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Introduction.

Let $M$ be a connected homogeneous K\"ahler manifold. Denote by $Aut(M)$

the group of all holomorphic isometries of $M$. Let $G$ be a connected subgroup
of $Aut(M)$ acting transitively on $M$ and $K$ the isotropy subgroup of $G$ at a point
of $M$. We denote by $\mathfrak{g}$ and $f$ the Lie algebras of $G$ and $K$ respectively.
Then there correspond to the invariant complex structure and the K\"ahler form
of $M$ a linear endomorphism $j$ of $\mathfrak{g}$ and a skew-symmetric bilinear form $\rho$ on $\mathfrak{g}$

such that $(g, f, j, \rho)$ becomes an effective K\"ahler algebra. (For the definition of
a K\"ahler algebra, see \S 1.)

According to Vinberg and Gindikin [8], the K\"ahler algebra $(\mathfrak{g}, f, j, \rho)$ is
called non-degenerate if there exists a linear form $\omega$ on $\mathfrak{g}$ such that $\rho=d\omega([8])$ ,

where the operator $d$ means the exterior differentiation under the identification
of $P$-forms on $\mathfrak{g}$ with left invariant $p$-forms on the Lie group $G$ . Note that if
the K\"ahler algebra $(g, f, j, \rho)$ is non-degenerate, then the system $(\mathfrak{g}, f, J)$ becomes
a $j$-algebra. (For the definition of a $j$-algebra, see \S 2.)

The purpose of the present paper is to investigate the structure of $J$ -algebras
and prove the following

THEOREM. Let $M=G/K$ be a connected homogeneous Kahler manifold where
$G$ is a subgroup of Aut(M). Then the Ricci curvature of $M$ is non-degenerate if
and only if the corresponding Kahler algebra $(g, f, j, \rho)$ is non-degenerate.

We explain our method. By [3] every connected homogeneous K\"ahler mani-
fold $M$ is a holomorphic fiber bundle over a homogeneous bounded domain in
which the fiber is the product of a flat homogeneous K\"ahler manifold and a
compact simply connected homogeneous K\"ahler manifold. Recall that the Ricci
tensor of $M$ corresponds to the canonical hermitian form introduced by Koszul
[4] and it is expressed in terms of the K\"ahler algebra $(g, f, j, \rho)$ . Then by a
simple calculation, we can see in \S 1 that if the Ricci tensor of $M$ is non-
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degenerate, then the jlat factor of $M$ does not aPPear (Theorem 1.1). On one
hand we already know from [6, Theorems A and $B$ ] and from [7, Proposition
3.1] that the flat part of $M$ vanishes if and only if the system $(g, f, j)$ becomes
a $j$-algebra. Therefore the study of homogeneous K\"ahler manifolds of non-
degenerate Ricci curvature has great concern with the study of j-algebras.

In \S \S 2 and 3, starting from the decomposition theorem of a $J$ -algebra in [9]

with respect to an abelian ideal and using the structure theorem of a homo-
geneous convex cone in [3], we will describe the structure of a $J$ -algebra in
more detail. From our descriptions, we can see in \S 4 that every closed 2-form
$\rho$ on an effective $j$-algebra $(\mathfrak{g}, f, j)$ satisfying the conditions: $\rho(f, g)=0$ and
$\rho[jX, jy)=\rho(x, y)$ for $x,$ $y\in g$ is an exact form (Theorem 4.1). In particular, for
an effective K\"ahler algebra $(g, f, j, \rho)$ the non-degeneracy is equivalent to the
condition that $(g, f, j)$ is a j-algebra.

\S 5 is not needed for the proof of our theorem, but is devoted to giving an
invariant meaning to the decomposition of a $J$ -algebra obtained in gg 2 and 3
(Theorem 5.3).

In \S \S 6 and 7 we will prove that the canomcal hermitian form of every effec-
tive $j$-algebra is non-degenerate (Theorem 6.1). This can be done by direct com-
putations, using the root space decomposition due to [9].

Summing up our results, we have the following implications:

Theorem 1.1
the Ricci curvature is $non- degeneratearrow the$ flat factor does not appear

Theorem $61\backslash$
$|[6]$

Theorem 4. 1
$(\mathfrak{g}, f, j, \rho)$ is non-degenerate $(\mathfrak{g}, f, j)$ is a j-algebra.

$\overline{trivial}$

Thus we get our theorem. At the same time, we also obtain that the Ricci
curvature of a connected homogeneous Kahler mamfold $M$ is non-degenerate if
and only if $M$ is a holomorPhic fiber bundle over a homogeneous bounded domain
in which the fiber is a compact simply connected homogeneous Kahler mamfold.
We would like to remark that the last condition is equivalent to say that $M$ is,
as a complex manifold, the product of a homogeneous bounded domain and a
compact simply connected homogeneous complex manifold ([6], [3]).

Throughout this paper, we use the following notations: For a Lie algebra
$\mathfrak{g}$ , rad(g) and nil(g) mean the radical and the nilpotent radical of $\mathfrak{g}$ respectively.
Let $A$ be a linear endomorphism of a real vector space $V$ . Then $A$ is uniquely
decomposed as $A=R+I+N$, where all $R,$ $I$ and $N$ commute, $R$ (resp. $I$ ) is a
semi-simple endomorphism with real (resp. imaginary) eigenvalues and $N$ is a
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nilpotent endomorphism. We denote by $Re(A)$ the endomorphism $R$ .

\S 1. Ktihler algebras.

Let $\mathfrak{g}$ be a finite dimensional Lie algebra over $R,$ $f$ a subalgebra of $g,$ $j$ a
linear endomorphism of $\mathfrak{g}$ and $\rho$ a skew-symmetric bilinear form on $\mathfrak{g}$ . We
then call the quadruPle $(\mathfrak{g}, f, J, \rho)$ or simply $\mathfrak{g}$ to be a Kahler algebra if the
following conditions are satisfied:

(1.1) $jf\subset f$ , $j^{2}x\equiv-x$ (mod f),

(1.2) $[x, jy]\equiv j[x, y]$ (mod f) for $x\in f,$ $y\in g$ ,

(1.3) $D^{\cdot}x,$ $jy]\equiv[x, y]+][]X,$ $y]+j[x, jy]$ (modf) for $x,$ $y\in g$ ,

(1.4) $\rho(f, g)=0$ , $d\rho=0$ ,

(1.5) $\rho(J^{X}Jy)=\rho(x, y)$ for $x,$ $y\in \mathfrak{g}$ ,

(1.6) $\rho(]^{\chi}, x)>0$ if $x\not\in f$ .
The subalgebra $f$ will be called the isotropy subalgebra.

Let $M=G/K$ be a connected homogeneous K\"ahler manifold of a Lie group
$G$ by a closed subgroup $K$, equipped with a $G$ -invariant complex structure $J$

and a $G$ -invariant K\"ahler form $\Psi$ . Denote by $\mathfrak{g}$ and $f$ the Lie algebras of $G$

and $K$ respectively. Then there exists a linear endomorphism $j$ of $\mathfrak{g}$ such that
$\pi_{*}(jx)_{e}=J_{0}(\pi_{*}x_{e})$ for $x\in g$ , where $e$ denotes the identity element of $G,$ $\pi$ denotes
the projection of $G$ onto $G/K$ and $0=\pi(e)$ . We also set $\rho=\pi^{*}\Psi$ . Then $(g, f, j, \rho)$

becomes a K\"ahler algebra.
Conversely let $(g, f, j, \rho)$ be a K\"ahler algebra and let $G$ be the simply con-

nected Lie group with $\mathfrak{g}$ as its Lie algebra. Denote by $K$ the connected sub-
group of $G$ corresponding to $f$ . Then as is proved in [3, Proposition 1.1], the
group $K$ is closed in $G$ and the homogeneous space $G/K$ admits a G-invariant
K\"ahler structure.

Let $\mathfrak{g}$ be a K\"ahler algebra with an isotropy subalgebra $f$ and an operator $j$ .
We call $\mathfrak{g}$ to be effective if $f$ does not contain any non-trivial ideal of $\mathfrak{g}$ . Let $j’$

be another endomorphism such that $j’x\equiv_{J}x$ (mod f) for all $x\in g$ . Then $\mathfrak{g}$ is also
a K\"ahler algebra relative to $j’$ . Changing $j$ to such a $j’$ will be said an ines-
sential change and we will not distinguish two algebras which are related to each
other by inessential changes. A subalgebra $\mathfrak{g}’$ of $\mathfrak{g}$ is called a Kahler subalgebra
if it satisfies $j\mathfrak{g}’\subset \mathfrak{g}’+f$ , In this case after an inessential change of $j$ , we can
assume that $jg’\subset g’$ . Then $\mathfrak{g}’$ itself is a K\"ahler algebra with the isotropy sub-
algebra $g’\cap f$ . Similarly Kahler ideals are defined.

Let $(g, f, j)$ be a system satisfying (1.1), (1.2) and (1.3). We further assume
that Trace ad $x=0$ for all $x\in f$ . For any $x\in g$ , ad $jx-j\circ adx$ leaves $f$ invariant
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and hence induces an endomorphism of $g/f$ . According to Koszul [4], we define
a linear form $\psi$ , called the Koszul form, by

$\psi(x)=Trace(ad_{J^{X}}-J^{\circ adx)}|_{\mathfrak{g}/\mathfrak{k}}$ for $x\in g$ .
Let us set

$\eta(x, y)=\psi([jX, y])$ for $x,$ $y\in g$ .

We can see that $\eta$ is a symmetric bilinear form on $\mathfrak{g}$ satisfying the following
properties ([4]):

$\eta(f, g)=0$ and $\eta(]x, jy)=\eta(x, y)$ for $x,$ $y\in g$ .
By the above properties, the form $\eta$ induces a hermitian symmetric bilinear form
on $g/f$ , which will be called the canonical hermitian form. It is standard that
for a K\"ahler algebra $\mathfrak{g}$ , the canonical hermitian form thus obtained can be
identified with the Ricci tensor of the homogeneous K\"ahler manifold correspond-
ing to $\mathfrak{g}$ . Using the result of [3], we will calculate the canonical hermitian
form and prove the following

THEOREM 1.1. Let $M$ be a connected homogeneous Kahler manifold. Assume
that the Ricci curvature of $M$ is non-degenerate. Then $M$ is, as a comPlex mani-
fold, the product of a homogeneous bounded domain and a compact simply con-
nected homogeneous complex manifold.

PROOF. By [3, Theorems 2.1 and 2.5], we can find a subgroup $G$ of $Aut(M)$

acting on $M$ transitively and having the following properties: Let us denote
by $(g, f, j, \rho)$ the K\"ahler algebra attached to the expression $M=G/K$. Then $\mathfrak{g}$

is decomposed as $\mathfrak{g}=\mathfrak{a}\oplus \mathfrak{h}$ where
(1) $\mathfrak{a}$ is an abelian K\"ahler ideal of $\mathfrak{g}$ ;
(2) $\mathfrak{h}$ is a K\"ahler subalgebra containing $f$ and the homogeneous Kahler mani-

fold associated with the K\"ahler algebra $(\mathfrak{h}, f, J, \rho)$ is, as a complex manifold,
the product of a homogeneous bounded domain and a compact simply connected
homogeneous K\"ahler manifold.

In order to prove our theorem it is sufficient to show that $\mathfrak{a}=0$ . Let $\Psi$ denote
the Koszul form of the K\"ahler algebra $(g, f, j, \rho)$ . After an inessential change
of $j$ , we can assume that $\mathfrak{a}$ is $J$ -invariant. Then it is clear that $\Psi(\mathfrak{a})=0$ . Hence
we have $\Psi([\mathfrak{a}, \mathfrak{g}])=0$ . This means that $a\subset f$ , because the canonical hermitian
form is non-degenerate in our case. Since $f\cap a=0$ holds, we can conclude $a=0$,
proving the theorem. $q$ . $e$ . $d$ .

\S 2. The structure of j-algebras.

Let $(g, f, j)$ be a system satisfying (1.1), (1.2) and (1.3). We call $(g, f, j)$ or
simply $\mathfrak{g}$ a $J$ -algebra if there exists a linear form $\omega$ on $\mathfrak{g}$ such that $(\mathfrak{g}, f, j, d\omega)$
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is a Kahler algebra. Such a form $\omega$ will be called an admissible form of the
$j$-algebra $(g, f, j)$ . Clearly if $(g, f, j, \rho)$ is a non-degenerate K\"ahler algebra, then
$(g, f, j)$ is a $j$-algebra. For the $j$-algebra $(g, f, ])$ , we can also define effective-
ness, $j$-subalgebras, the Koszul form, etc, similarly to K\"ahler algebras. In this
section, we first recall a result of [9] concerning to j-algebras.

Let $(g, f, j)$ be an effective $J$ -algebra. An abelian ideal $\mathfrak{r}$ of $\mathfrak{g}$ is called of
the first kind if there exists an element $e$ of $\mathfrak{r}$ such that

(2.1) $[]X,$ $e]=x$ for all $x\in \mathfrak{r}$ .
The element $e$ is called the PnnciPal idemPotent of $\mathfrak{r}$ .

The following fact is standard.

PROPOSITION 2.1 ([9]). Let $\mathfrak{r}$ be an abelian ideal of the first kind with the

PnnciPal idemPotent $e$ and let $\mathfrak{g}_{\lambda}$ be the eigensPace of the oPerator $Re(ad_{J^{e}})$ with
eigenvalue R. Then $\mathfrak{g}$ is decomposed into the sum of subspaces as

$\mathfrak{g}=r\oplus_{J}\mathfrak{r}\oplus \mathfrak{w}\oplus@$

in the following way:
(1) $\mathfrak{g}_{0}=j\mathfrak{r}\oplus@,$ $\mathfrak{g}_{1/2}=\mathfrak{w}$ and $g_{1}=r$ .
(2) 9 is a $J$ -subalgebra containing $f$ and given by $@=\{x\in \mathfrak{g}_{0} ; [x, e]=0\}$ .
(3) $j\mathfrak{w}\subset \mathfrak{w}\oplus f$ .

Moreover let us denote by $\tau$ the adjoint representation of go on $\mathfrak{r}$ and by $G_{0}$ the
connected subgroup of $GL(r)$ generated by $\tau(\mathfrak{g}_{0})$ . Then

(4) $\Omega=G_{0}e$ is an oPen convex cone in $\mathfrak{r}$ not containing any straight line.
Assume further that $\mathfrak{r}$ is a maximal abelian ideal of the first kind. Then

(5) 6 is reductive.

In what follows, $\mathfrak{r}$ always denotes a maximal abelian ideal of the first kind.
Let us denote by & the algebraic hull of $\tau(\mathfrak{g}_{0})$ . Then by [3, Theorem 6.2],

we have

PROPOSITION 2.2 ([3]). There exist elements $e_{1},$
$\cdots$ , $e_{m}$ of $\prime \mathfrak{r}$, commutative

elements $f_{1},$ $\cdots$ , $f_{m}\in \mathfrak{F}$, decompositions $\mathfrak{r}=\Sigma_{1\leqq i\leqq j\leqq m^{(}ij},$ $\mathfrak{F}=\Sigma_{1\leqq i\leqq j\leqq m\mathfrak{F}_{ij}\oplus \mathfrak{F}0}$ and
irreducible self dual cones $\Omega_{i}\subset r_{ii}$ such that $f_{i}$ \in &t and

(1) $f_{i}=(\delta_{ij}+\delta_{ik})/2$ on $r_{jk}$ and ad $f_{i}=(\delta_{ij}-\delta_{ik})/2$ on $\mathfrak{F}_{jk}$ ;
(2) $\mathfrak{F}_{0}=$ { $f\in \mathfrak{F};fx=0$ for all $x \in\sum_{i=1}^{m}\mathfrak{r}_{\ell i}$ },$\cdot$

(3) $[\mathfrak{F}_{0}, \ t]=0$ for all $i$ and $[\mathfrak{F}_{ii}, \mathfrak{F}_{jj}]=0$ , &t$r_{jj}=0$ for $i\neq j$ .
By the Property (1), each $r_{jk}$ is invanant under &i. Then

(4) the restnction of &i to $\mathfrak{r}_{ti}$ gives an isomorphism between &i and
Lie $Aut(\Omega_{i})$ , the Lie algebra of the grouP of all automorphisms of the cone $\Omega_{i}$ ;

(5) $e- \sum_{i=1}^{m}e_{i},$ $e_{i}\in\Omega_{i}$ and $\Omega_{1}\cross\cdots\cross\Omega_{m}=\Omega\cap\Sigma_{i=1}^{m}\mathfrak{r}_{ii},\cdot$

(6) the isotroPy subalgebra $\mathfrak{F}_{e}$ $of$ & at the Point $e$ is decomPosed as $\mathfrak{F}_{e}=$

$\Sigma_{i=1\mathfrak{F}_{e}\cap \mathfrak{F}_{ii}\oplus \mathfrak{F}_{0}}^{m}$ and $\mathfrak{F}_{e}\cap \mathfrak{F}_{ii}=\{f\in \mathfrak{F}_{ii} ; fe_{i}=0\}$ .
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From the above properties, we can see
(2.2) $\mathfrak{F}_{e}e_{i}=0$ for all $i=1,$ $\cdots$ , $m$ .

Since $\tau(f)\subset\tau(\S)\subset \mathfrak{F}e$

’ we have

(2.3) $[$ @, $e_{i}]=0$ and $[f, e_{i}]=0$ .
Moreover from (4), we also know that $\mathfrak{F}_{ii}$ is reductive and its center is the 1-
dimensional subspace generated by $f_{i}$ . Therefore

(2.4) $\mathfrak{F}_{ii}=Rf_{i}\oplus \mathfrak{H}_{i}$ ,

where $\mathfrak{H}_{i}=[\mathfrak{F}_{ii}, \mathfrak{F}_{ii}]$ .
After an inessential change of $j$ , we can assume that $j\iota$ is a solvable sub-

algebra ([9]). Let $e_{1},$
$\cdots$ , $e_{m}$ be as in Proposition 2.2. We consider the opera-

tors $R_{i}=Re(ad]e_{i})$ . We put $f_{i}’=\tau(]e_{i})$ . Then $f_{i}e-f_{i}’e=e_{i}-e_{i}=0$ . Therefore
$f_{i}-f_{i}^{f}\in \mathfrak{F}_{e}$ . Since $[f_{i}, \mathfrak{F}_{e}]=0$ and since every element of $\mathfrak{F}_{e}$ has only imaginary
eigenvalues, we have $Re(f_{i})=Re(f_{i}’)$ . Therefore

(2.5) $R_{i}= \frac{1}{2}(\delta_{ij}+\delta_{ik})$ on $r_{jk}$ .

LEMMA 2.3. $[]e_{i},$ $je_{j}]=0$ .
PROOF. Since $\mathfrak{F}_{e}e_{i}=0$ by (2.2), we have

$[je_{i]}e_{j}]=j[]e_{i},$ $e_{j}]+j[e_{i}, je_{j}]=jf_{i}’e_{j}=jf_{f}’e_{i}=j(f_{i}e_{j}-f_{j}e_{i})=0$ .
$q$ . $e$ . $d$ .

By Lemma 2.3, we can decompose $\mathfrak{g}$ into the sum of root spaces $\mathfrak{g}^{\Gamma}$ relative
to the abelian space of linear endomorphisms generated by $R_{1},$ $\cdots$ $R_{m}$ . Since
all $\mathfrak{r},$ $J\mathfrak{r},$ $\mathfrak{g}_{0}$ and to are $ad_{J^{\mathfrak{r}}}$-invariant, we also have $\mathfrak{r}=\sum \mathfrak{r}^{\Gamma},$ $j \mathfrak{r}=\sum(]t)^{\Gamma},$ $\mathfrak{g}_{0}=\sum \mathfrak{g}_{0}^{\Gamma}$

and $\mathfrak{w}=\sum \mathfrak{w}^{\Gamma}$ . If we define $\Delta_{i}$ for $\iota=1,$ $\cdots$ $m$ by $\Delta_{i}(R_{j})=\delta_{ij}$ , then by (2.5) we
have immediately the following

LEMMA 2.4. $\mathfrak{r}=\sum_{1\leqq i\leqq j\leqq m}\mathfrak{r}^{(\Delta_{i^{+}}\Delta_{j)/2}}$ and $\mathfrak{r}^{(}=\mathfrak{r}_{ij}\Delta_{i}+\Delta_{j)/2}$

Next we show the following

LEMMA 2.5. $j\mathfrak{r}_{\iota j}=(]\mathfrak{r})^{(\Delta_{i}-\Delta_{j)/2}}$ for $i<j$ and $J^{t_{ii}}\subset$ gg.
PROOF. From (2.1), we have $[]t_{ij},$ $e]\subset \mathfrak{r}_{ij}$ . It is clear that the correspond-

ence: $\mathfrak{F}\ni farrow fe\in \mathfrak{r}$ gives a linear map of $\mathfrak{F}_{ij}$ onto $r_{ij}$ . This means that $\tau(Jr_{tj})c$

$\mathfrak{F}_{ij}+\mathfrak{F}_{e}$ We then have for $x\in \mathfrak{r}_{ij}[]X,$ $e_{k}]\in \mathfrak{F}_{tj}e_{k}=0$ if $j\neq k$ and $[]X,$ $e_{j}]=[jx, e]$

$=x$ . Therefore $[je_{k}, jx]=j[e_{k}, jx]+_{J}D^{\cdot}e_{k},$ $x]=-\delta_{jk}x+j[]e_{k},$ $x]$ . Hence $jr_{ij}$ is
invariant under $R_{k}$ and $R_{k}=(\delta_{ik}-\delta_{jk})/2$ on $jr_{ij}$ . $q.e$ . $d$ .

By virture of Lemmas 2.4 and 2.5, we obtain the following fact using the
similar argument in [9].
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LEMMA 2.6. $\mathfrak{w}=i1m\mathfrak{w}^{\Delta_{i/2}}$ .

Next we show

LEMMA 2.7. @\subset $\mathfrak{g}_{0}^{0}$ .

PROOF. By (2.3), $[e_{i}, @]$ =0. Since $[jx, s]\equiv_{J}[x, s]$ (mod5) holds for $x\in r$

and $s\in B$ (cf. [9]), we know that $ad$ ] $e_{i}$ leaves 5 invariant. Let $c$ and $\mathfrak{h}$ denote
the center and the semi-simple part of the reductive Lie algebra 9. Note that
$c\subset f$ and we can assume that $\mathfrak{h}$ is $j$-invariant, Both $c$ and $\mathfrak{h}$ are invariant under
ad $je_{i}$ . Therefore there exists $k_{i}\in \mathfrak{h}$ such that $[je_{i}-k_{i}, \mathfrak{h}]=0$ . Since $[je_{i}, f]\equiv$

$j[e_{i}, f]=0$ (mod f), we know that $k_{i}$ is contained in the normalizer of $\mathfrak{h}\cap f$ in $\mathfrak{h}$ .
Since $(\mathfrak{h}, \mathfrak{h}\cap f, j)$ is a semi-simple $j$-algebra, the normalizer of $\mathfrak{h}\cap f$ in $\mathfrak{h}$ coincides
with $b\cap f$ ([5, p. 59]). Therefore $k_{i}\in f$, whence $Re(adje_{i})|_{\mathfrak{h}}=Re(adk_{i})|_{\mathfrak{h}}=0$ .

Clearly $c$ is an ideal of the subalgebra $Rje_{i}\oplus c$ . Since ad $c$ is completely re-
ducible, there exists a 1-dimensional subspace $\mathfrak{v}$ invariant under ad $c$ such that
$Rje_{i}\oplus c=\mathfrak{v}\oplus c$ . But then $[b, c]=0$ . Therefore $Rje_{i}\oplus c$ is abelian, implying $c\subset \mathfrak{g}_{0}^{0}$ .

$q.e.d$ .

Summing up the results, we have proved

PROPOSITION 2.8. $\mathfrak{g}$ is decomposed as $\mathfrak{g}=\Sigma \mathfrak{g}^{\Gamma}$, where $\Gamma\in\{\Delta_{i}/2,$ $(\Delta_{i}\pm\Delta_{j})/2$ ;
$1\leqq i\leqq j\leqq m\}$ and the following hold;

$\mathfrak{g}^{(\Delta_{i}+\Delta_{j})/2}=\mathfrak{r}_{ij}$ $(i\leqq j)$ , $\mathfrak{g}^{(\Delta_{i}-\Delta_{j})/2}=j\mathfrak{r}_{ij}$ $(i<j)$ ,

$\mathfrak{g}^{\Delta_{i/2}}=\mathfrak{w}^{\Delta_{i/2}}$ , $\mathfrak{g}^{0}=\sum_{i=1}^{m}j\mathfrak{r}_{ii}\oplus\S$ .

We put

$\mathfrak{r}^{*}=\sum_{i=1}^{m}t_{ii}$ .

LEMMA 2.9. $\tau(\mathfrak{g}^{0})|_{\mathfrak{r}}*=\sum_{i=1}^{m}$ Lie $Aut(Q_{t})$ .

PROOF. It is clear that $\tau(\mathfrak{g}^{0})\subset\Sigma_{l}^{m}=1\mathfrak{F}_{ii}\oplus \mathfrak{F}0$ . Therefore

$\tau(\mathfrak{g}^{0})|_{r}*\subset\sum_{i=1}^{\tau n}$ Lie $Aut(\Omega_{i})$ .

Since $\mathfrak{F}$ is the algebraic hull of $\tau(\mathfrak{g}_{0})$ , we know that $[\mathfrak{F}, \mathfrak{F}]=[\tau(\mathfrak{g}_{0}), \tau(\mathfrak{g}_{0})]$ . There-
fore $\mathfrak{h}_{i}\subset\tau(\mathfrak{g}_{0})$ , where $\mathfrak{h}_{i}$ is the semi-simple part of $\mathfrak{F}_{ii}$ . Moreover the eigenvalue
of $ad]^{\rho_{k}}$ has $0$ on $\mathfrak{F}_{ii}$ , we have $\mathfrak{h}_{i}\subset\tau(\mathfrak{g}^{0})$ . Let $g\in(\Sigma_{i=1}^{m}R\tau(]e_{i})|_{\mathfrak{r}}*)\cap(\Sigma_{i=\iota}^{m}\mathfrak{h}_{i})|_{\mathfrak{r}}\#$ .
Then from the equation $Traceg|_{\mathfrak{r}_{ii}}=0$ for all $i$ , we know that $g=0$ . Since
$\mathfrak{F}_{ii}\cong LieAut(\Omega_{i})$ and since $\mathfrak{F}_{ti}=Rf_{i}\oplus \mathfrak{h}_{i}$ , we get the assertion. $q.e$ . $d$ .
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By Lemma 2.9, $\tau(ni1(\mathfrak{g}^{0}))|_{\mathfrak{r}}\#=0$ . In particular, $\tau(ni1(g^{0}))e=0$ , whence ni1 $(g^{0})C_{9}$ .
Then ni1 $(g^{0})$ is a nilpotent ideal of 9, whence it is contained in the center $c$ of B.
Recall that $c\subset f$ . Therefore ni1 $(g^{0})cf$ and hence ni1 $(g^{0})=0$ , proving that $\mathfrak{g}^{0}$ is
reductive.

It is clear that $\Sigma_{\Gamma\neq 0}\mathfrak{g}^{\Gamma}$ is a solvable ideal of $\mathfrak{g}$ contained in $[g, \mathfrak{g}]$ . There-
fore by Proposition 2.8, we have

PROPOSITION 2.10. The subalgebra $\mathfrak{g}^{0}$ is reductive and $\mathfrak{g}=rad(\mathfrak{g})\oplus[\mathfrak{g}^{0}, \mathfrak{g}^{0}]$ .
Moreover

rad(g) $= \sum_{\Gamma\neq 0}\mathfrak{g}^{\Gamma}\oplus the$ center of $\mathfrak{g}^{0}$ , nil(g) $= \sum_{\Gamma\neq 0}\mathfrak{g}^{\Gamma}$ .

Let us set

(2.6) $\mathfrak{g}^{\#}=\mathfrak{r}^{\#}\oplus \mathfrak{g}^{0}(=\mathfrak{r}^{*}\oplus j\mathfrak{r}^{\#}\oplus@)$ .
Then $\mathfrak{g}^{\#}$ is a $J$ -invariant subalgebra containing $f$ . Since $\mathfrak{g}^{0}$ is reductive, we have

(2.7) $\mathfrak{r}^{\#}=ni1(\mathfrak{g}^{\#})$ .
Let us Put

(2.8) $\mathfrak{n}=ni1(\mathfrak{g})\cap(jnil(\mathfrak{g})\oplus f)$ .
By Proposition 2.10, we have

(2.9)
$\mathfrak{n}=\mathfrak{w}\oplus\sum_{i<J}\mathfrak{r}_{ij}\oplus\sum_{i\triangleleft}jr_{ij}$ .

Therefore we get

PROPOSITION 2.11. $\mathfrak{g}=\mathfrak{g}^{*}\oplus \mathfrak{n}$, $[\mathfrak{g}^{\#}, \mathfrak{n}]\subset \mathfrak{n}$ and $[\mathfrak{n}, \mathfrak{n}]\subset \mathfrak{n}\oplus \mathfrak{r}^{*}$ .

\S 3. The subalgebra $\mathfrak{g}^{\#}$ .
In this section, we investigate the structure of the $j$-algebra $(\mathfrak{g}^{\#}, f, J)$ and

give a description of rad $(\mathfrak{g}^{0})$ .
We define

$s_{0}^{\#}=\{x\in 5;[x, \mathfrak{r}^{\#}]=0\}$ .
Then $s_{\cup}\#$ is an ideal of $\mathfrak{g}^{\#}$ .

LEMMA 3.1. After an inessential change of $J$ if necessary, there exists an
ideal $@^{*}$ of 9 satisfying the conditions

(1) $\mathfrak{g}^{\#}=\mathfrak{r}^{*}\oplus_{J}\mathfrak{r}^{*}\oplus 5^{\#}\oplus s_{0}\#$ ,
(2) @=^ $\#\oplus s_{0}\#,$ $f=(f\cap 8^{\#\#})\oplus(f\cap g_{0})$ ,
(3) $\mathfrak{r}^{\#}\oplus]t^{\#}\oplus 8^{\#}$ is a $J$ -invanant ideal of $\mathfrak{g}^{\#}$ .

PROOF. Since $s_{\cup}^{\#}\subset@,$ $8_{0}^{\#}$ is reductive. The center $c_{0}$ of $s_{0}^{*}$ is contained in $f$

and $[s_{\cup}\#, 8_{\cup}^{\#}]$ is a semi-simple ideal of $\mathfrak{g}^{\#}$ . Therefore $\mathfrak{g}^{*}=[@_{0}^{*},5_{0}^{*}]\oplus \mathfrak{g}’$ , where $\mathfrak{g}’$
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is the centralizer of [Bg, $5_{0}^{\#}$ ] in $\mathfrak{g}^{*}$ . Clearly $\mathfrak{g}’$ is an ideal of $\mathfrak{g}^{\#}$ . By [3, Prop-
osition 5.13], we can assume that both $\mathfrak{g}’$ and $[B_{0}^{\#}, s_{0}^{\#}]$ is $j$-invariant. But then
$\mathfrak{g}’\supset \mathfrak{r}^{\#}\oplus_{J}\mathfrak{r}^{\#}$ . Therefore $\mathfrak{g}’=\mathfrak{r}^{\#}\oplus j\mathfrak{r}$ “\oplus \S ’, where @’=@\cap g’. Clearly $5’\cap 5_{0}^{\#}=c_{0}$ .
Then $c_{0}$ coincides with the largest ideal of $\mathfrak{g}^{f}$ contained in $f\cap g’$ . Therefore there
exists an ideal $\mathfrak{g}’’$ of $\mathfrak{g}’$ such that $\mathfrak{g}’=\mathfrak{g}’’\oplus c_{0}$ and $9’’\supset \mathfrak{r}^{\#}([3$ , Proof of Lemma
1.4]). After an inessential change of $j$ , we can assume that $\mathfrak{g}’’$ is j-invariant.
Then $\mathfrak{g}’’=\mathfrak{r}^{\#}\oplus J\mathfrak{r}^{\#}\oplus(@\cap \mathfrak{g}’’)$ . If we put $\hat{8}^{*}=\S\cap \mathfrak{g}’’$ , then $@=\hat{8}^{\#}\oplus@_{0}\#$ . Since \S # is an
ideal of 6, we know $f=(f\cap 5^{\#})\oplus(f\cap s_{0}^{\#})$ by [1] and [5]. It is now clear that $3^{*}$

has the desired properties. $q$ . $e$ . $d$ .

Let $\epsilon\#$ be as in Lemma 3.1. Then by Lemma 2.6 we have

LEMMA 3.2. There exists ideals $T_{i}$ $(i=1, \cdots , m)$ of $j\mathfrak{r}^{\#}\oplus 3^{\#}$ such that

$j \mathfrak{r}^{\#}\oplus 3^{\#}=\sum_{i=1}^{m}f_{i}$ , $[f_{i}, \mathfrak{r}_{jj}]=0(i\neq j)$ , $[f_{t}, \mathfrak{r}_{ii}]\subset \mathfrak{r}_{\ell i}$ ,

and the $ad_{J}$ oint $rePresentation$ of $\dot{\uparrow}i$ on $r_{ii}$ gives an isomorphism of it onto
Lie Aut $(\Omega_{i})$ .

Since $e*$ is identified with the isotropy subalgebra of $\Sigma_{i=1}^{m}$ Lie $Aut(\Omega_{i})$ , we
have

$3^{\#}= \sum_{i=1}^{m}@_{i}$ , $e_{i}\subset f_{i}$ .

Since $g_{t}$ is an ideal of $a\#$ , we have from [1] and [5]

$\partial^{\#}\cap f=\sum_{i=1}^{m}@_{i}\cap f$ .

LEMMA 3.3. By a suitable change of $j,$ $J^{t_{ii}}$ is contained in $t_{i}$

PROOF. Let $x\in r_{ii}$ . We decompose as $jx=y+\Sigma_{j\neq i}X_{j}$ , where $y\in f_{i}$ and
$x_{j}\in f_{j}$ . Consider the equation $[]X,$ $e]=[y, e]+\Sigma_{j\neq i}[x_{j}, e]$ . Since $[]X,$ $e]=x\in \mathfrak{r}_{ii}$ ,
we have $[x_{j}, e]=0$ , whence $x_{j}\in B_{j}$ for all $j\neq i$ . Let $k_{j}\in B_{j}\cap f$ . Then $[x_{j}, k_{j}]$

$=[jx, k_{j}]\equiv j[x, k_{j}]$ (mod f) and $[x, k_{j}]=0$ . Therefore $[x_{j}, k_{j}]\in f_{j}\cap f=5_{j}\cap f$ .
Note that $s_{j}$ is an ideal of the reductive Lie algebra B. Then using the result
of [1], we can assume that $g_{j}$ is $j$-invariant and $(@_{j}, @_{j}\cap f, j)$ is a j-algebra.
Then the center of $5_{j}$ is contained in $@_{j}\cap f$ . We then derive from [5] that the
normalizer of $@_{j}\cap f$ in $s_{i}$ coincides with $B_{j}\cap f$ . Therefore $x_{j}\in@_{j}\cap f$ . We change
$j$ on $\mathfrak{r}_{ii}$ to $j’$ as $j’x=y$ . It is easy to see that $j^{f}r_{ii}$ and $j’r$ are still subalgebra
of $\mathfrak{g}$ . q. e.d.

By Lemma 3.3, we can assume
$f_{i}=_{J^{\mathfrak{r}_{ii}\oplus@_{i}}}$ .

Since $f_{i}$ is reductive, we have
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$f_{i}=c_{i}\oplus \mathfrak{h}_{i}$ ,

where $c_{i}$ is the center of $f_{i}$ and $\mathfrak{h}_{i}$ is the semi-simple part of $f_{i}$ . Note that $c_{i}$ is
generated by the element $g_{i}$ such that ad $g_{t}=1$ on $\prime \mathfrak{r}_{\iota i}$ and $\mathfrak{h}_{i}$ consists of all $f\in ft$

satisfying Trace ad $f|_{r_{ii}}=0$ . In particular, $s_{i}\subset \mathfrak{h}_{i}$ and ] $t_{ii}=Rje_{i}\oplus(\mathfrak{h}_{i}\cap jl_{ii})$ holds.
Moreover from $[J^{e_{i}-C_{i}}, e_{i}]=0$ , we know that $J^{e_{i}-c_{i}\in@_{i}}$ . Clearly $[J^{e_{i}-C_{i}}, f\cap 5_{i}]$

$\subset f\cap@_{i}$ , whence we know $je_{i}-c_{i}\in f\cap 5_{i}$ by the same reason as before.
We can now change $j$ to $j’$ on $r_{ii}$ as follows :

$j’e_{i}=c_{i}$ and $j’x=jx$ for $x\in\{\mathfrak{r}_{ti} ; ]X\in \mathfrak{h}_{i}\}$ .
It is clear that $j^{f}r_{ii}$ is still a subalgebra because $[]t_{ii},$ $]t_{ii}]\subset \mathfrak{h}_{i}$ . This inessential
change can be extended on whole 9 keeping the property that $j’r$ is a solvable
subalgebra. Thus we have proved

PROPOSITION 3.4. By a suitable change of $j$ , we have

$\mathfrak{g}^{\#}=\sum_{i=1}^{m}\mathfrak{g}_{i}\oplus g_{u}\#$ (direct sum of ideals),

\S = $\sum_{i=1}^{m}s_{i}\oplus s_{0}^{\#}$ (direct sum of ideals),

$f=\sum_{i=1}^{m}f_{i}\oplus f_{0}$ (direct sum of ideals),

where $\mathfrak{g}_{i}=\mathfrak{r}_{ii}\oplus j\mathfrak{r}_{ii}\oplus 8_{i},$ $f_{i}=\mathfrak{g}_{i}\cap f$ and $f_{0}=@_{0}\#\cap f$ . Moreover all $9\iota,$ $s_{i}$ and $s_{\cup}^{\#}$ are ]-

invanant and the following equations hold:
$j\mathfrak{r}_{ii}\oplus@_{i}\cong Lie$ $Aut(\Omega_{i})$ , $R_{J^{e_{i}}}=the$ center of $J^{\mathfrak{r}_{ii}\oplus B_{i}}$ .

COROLLARY 3.5. The center of $\mathfrak{g}^{0}=\Sigma_{i=1}^{m}Rje_{i}\oplus the$ center of Bg.

Recall that the center of Bg is contained in $f$ . Then the above results com-
bined with Proposition 2.10 yield

PROPOSITION 3.6. rad $(\mathfrak{g})+]$ rad(g)+f $=\iota\oplus jr\oplus \mathfrak{w}\oplus f$ .

REMARK 1. Let us denote by $D(\Omega_{i})$ the Siegel domain of the first kind
associated with the convex cone $\Omega_{i}$ . Then $D(\Omega_{i})$ is an irreducible symmetric
domain and the Lie algebra $9\iota$ in Proposition 3.4 coincides with the Lie algebra
of the group of all affine transformations of $D(\Omega_{i})$ .

REMARK 2. Let $D$ be a homogeneous bounded domain and $G$ a group of
holomorphic transformations of $D$ acting transitively on $D$ . We then have $D-$

$G/K$. Let $(g, f, j)$ be the corresponding $J$ -algebra. Assume that $\mathfrak{g}=rad(\mathfrak{g})+$

$j$ rad(g)+f holds. Then by Proposition 3.6 and [9, \S 1, Theorem 2], $D$ is realized
as a Siegel domain of the second kind in such a way that $G$ acts as an affine
transformation group. (J. Dorfmeister also obtained this fact by different method.)

Conversely, we can easily see that every $j$-algebra $(g, f, j)$ corresponding to a
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transitive affine automorphism group of a Siegel domain satisfies the equation
$\mathfrak{g}=rad(\mathfrak{g})+]$ rad(g)+f.

\S 4. Closed forms on j-algebras.

The purpose of this section is to prove the following

THEOREM 4.1. Let $(g, f, J)$ be an effective $j$-algebra and let $\rho$ be a skew-
symmetnc bilinear form on $\mathfrak{g}$ satisfyng

$d\rho=0$ , $\rho(f, g)=0$ and $\rho(]X, ]y)=\rho(x, y)$ for all $x,$ $y\in g$ .
Then there exists a linear form $\omega$ on $\mathfrak{g}$ such that $\rho=d\omega$ .

In the special case where $f=0$ and $\mathfrak{g}$ is solvable, this fact is obtained by
Dorfmeister [2].

Let $(g, f, j)$ and $\rho$ be as in Theorem 4.1. We keep the notations used in
the previous sections. The following fact is well known. But we put a proof
because we use the similar technique in later.

LEMMA 4.2.
(1) $\rho(\mathfrak{w}, \mathfrak{r}\oplus j\mathfrak{r}\oplus@)=0$ .
(2) $\rho(r, r)=0$ .

PROOF. Consider the function $A(t)=\rho(e^{tadje}x, e^{tadje}y)$ for $x\in \mathfrak{w}$ and $y\in r$ .
Roughly speaking, $A(t)$ grows like $e^{3t/2}$ if $A(t)\neq 0$ , because $x\in \mathfrak{g}_{1/2}$ and $y\in_{91}$ .
On the other hand, since $[\mathfrak{w}, \mathfrak{r}]=0$ , we have $dA(f)/dt=\rho(J^{e}, e^{adje}[x, y])=0$ .
Therefore $A(t)\equiv 0$ , proving $\rho(w, r)=0$ . Similarly, we have $\rho(r, r)=0$ . Since
$j\mathfrak{w}\subset \mathfrak{w}+f$, we also have $\rho(\mathfrak{w}, j\mathfrak{r})=\rho(\mathfrak{w}, \mathfrak{r})=0$ .

Finally we consider the function $A(t)$ for $x\in \mathfrak{w}$ , y\in @. Then $A(t)$ grows like
$e^{t/2}$ . But $dA(t)/dt=\rho(je, e^{tadje}[x, y])=0$, because $[x, y]\in \mathfrak{w}$ and $\rho(je, w)=0$ .
Thus we also have $A(t)\equiv 0$ , proving $\rho(\mathfrak{w}$ , @ $)$ =0. $q.e$ . $d$ .

Next we show

LEMMA 4.3. $\rho(\mathfrak{r}_{ij}\oplus_{J}\mathfrak{r}_{ij}, \mathfrak{g}^{\#})=0$ for $i<j$ .

PROOF. Since $\mathfrak{g}^{*}$ is $j$-invariant, it is sufficient to show $\rho(r_{ij}, \mathfrak{g}^{\#})=0$ . More-
over since $\rho(r, r)=0$ by Lemma 4.2, we only have to show $\rho(\mathfrak{r}_{ij}, \mathfrak{g}^{0})=0$ . Consider
the function $A(t)=p(e^{tadje_{i}}x, e^{tadje_{i}}y)$ for $x\in \mathfrak{r}_{ij},$

$y\in \mathfrak{g}^{0}$ . Then $A(t)$ grows like
$e^{t/2}$ . We have $dA(t)/dt=\rho(]e_{i}, e^{tadje_{i}}[x, y])\subset\rho(J^{e_{i}}, \mathfrak{r}_{ij})=\rho(e_{i}, j\mathfrak{r}_{ij})$ . We consider
the function $B(t)=\rho(e^{tadje_{j}}e_{i}, e^{tadje_{j}}z)$ for $Z\in$] $t_{ij}$ . Noting that $[e_{i}, j\mathfrak{r}_{ij}]=0$, we
have $dB(t)/dt=0$ . Since $B(t)$ grows like $e^{-t/2}$ , we have $B(t)\equiv 0$ . From this,
we also have $A(t)\equiv 0$ . $q.e.d$ .

By Lemmas 4.2 and 4.3 we have
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PROPOSITION 4.4. $\rho(n, \mathfrak{g}^{\#})=0$ .

Recall that $\mathfrak{g}^{0}$ is reductive. Therefore
$\mathfrak{g}^{0}=c^{\#}\oplus \mathfrak{h}^{\#}$ ,

where $c^{\#}$ is the center and $\mathfrak{h}^{\#}$ is the semi-simple part of $\mathfrak{g}^{0}$ . Since the center of
$5_{0}^{\#}$ is contained in $f$, we have from Corollary 3.5 the following

LEMMA 4.5. $p(c^{\#}, c^{*})=0$ .

We now define a linear form $\omega$ on $\mathfrak{g}$ . We have obtained the decomposition

$\mathfrak{g}=\mathfrak{n}\oplus \mathfrak{r}^{\#}\oplus c^{g}\oplus \mathfrak{h}^{\#}$ .
Since $\mathfrak{h}^{\#}$ is semi-simple, there exists a linear form $\omega$ on $\mathfrak{y}\#$ such that $\rho=d\omega$ on
$\mathfrak{y}\#$ . We extend $\omega$ to a linear form on $\mathfrak{g}$ by setting

$\omega(n\oplus c^{\#})=0$ and $\omega(x)=-\omega(Je, x)$ for $x\in \mathfrak{r}^{g}$

Then from Proposition 4.4
(4.1) $\omega(x)=-\rho(]e, x)$ for all $x\in \mathfrak{n}\oplus \mathfrak{r}^{\#}$ .
We have to show that $d\omega=p$ . We can assume that $J^{\mathfrak{r}}$ is a solvable subalgebra.
Then $(\mathfrak{r}\oplus j\mathfrak{r}\oplus \mathfrak{w}, 0, j)$ is a solvable $j$-algebra corresponding to a homogeneous
Siegel domain ([9]). Then the following lemma is essentially proved in Dorf-
meister [2, \S 3].

LEMMA 4.6 ([2]). Let $I=ad$ ] $e-Re(ad]e)$ . Then the restnction of I on
$\mathfrak{r}\oplus j\mathfrak{r}\oplus w$ is skew-symmetnc relative to $\rho$ and commutes with $j$ .

Using the above lemma, we show

LEMMA 4.7.
(1) $\rho(x, y)=d\omega(x, y)$ for $x,$ $y\in \mathfrak{w}$ .
(2) $p(x, y)=d\omega(x, y)=0$ for $x\in W,$ $y\in r\oplus_{J}\mathfrak{r}\oplus\S$ .

PROOF. (1) Since $[x, y]\in r$, using (4.1) and Lemma 4.6 we have $d\omega(x, y)$

$=-\omega([x, y])=\rho(J^{e}, [x, y])=\rho([]e, x], y)+\rho(x, []e, y])=p(x/2, y)+\rho(x, y/2)+$

$\rho(Ix, y)+p(x, Iy)=\rho(x, y)$ .
(2) In this case, $[x, y]\in w$ . Therefore $\omega([x, y])=0$ . On the other hand

$p(x, y)=0$ , by Lemma 4.2. $q$ . $e$ . $d$ .
Recall that $\mathfrak{r}\oplus_{J}\mathfrak{r}\oplus@=\Sigma_{i<j}\mathfrak{r}_{\iota j}\oplus$] $\Sigma_{i<j}\iota_{ij}\oplus \mathfrak{g}^{\#}$ .

LEMMA 4.8.
(1) $p(x, y)=d\omega(x, y)$ for $x,$ $y \in\sum_{i<J}\mathfrak{r}_{ij}\oplus j\sum_{i<J}\mathfrak{r}_{ij}$ .

(2) $p(x, y)=d\omega(x, y)=0$ for $x \in\sum_{i<J}\mathfrak{r}_{ij}\oplus j\sum_{i<J}\mathfrak{r}_{\ell j},$

$y\in \mathfrak{g}^{\#}$ .
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PROOF. (1) If $x,$ $y\in\Sigma_{i<J}\mathfrak{r}_{ij}$ , then $[x, y]=0$ , whence $d\omega(x, y)=0$ . On the
other hand by Lemma 4.2, $\rho(x, y)=0$ . If $x,$ $y \in\sum_{i<j]}\mathfrak{r}_{ij}$ , then $[x, y] \in\sum_{i<j}j\mathfrak{r}_{ij}$

and hence $d\omega(x, y)=0$ . We also have $\rho(x, y)=\rho(]x, ]y)=0$ . Finally, if $x\in\Sigma_{i<j}r_{ij}$

and $y\in j\Sigma_{i<j}\mathfrak{r}_{ij}$ , then $[x, y]\in r$ . Therefore $d\omega(x, y)=\rho(]e, [x, y])$ by (4.1).

Moreover using Lemma 4.6, $p(je, [x, y])=\rho([]e, x], y)+\rho(x, []e, y])=\rho(x, y)$

$+\rho(Ix, y)+\rho(x, Iy)=\rho(x, y)$ .
(2) In this case $[x, y]\in n$, whence $d\omega(x, y)=-\omega([x, y])=0$ . On the other

hand $\rho(x, y)=0$ by Lemma 4.3. $q$ . $e$ . $d$ .
By virture of Lemmas 4.7 and 4.8, for the proof of Theorem 4.1, it is

enough to show $\rho(x, y)=d\omega(x, y)$ for $x,$ $y\in \mathfrak{g}^{\#}$ . Recall that $\mathfrak{g}^{*}=r^{*}\oplus c^{\#}\oplus \mathfrak{h}^{\#}$ . In
the case $x,$ $y\in r^{\#}$ , we already know $\rho(x, y)=d\omega(x, y)=0$ . Assume that $x\in r^{\#}$

and $y\in c^{*}\oplus \mathfrak{h}^{*}$ . Then $d\omega(x, y)=\rho(]e, [x, y])=\rho([]e, x], y)=\rho(x, y)$ . Here we
use the fact that $J^{e\in c^{\#}}$ and $adJe=1$ on $\mathfrak{r}^{\#}$ .

It remains to show $\rho(x, y)=d\omega(x, y)$ for $x,$ $y\in c^{\#}\oplus \mathfrak{h}^{\#}$ . By Lemma 4.5 and
the definition of $\omega$ on $\mathfrak{h}^{\#}$ , it is enough to consider the case $x\in c^{\#}$ and $y\in \mathfrak{h}^{\#}$ .
But in this case $\omega(x, y)=-\omega([x, y])=0$ and $\rho(x, y)\in\rho(x, [\mathfrak{h}^{\#}, \mathfrak{h}^{\#}])=\rho([x, \mathfrak{h}^{\#}], \mathfrak{h}^{*})$

$=0$ . This completes the proof of Theorem 4.1.

\S 5. The invariance of $\mathfrak{g}^{\#}$ .
By an automorPhism of a $j$-algebra $(g, f, j)$ we mean an automorphism $f$ of

the Lie algebra $\mathfrak{g}$ satisfying the following conditions:

$ff=f$ , $fJ^{X}\equiv Jfx$ (modf) for $x\in g$ .

We will show that the subalgebra $\mathfrak{g}^{\#}$ constructed in \S 2 is invariant under all
automorphisms of the $j$-algebra $(g, f, j)$ .

We first show the following

PROPOSITION 5.1. Let $(\mathfrak{g}, f, J)$ be an effective $j$-algebra. Then there exists an
admissible form $\omega$ such that $\omega(fx)=\omega(x)$ for all automorphusm $f$ and $x\in g$ .

PROOF. Let $G$ be the simply connected Lie group with $\mathfrak{g}$ as its Lie algebra
and $K$ the connected subgroup of $G$ corresponding to the subalgebra $f$ . Then $K$

is closed and the homogeneous space $G/K$, endowed with a natural G-invariant
complex structure corresponding to $j$ , is biholomorphic to the product of a homo-
geneous bounded domain $M_{1}$ and a compact simply connected homogeneous
complex manifold $M_{2}$ ([6, Theorem $A]$ ). Then every holomorphic transformation
$\Psi$ of $G/K$ induces a holomorphic transformation $\psi$ of $M_{1}$ such that $\pi\circ\Psi=\psi\circ\pi$ ,

where $\pi$ denotes the projection: $G/Karrow M_{1}$ . In particular, $G$ acts transitively
on $M_{1}$ . Let $U$ denote the isotropy subgroup of $G$ at the point $\pi(0)$ , where $0$ is
the origin of the homogeneous space $G/K$. Every automorphism $f$ of the j-
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algebra $\mathfrak{g}$ induces an automorphism of the group $G$ , which will be denoted by
the same letter $f$ . We want to show that $f$ leaves $U$ invariant. Since $fK=K$,
$f$ induces a holomorphic transformation of $G/K$ in a natural manner, whence
it also induces a holomorphic transformation $\hat{f}$ of $G/U$ . Clearly, $\hat{f}$ fixes the
origin $\pi(0)$ of $G/U$ . Since $U/K=\pi^{-1}\pi(0)$ , the above fact implies $fU=U$ , prov-
ing our assertion.

Let us denote by $u$ the Lie algebra of the group $U$. Clearly $\mathfrak{u}$ is a j-sub-
algebra containing $f$ . Moreover $[u, jx]\equiv_{J}[u, x]$ (mod u) holds for all $u\in 11$ and
$x\in_{9}$ . Therefore for any $x\in g$ , ad $jx-j\circ$ ad $x$ leaves $u$ invariant. We now put

for $x$ in $\mathfrak{g}$ ,

$\omega_{1}(x)=Trace(adjx-]^{\circ}adx)|_{\mathfrak{g}/u}$ , $\omega_{2}(x)=Trace(ad]x-]^{\circ}adx)|_{\mathfrak{u}/\mathfrak{k}}$ .
It is easy to see that $\omega_{1}(fx)=\omega_{1}(x)$ and $\omega_{2}(fx)=\omega_{2}(x)$ for all automorphism $f$ .
Note that $\omega_{1}$ is the Koszul form of the $j$-algebra $(g, u, j)$ corresponding to the
homogeneous bounded domain $M_{1}$ and the restriction of $\omega_{2}$ on $\mathfrak{u}$ is the Koszul
form of the $j$-algebra $(u, f, j)$ corresponding the compact simply connected homo-
geneous space $M_{2}$ . Therefore as is proved in [6, \S 7], $\omega=\omega_{1}$ $a\omega_{2}$ becomes an
admissible form for large enough positive number $a$ . Then the form $\omega$ has the
desired properties. q. e. $d$ .

Let $\omega$ be an admissible form as in Proposition 5.1. Then $(g, f, j, -d\omega)$ is a
K\"ahler algebra and the homogeneous space $G/K$ admits a $G$-invariant K\"ahler

structure with the K\"ahler form corresponding to $-d\omega$ . Then every automor-
phism of the $j$-algebra $(g, f, j)$ acts on $G/K$ as a holomorphic isometry and it
fixes the origin of $G/K$. Therefore we have

COROLLARY 5.2. The group of all automorphisms of an effective $J$ -algebra
is compact.

Let $(g, f, j)$ be an effective $J$ -algebra and $\mathfrak{g}^{*}$ the subalgebra as before. Let
$\omega$ be an admissible form. Then by Proposition 4.4, we have $\mathfrak{g}^{\#}=\{x\in_{9}$ ; $d\omega(x, \mathfrak{n})$

$=0\}$ , where $\mathfrak{n}$ is the subspace given by (2.8). Assume further that $\omega$ satisfies
the properties in Proposition 5.1. Then for any automorphism $f$ , we have
$d\omega(f\mathfrak{g}^{\#}, \mathfrak{n})=-\omega([f\mathfrak{g}^{\#}, \iota\iota])=-\omega([\mathfrak{g}^{\#}, f^{-1}\mathfrak{n}])=d\omega([\mathfrak{g}^{\#}, \mathfrak{n}])=0$ . Here we use the fact
that $\mathfrak{n}$ is invariant under $f^{-1}$ . Therefore we know $fg^{\#}=g^{\#}$ , proving that $\mathfrak{g}^{\#}$ is
invariant under all automorphisms of the $J$ -algebra $(9, f, j)$ . Noting that $\mathfrak{r}^{\mu}$’ coin-
cides with ni1 $(9^{\#})$ (cf. (2.7)), we have from Propositions 2.11 and 3.4 the fol-
lowing

THEOREM 5.3. Let $(g, f, j)$ be an effective j-algebra and let $\omega$ be an admisstble
form. We set $\mathfrak{g}^{*}=\{x\in \mathfrak{g};d\omega(x, \mathfrak{n})=0\}$ , where $\mathfrak{n}=nil(\mathfrak{g})\cap(]nil(\mathfrak{g})+f)$ . Then $\mathfrak{g}^{\#}$ is
a $j$-invariant subalgebra of $\mathfrak{g}$ containing $f$ and the following hold:

(1) $9^{*}$ is independent to the choice of $\omega$ and invariant under all automor-
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phisms of the j-algebra $(\mathfrak{g}, f, j)$ .
(2) ni1 $(\mathfrak{g}^{\#})$ is abelian.
(3) $\mathfrak{g}=\mathfrak{n}\oplus \mathfrak{g}^{\#},$ $[\mathfrak{n}, \mathfrak{g}^{\#}]\subset \mathfrak{n}$ and $[\mathfrak{n}, \mathfrak{n}]\subset \mathfrak{n}\oplus ni1(\mathfrak{g}^{g})$ .

Moreover after a suitable change of $j,$ $\mathfrak{g}^{\#}$ is decomposed as $\mathfrak{g}^{\#}=ni1(\mathfrak{g}^{\#})\oplus_{J}nil(\mathfrak{g}^{*})\oplus$

$5^{\#}\oplus 5_{0}^{\#}$ in the following way:
(4) Both ni1 $(\mathfrak{g}^{\#})\oplus jni1(\mathfrak{g}^{\#})\oplus\S\#$ and $s_{0}^{*}$ are ideals of $\mathfrak{g}^{\#}$ .
(5) $s_{0}\#$ is a reductive $J$ -subalgebra.
(6) $jni1(\mathfrak{g}^{\#})\oplus\S\#$ is isomorphic to Lie $Aut(\Omega\#)$ , where $\Omega^{\#}$ is a self dual homo-

geneous convex cone in ni1 $(\mathfrak{g}^{\#})$ and $3^{*}$ is a maximal compact subalgebra of
$jni1(\mathfrak{g}^{\#})\oplus\S\#$ .

(7) $f=f\cap\hat{s}\#\oplus f\cap s_{0}\#$ .

We also have the following fact which is mentioned in [9] without proof
under an additional assumption.

THEOREM 5.4. A maximal abelian ideal of the first kind of an effective ]-

algebra is unique.

PROOF. Let $\mathfrak{r}$ and $\mathfrak{r}’$ be rwo maximal abelian ideal of the first kind of an
effective $j$-algebra $(g, f, j)$ . Denote by $e$ and $e’$ the principal idempotents of $\mathfrak{r}$

and $\mathfrak{r}’$ respectively. By Proposition 2.1, it is enough to show that $e=e’$ . Let $\mathfrak{g}^{*}$

be as in Theorem 5.3. Then both $e$ and $e’$ are contained in ni1 $(g^{\#})$ . Let $\omega$ be
an admissible form. Then $\omega([jx, y])$ for $x,$ $y\in ni1(\mathfrak{g}^{\#})$ is a positive definite sym-
metric bilinear form on ni1 $(\mathfrak{g}^{\#})$ . Note that nil $(\mathfrak{g}^{\#})\subset \mathfrak{r}\cap \mathfrak{r}’$ . Then using (2.1), we
have for all $x\in ni1(\mathfrak{g}^{\#}),$ $\omega([J^{\chi}e-e’])=\omega(x)-\omega(x)=0$ . Therefore we get $e=e’$ .

$q$ . $e.d$ .

\S 6. The canonical hermitian forms of j-algebras.

Let $(g, f, j)$ be an effective $j$-algebra. In this and the next sections, we cal-
culate the Koszul form of the $J$ -algebra $(g, f, j)$ and prove the following

THEOREM 6.1. The canonical hermitian form of an effective $j$-algebra is non-
degenerate.

Let $\mathfrak{r}$ be the maximal abelian ideal of the first kind with the principal idem-
potent $e$ and let $\mathfrak{g}=\mathfrak{r}\oplus j\mathfrak{r}\oplus 8\oplus W$ be the decomposition as in Proposition 2.1. Con-
sider the subalgebra $\mathfrak{g}_{0}\oplus \mathfrak{g}_{1}(=\mathfrak{r}\oplus jt\oplus 5)$ . Let us put

(6.1) $e_{0}=\{x\in \mathfrak{g}_{0} ; [x, \mathfrak{r}]=0\}$ .
It is easy to see that $5_{0}$ is an ideal of $\mathfrak{g}_{0}\oplus \mathfrak{g}_{1}$ contained in \S . The following
lemma can be proved by the similar way as Lemma 3.1.

LEMMA 6.2. After an inessential change of $j$ if necessary, there exists an
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ideal $\partial$ of 9 satisfyng the following conditions
(1) $\mathfrak{g}_{0}\oplus \mathfrak{g}_{1}=\mathfrak{r}\oplus_{J}\mathfrak{r}\oplus\xi\oplus 5_{0}$ .
(2) $\S=\partial\oplus e_{0}$ , $f=(f\cap 5)\oplus(f\cap@_{0})$ .
(3) r\oplus jr\oplus \S is a $j$-invanant ideal of $\mathfrak{g}_{0}\oplus\hat{s}_{1}$ .

We put
$\hat{\mathfrak{g}}=\mathfrak{r}\oplus j\mathfrak{r}\oplus 3\oplus w$ .

Clearly $\hat{\mathfrak{g}}$ is a $j$-ideal of 9 and
$\mathfrak{g}=\hat{\mathfrak{g}}\oplus@_{0}$ .

We can assume that $\hat{\mathfrak{g}}$ is $j$-invariant. Let $\psi$ denote the Koszul form of $(g, f, j)$ .
Let $\mathfrak{n}$ be the subspace given by (2.8). Since $\mathfrak{w}\subset \mathfrak{n}$ and $w=[]e,$ $\mathfrak{w}]$ holds, we have
$wc[n, g^{\#}]$ . Therefore applying Proposition 4.4 to the skew-symmetric bilinear
form $d\psi$, we have

LEMMA 6.3. $\psi(\mathfrak{w})=0$ .

Since $[\hat{\mathfrak{g}}, s_{0}]\subset \mathfrak{w}$ holds, as an immediate consequence of Lemma 6.3 we get

COROLLARY 6.4. $\psi([\hat{9}s_{0}])-0$ .

We now consider the adjoint representation of 9 on $\mathfrak{w}$ . We have chosen $j$

so that $j\mathfrak{w}=w$ . Let $\psi’$ denote the Koszul form of the $J$ -algebra $(\mathfrak{r}\oplus_{J}\mathfrak{r}\oplus f, f, J)$ .
By [6, Lemma 10], the vector space $\mathfrak{w}$ , equipped with the complex structure $J$

and the skew-symmetric bilinear form $\psi’([w, w’])(w, w’\in \mathfrak{w})$ , is a symplectic
space in the sense of [9] and ad $s|_{t0}$ is a symplectic endomorphism for all $s\in S$ .
Furthermore for each s\in @, the equation ad $js|_{\mathfrak{w}^{\circ}J}-]^{\circ}ad$ ] $s|_{t\mathfrak{v}}-ads|_{\mathfrak{w}}-]^{\circ}adx|_{\mathfrak{w}^{\circ}J}$

$=0$ holds. Therefore by [7, Lemma 1.1]

(6.2) $Trace]^{\circ}ad[js, s]|_{\mathfrak{w}}\leqq 0$ for all s\in @ and the equality holds
if and only if both ad $jS|_{\mathfrak{w}}$ and ad $s|_{\mathfrak{w}}$ commute with $j$ .

LEMMA 6.5. The restnction of the canomcal hermitian form of the $J$ -algebra
$(\mathfrak{g}, f, j)$ to the subspace $8_{0}/f\cap@_{0}\subset \mathfrak{g}/f$ is non-degenerate.

PROOF. Let $\psi_{0}$ denote the Koszul form of the $j$-algebra $(g_{0}, f\cap\S_{0}, j)$ . We
then have

(6.3) $\psi(x)=Trace(ad]x-]^{\circ}adx)|_{\mathfrak{w}}+\psi_{0}(X)$ for $x\in B_{0}$ .

Consider a Cartan decomposition of the reductive $j$-algebra $s_{0}=\mathfrak{u}\oplus \mathfrak{m}$ , where
14 denotes the sum of the center of $e_{0}$ and a maximal compact subalgebra of
$[g_{0}, s_{0}]$ ( $=the$ semi-simple part of $s_{0}$ ) and $\mathfrak{m}$ denotes the orthogonal complement
of $1X$ in $[@_{0}, e_{0}]$ with respect to the killing form of $s_{0}$ . Here we can assume
that $u$ contains $f\cap 8_{0}$ . By [4], we can adjust $j$ so that both 11 and $\mathfrak{m}$ are in-
variant under $j$ . We then have from [4] that $\psi_{0}([]m, m])>0$ for every non-
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zero element $m$ in $\mathfrak{m}$ and that $\psi([]u, u])<0$ for every element $u$ of $11$ which is
not contained in $u\cap f$ . Since ad $x|_{\mathfrak{w}}$ is a symplectic endomorphism, we know
Trace ad $x|_{\mathfrak{w}}=0$ for all $x\in g_{0}$ . Moreover since the semi-simple part of $\mathfrak{u}$ is com-
pact, we know from [3, Lemma 1.6] that ad $u|_{m}$ commutes with $j$ for all $u\in 11$ .
Therefore from (6.2) and (6.3), we have $\psi([]m, m])>0$ for every non-zero ele-
ment $m$ in $\mathfrak{m}$ and $\psi([ju, u])<0$ for every element $u\in n$ such that $u\not\in f\cap \mathfrak{u}$ , prov-
ing the lemma. $q$ . $e$ . $d$ .

Let $\hat{\psi}$ denote the Koszul form of the $j$-algebra $(\hat{\mathfrak{g}}, f\cap\hat{\mathfrak{g}}, J)$ . From the fact
that $\hat{\mathfrak{g}}$ is a $J$ -ideal of $\mathfrak{g}$ , it follows that $\psi(x)=\hat{\psi}(x)$ holds for all $x\in_{\hat{9}}$ . There-
fore the restriction of the canonical hermitian form of the $j$-algebra $(g, f, j)$ to
the subspace $\hat{\mathfrak{g}}/\hat{\mathfrak{g}}\cap f$ coincides with the canonical hermitian form of the $J$ -algebra
$(\hat{\mathfrak{g}}, f\cap\hat{\mathfrak{g}}, j)$ . Hence from Corollary 6.4 and from Lemma 6.5 we obtain

PROPOSITION 6.6. Assume that the canonical hermitian form of the j-algebra
$(\hat{\mathfrak{g}}, f\cap\hat{9}, J)$ is non-degenerate. Then the canonical hermitian form of $(\mathfrak{g}, f, .’)$ is also
non-degenerate.

\S 7. Proof of Theorem 6.1.

We continue the arguments of the previous section. By Proposition 6.6, we
only have to prove Theorem 6.1 for the special case where $s_{0}=0$ . Therefore
in this section we assume that the adjoint representation of 9 on $\mathfrak{r}$ is faithful.
But then @ is regarded as the isotropy subalgebra of the Lie algebra jr\oplus @ which
generate a linear group acting on the cone $\Omega$ transitively and effectively. In
particular the semi-simple part of 5 is compact. Therefore by the same reason
as in the previous section, we have

(7.1) ad $s|_{\mathfrak{w}^{\circ}}j=J^{\circ}ads|_{\mathfrak{w}}$ for all s\in @.

It is easy to see that $[s, jx]\equiv_{J}[s, x]$ (mod9) holds for all s\in @ and $x\in r$ . From
this and from (7.1), we can see that the system $(\mathfrak{g}, @, j)$ satisfies (1.1), (1.2) and
(1.3). Clearly Tracead $s|_{\mathfrak{g}/3}=0$ holds for all s\in @. Therefore we can consider
the Koszul form ($\beta$ of the system $(\mathfrak{g}, @, j)$ . (We can prove that the system $(\mathfrak{g}, 5,J)$

is a $j$-algebra corresponding to the homogeneous Siegel domain of the second
kind. But this fact is not needed.) Let us denote by $\psi_{8}$ the Koszul form of
the $j$-algebra $(6, f, j)$ . We then have for $s,$

$s’$ \in @, $\psi([s, s’])=\phi([s, s’])+\psi_{\mathfrak{s}}([s, s’])$

$=\psi_{@}([s, s’])$ . Therefore the restriction of the canonical hermitian form of $(g, f,j)$

to the subspace @/k coincides with the canonical hermitian form of $(@, f,j)$ which
is negative definite because the semi-simple part of 6 is compact. Therefore
for the proof of Theorem 6.1, it is enough to show the following

PROPOSITION 7.1. $\psi([]\mathcal{X}, x])>0$ for all non-zero element $x\in \mathfrak{r}\oplus_{J}\mathfrak{r}\oplus W$ .
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In order to show the above proposition, we use another root system decom-
position due to [9].

LEMMA 7.2 ([9]). There exists $r_{\alpha}\in r(\alpha=1, \cdots , q)$ and a decomposition $r=$

$\Sigma_{\alpha\leqq\beta}\mathfrak{r}_{a\beta}$ satisfying the following:
(1) $\mathfrak{r}_{a\alpha}=Rr_{\alpha}$ .
(2) $[jr_{\alpha}, jr_{\beta}]=0$, $[jr_{\alpha}, r_{\beta}]=\delta_{\alpha\beta}r_{\beta}$ and $e=\Sigma r_{\alpha}$ .
(3) $\mathfrak{r}_{\alpha\beta}$ and $j_{\alpha\beta}$ are invanant under $ad_{J}r_{\gamma}$ and $Re(ad]r_{\gamma})=(\delta_{\alpha\gamma}+\delta_{\beta\gamma})/2$ on

$\mathfrak{r}_{a\beta}$ and $Re(adjr_{\gamma})=(\delta_{\alpha\gamma}-\delta_{\beta\gamma})/2$ on ] $\mathfrak{r}_{\alpha\beta}$ .

We remark that this lemma can be obtained also by applying the results in
\S 2 to the effective $J$ -algebra $(\mathfrak{r}\oplus]\mathfrak{r}, 0, j)$ .

By (2) of the above lemma, the Lie algebra $\mathfrak{g}$ is decomposed into the sum
of root spaces as $\mathfrak{g}=\sum \mathfrak{g}^{\Gamma}$ relative to the abelian space of endomorphisms generated
by $\{Re(adjr_{\alpha});\alpha=1, , q\}$ . Since $w$ and $j\mathfrak{r}\oplus e$ are invariant under $ad_{J’}\mathfrak{r}$, we
also have the decompositions $w= \sum w^{\Gamma}$ and ] $r \oplus@=\sum(]\mathfrak{r}\oplus@)^{\Gamma}$. Let us denote by
$\Delta_{\alpha}$ the root defined by

$\Delta_{\alpha}(Re(ad]r_{\beta}))=\delta_{\alpha\beta}$ .
Then we know from [9]

(7.2) $\mathfrak{w}=\sum_{\alpha=1}^{m}W^{\Delta_{\alpha}}/2$ , jtn $\Delta_{\alpha}/2=\mathfrak{w}^{\Delta_{\alpha/2}}$ ,

(7.3) $] \mathfrak{r}\oplus\S=\sum_{a.\beta}(]\mathfrak{r}\oplus 5)^{(\Delta_{\alpha}-\Delta_{\beta)/2}}$ ,

(7.4) $(]\mathfrak{r}\oplus@)^{(\Delta_{a}-\Delta_{\beta})/2}=]\mathfrak{r}_{\alpha\beta}\oplus@\cap \mathfrak{g}^{(\Delta_{\alpha}-\Delta_{\beta)/2}}$ for $\alpha\leqq\beta$ .
Therefore we know that

(7.5) if $\mathfrak{g}^{\Gamma}\neq 0$ , then $\Gamma\in\{^{\underline{1}}\Delta_{\alpha},$ $\frac{1}{2}(\Delta_{\alpha}\pm\Delta_{\beta});\alpha,$
$\beta=1$ , – , $q\}$ .

We want to improve (7.4). Let x\in @\cap g\Gamma . Then ad $x$ is a nilpotent endo-
morphism if $\Gamma\neq 0$ . On the other hand we already know that ad $x|_{\mathfrak{r}}$ is a semi-simple
endomorphism with imaginary eigenvalues. Therefore ad $x|_{\mathfrak{r}}=0$ . This implies
that $x=0$ , because the representation of @ on $\mathfrak{r}$ is faithful. Therefore by (7.4)

(7.6) $(]\mathfrak{r}\oplus 6)^{(\Delta_{\alpha}-\Delta_{\beta})/2}=j\mathfrak{r}_{a\beta}$ for $\alpha<\beta$ .
We remark also that

(7.7) $\dim(j\mathfrak{r}\oplus@)^{(\Delta_{\alpha}-J_{\beta)/2}}\leqq\dim\iota_{\beta\alpha}$ for $\alpha>\beta$ .
In fact, let $x\in(J^{\mathfrak{r}\oplus@)^{(\Delta_{\alpha}-\Delta_{\beta)/2}}}$ for $\alpha>\beta$ . Then $[x, e]\in r_{\beta}.$ . If $[x, e]=0$, then
x\in \S , whence $x=0$ follows from the fact $@\cap \mathfrak{g}\Gamma=0$ for $\Gamma\neq 0$ . This implies (7.7).

Consider the subalgebra $\mathfrak{r}\oplus j\mathfrak{r}$ . It is easy to see that

ni1
$( \mathfrak{r}\oplus j\mathfrak{r})\bigcap_{J}ni1(\mathfrak{r}\oplus j\mathfrak{r})=\sum_{\alpha<\beta}(\mathfrak{r}_{\alpha\beta}\oplus j\mathfrak{r}_{\alpha\beta})$ .
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Then applying Proposition 4.4 to the $j$-algebra $\mathfrak{r}\oplus_{J}r$ and the skew-symmetric
bilinear form $d\psi|_{\mathfrak{r}\oplus j\mathfrak{r}}$ , we have

LEMMA 7.3. $\psi(\mathfrak{r}_{\alpha\beta}\oplus ft_{\alpha\beta})=0$ for $\alpha<\beta$ .

Next we prove

LEMMA 7.4. $\psi(r_{\gamma})>0$ for all $\gamma$ .
PROOF. Since ] $1\oplus f$ is a subalgebra, we also have the decomposition $J^{\mathfrak{r}\oplus f=}$

$\Sigma(jr\oplus f)^{\Gamma}$. Let us set $f_{\gamma}=ad$ ] $r_{\gamma}-r\circ adr_{\gamma}$ . Then

$\psi(r_{\gamma})=Tracef_{\gamma}|_{\mathfrak{r}\oplus j\mathfrak{r}}+Tracef_{\gamma}|_{\mathfrak{w}}+Tracef_{\gamma}|_{j\mathfrak{r}\oplus@}-Tracef_{\gamma}|_{j\mathfrak{r}\oplus \mathfrak{k}}$

$=2$ Trace $ad_{J}r_{\gamma}|_{\mathfrak{r}}+Tracead$ ] $r_{\gamma}|_{\mathfrak{w}}+Trace$ ad $jr_{\gamma}|_{j\mathfrak{r}\oplus 3}-Trace$ $ad$ ] $r_{\gamma}|_{j\mathfrak{r}\oplus \mathfrak{k}}$ .
By simple computations, we have from Lemma 7.2 and (7.2)

$Tracead_{J}r_{\gamma}|_{\mathfrak{r}}=1+\frac{1}{2}\sum_{\alpha<r}\dim \mathfrak{r}_{a\gamma}+\frac{1}{2}\sum_{\gamma<\beta}\dim \mathfrak{r}_{\gamma\beta}$

Trace $ad$ ] $r_{\gamma}|_{\mathfrak{w}}= \frac{1}{2}\dim$ to $\Delta_{\gamma}/2$

and using (7.3) and (7.6) we have

Trace $ad$ ] $r_{\gamma}|_{j\mathfrak{r}\oplus@}-Trace$ ad $jr_{\gamma}|_{j\mathfrak{r}\oplus \mathfrak{k}}$

$= \sum_{\alpha>\beta}Tracead]r_{\gamma}|_{(j\mathfrak{r}\oplus e)^{(\Delta_{\alpha}-\Delta_{\beta})/2^{-\sum_{\alpha>\beta}}}}$
Trace ad $jr_{\gamma}|_{(r\oplus \mathfrak{k})^{(\lrcorner-\Delta\prime)/2}}J\alpha 3$

$= \frac{1}{2}\gamma>E^{(\dim(_{J}\mathfrak{r}\oplus@)^{(\Delta_{\gamma^{-\Delta_{\beta)/2}}}}-\dim(jt\oplus f)^{(\Delta_{\gamma^{-\Delta_{\beta)/2}}}})}$

$- \frac{1}{2}\sum_{\gamma<\alpha}(\dim(jt\oplus@)^{(\Delta_{\alpha}-\Delta_{\gamma})/2}-\dim(]t\oplus f)^{(\Delta_{a}-\Delta_{\gamma})/2})$ .

NOW the lemma follows from (7.7). $q$ . $e.d$ .

We are now in a position to prove Proposition 7.1. Let $x\in r\oplus j\mathfrak{r}\oplus \mathfrak{w}$ . We
decompose as $x=\Sigma_{\alpha\leqq\beta}r_{\alpha\beta}+\Sigma_{\alpha\leqq\beta]}z_{\alpha\beta}+\Sigma_{\alpha}w_{\alpha}$ , where $r_{\alpha\beta},$ $z.p^{Er}.\beta$ and $w_{a}\in \mathfrak{w}^{\Delta_{\alpha^{\prime 2}}}$ .
We then have

$[jx, x] \equiv\sum_{\alpha\leqq\beta}[jr_{\alpha\beta}, r_{\alpha\beta}]+[jz_{a\beta}, Z_{\alpha\beta}]+\sum_{\alpha}[J^{w_{\alpha}}, w_{\alpha}]$ $( mod \mathfrak{w}\oplus\sum_{\alpha<\beta}(\mathfrak{r}_{a\beta}\oplus j\mathfrak{r}_{\alpha\beta}))$ .

Therefore by Lemmas 6.3 and 7.3, it is enough to show $\psi([]r, r])>0$ for every
non-zero element $r\in r_{\alpha\beta}$ and $\psi([]w, w])>0$ for every non-zero element $w\in W^{\Delta_{a}}/2$

But both $[]r,$ $r]$ and $[jw, w]$ are in $\mathfrak{r}_{\alpha\alpha}$ and hence constant multiples of $r_{\alpha}$ . Let
$\psi’$ denote the Koszul form of the $j$-algebra $(\mathfrak{r}\oplus jr\oplus w, 0, J)$ . This $j$-algebra corre-
sponds to a homogeneous Siegel domain ([9]). Therefore $\psi’([]^{\gamma}, r])>0$ and
$\psi’([J^{w}, w])>0$ hold. Moreover since $\psi^{f}(r_{a})=\psi’([]r_{\alpha}, r_{\alpha}])>0$ , the above con-
stants must be positive numbers. Therefore by Lemma 7.4, we have $\psi([]r, r])$
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$>0$ and $\psi([jw, w])>0$ , completing the proof of Proposition 7.1. This finishes
the proof of Theorem 6.1.
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