to Kähler algebras. In this section, we first recall a result of [9] concerning to *j*-algebras.

Let (g, f, j) be an effective *j*-algebra. An abelian ideal r of g is called *of* the first kind if there exists an element e of r such that

(2.1) [jx, e] = x for all $x \in \mathfrak{r}$.

The element e is called the principal idempotent of r.

The following fact is standard.

PROPOSITION 2.1 ([9]). Let r be an abelian ideal of the first kind with the principal idempotent e and let g_{λ} be the eigenspace of the operator Re(adje) with eigenvalue λ . Then g is decomposed into the sum of subspaces as

$$\mathfrak{g} = \mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{m} \oplus \mathfrak{g}$$

in the following way:

(1) $g_0 = j\mathfrak{r} \oplus \mathfrak{s}, \ g_{1/2} = \mathfrak{w} \quad and \quad g_1 = \mathfrak{r}.$

(2) \mathfrak{s} is a j-subalgebra containing \mathfrak{t} and given by $\mathfrak{s} = \{x \in \mathfrak{g}_0; [x, e] = 0\}$.

(3) $j\mathfrak{w} \subset \mathfrak{w} \oplus \mathfrak{k}$.

Moreover let us denote by τ the adjoint representation of \mathfrak{g}_0 on \mathfrak{r} and by G_0 the connected subgroup of $GL(\mathfrak{r})$ generated by $\tau(\mathfrak{g}_0)$. Then

(4) $\Omega = G_0 e$ is an open convex cone in x not containing any straight line. Assume further that x is a maximal abelian ideal of the first kind. Then

(5) \mathfrak{s} is reductive.

In what follows, r always denotes a maximal abelian ideal of the first kind. Let us denote by \mathfrak{F} the algebraic hull of $\tau(\mathfrak{g}_0)$. Then by [3, Theorem 6.2], we have

PROPOSITION 2.2 ([3]). There exist elements e_1, \dots, e_m of \mathfrak{r} , commutative elements $f_1, \dots, f_m \in \mathfrak{F}$, decompositions $\mathfrak{r} = \sum_{1 \leq i \leq j \leq m} \mathfrak{r}_{ij}, \mathfrak{F} = \sum_{1 \leq i \leq j \leq m} \mathfrak{F}_{ij} \oplus \mathfrak{F}_0$ and irreducible self dual cones $\mathfrak{Q}_i \subset \mathfrak{r}_{ii}$ such that $f_i \in \mathfrak{F}_{ii}$ and

(1) $f_i = (\delta_{ij} + \delta_{ik})/2$ on \mathfrak{r}_{jk} and $\operatorname{ad} f_i = (\delta_{ij} - \delta_{ik})/2$ on \mathfrak{F}_{jk} ;

(2) $\mathfrak{F}_0 = \{ f \in \mathfrak{F}; fx = 0 \text{ for all } x \in \sum_{i=1}^m \mathfrak{r}_{ii} \} ;$

(3) $[\mathfrak{F}_0, \mathfrak{F}_{ii}]=0$ for all *i* and $[\mathfrak{F}_{ii}, \mathfrak{F}_{jj}]=0$, $\mathfrak{F}_{ii}\mathfrak{r}_{jj}=0$ for $i\neq j$.

By the property (1), each \mathfrak{r}_{jk} is invariant under \mathfrak{F}_{ii} . Then

(4) the restriction of \mathfrak{F}_{ii} to \mathfrak{r}_{ii} gives an isomorphism between \mathfrak{F}_{ii} and Lie Aut(\mathfrak{Q}_i), the Lie algebra of the group of all automorphisms of the cone \mathfrak{Q}_i ;

(5) $e = \sum_{i=1}^{m} e_i, e_i \in \Omega_i \text{ and } \Omega_1 \times \cdots \times \Omega_m = \Omega \cap \sum_{i=1}^{m} \mathfrak{r}_{ii};$

(6) the isotropy subalgebra \mathfrak{F}_e of \mathfrak{F} at the point e is decomposed as $\mathfrak{F}_e = \sum_{i=1}^m \mathfrak{F}_e \cap \mathfrak{F}_{ii} \oplus \mathfrak{F}_0$ and $\mathfrak{F}_e \cap \mathfrak{F}_{ii} = \{f \in \mathfrak{F}_{ii}; fe_i = 0\}.$

From the above properties, we can see

(2.2)
$$\mathfrak{F}_e e_i = 0$$
 for all $i=1, \cdots, m$.

Since $\tau(\mathfrak{f}) \subset \tau(\mathfrak{s}) \subset \mathfrak{F}_e$, we have

(2.3)
$$[\mathfrak{s}, e_i] = 0 \quad \text{and} \quad [\mathfrak{k}, e_i] = 0.$$

Moreover from (4), we also know that \mathfrak{F}_{ii} is reductive and its center is the 1-dimensional subspace generated by f_i . Therefore

(2.4)
$$\mathfrak{F}_{ii} = \mathbf{R}f_i \oplus \mathfrak{H}_i,$$

where $\mathfrak{H}_i = [\mathfrak{H}_{ii}, \mathfrak{H}_{ii}].$

After an inessential change of j, we can assume that $j\mathfrak{r}$ is a solvable subalgebra ([9]). Let e_1, \dots, e_m be as in Proposition 2.2. We consider the operators $R_i = Re(\operatorname{ad} je_i)$. We put $f'_i = \tau(je_i)$. Then $f_i e - f'_i e = e_i - e_i = 0$. Therefore $f_i - f'_i \in \mathfrak{F}_e$. Since $[f_i, \mathfrak{F}_e] = 0$ and since every element of \mathfrak{F}_e has only imaginary eigenvalues, we have $Re(f_i) = Re(f'_i)$. Therefore

(2.5)
$$R_i = \frac{1}{2} (\delta_{ij} + \delta_{ik}) \quad \text{on } r_{jk} .$$

LEMMA 2.3. $[je_i, je_j] = 0.$

PROOF. Since $\mathfrak{F}_{e}e_{i}=0$ by (2.2), we have $[je_{i}, je_{j}] = j[je_{i}, e_{j}]+j[e_{i}, je_{j}] = jf'_{i}e_{j}=jf'_{j}e_{i} = j(f_{i}e_{j}-f_{j}e_{i}) = 0$. q. e. d.

By Lemma 2.3, we can decompose g into the sum of root spaces g^{Γ} relative to the abelian space of linear endomorphisms generated by R_1, \dots, R_m . Since all r, jr, g_0 and w are adjr-invariant, we also have $r=\sum r^{\Gamma}$, $jr=\sum (jr)^{\Gamma}$, $g_0=\sum g_0^{\Gamma}$ and $w=\sum w^{\Gamma}$. If we define \mathcal{A}_i for $i=1, \dots, m$ by $\mathcal{A}_i(R_j)=\delta_{ij}$, then by (2.5) we have immediately the following

LEMMA 2.4. $\mathfrak{r} = \sum_{1 \leq i \leq j \leq m} \mathfrak{r}^{(d_i + d_j)/2}$ and $\mathfrak{r}^{(d_i + d_j)/2} = \mathfrak{r}_{ij}$.

Next we show the following

LEMMA 2.5. $j\mathfrak{r}_{ij} = (j\mathfrak{r})^{(\mathcal{A}_i - \mathcal{A}_j)/2}$ for i < j and $j\mathfrak{r}_{ii} \subset \mathfrak{g}_0^0$.

PROOF. From (2.1), we have $[j\mathfrak{r}_{ij}, e] \subset \mathfrak{r}_{ij}$. It is clear that the correspondence: $\mathfrak{F} \Rightarrow f e \in \mathfrak{r}$ gives a linear map of \mathfrak{F}_{ij} onto \mathfrak{r}_{ij} . This means that $\tau(j\mathfrak{r}_{ij}) \subset \mathfrak{F}_{ij} + \mathfrak{F}_e$. We then have for $x \in \mathfrak{r}_{ij} [jx, e_k] \in \mathfrak{F}_{ij} e_k = 0$ if $j \neq k$ and $[jx, e_j] = [jx, e] = x$. Therefore $[je_k, jx] = j[e_k, jx] + j[je_k, x] = -\delta_{jk}x + j[je_k, x]$. Hence $j\mathfrak{r}_{ij}$ is invariant under R_k and $R_k = (\delta_{ik} - \delta_{jk})/2$ on $j\mathfrak{r}_{ij}$.

By virture of Lemmas 2.4 and 2.5, we obtain the following fact using the similar argument in [9].

Lemma 2.6.

$$\mathfrak{w} = \sum_{i=1}^m \mathfrak{w}^{\mathcal{J}_i/2}.$$

Next we show

LEMMA 2.7. $\mathfrak{G} \subset \mathfrak{g}_0^0$.

PROOF. By (2.3), $[e_i, \mathfrak{s}] \equiv 0$. Since $[jx, s] \equiv j[x, s] \pmod{\mathfrak{s}}$ holds for $x \in \mathfrak{r}$ and $s \in \mathfrak{s}$ (cf. [9]), we know that $adje_i$ leaves \mathfrak{s} invariant. Let \mathfrak{c} and \mathfrak{h} denote the center and the semi-simple part of the reductive Lie algebra \mathfrak{s} . Note that $\mathfrak{c} \subset \mathfrak{t}$ and we can assume that \mathfrak{h} is *j*-invariant, Both \mathfrak{c} and \mathfrak{h} are invariant under $adje_i$. Therefore there exists $k_i \in \mathfrak{h}$ such that $[je_i - k_i, \mathfrak{h}] = 0$. Since $[je_i, \mathfrak{t}] \equiv$ $j[e_i, \mathfrak{t}] \equiv 0 \pmod{\mathfrak{t}}$, we know that k_i is contained in the normalizer of $\mathfrak{h} \cap \mathfrak{t}$ in \mathfrak{h} . Since $(\mathfrak{h}, \mathfrak{h} \cap \mathfrak{t}, j)$ is a semi-simple *j*-algebra, the normalizer of $\mathfrak{h} \cap \mathfrak{t}$ in \mathfrak{h} coincides with $\mathfrak{h} \cap \mathfrak{t}$ ([5, p. 59]). Therefore $k_i \in \mathfrak{t}$, whence $Re(adje_i)|_{\mathfrak{h}} = Re(adk_i)|_{\mathfrak{h}} = 0$.

Clearly c is an ideal of the subalgebra $R_j e_i \oplus c$. Since adc is completely reducible, there exists a 1-dimensional subspace v invariant under adc such that $R_j e_i \oplus c = v \oplus c$. But then [v, c] = 0. Therefore $R_j e_i \oplus c$ is abelian, implying $c \subset g_0^0$. q. e. d.

Summing up the results, we have proved

PROPOSITION 2.8. g is decomposed as $g = \sum g^{\Gamma}$, where $\Gamma \in \{\Delta_i/2, (\Delta_i \pm \Delta_j)/2; 1 \le i \le j \le m\}$ and the following hold;

$$g^{(\mathcal{A}_i + \mathcal{A}_j)/2} = \mathfrak{r}_{ij} \quad (i \leq j), \qquad g^{(\mathcal{A}_i - \mathcal{A}_j)/2} = j\mathfrak{r}_{ij} \quad (i < j),$$
$$g^{\mathcal{A}_i/2} = \mathfrak{w}^{\mathcal{A}_i/2}, \qquad g^0 = \sum_{i=1}^m j\mathfrak{r}_{ii} \oplus \mathfrak{g}.$$

We put

$$\mathfrak{r}^* = \sum_{i=1}^m \mathfrak{r}_{ii}$$
.

LEMMA 2.9.
$$\tau(\mathfrak{g}^0)|_{\mathfrak{r}^{\#}} = \sum_{i=1}^m Lie \operatorname{Aut}(\Omega_i).$$

PROOF. It is clear that $\tau(\mathfrak{g}^0) \subset \sum_{i=1}^m \mathfrak{F}_{ii} \oplus \mathfrak{F}_0$. Therefore

$$\tau(\mathfrak{g}^{0})|_{\mathfrak{r}^{\sharp}} \subset \sum_{i=1}^{m} Lie \operatorname{Aut}(\Omega_{i}).$$

Since \mathfrak{F} is the algebraic hull of $\tau(\mathfrak{g}_0)$, we know that $[\mathfrak{F}, \mathfrak{F}] = [\tau(\mathfrak{g}_0), \tau(\mathfrak{g}_0)]$. Therefore $\mathfrak{h}_i \subset \tau(\mathfrak{g}_0)$, where \mathfrak{h}_i is the semi-simple part of \mathfrak{F}_{ii} . Moreover the eigenvalue of $\mathrm{ad} j e_k$ has 0 on \mathfrak{F}_{ii} , we have $\mathfrak{h}_i \subset \tau(\mathfrak{g}^0)$. Let $g \in (\sum_{i=1}^m R\tau(je_i)|_{\mathfrak{r}}) \cap (\sum_{i=1}^m \mathfrak{h}_i)|_{\mathfrak{r}}$. Then from the equation $\mathrm{Trace} g|_{\mathfrak{r}_{ii}} = 0$ for all *i*, we know that g = 0. Since $\mathfrak{F}_{ii} \cong Lie \operatorname{Aut}(\mathfrak{Q}_i)$ and since $\mathfrak{F}_{ii} = \mathbf{R} f_i \oplus \mathfrak{h}_i$, we get the assertion. q. e. d.

By Lemma 2.9, $\tau(\operatorname{nil}(\mathfrak{g}^0))|_{\mathfrak{r}^{\#}}=0$. In particular, $\tau(\operatorname{nil}(\mathfrak{g}^0))e=0$, whence $\operatorname{nil}(\mathfrak{g}^0)\subset\mathfrak{S}$. Then $\operatorname{nil}(\mathfrak{g}^0)$ is a nilpotent ideal of \mathfrak{S} , whence it is contained in the center \mathfrak{c} of \mathfrak{S} . Recall that $\mathfrak{c}\subset\mathfrak{k}$. Therefore $\operatorname{nil}(\mathfrak{g}^0)\subset\mathfrak{k}$ and hence $\operatorname{nil}(\mathfrak{g}^0)=0$, proving that \mathfrak{g}^0 is reductive.

It is clear that $\sum_{\Gamma \neq 0} \mathfrak{g}^{\Gamma}$ is a solvable ideal of g contained in $[\mathfrak{g}, \mathfrak{g}]$. Therefore by Proposition 2.8, we have

PROPOSITION 2.10. The subalgebra g° is reductive and $g=rad(g)\oplus [g^{\circ}, g^{\circ}]$. Moreover

$$\operatorname{rad}(\mathfrak{g}) = \sum_{\Gamma \neq 0} \mathfrak{g}^{\Gamma} \oplus the \ center \ of \ \mathfrak{g}^{0}, \qquad \operatorname{nil}(\mathfrak{g}) = \sum_{\Gamma \neq 0} \mathfrak{g}^{\Gamma}.$$

Let us set

(2.6)
$$\mathfrak{g}^{*} = \mathfrak{r}^{*} \oplus \mathfrak{g}^{\mathfrak{o}} \ (= \mathfrak{r}^{*} \oplus \mathfrak{f} \mathfrak{r}^{*} \oplus \mathfrak{s}) \,.$$

Then g^* is a *j*-invariant subalgebra containing f. Since g^0 is reductive, we have

Let us put

(2.8) $\mathfrak{n} = \operatorname{nil}(\mathfrak{g}) \cap (j \operatorname{nil}(\mathfrak{g}) \oplus \mathfrak{k}).$

By Proposition 2.10, we have

(2.9)
$$\mathfrak{n} = \mathfrak{w} \oplus \sum_{i < j} \mathfrak{r}_{ij} \oplus \sum_{i < j} j \mathfrak{r}_{ij}$$

Therefore we get

PROPOSITION 2.11.
$$g = g^* \oplus \mathfrak{n}$$
, $[g^*, \mathfrak{n}] \subset \mathfrak{n}$ and $[\mathfrak{n}, \mathfrak{n}] \subset \mathfrak{n} \oplus \mathfrak{r}^*$.

§ 3. The subalgebra g^* .

In this section, we investigate the structure of the *j*-algebra (g^*, f, j) and give a description of rad (g^0) .

We define

$$\mathfrak{S}^{\sharp}_{\mathfrak{g}} = \{ x \in \mathfrak{S}; [x, \mathfrak{r}^{\sharp}] = 0 \}.$$

Then $\mathfrak{S}^{\sharp}_{\mathfrak{g}}$ is an ideal of \mathfrak{g}^{\sharp} .

LEMMA 3.1. After an inessential change of j if necessary, there exists an ideal \hat{s}^* of \hat{s} satisfying the conditions

- (1) $g^{*}=r^{*}\oplus jr^{*}\oplus \hat{s}^{*}\oplus s_{0}^{*}$,
- (2) $\mathfrak{s}=\hat{\mathfrak{s}}^{\sharp}\oplus\mathfrak{s}_{0}^{\sharp}, \mathfrak{f}=(\mathfrak{t}\cap\hat{\mathfrak{s}}^{\sharp})\oplus(\mathfrak{t}\cap\mathfrak{s}_{0}^{\sharp}),$
- (3) $\mathfrak{r}^* \oplus j\mathfrak{r}^* \oplus \hat{\mathfrak{s}}^*$ is a *j*-invariant ideal of \mathfrak{g}^* .

PROOF. Since $\mathfrak{S}_0^{\sharp} \subset \mathfrak{S}$, \mathfrak{S}_0^{\sharp} is reductive. The center \mathfrak{c}_0 of \mathfrak{S}_0^{\sharp} is contained in \mathfrak{k} and $[\mathfrak{S}_0^{\sharp}, \mathfrak{S}_0^{\sharp}]$ is a semi-simple ideal of \mathfrak{g}^{\sharp} . Therefore $\mathfrak{g}^{\sharp} = [\mathfrak{S}_0^{\sharp}, \mathfrak{S}_0^{\sharp}] \oplus \mathfrak{g}'$, where \mathfrak{g}'

is the centralizer of $[\mathfrak{s}^*_0, \mathfrak{s}^*_0]$ in \mathfrak{g}^* . Clearly \mathfrak{g}' is an ideal of \mathfrak{g}^* . By $[\mathfrak{Z}, \operatorname{Proposition 5.13}]$, we can assume that both \mathfrak{g}' and $[\mathfrak{s}^*_0, \mathfrak{s}^*_0]$ is *j*-invariant. But then $\mathfrak{g}' \supset \mathfrak{r}^* \bigoplus j \mathfrak{r}^*$. Therefore $\mathfrak{g}' = \mathfrak{r}^* \bigoplus j \mathfrak{r}^* \oplus \mathfrak{g}'$, where $\mathfrak{s}' = \mathfrak{s} \cap \mathfrak{g}'$. Clearly $\mathfrak{s}' \cap \mathfrak{s}^*_0 = \mathfrak{c}_0$. Then \mathfrak{c}_0 coincides with the largest ideal of \mathfrak{g}' contained in $\mathfrak{t} \cap \mathfrak{g}'$. Therefore there exists an ideal \mathfrak{g}'' of \mathfrak{g}' such that $\mathfrak{g}' = \mathfrak{g}'' \oplus \mathfrak{c}_0$ and $\mathfrak{g}'' \supset \mathfrak{r}^*$ ([3, Proof of Lemma 1.4]). After an inessential change of j, we can assume that \mathfrak{g}'' is *j*-invariant. Then $\mathfrak{g}'' = \mathfrak{r}^* \oplus j \mathfrak{r}^* \oplus (\mathfrak{g} \cap \mathfrak{g}'')$. If we put $\mathfrak{s}^* = \mathfrak{s} \cap \mathfrak{g}''$, then $\mathfrak{s} = \mathfrak{s}^* \oplus \mathfrak{s}^*_0$. Since \mathfrak{s}^* is an ideal of \mathfrak{s} , we know $\mathfrak{t} = (\mathfrak{t} \cap \mathfrak{s}^*) \oplus (\mathfrak{t} \cap \mathfrak{s}^*_0)$ by [1] and [5]. It is now clear that \mathfrak{s}^* has the desired properties.

Let \hat{s}^* be as in Lemma 3.1. Then by Lemma 2.6 we have

LEMMA 3.2. There exists ideals \mathfrak{f}_i $(i=1, \dots, m)$ of $j\mathfrak{r}^* \oplus \hat{\mathfrak{s}}^*$ such that

$$j\mathfrak{r}^{*} \oplus \hat{\mathfrak{s}}^{*} = \sum_{i=1}^{m} \mathfrak{f}_{i}, \quad [\mathfrak{f}_{i}, \mathfrak{r}_{jj}] = 0 \ (i \neq j), \quad [\mathfrak{f}_{i}, \mathfrak{r}_{ii}] \subset \mathfrak{r}_{ii},$$

and the adjoint representation of \mathfrak{f}_i on \mathfrak{r}_{ii} gives an isomorphism of \mathfrak{f}_i onto Lie Aut (\mathfrak{Q}_i) .

Since \hat{s}^* is identified with the isotropy subalgebra of $\sum_{i=1}^m Lie \operatorname{Aut}(Q_i)$, we have

$$\hat{\mathfrak{s}}^{*} = \sum\limits_{i=1}^{m} \mathfrak{s}_{i}$$
 , $\mathfrak{s}_{i} \subset \mathfrak{f}_{i}$.

Since \mathfrak{s}_i is an ideal of \mathfrak{s}^* , we have from [1] and [5]

$$\hat{\mathfrak{s}}^{\sharp} \cap \mathfrak{k} = \sum_{i=1}^{m} \mathfrak{s}_i \cap \mathfrak{k}$$
.

LEMMA 3.3. By a suitable change of j, jr_{ii} is contained in f_i .

PROOF. Let $x \in \mathfrak{r}_{ii}$. We decompose as $jx = y + \sum_{j \neq i} x_j$, where $y \in \mathfrak{f}_i$ and $x_j \in \mathfrak{f}_j$. Consider the equation $[jx, e] = [y, e] + \sum_{j \neq i} [x_j, e]$. Since $[jx, e] = x \in \mathfrak{r}_{ii}$, we have $[x_j, e] = 0$, whence $x_j \in \mathfrak{s}_j$ for all $j \neq i$. Let $k_j \in \mathfrak{s}_j \cap \mathfrak{k}$. Then $[x_j, k_j] = [jx, k_j] \equiv j[x, k_j] \pmod{\mathfrak{k}}$ and $[x, k_j] = 0$. Therefore $[x_j, k_j] \in \mathfrak{f}_j \cap \mathfrak{k} = \mathfrak{s}_j \cap \mathfrak{k}$. Note that \mathfrak{s}_j is an ideal of the reductive Lie algebra \mathfrak{s} . Then using the result of [1], we can assume that \mathfrak{s}_j is j-invariant and $(\mathfrak{s}_j, \mathfrak{s}_j \cap \mathfrak{k}, j)$ is a j-algebra. Then the center of \mathfrak{s}_j is contained in $\mathfrak{s}_j \cap \mathfrak{k}$. We then derive from [5] that the normalizer of $\mathfrak{s}_j \cap \mathfrak{k}$ in \mathfrak{s}_i coincides with $\mathfrak{s}_j \cap \mathfrak{k}$. Therefore $x_j \in \mathfrak{s}_j \cap \mathfrak{k}$. We change j on \mathfrak{r}_{ii} to j' as j'x = y. It is easy to see that $j'\mathfrak{r}_{ii}$ and j'r are still subalgebra of \mathfrak{g} .

By Lemma 3.3, we can assume

$$\mathfrak{f}_i = j\mathfrak{r}_{ii} \oplus \mathfrak{g}_i.$$

Since f_i is reductive, we have

$$\mathfrak{f}_i = \mathfrak{c}_i \oplus \mathfrak{h}_i$$
 ,

where c_i is the center of \mathfrak{f}_i and \mathfrak{h}_i is the semi-simple part of \mathfrak{f}_i . Note that c_i is generated by the element g_i such that ad $g_i=1$ on \mathfrak{r}_{ii} and \mathfrak{h}_i consists of all $f \in \mathfrak{f}_i$ satisfying Trace ad $f|_{\mathfrak{r}_{ii}}=0$. In particular, $\mathfrak{g}_i \subset \mathfrak{h}_i$ and $j\mathfrak{r}_{ii}=\mathbf{R}je_i \oplus (\mathfrak{h}_i \cap j\mathfrak{r}_{ii})$ holds. Moreover from $[je_i-c_i, e_i]=0$, we know that $je_i-c_i \in \mathfrak{g}_i$. Clearly $[je_i-c_i, \mathfrak{t} \cap \mathfrak{g}_i] \subset \mathfrak{t} \cap \mathfrak{g}_i$, whence we know $je_i-c_i \in \mathfrak{t} \cap \mathfrak{g}_i$ by the same reason as before.

We can now change j to j' on r_{ii} as follows:

$$j'e_i = c_i$$
 and $j'x = jx$ for $x \in \{\mathfrak{r}_{ii}; jx \in \mathfrak{h}_i\}$.

It is clear that $j'r_{ii}$ is still a subalgebra because $[jr_{ii}, jr_{ii}] \subset \mathfrak{h}_i$. This inessential change can be extended on whole g keeping the property that j'r is a solvable subalgebra. Thus we have proved

PROPOSITION 3.4. By a suitable change of j, we have

$$g^{\#} = \sum_{i=1}^{m} g_i \oplus \mathfrak{F}_0^{\#} \quad (direct \ sum \ of \ ideals),$$

$$\mathfrak{S} = \sum_{i=1}^{m} \mathfrak{S}_i \oplus \mathfrak{S}_0^{\#} \quad (direct \ sum \ of \ ideals),$$

$$\mathfrak{k} = \sum_{i=1}^{m} \mathfrak{k}_i \oplus \mathfrak{k}_0 \quad (direct \ sum \ of \ ideals),$$

where $g_i = r_{ii} \oplus jr_{ii} \oplus s_i$, $f_i = g_i \cap f$ and $f_0 = s_0^{\#} \cap f$. Moreover all g_i , s_i and $s_0^{\#}$ are *j*-invariant and the following equations hold:

$$j\mathfrak{r}_{ii} \oplus \mathfrak{g}_i \cong Lie \operatorname{Aut}(\mathfrak{Q}_i), \quad Rje_i = the \ center \ of \ j\mathfrak{r}_{ii} \oplus \mathfrak{g}_i.$$

COROLLARY 3.5. The center of $g^0 = \sum_{i=1}^{m} R_j e_i \oplus the$ center of \mathfrak{S}_0^{\sharp} .

Recall that the center of $\mathfrak{g}_{\mathfrak{d}}^*$ is contained in \mathfrak{k} . Then the above results combined with Proposition 2.10 yield

PROPOSITION 3.6. $rad(g) + j rad(g) + t = t \oplus j t \oplus w \oplus t$.

REMARK 1. Let us denote by $D(\Omega_i)$ the Siegel domain of the first kind associated with the convex cone Ω_i . Then $D(\Omega_i)$ is an irreducible symmetric domain and the Lie algebra \mathfrak{g}_i in Proposition 3.4 coincides with the Lie algebra of the group of all affine transformations of $D(\Omega_i)$.

REMARK 2. Let D be a homogeneous bounded domain and G a group of holomorphic transformations of D acting transitively on D. We then have D = G/K. Let $(\mathfrak{g}, \mathfrak{k}, j)$ be the corresponding *j*-algebra. Assume that $\mathfrak{g}=\operatorname{rad}(\mathfrak{g})+\mathfrak{k}$ holds. Then by Proposition 3.6 and [9, §1, Theorem 2], D is realized as a Siegel domain of the second kind in such a way that G acts as an affine transformation group. (J. Dorfmeister also obtained this fact by different method.) Conversely, we can easily see that every *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j)$ corresponding to a

transitive affine automorphism group of a Siegel domain satisfies the equation g=rad(g)+jrad(g)+t.

§4. Closed forms on *j*-algebras.

The purpose of this section is to prove the following

THEOREM 4.1. Let (g, t, j) be an effective j-algebra and let ρ be a skewsymmetric bilinear form on g satisfying

 $d\rho = 0$, $\rho(\mathfrak{k}, \mathfrak{g}) = 0$ and $\rho(jx, jy) = \rho(x, y)$ for all $x, y \in \mathfrak{g}$.

Then there exists a linear form ω on g such that $\rho = d\omega$.

In the special case where t=0 and g is solvable, this fact is obtained by Dorfmeister [2].

Let (g, t, j) and ρ be as in Theorem 4.1. We keep the notations used in the previous sections. The following fact is well known. But we put a proof because we use the similar technique in later.

LEMMA 4.2. (1) $\rho(\mathfrak{w}, \mathfrak{r} \oplus \mathfrak{j}\mathfrak{r} \oplus \mathfrak{s}) = 0.$ (2) $\rho(\mathfrak{w}, \mathfrak{r}) = 0$

(2) $\rho(r, r) = 0.$

PROOF. Consider the function $A(t) = \rho(e^{tadje}x, e^{tadje}y)$ for $x \in \mathfrak{w}$ and $y \in \mathfrak{r}$. Roughly speaking, A(t) grows like $e^{3t/2}$ if $A(t) \neq 0$, because $x \in \mathfrak{g}_{1/2}$ and $y \in \mathfrak{g}_1$. On the other hand, since $[\mathfrak{w}, \mathfrak{r}]=0$, we have $dA(t)/dt = \rho(je, e^{adje}[x, y])=0$. Therefore $A(t)\equiv 0$, proving $\rho(\mathfrak{w}, \mathfrak{r})=0$. Similarly, we have $\rho(\mathfrak{r}, \mathfrak{r})=0$. Since $j\mathfrak{w}\subset\mathfrak{w}+\mathfrak{k}$, we also have $\rho(\mathfrak{w}, j\mathfrak{r})=\rho(\mathfrak{w}, \mathfrak{r})=0$.

Finally we consider the function A(t) for $x \in w$, $y \in \mathfrak{s}$. Then A(t) grows like $e^{t/2}$. But $dA(t)/dt = \rho(je, e^{t \operatorname{ad} je}[x, y]) = 0$, because $[x, y] \in w$ and $\rho(je, w) = 0$. Thus we also have $A(t) \equiv 0$, proving $\rho(w, \mathfrak{s}) = 0$. q. e. d.

Next we show

LEMMA 4.3. $\rho(\mathfrak{r}_{ij} \oplus j\mathfrak{r}_{ij}, \mathfrak{g}^*) = 0$ for i < j.

PROOF. Since \mathfrak{g}^* is *j*-invariant, it is sufficient to show $\rho(\mathfrak{r}_{ij}, \mathfrak{g}^*)=0$. Moreover since $\rho(\mathfrak{r}, \mathfrak{r})=0$ by Lemma 4.2, we only have to show $\rho(\mathfrak{r}_{ij}, \mathfrak{g}^0)=0$. Consider the function $A(t)=\rho(e^{tadje_i}x, e^{tadje_i}y)$ for $x\in\mathfrak{r}_{ij}, y\in\mathfrak{g}^0$. Then A(t) grows like $e^{t/2}$. We have $dA(t)/dt=\rho(je_i, e^{tadje_i}[x, y])\subset\rho(je_i, \mathfrak{r}_{ij})=\rho(e_i, j\mathfrak{r}_{ij})$. We consider the function $B(t)=\rho(e^{tadje_j}e_i, e^{tadje_j}z)$ for $z\in j\mathfrak{r}_{ij}$. Noting that $[e_i, j\mathfrak{r}_{ij}]=0$, we have dB(t)/dt=0. Since B(t) grows like $e^{-t/2}$, we have $B(t)\equiv 0$. From this, we also have $A(t)\equiv 0$. Q. Q. Q.

By Lemmas 4.2 and 4.3 we have

Κ. ΝΑΚΑJIMA

PROPOSITION 4.4. $\rho(\mathfrak{n}, \mathfrak{g}^*) = 0$.

Recall that g^0 is reductive. Therefore

 $\mathfrak{g}^{\mathfrak{o}} = \mathfrak{c}^{\sharp} \oplus \mathfrak{h}^{\sharp}$,

where c^* is the center and \mathfrak{h}^* is the semi-simple part of $\mathfrak{g}^{\mathfrak{o}}$. Since the center of $\mathfrak{g}^*_{\mathfrak{o}}$ is contained in \mathfrak{k} , we have from Corollary 3.5 the following

Lemma 4.5. $\rho(c^*, c^*) = 0$.

We now define a linear form ω on g. We have obtained the decomposition $g = \mathfrak{n} \oplus \mathfrak{r}^{*} \oplus \mathfrak{c}^{*} \oplus \mathfrak{h}^{*}.$

Since \mathfrak{h}^* is semi-simple, there exists a linear form ω on \mathfrak{h}^* such that $\rho = d\omega$ on \mathfrak{h}^* . We extend ω to a linear form on g by setting

 $\omega(\mathfrak{n} \oplus \mathfrak{c}^{\sharp}) = 0$ and $\omega(x) = -\omega(je, x)$ for $x \in \mathfrak{r}^{\sharp}$.

Then from Proposition 4.4

(4.1)
$$\omega(x) = -\rho(je, x) \quad \text{for all } x \in \mathfrak{n} \oplus \mathfrak{r}^*$$

We have to show that $d\omega = \rho$. We can assume that $j\mathfrak{r}$ is a solvable subalgebra. Then $(\mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{w}, 0, j)$ is a solvable *j*-algebra corresponding to a homogeneous Siegel domain ([9]). Then the following lemma is essentially proved in Dorfmeister [2, § 3].

LEMMA 4.6 ([2]). Let I = adje - Re(adje). Then the restriction of I on $\mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{w}$ is skew-symmetric relative to ρ and commutes with j.

Using the above lemma, we show

LEMMA 4.7. (1) $\rho(x, y) = d\omega(x, y)$ for $x, y \in \mathfrak{w}$. (2) $\rho(x, y) = d\omega(x, y) = 0$ for $x \in \mathfrak{w}, y \in \mathfrak{r} \oplus \mathfrak{j}\mathfrak{r} \oplus \mathfrak{s}$.

PROOF. (1) Since $[x, y] \in \mathfrak{r}$, using (4.1) and Lemma 4.6 we have $d\omega(x, y) = -\omega([x, y]) = \rho(je, [x, y]) = \rho([je, x], y) + \rho(x, [je, y]) = \rho(x/2, y) + \rho(x, y/2) + \rho(Ix, y) + \rho(x, Iy) = \rho(x, y).$

(2) In this case, $[x, y] \in w$. Therefore $\omega([x, y])=0$. On the other hand $\rho(x, y)=0$, by Lemma 4.2. q. e. d.

Recall that $\mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{s} = \sum_{i < j} \mathfrak{r}_{ij} \oplus j \sum_{i < j} \mathfrak{r}_{ij} \oplus \mathfrak{g}^{*}$.

Lemma 4.8.

(1) $\rho(x, y) = d\omega(x, y)$ for $x, y \in \sum_{i < j} \mathfrak{r}_{ij} \oplus j \sum_{i < j} \mathfrak{r}_{ij}$. (2) $\rho(x, y) = d\omega(x, y) = 0$ for $x \in \sum_{i < j} \mathfrak{r}_{ij} \oplus j \sum_{i < j} \mathfrak{r}_{ij}$, $y \in \mathfrak{g}^{*}$.

PROOF. (1) If $x, y \in \sum_{i < j} r_{ij}$, then [x, y] = 0, whence $d\omega(x, y) = 0$. On the other hand by Lemma 4.2, $\rho(x, y) = 0$. If $x, y \in \sum_{i < j} jr_{ij}$, then $[x, y] \in \sum_{i < j} jr_{ij}$ and hence $d\omega(x, y) = 0$. We also have $\rho(x, y) = \rho(jx, jy) = 0$. Finally, if $x \in \sum_{i < j} r_{ij}$ and $y \in j \sum_{i < j} r_{ij}$, then $[x, y] \in r$. Therefore $d\omega(x, y) = \rho(je, [x, y])$ by (4.1). Moreover using Lemma 4.6, $\rho(je, [x, y]) = \rho([je, x], y) + \rho(x, [je, y]) = \rho(x, y) + \rho(Ix, y) + \rho(x, Iy) = \rho(x, y)$.

(2) In this case $[x, y] \in \mathfrak{n}$, whence $d\omega(x, y) = -\omega([x, y]) = 0$. On the other hand $\rho(x, y) = 0$ by Lemma 4.3. q. e. d.

By virture of Lemmas 4.7 and 4.8, for the proof of Theorem 4.1, it is enough to show $\rho(x, y) = d\omega(x, y)$ for $x, y \in g^*$. Recall that $g^* = r^* \oplus c^* \oplus \mathfrak{h}^*$. In the case $x, y \in r^*$, we already know $\rho(x, y) = d\omega(x, y) = 0$. Assume that $x \in r^*$ and $y \in c^* \oplus \mathfrak{h}^*$. Then $d\omega(x, y) = \rho(je, [x, y]) = \rho([je, x], y) = \rho(x, y)$. Here we use the fact that $je \in c^*$ and adje=1 on r^* .

It remains to show $\rho(x, y) = d\omega(x, y)$ for $x, y \in \mathfrak{c}^* \oplus \mathfrak{h}^*$. By Lemma 4.5 and the definition of ω on \mathfrak{h}^* , it is enough to consider the case $x \in \mathfrak{c}^*$ and $y \in \mathfrak{h}^*$. But in this case $\omega(x, y) = -\omega([x, y]) = 0$ and $\rho(x, y) \in \rho(x, [\mathfrak{h}^*, \mathfrak{h}^*]) = \rho([x, \mathfrak{h}^*], \mathfrak{h}^*) = 0$. This completes the proof of Theorem 4.1.

§ 5. The invariance of g[#].

By an automorphism of a *j*-algebra (g, t, j) we mean an automorphism f of the Lie algebra g satisfying the following conditions:

$$f\mathfrak{k} = \mathfrak{k}$$
, $fjx \equiv jfx \pmod{\mathfrak{k}}$ for $x \in \mathfrak{g}$.

We will show that the subalgebra g^* constructed in §2 is invariant under all automorphisms of the *j*-algebra (g, \mathfrak{k} , *j*).

We first show the following

PROPOSITION 5.1. Let (g, \mathfrak{k}, j) be an effective *j*-algebra. Then there exists an admissible form ω such that $\omega(fx)=\omega(x)$ for all automorphism f and $x \in \mathfrak{g}$.

PROOF. Let G be the simply connected Lie group with g as its Lie algebra and K the connected subgroup of G corresponding to the subalgebra \mathfrak{k} . Then K is closed and the homogeneous space G/K, endowed with a natural G-invariant complex structure corresponding to j, is biholomorphic to the product of a homogeneous bounded domain M_1 and a compact simply connected homogeneous complex manifold M_2 ([6, Theorem A]). Then every holomorphic transformation Ψ of G/K induces a holomorphic transformation ϕ of M_1 such that $\pi \circ \Psi = \phi \circ \pi$, where π denotes the projection: $G/K \rightarrow M_1$. In particular, G acts transitively on M_1 . Let U denote the isotropy subgroup of G at the point $\pi(o)$, where o is the origin of the homogeneous space G/K. Every automorphism f of the j-

Κ. ΝΑΚΑJIMA

algebra g induces an automorphism of the group G, which will be denoted by the same letter f. We want to show that f leaves U invariant. Since fK=K, f induces a holomorphic transformation of G/K in a natural manner, whence it also induces a holomorphic transformation \hat{f} of G/U. Clearly, \hat{f} fixes the origin $\pi(o)$ of G/U. Since $U/K=\pi^{-1}\pi(o)$, the above fact implies fU=U, proving our assertion.

Let us denote by \mathfrak{u} the Lie algebra of the group U. Clearly \mathfrak{u} is a *j*-subalgebra containing \mathfrak{k} . Moreover $[u, jx] \equiv j[u, x] \pmod{\mathfrak{u}}$ holds for all $u \in \mathfrak{u}$ and $x \in \mathfrak{g}$. Therefore for any $x \in \mathfrak{g}$, $\operatorname{ad} jx - j \circ \operatorname{ad} x$ leaves \mathfrak{u} invariant. We now put for x in \mathfrak{g} ,

$$\boldsymbol{\omega}_{1}(x) = \operatorname{Trace}(\operatorname{ad} jx - j \circ \operatorname{ad} x)|_{g/\mathfrak{u}}, \qquad \boldsymbol{\omega}_{2}(x) = \operatorname{Trace}(\operatorname{ad} jx - j \circ \operatorname{ad} x)|_{\mathfrak{u}/\mathfrak{t}}.$$

It is easy to see that $\omega_1(fx) = \omega_1(x)$ and $\omega_2(fx) = \omega_2(x)$ for all automorphism f. Note that ω_1 is the Koszul form of the *j*-algebra (g, u, j) corresponding to the homogeneous bounded domain M_1 and the restriction of ω_2 on u is the Koszul form of the *j*-algebra (u, \mathfrak{k}, j) corresponding the compact simply connected homogeneous space M_2 . Therefore as is proved in [6, §7], $\omega = \omega_1 - a\omega_2$ becomes an admissible form for large enough positive number a. Then the form ω has the desired properties. q. e. d.

Let ω be an admissible form as in Proposition 5.1. Then $(g, \mathfrak{k}, j, -d\omega)$ is a Kähler algebra and the homogeneous space G/K admits a G-invariant Kähler structure with the Kähler form corresponding to $-d\omega$. Then every automorphism of the *j*-algebra (g, \mathfrak{k}, j) acts on G/K as a holomorphic isometry and it fixes the origin of G/K. Therefore we have

COROLLARY 5.2. The group of all automorphisms of an effective j-algebra is compact.

Let $(\mathfrak{g}, \mathfrak{k}, j)$ be an effective *j*-algebra and \mathfrak{g}^* the subalgebra as before. Let ω be an admissible form. Then by Proposition 4.4, we have $\mathfrak{g}^* = \{x \in \mathfrak{g}; d\omega(x, \mathfrak{n}) = 0\}$, where \mathfrak{n} is the subspace given by (2.8). Assume further that ω satisfies the properties in Proposition 5.1. Then for any automorphism f, we have $d\omega(f\mathfrak{g}^*, \mathfrak{n}) = -\omega([f\mathfrak{g}^*, \mathfrak{n}]) = -\omega([\mathfrak{g}^*, f^{-1}\mathfrak{n}]) = d\omega([\mathfrak{g}^*, \mathfrak{n}]) = 0$. Here we use the fact that \mathfrak{n} is invariant under f^{-1} . Therefore we know $f\mathfrak{g}^* = \mathfrak{g}^*$, proving that \mathfrak{g}^* is invariant under all automorphisms of the *j*-algebra $(\mathfrak{g}, \mathfrak{k}, j)$. Noting that \mathfrak{r}^* coincides with $\operatorname{nil}(\mathfrak{g}^*)$ (cf. (2.7)), we have from Propositions 2.11 and 3.4 the following

THEOREM 5.3. Let (g, \mathfrak{k}, j) be an effective j-algebra and let ω be an admissible form. We set $g^* = \{x \in \mathfrak{g}; d\omega(x, \mathfrak{n}) = 0\}$, where $\mathfrak{n} = \operatorname{nil}(\mathfrak{g}) \cap (j \operatorname{nil}(\mathfrak{g}) + \mathfrak{k})$. Then \mathfrak{g}^* is a j-invariant subalgebra of \mathfrak{g} containing \mathfrak{k} and the following hold:

(1) g^* is independent to the choice of ω and invariant under all automor-

phisms of the *j*-algebra (g, t, j).

(2) $nil(g^*)$ is abelian.

(3) $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{g}^*$, $[\mathfrak{n}, \mathfrak{g}^*] \subset \mathfrak{n}$ and $[\mathfrak{n}, \mathfrak{n}] \subset \mathfrak{n} \oplus \operatorname{nil}(\mathfrak{g}^*)$.

Moreover after a suitable change of j, g^* is decomposed as $g^* = nil(g^*) \oplus j nil(g^*) \oplus \hat{g}^* \oplus \hat{g}^*_j$ in the following way:

(4) Both $\operatorname{nil}(\mathfrak{g}^{*}) \oplus j \operatorname{nil}(\mathfrak{g}^{*}) \oplus \hat{\mathfrak{s}}^{*}$ and \mathfrak{s}^{*}_{0} are ideals of \mathfrak{g}^{*} .

(5) $\mathfrak{S}_0^{\#}$ is a reductive *j*-subalgebra.

(6) $j \operatorname{nil}(\mathfrak{g}^*) \oplus \hat{\mathfrak{s}}^*$ is isomorphic to Lie Aut(Ω^*), where Ω^* is a self dual homogeneous convex cone in $\operatorname{nil}(\mathfrak{g}^*)$ and $\hat{\mathfrak{s}}^*$ is a maximal compact subalgebra of $j \operatorname{nil}(\mathfrak{g}^*) \oplus \hat{\mathfrak{s}}^*$.

(7) $\mathfrak{t} = \mathfrak{t} \cap \hat{\mathfrak{s}}^{\sharp} \oplus \mathfrak{t} \cap \mathfrak{s}_{\mathfrak{b}}^{\sharp}$.

We also have the following fact which is mentioned in [9] without proof under an additional assumption.

THEOREM 5.4. A maximal abelian ideal of the first kind of an effective jalgebra is unique.

PROOF. Let r and r' be two maximal abelian ideal of the first kind of an effective *j*-algebra (g, f, *j*). Denote by *e* and *e'* the principal idempotents of r and r' respectively. By Proposition 2.1, it is enough to show that e=e'. Let g^* be as in Theorem 5.3. Then both *e* and *e'* are contained in nil(g^*). Let ω be an admissible form. Then $\omega([jx, y])$ for $x, y \in nil(g^*)$ is a positive definite symmetric bilinear form on nil(g^*). Note that nil(g^*) \subset r \cap r'. Then using (2.1), we have for all $x \in nil(g^*), \omega([jx, e-e'])=\omega(x)-\omega(x)=0$. Therefore we get e=e'. q. e. d.

§ 6. The canonical hermitian forms of j-algebras.

Let (g, t, j) be an effective *j*-algebra. In this and the next sections, we calculate the Koszul form of the *j*-algebra (g, t, j) and prove the following

THEOREM 6.1. The canonical hermitian form of an effective *j*-algebra is nondegenerate.

Let \mathfrak{r} be the maximal abelian ideal of the first kind with the principal idempotent e and let $\mathfrak{g}=\mathfrak{r}\oplus j\mathfrak{r}\oplus\mathfrak{s}\oplus\mathfrak{w}$ be the decomposition as in Proposition 2.1. Consider the subalgebra $\mathfrak{g}_0\oplus\mathfrak{g}_1$ (= $\mathfrak{r}\oplus j\mathfrak{r}\oplus\mathfrak{s}$). Let us put

 $\mathfrak{g}_0 = \{x \in \mathfrak{g}_0 ; [x, \mathfrak{r}] = 0\}.$

It is easy to see that \mathfrak{g}_0 is an ideal of $\mathfrak{g}_0 \oplus \mathfrak{g}_1$ contained in \mathfrak{g} . The following lemma can be proved by the similar way as Lemma 3.1.

LEMMA 6.2. After an inessential change of j if necessary, there exists an

Κ. ΝΑΚΑJIMA

ideal \$ of \$ satisfying the following conditions:

- (1) $g_0 \oplus g_1 = r \oplus jr \oplus \hat{s} \oplus s_0.$
- (2) $\mathfrak{s} = \hat{\mathfrak{s}} \oplus \mathfrak{s}_0, \quad \mathfrak{k} = (\mathfrak{k} \cap \hat{\mathfrak{s}}) \oplus (\mathfrak{k} \cap \mathfrak{s}_0).$
- (3) $\mathfrak{r} \oplus j\mathfrak{r} \oplus \hat{\mathfrak{s}}$ is a *j*-invariant ideal of $\mathfrak{g}_0 \oplus \hat{\mathfrak{s}}_1$.

We put

$$\hat{\mathfrak{g}} = \mathfrak{r} \oplus i \mathfrak{r} \oplus \hat{\mathfrak{s}} \oplus \mathfrak{w}$$
.

Clearly \hat{g} is a *j*-ideal of g and

$$\mathfrak{g}=\hat{\mathfrak{g}}\oplus\mathfrak{s}_{\mathfrak{o}}$$
 .

We can assume that \hat{g} is *j*-invariant. Let ψ denote the Koszul form of (g, \mathfrak{k}, j) . Let \mathfrak{n} be the subspace given by (2.8). Since $\mathfrak{w} \subset \mathfrak{n}$ and $\mathfrak{w} = [je, \mathfrak{w}]$ holds, we have $\mathfrak{w} \subset [\mathfrak{n}, \mathfrak{g}^*]$. Therefore applying Proposition 4.4 to the skew-symmetric bilinear form $d\psi$, we have

Lemma 6.3.
$$\phi(\mathfrak{w}) = 0$$
.

Since $[\hat{g}, \mathfrak{s}_0] \subset \mathfrak{w}$ holds, as an immediate consequence of Lemma 6.3 we get

COROLLARY 6.4. $\psi([\hat{g}, \hat{s}_0]) = 0$.

We now consider the adjoint representation of § on w. We have chosen jso that jw=w. Let ϕ' denote the Koszul form of the j-algebra $(r \oplus jr \oplus \mathfrak{k}, \mathfrak{k}, j)$. By [6, Lemma 10], the vector space w, equipped with the complex structure jand the skew-symmetric bilinear form $\phi'([w, w']) (w, w' \in w)$, is a symplectic space in the sense of [9] and $\mathrm{ad} s|_w$ is a symplectic endomorphism for all $s \in \mathfrak{s}$. Furthermore for each $s \in \mathfrak{s}$, the equation $\mathrm{ad} js|_w \circ j - j \circ \mathrm{ad} js|_w - \mathrm{ad} s|_w - j \circ \mathrm{ad} x|_w \circ j$ =0 holds. Therefore by [7, Lemma 1.1]

(6.2) Trace $j \circ ad[js, s]|_{\mathfrak{w}} \leq 0$ for all $s \in \mathfrak{s}$ and the equality holds if and only if both $adjs|_{\mathfrak{w}}$ and $ads|_{\mathfrak{w}}$ commute with j.

LEMMA 6.5. The restriction of the canonical hermitian form of the *j*-algebra (g, \mathfrak{k}, j) to the subspace $\mathfrak{F}_0/\mathfrak{k} \cap \mathfrak{F}_0 \subset \mathfrak{g}/\mathfrak{k}$ is non-degenerate.

PROOF. Let ψ_0 denote the Koszul form of the *j*-algebra $(\mathfrak{F}_0, \mathfrak{k}_0, j)$. We then have

(6.3)
$$\psi(x) = \operatorname{Trace}(\operatorname{ad} jx - j \circ \operatorname{ad} x)|_{\mathfrak{w}} + \psi_0(x) \quad \text{for } x \in \mathfrak{s}_0.$$

Consider a Cartan decomposition of the reductive *j*-algebra $\mathfrak{s}_0 = \mathfrak{u} \oplus \mathfrak{m}$, where u denotes the sum of the center of \mathfrak{s}_0 and a maximal compact subalgebra of $[\mathfrak{s}_0, \mathfrak{s}_0]$ (=the semi-simple part of \mathfrak{s}_0) and \mathfrak{m} denotes the orthogonal complement of \mathfrak{u} in $[\mathfrak{s}_0, \mathfrak{s}_0]$ with respect to the killing form of \mathfrak{s}_0 . Here we can assume that \mathfrak{u} contains $\mathfrak{t} \cap \mathfrak{s}_0$. By [4], we can adjust *j* so that both \mathfrak{u} and \mathfrak{m} are invariant under *j*. We then have from [4] that $\psi_0([jm, m]) > 0$ for every non-

zero element m in \mathfrak{m} and that $\psi([ju, u]) < 0$ for every element u of \mathfrak{u} which is not contained in $\mathfrak{u} \cap \mathfrak{k}$. Since $\operatorname{ad} x|_{\mathfrak{w}}$ is a symplectic endomorphism, we know Trace $\operatorname{ad} x|_{\mathfrak{w}}=0$ for all $x \in \mathfrak{s}_0$. Moreover since the semi-simple part of \mathfrak{u} is compact, we know from [3, Lemma 1.6] that $\operatorname{ad} u|_{\mathfrak{w}}$ commutes with j for all $u \in \mathfrak{u}$. Therefore from (6.2) and (6.3), we have $\psi([jm, m]) > 0$ for every non-zero element m in \mathfrak{m} and $\psi([ju, u]) < 0$ for every element $u \in \mathfrak{u}$ such that $u \notin \mathfrak{k} \cap \mathfrak{u}$, proving the lemma. q. e. d.

Let $\hat{\psi}$ denote the Koszul form of the *j*-algebra $(\hat{g}, \mathfrak{t} \cap \hat{g}, j)$. From the fact that \hat{g} is a *j*-ideal of g, it follows that $\psi(x) = \hat{\psi}(x)$ holds for all $x \in \hat{g}$. Therefore the restriction of the canonical hermitian form of the *j*-algebra (g, \mathfrak{t}, j) to the subspace $\hat{g}/\hat{g} \cap \mathfrak{t}$ coincides with the canonical hermitian form of the *j*-algebra $(\hat{g}, \mathfrak{t} \cap \hat{g}, j)$. Hence from Corollary 6.4 and from Lemma 6.5 we obtain

PROPOSITION 6.6. Assume that the canonical hermitian form of the *j*-algebra $(\hat{g}, \mathfrak{t} \cap \hat{g}, j)$ is non-degenerate. Then the canonical hermitian form of $(\mathfrak{g}, \mathfrak{t}, j)$ is also non-degenerate.

§7. Proof of Theorem 6.1.

We continue the arguments of the previous section. By Proposition 6.6, we only have to prove Theorem 6.1 for the special case where $\mathfrak{s}_0=0$. Therefore in this section we assume that the adjoint representation of \mathfrak{s} on \mathfrak{r} is faithful. But then \mathfrak{s} is regarded as the isotropy subalgebra of the Lie algebra $j\mathfrak{r}\oplus\mathfrak{s}$ which generate a linear group acting on the cone Ω transitively and effectively. In particular the semi-simple part of \mathfrak{s} is compact. Therefore by the same reason as in the previous section, we have

(7.1)
$$\operatorname{ad} s|_{\mathfrak{w}} \circ j = j \circ \operatorname{ad} s|_{\mathfrak{w}} \quad \text{for all } s \in \mathfrak{s}.$$

It is easy to see that $[s, jx] \equiv j[s, x] \pmod{3}$ holds for all $s \in \mathfrak{s}$ and $x \in \mathfrak{r}$. From this and from (7.1), we can see that the system $(\mathfrak{g}, \mathfrak{s}, j)$ satisfies (1.1), (1.2) and (1.3). Clearly Traceads $|_{\mathfrak{g}/\mathfrak{s}}=0$ holds for all $s \in \mathfrak{s}$. Therefore we can consider the Koszul form $\check{\phi}$ of the system $(\mathfrak{g}, \mathfrak{s}, j)$. (We can prove that the system $(\mathfrak{g}, \mathfrak{s}, j)$ is a *j*-algebra corresponding to the homogeneous Siegel domain of the second kind. But this fact is not needed.) Let us denote by $\psi_{\mathfrak{s}}$ the Koszul form of the *j*-algebra $(\mathfrak{s}, \mathfrak{k}, j)$. We then have for $s, s' \in \mathfrak{s}, \psi([s, s']) = \check{\psi}([s, s']) + \psi_{\mathfrak{s}}([s, s'])$ $= \psi_{\mathfrak{s}}([s, s'])$. Therefore the restriction of the canonical hermitian form of $(\mathfrak{g}, \mathfrak{k}, j)$ which is negative definite because the semi-simple part of \mathfrak{s} is compact. Therefore for the proof of Theorem 6.1, it is enough to show the following

PROPOSITION 7.1. $\psi([jx, x]) > 0$ for all non-zero element $x \in \mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{w}$.

In order to show the above proposition, we use another root system decomposition due to [9].

LEMMA 7.2 ([9]). There exists $r_{\alpha} \in \mathfrak{r}$ ($\alpha = 1, \dots, q$) and a decomposition $\mathfrak{r} =$ $\sum_{\alpha \leq \beta} \mathfrak{r}_{\alpha\beta}$ satisfying the following:

- (1) $\mathfrak{r}_{\alpha\alpha} = \mathbf{R}\mathbf{r}_{\alpha}$.
- (2) $[jr_{\alpha}, jr_{\beta}] = 0$, $[jr_{\alpha}, r_{\beta}] = \delta_{\alpha\beta}r_{\beta}$ and $e = \sum r_{\alpha}$.

(3) $\mathfrak{r}_{\alpha\beta}$ and $j\mathfrak{r}_{\alpha\beta}$ are invariant under $\operatorname{ad} jr_{\gamma}$ and $\operatorname{Re}(\operatorname{ad} jr_{\gamma}) = (\delta_{\alpha\gamma} + \delta_{\beta\gamma})/2$ on $\mathfrak{r}_{\alpha\beta}$ and $Re(\operatorname{ad} jr_{\gamma}) = (\delta_{\alpha\gamma} - \delta_{\beta\gamma})/2$ on $j\mathfrak{r}_{\alpha\beta}$.

We remark that this lemma can be obtained also by applying the results in §2 to the effective *j*-algebra $(r \oplus jr, 0, j)$.

By (2) of the above lemma, the Lie algebra g is decomposed into the sum of root spaces as $\mathfrak{g} = \sum \mathfrak{g}^{\Gamma}$ relative to the abelian space of endomorphisms generated by $\{Re(adjr_{\alpha}); \alpha=1, \dots, q\}$. Since w and $jr \oplus \mathfrak{g}$ are invariant under adjr, we also have the decompositions $\mathfrak{w} = \sum \mathfrak{w}^{\Gamma}$ and $j\mathfrak{r} \oplus \mathfrak{s} = \sum (j\mathfrak{r} \oplus \mathfrak{s})^{\Gamma}$. Let us denote by \mathcal{A}_{α} the root defined by

$$\Delta_{\alpha}(\operatorname{Re}(\operatorname{ad} jr_{\beta})) = \delta_{\alpha\beta}.$$

Then we know from [9]

(7.2)
$$\mathfrak{w} = \sum_{\alpha=1}^{m} \mathfrak{w}^{\alpha/2}, \qquad j \mathfrak{w}^{\alpha/2} = \mathfrak{w}^{\alpha/2},$$

(7.3)
$$j\mathfrak{r}\oplus\mathfrak{s} = \sum_{\alpha,\beta} (j\mathfrak{r}\oplus\mathfrak{s})^{(\mathcal{J}_{\alpha}-\mathcal{J}_{\beta})/2},$$

(7.4)
$$(j\mathfrak{r}\oplus\mathfrak{s})^{(\mathfrak{d}_{\alpha}-\mathfrak{d}_{\beta})/2} = j\mathfrak{r}_{\alpha\beta}\oplus\mathfrak{s}\cap\mathfrak{g}^{(\mathfrak{d}_{\alpha}-\mathfrak{d}_{\beta})/2} \quad \text{for } \alpha \leq \beta.$$

Therefore we know that

We want to improve (7.4). Let $x \in \mathfrak{g} \cap \mathfrak{g}^{\Gamma}$. Then ad x is a nilpotent endomorphism if $\Gamma \neq 0$. On the other hand we already know that ad $x|_r$ is a semi-simple endomorphism with imaginary eigenvalues. Therefore ad $x|_x=0$. This implies that x=0, because the representation of \mathfrak{s} on \mathfrak{r} is faithful. Therefore by (7.4)

(7.6)
$$(j\mathfrak{r}\oplus\mathfrak{g})^{(\mathscr{I}_{\alpha}-\mathscr{I}_{\beta})/2}=j\mathfrak{r}_{\alpha\beta}$$
 for $\alpha < \beta$.

We remark also that

(7.7)
$$\dim(j\mathfrak{r}\oplus\mathfrak{F})^{(\mathfrak{L}_{\alpha}-\mathfrak{L}_{\beta})/2} \leq \dim\mathfrak{r}_{\beta\alpha} \quad \text{for } \alpha > \beta$$

In fact, let $x \in (j\mathfrak{r} \oplus \mathfrak{g})^{(\mathfrak{L}_{\alpha} - \mathfrak{L}_{\beta})/2}$ for $\alpha > \beta$. Then $[x, e] \in \mathfrak{r}_{\beta\alpha}$. If [x, e] = 0, then $x \in \mathfrak{s}$, whence x=0 follows from the fact $\mathfrak{s} \cap \mathfrak{g}^{\Gamma}=0$ for $\Gamma \neq 0$. This implies (7.7). Consider the subalgebra $r \oplus jr$. It is easy to see that

$$\operatorname{nil}(\mathfrak{r}\oplus j\mathfrak{r}) \cap j\operatorname{nil}(\mathfrak{r}\oplus j\mathfrak{r}) = \sum_{\alpha < \beta} (\mathfrak{r}_{\alpha\beta} \oplus j\mathfrak{r}_{\alpha\beta}).$$

Then applying Proposition 4.4 to the *j*-algebra $\mathfrak{r} \oplus j\mathfrak{r}$ and the skew-symmetric bilinear form $d\phi|_{\mathfrak{r} \oplus j\mathfrak{r}}$, we have

LEMMA 7.3. $\psi(\mathfrak{r}_{\alpha\beta} \oplus j\mathfrak{r}_{\alpha\beta}) = 0$ for $\alpha < \beta$.

Next we prove

LEMMA 7.4. $\psi(r_{\gamma}) > 0$ for all γ .

PROOF. Since $j\mathbf{r} \oplus \mathbf{f}$ is a subalgebra, we also have the decomposition $j\mathbf{r} \oplus \mathbf{f} = \sum (j\mathbf{r} \oplus \mathbf{f})^{\Gamma}$. Let us set $f_{\gamma} = \operatorname{ad} j\mathbf{r}_{\gamma} - j \circ \operatorname{ad} \mathbf{r}_{\gamma}$. Then

$$\psi(r_{\gamma}) = \operatorname{Trace} f_{\gamma}|_{\mathfrak{r}\oplus\mathfrak{f}\mathfrak{c}} + \operatorname{Trace} f_{\gamma}|_{\mathfrak{w}} + \operatorname{Trace} f_{\gamma}|_{\mathfrak{f}\oplus\mathfrak{g}} - \operatorname{Trace} f_{\gamma}|_{\mathfrak{f}\mathfrak{r}\oplus\mathfrak{f}}$$

$$= 2 \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{\mathfrak{r}} + \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{\mathfrak{w}} + \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{\mathfrak{s}\mathfrak{v}\oplus\mathfrak{s}} - \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{\mathfrak{s}\mathfrak{v}\oplus\mathfrak{t}}.$$

By simple computations, we have from Lemma 7.2 and (7.2)

Trace ad
$$jr_{\gamma}|_{\mathfrak{r}} = 1 + \frac{1}{2} \sum_{\alpha < \gamma} \dim \mathfrak{r}_{\alpha\gamma} + \frac{1}{2} \sum_{\gamma < \beta} \dim \mathfrak{r}_{\gamma\beta}$$

Trace ad $jr_{\gamma}|_{\mathfrak{w}} = \frac{1}{2} \dim \mathfrak{w}^{4\gamma/2}$

and using (7.3) and (7.6) we have

$$\begin{aligned} \operatorname{Trace} &\operatorname{ad} jr_{\gamma}|_{j\mathfrak{r}\oplus\mathfrak{F}} - \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{j\mathfrak{r}\oplus\mathfrak{f}} \\ &= \sum_{\alpha>\beta} \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{(j\mathfrak{r}\oplus\mathfrak{F})(\mathcal{A}_{\alpha}-\mathcal{A}_{\beta})/2} - \sum_{\alpha>\beta} \operatorname{Trace} \operatorname{ad} jr_{\gamma}|_{(j\mathfrak{r}\oplus\mathfrak{f})(\mathcal{A}_{\alpha}-\mathcal{A}_{\beta})/2} \\ &= \frac{1}{2} \sum_{\gamma>\beta} (\dim(j\mathfrak{r}\oplus\mathfrak{F})^{(\mathcal{A}_{\gamma}-\mathcal{A}_{\beta})/2} - \dim(j\mathfrak{r}\oplus\mathfrak{F})^{(\mathcal{A}_{\gamma}-\mathcal{A}_{\beta})/2}) \\ &- \frac{1}{2} \sum_{\gamma<\alpha} (\dim(j\mathfrak{r}\oplus\mathfrak{F})^{(\mathcal{A}_{\alpha}-\mathcal{A}_{\gamma})/2} - \dim(j\mathfrak{r}\oplus\mathfrak{F})^{(\mathcal{A}_{\alpha}-\mathcal{A}_{\gamma})/2}) \,. \end{aligned}$$

Now the lemma follows from (7.7).

q. e. d.

We are now in a position to prove Proposition 7.1. Let $x \in \mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{m}$. We decompose as $x = \sum_{\alpha \leq \beta} r_{\alpha\beta} + \sum_{\alpha \leq \beta} jz_{\alpha\beta} + \sum_{\alpha} w_{\alpha}$, where $r_{\alpha\beta}$, $z_{\alpha\beta} \in \mathfrak{r}_{\alpha\beta}$ and $w_{\alpha} \in \mathfrak{m}^{d_{\alpha}/2}$. We then have

$$[jx, x] \equiv \sum_{\alpha \leq \beta} [jr_{\alpha\beta}, r_{\alpha\beta}] + [jz_{\alpha\beta}, z_{\alpha\beta}] + \sum_{\alpha} [jw_{\alpha}, w_{\alpha}] \pmod{\mathfrak{w} \oplus \sum_{\alpha < \beta} (\mathfrak{r}_{\alpha\beta} \oplus j\mathfrak{r}_{\alpha\beta})}.$$

Therefore by Lemmas 6.3 and 7.3, it is enough to show $\psi([jr, r]) > 0$ for every non-zero element $r \in \mathfrak{r}_{\alpha\beta}$ and $\psi([jw, w]) > 0$ for every non-zero element $w \in \mathfrak{w}^{d_{\alpha}/2}$. But both [jr, r] and [jw, w] are in $\mathfrak{r}_{\alpha\alpha}$ and hence constant multiples of r_{α} . Let ψ' denote the Koszul form of the *j*-algebra $(\mathfrak{r} \oplus j\mathfrak{r} \oplus \mathfrak{w}, 0, j)$. This *j*-algebra corresponds to a homogeneous Siegel domain ([9]). Therefore $\psi'([jr, r]) > 0$ and $\psi'([jw, w]) > 0$ hold. Moreover since $\psi'(r_{\alpha}) = \psi'([jr_{\alpha}, r_{\alpha}]) > 0$, the above constants must be positive numbers. Therefore by Lemma 7.4, we have $\psi([jr, r])$ >0 and $\psi([jw, w])$ >0, completing the proof of Proposition 7.1. This finishes the proof of Theorem 6.1.

References

- [1] A. Borel, Kählerian coset space of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 1147-1151.
- [2] J. Dorfmeister, Simply transitive group and Kähler structures on homogeneous Siegel domains, Trans. Amer. Math. Soc., 288 (1985), 293-305.
- [3] J. Dorfmeister and K. Nakajima, The fundamental conjecture for homogeneous Kähler manifolds, Acta. Math., 161 (1988), 23-70.
- [4] J. J. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562-576.
- Y. Matsushima, Sur les éspaces homogènes Kähleriens d'un groupe de Lie reductif, Nagoya Math. J., 11 (1957), 53-60.
- [6] K. Nakajima, On j-algebras and homogeneous Kähler manifolds, Hokkaido Math. J., 15 (1986), 1-20.
- K. Nakajima, Homogeneous Kähler manifolds of non-positive Ricci curvature, J. Math. Kyoto Univ., 26 (1986), 547-558.
- [8] E.B. Vinberg and S.G. Gindikin, Kaehlerian manifolds admitting a transitive solvable automorphism group, Mat. Sb., 74 (116) (1967), 333-351.
- [9] E. B. Vinberg, S. G. Gindikin and I. I. Pyatetskii-Shapiro, Classification and canonical realization of complex homogeneous domains, Trans. Moscow Math. Soc., 12 (1963), 404-437.

Kazufumi NAKAJIMA Department of Mathematics Ritsumeikan University Kyoto 603 Japan