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The purpose of this note is to explore the periods of cusp forms associated
to loxodromic elements of $b$-groups (function groups with simply connected in-
variant components). Let $\alpha$ and $\beta$ be two distinct points in $C\cup\{\infty\}$ . Let

(0.1) $g_{\alpha.\beta}(z)= \frac{\alpha-\beta}{(z-\alpha)(z-\beta)}$ , $z\in C\cup\{\infty\}$ .

Let $\Gamma$ be a finitely generated non-elementary Kleinian group with region of
discontinuity $\Omega=\Omega(\Gamma)$ and limit set $\Lambda=\Lambda(\Gamma)$ . Fix an integer $q\geqq 2$ and let
$A_{q}(\Omega, \Gamma)$ denote the space of cusp forms for $\Gamma$ of weight $(-2q)$ (or cusp q-forms,
for short). For $A\in\Gamma$ , a loxodromic (including hyperbolic) element with attractive
fixed point $\alpha$ and repulsive fixed point $\beta$ , we introduce the relative Poincar\’e
series

(0.2)
$\varphi_{A}(z)=\sum_{\gamma\in\Gamma_{0\backslash }\Gamma}g_{\alpha.\beta}^{q}(\gamma(z))\gamma’(z)^{q}$

, $z\in\Omega$ ,

where $\Gamma_{0}=\langle A\rangle$ , the cyclic group generated by $A$ . It was shown in [K3] that
$\varphi_{A}\in A_{q}(\Omega, \Gamma)$ .

Assume now that $\Gamma$ is a $b$-group and $\Delta$ is a simply connected invariant
component of $\Gamma$ (that is, of $\Omega(\Gamma)$). If $B$ is a loxodromic element of $\Gamma$ with
attractive fixed point $a$ and repulsive fixed point $b$ , then the period $L_{B}(\varphi)$ of $\varphi\in$

$A_{q}(\Omega, \Gamma)$ along $B$ is defined by

(0.3) $L_{B}( \varphi)=\int_{z_{0}}^{Bz_{0}}g_{a}^{1-}.*(z)\varphi(z)dz$ .

The integral is independent of the point $z_{0}$ in $\Delta$ as long as the path of integra-
tion is restricted to lie in $\Delta$ . The period of $\varphi$ depends, of course, only on $\varphi|\Delta$

(the space of restrictions of cusp forms to $\Delta$ will be denoted by $A_{q}(\Delta,$ $\Gamma)$).

The periods are conjugation invariant in the following sense. Let $C_{1}$ and
$C_{2}$ be two arbitrary elements of $PSL(2, C)$ with the property $C_{1}\Gamma C_{1}^{-1}=C_{2}\Gamma C_{2}^{-1}$ ,
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then
$L_{B}(\varphi_{A})=L_{C_{1}\circ B\cdot C_{1}^{-1(\varphi_{C_{2}\circ A^{0}C_{2}^{-1)}}}}$ .

The starting point of this investigation is the following theorem which will be
proved in \S 2.

THEOREM. Let $\Gamma$ be a finitely generated quasi-Fuchsian group of the first
kind. For $A$ a loxodromic element of $\Gamma$ , the complex number $L_{A}(\varphi_{A})$ is inde-
pendent of the component of $\Omega(\Gamma)$ used to define $L_{A}$ .

REMARK. The linear functional $L_{B}$ is defined, of course, on the larger space
of holomorphic $q$-forms for $\Gamma$ on $\Delta$ . See \S 4.

Let $\Delta$ and a be the two invariant components of the finitely generated quasi-
Fuchsian group $\Gamma$ (of the first kind). One of the motivations behind our study
is to determine whether it is possible for $\varphi_{A}|\Delta=0$ and $\varphi_{A}|\tilde{\Delta}\neq 0$ . (This cannot,

of course, occur for Fuchsian groups. If $\Gamma\subset PSL(2, R)$ , then $\varphi_{A}(\overline{z})=\overline{\varphi_{A}(z)}$ , all
$z\in\Omega.)$ Our theorem gives evidence to the claim that $\varphi_{A}$ cannot vanish on only
one component; but does not, of course, establish this claim. See [K3, \S 4.5]
for more on this question. The theorem does, however, establish the following

COROLLARY. If $L_{A}(\varphi_{A})\neq 0$ , then $\varphi_{A}$ does not vanish on either component of $\Gamma$ .

\S 1. Deformation spaces.

AS before $\Gamma$ is a finitely generated non-elementary Kleinian group with
region of discontinuity $\Omega$ and limit set $\Lambda$ . We assume that $\Gamma$ has been nor-
malized so that

$\{0,1, \infty\}\subset\Lambda$ .

Let $M(\Gamma)$ be the space of Beltrami coefficients for $\Gamma$ ; that is, $M(\Gamma)$ is the open
unit ball in

$L^{\infty}(\Gamma)=$ { $\mu\in L^{\infty}(C;C)$ ; $(\mu\circ\gamma)\overline{\gamma}’=\mu\gamma’$ , all $\gamma\in\Gamma$ }.

For $\mu\in M(\Gamma)$ , let $w^{\mu}$ be the unique normalized (fixing $0,1,$ $\infty$ ) $\mu$-conformal
(satisfying the Beltrami equation $w_{\overline{z}}=\mu w_{z}$) automorphism of $C\cup\{\infty\}$ . The
deformation space $T(\Gamma)$ is defined as the set of restrictions to $\Lambda$ of mappings
$w^{\mu}$ with $\mu\in M(\Gamma)$ . For $\mu\in M(\Gamma),$ $[\mu]$ will denote its image in $T(\Gamma)$ ; that is,
$[\mu]=w^{\mu}|\Lambda$ . It is well known ([B], [M] and [K1]) that $T(\Gamma)$ is a complex
manifold of the same dimension as $A_{2}(\Omega, \Gamma)$ .

The Bers fiber space $F(\Gamma)$ is defined as

$F(\Gamma)=\{([\mu], z) ; \mu\in M(\Gamma), z\in w^{\mu}(\Omega)\}$ .

It is a complex, not necessarily connected, manifold with a natural projection
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onto $T(\Gamma)$ . The fiber over $[\mu]\in T(\Gamma)$ is $w^{\mu}(\Omega)=\Omega(\Gamma^{\mu})$ , where $\Gamma^{\mu}=w^{\mu}\Gamma(w^{\mu})^{-1}$ .
The group $\Gamma$ acts on $F(\Gamma)$ in a fiber preserving manner by the rule

$\gamma([\mu], z)=([\mu], \gamma^{\mu}(z))$ ,

where $\gamma\in\Gamma,$ $\mu\in M(\Gamma),$ $z\in\Omega^{\mu},$ $\gamma^{\mu}=w^{\mu}\circ\gamma\circ(w^{\mu})^{-1}$ . The action of $\Gamma$ on $F(\Gamma)$ is
holomorphic. For $z\in\Lambda,$ $z\neq\infty$ , the mapping

$M(\Gamma)\ni\mu-\geq w^{\mu}(z)\in C$

is holomorphic and defines a function (also holomorphic) on $T(\Gamma)$ . Using this
observation, we can extend $g$ of (0.1) to be a holomorphic function on $F(\Gamma)$ by
defining

$G_{\alpha.\beta}([\mu], z)=g_{w^{\mu_{(\alpha).w^{\mu_{(\beta)}}}}}(z)$ .
Observe that $w^{\mu}(\alpha)$ and $w^{\mu}(\beta)$ are well defined and hence holomorphic functions
of $[\mu]\in T(\Gamma)$ . It is then easy to show, using standard $L^{1}$ estimates, that

$\Phi_{A}([\mu], z)=\sum_{\gamma\in\Gamma_{0}\backslash \Gamma}G_{\alpha.\beta}(\gamma([\mu], z))(\gamma^{\mu})’(z)^{q}=\varphi_{A^{\mu(Z)}}$ , $\mu\in M(\Gamma),$ $z\in w^{\mu}(\Gamma)$ ,

defines a holomorphic (cusp) form for the action of $\Gamma$ on $F(\Gamma)$ ; that is,

$\Phi_{A}(\gamma([\mu], z))(\gamma^{\mu})’(z)^{q}=\Phi_{A}([\mu], z)$ , all $\gamma\in\Gamma$ , all $\mu\in M(\Gamma)$ , all $z\in\Omega^{\mu}$ .
This construction extends $\varphi_{A}$ of (0.2) to $F(\Gamma)$ .

REMARK. Assume that the loxodromic element $A\in\Gamma$ has multiplier $K$ with
$0<|K|<1$ . Assume that $q=2$ . It follows that

$\int\int_{\Omega_{0/}\Gamma_{0}}|g_{\alpha.\beta}^{2}(z)dz\Lambda d\overline{z}|=-4\pi\log|K|$ ,

where $\Omega_{0}=C\cup t\infty$ } $-\{\alpha, \beta\}$ and $\Gamma_{0}=\langle A\rangle$ . Thus

$|| \varphi_{A}||=\int\int_{\Omega\Gamma}/|\varphi_{A}(z)dz\Lambda d\overline{z}|$ $ $-4\pi\log|K|$ ,
and

$|| \varphi_{A\mu}||=\int\int_{\Omega^{\mu_{/}}\Gamma^{\mu}}|\varphi A\mu(z)dz\wedge d\overline{z}|\leqq-4\pi\log|K^{\mu}|$ ,

where $K^{\mu}$ is the multiplier of $A^{\mu}$ . Since

$M(\Gamma)\ni\mu\mapsto K^{\mu}\in\{z\in C;0<|z|<1\}$

is a holomorphic map, hence distance decreasing (in the Poincar\’e metric), it
follows that

$|K|^{\kappa}$ :EI $|K^{\mu}|\leqq|K|^{1/\mathcal{K}}$ ,
where

$\kappa=\frac{1+||\mu||_{\infty}}{1-||\mu||_{\infty}}$ and $||\mu||_{\infty}$ is the $L^{\infty}$-norm of $\mu$ .
We conclude that
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$||\varphi_{A^{\mu||}}\leqq-4\pi\kappa\log|K|$ .

PROPOSITION. Let $\Delta$ be a simply connected component of $\Omega$ . Let $B\in\Gamma$ be
loxodromic with attractive fixed point $a$ and $repul\alpha ve$ fixed point $b$ (as before) and
$B(\Delta)=\Delta$ (that is, $B\in\Gamma_{\Delta}$ , stabilizer of $\Delta$ in $\Gamma$ ). Then

$T(\Gamma)\ni[\mu]-L_{B^{\mu}}(\varphi_{A\mu})\in C$

is a holomorphic function on the deformation space.

PROOF. We begin by examining

$L_{B^{\mu}}( \varphi_{A\mu})=\int_{z_{0}}^{B^{\mu_{(z_{0})}}}g_{w\mu_{(a).w}\mu_{(b)}}^{1-q}(z)\varphi_{A^{\mu(Z)dz}}$ ,

and observe that the integrand (as previously remarked) and the upper limit of
integration are holomorphic functions on the deformation space as long as $z_{0}\in$

$w^{\mu}(\Delta)$ . This latter condition can be achieved by choosing $z_{0}\in w^{\mu_{0}}(\Delta)$ for some
$\mu_{0}\in M(\Gamma)$ , and restricting $\mu$ to lie in a sufficiently small neighborhood of $\mu_{0}$ .
We note that although $\mu-w^{\mu}(z_{0})$ is not a well defined function on $T(\Gamma),$

$\muarrow$

$B^{\mu}(z_{0})$ i\S well defined and hence holomorphic. Alternatively, it suffices for our
purposes to consider $[\mu]$ in a neighborhood of zero (by right translation). Local
coordinates on $T(\Gamma)$ in a neighborhood of $\mu=0$ may be obtained by considering
harmonic Beltrami coefficients; that is, elements of the form $=\lambda^{-2}\overline{\varphi}$ , where $\lambda$ is
the Poincar\’e metric on $\Omega$ and $\varphi\in A_{2}(\Omega, \Gamma)$ .

\S 2. Periods of cusp forms.

In this section we prove the theorem of the introduction. Let $\Gamma$ be a finitely
generated Fuchsian group of the first kind acting on the upper half plane $U$ .
(Hence also on the lower half plane $U^{*}.$ ) In this case,

$\overline{\varphi_{A}(\overline{z})}=\varphi_{A}(z)$ , all $z\in U\cup U^{*}$ , all hyperbolic $A\in\Gamma$ .

It was shown in [K3], that

(2.1) $L_{A}( \varphi_{A})=\frac{1(2q-2)(2q-4)\cdots 4\cdot 2}{2\pi(2q-3)(2q-5)\cdots 3\cdot 1}\int\int_{\Delta\Gamma}/\lambda(z)^{2-2q}|\varphi_{A}(z)|idz\wedge d\overline{z}$ ,

where we can use for $\Delta$ either $U^{*}$ or $U$ in defining $L_{A}(\varphi_{A})$ . (As before, $\lambda$ is
the Poincar\’e metric on $\Delta.$ )

NOW we view $L_{A\mu}(\varphi_{A^{\mu}})$ as two functions on $T(\Gamma)$ as in the Proposition by
considering first $U$ and then $U^{*}$ in defining the period. Observe that $T(\Gamma)$ is
the space of quasi-Fuchsian groups and that the real points (see [KM]) in $T(\Gamma)$

are precisely the Fuchsian groups. To be more specific, we showed in [KM]

that we can choose $d+3$ points in $\Lambda(\Gamma),$
$\infty,$ $0,1,$ $a_{1}$ , – , $a_{a},$ $d=\dim A_{2}(\Omega, \Gamma)$ , so

that the holomorphic map
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$\mu-\geq(w^{\mu}(a_{1}), \cdots w^{\mu}(a_{d}))$

establishes an isomorphism between the space of quasi-Fuchsian groups $T(\Gamma)$

and a domain $D$ in $C^{d}$ . Hence we can identify $T(\Gamma)$ with its image $D$ under
this map. The space of Fuchsian groups (a real analytic model for Teichm\"uller

space) can be identified with the points in $D$ all of whose coordinates are real
(for more details see [KM]). The two holomorphic functions on $T(\Gamma)$ (hence

also on $D$) that we have constructed agree on the real points of $D$ . Hence they
agree everywhere on $D$ (equivalently on $T(\Gamma)$ ).

REMARK. AS above, the real points in $T(\Gamma)$ can be canonically identified
with points in the Teichm\"uller space $T(P, n)$ , where $(p, n)$ is the type of $\Gamma$ .
This identification is real but not complex analytic. We shall henceforth make
this identification whenever complex analyticity is not an issue.

Note that for Fuchsian $\Gamma$ , we have, from (2.1), the equivalence

$L_{A}(\varphi_{A})=0\Leftarrow\Rightarrow\varphi_{A}=0$ .

Let us also assume that $A$ is primitive. We have shown in [K3] that if $\gamma_{1},$ $\gamma_{2}$ ,
$\gamma_{3},$

$\cdots$ is a set of coset representatives for $\Gamma_{0}\backslash (\Gamma-\Gamma_{0})$ , then

$L_{A}( \varphi_{A})=\log K+\sum_{j^{=1}}^{\infty}(h_{j}(Az_{0})-h_{j}(z_{0}))$ ,

where $K$ is the multiplier of $A$ , chosen so that $0<K<1,$ $\log K\in R$ , and $h_{j}$ is
defined by

$h_{j}’=g_{\alpha.\beta}^{1-q}g_{\gamma_{j}^{-1_{(\alpha),\gamma_{j}^{-1}(\beta)}}}^{q}$ , $h(\alpha)=0$ .
We have also shown in [K3] that the vanishing of $\varphi_{A}$ is equivalent to the

vanishing of a certain linear functional $l_{A}$ on the space of parabolic cohomology
classes $PH^{1}(\Gamma, \Pi_{2q-2})$ , and that this latter condition is verifiable via linear algebra.
Here, $\Pi_{2q-2}$ is the vector space of polynomials of degree $\leqq 2q-2$ and $\Gamma$ acts on
$\Pi_{2q-2}$ via the Eichler representation. For the convenience of the reader we give
a definition of the functional $l_{A}$ . Let $\chi$ be a cocycle representing a cohomology
class in $PH^{1}(\Gamma, \Pi_{2q-2})$ . Expand the polynomial $\chi(A)\in\Pi_{2q- 2}$ using eigenvalues
for the automorphism that $A$ induces on $\Pi_{2q-2}$ :

$\chi(A)(z)=\sum_{j=0}^{2q- 2}a_{j}(\alpha-\beta)^{-j}(z-\alpha)^{j}(z-\beta)^{2q-2-j}$ , $z\in C$ ;

here $\alpha$ and $\beta$ are the attractive and repulsive fixed points on $A$ , respectively
(as before). The definition of the linear functional now reads

$l_{A}(\chi)=a_{q-1}$ .
Our results of this paper when combined with the work in [K3] yield the
following
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THEOREM. Let $\Gamma$ be a finitely generated Fuchsian group of the first kind.
Let $A\in\Gamma$ be primitive hyperbolic with multiplier K. Then following conditions
are equivalent:

(a) $l_{A}\in PH^{1}(\Gamma, \Pi_{2q- 2})^{*}$ is the zero linear functional,
(b) $\varphi_{A}$ vamshes on one component of $\Omega(\Gamma)$ ,
(c) $\varphi_{A}=0$ ,
(d) $L_{A}(\varphi_{A})=0$ (uszng ezther component of $\Omega(\Gamma)$),
(e) $L_{A}=0$ (on one, hence both, components of $\Omega(\Gamma)$),

(f) $\log K+\sum_{f=1}^{\infty}(h_{j}(Az)-h_{j}(z))=0$, all $z\in\Omega$ , and

(g) $\log K+\sum_{j^{=}1}^{\infty}(h_{j}(Az_{0})-h_{j}(z_{0}))=0$, some $z_{0}\in\Omega$ .

The reader is refered to [K3] for alternate definitions of $l_{A}$ as well as ad-
ditional properties of this linear functional, the cohomology space $PH^{1}(\Gamma, \Pi_{2q-2})$

and its dual space $PH^{1}(\Gamma, \Pi_{2q-2})^{*}$ .

\S 3. Separating elements of $\Gamma$ by cohomology classes in $H^{1}(\Gamma, \Pi_{2q-2})$ .
Let $\Gamma$ be an arbitrary Kleinian group. Let $A\in\Gamma$ be loxodromic or parabolic.

Does there exist a cohomology class $\chi\in H^{1}(\Gamma, \Pi_{2q-2})$ that is non-trivial on $A$ ;
that is, a $\chi$ such that X $|\langle A\rangle$ is not a coboundary7 The question is equivalent
to the non-triviality of the linear functional $l_{A}$ (as defined in [K2] and [K3]).

If $A$ is parabolic and $q\geqq 3$ or $q=2$ and the fixed point $a$ of $A$ is cusped, then
there exists a $\chi$ which is non-trivial on $A$ if and only if $a$ is $q$-admissible (see

[K2] $)$ .
Next assume that $A$ is loxodromic. Let $N(A)$ be the largest elementary

subgroup of $\Gamma$ that contains $A$ . Then a necessary condition for the existence
of a $\chi$ that is non-trivial on the element $A$ is that $H^{1}(N(A), \Pi_{2q-2})\neq\{0\}$ . From
[K2, Proposition 4.2], we see that $H^{1}(N(A), \Pi_{2q-2})=\{0\}$ if $N(A)$ is isomorphic to
$Z_{2}*Z_{2}$ or to a double dihedral group and $q$ is odd. A sufficient condition for the
existence of a $\chi$ that is non-trivial on $A$ is that $\varphi_{A}\neq 0$ .

If the Bers map (see [K2], for example, for the definition)

$\beta^{*}:$ $A_{q}(\Omega, \Gamma)arrow PH^{1}(\Gamma, \Pi_{2q-2})$

is subjective, then the existence of a $\chi\in PH^{1}(\Gamma, \Pi_{2q- 2})$ that is non-trivial on $A$

is equivalent to $\varphi_{A}\neq 0$ .
Let $\Gamma$ be a finitely generated Fuchsian group of tbe first kind, $\Gamma\subset PSL(2, R)$ .

We view the Teichm\"uller space of $\Gamma$ as the real points in the deformation space
$T(\Gamma)$ ; these correspond to symmetric Beltrami coefficients:

{ $\mu\in M(\Gamma);\mu(\overline{z})=\overline{\mu(z)}$ , almost all $z\in C$ }.
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Let $A$ be a hyperbolic element of $\Gamma$ . We define the known and studied length
function on the Teichm\"uller space. It is the restriction to the real points in
$T(\Gamma)$ of the function

$f_{A}$

$T(\Gamma)\ni[\mu]--\log K^{\mu}\in C^{*}$ ,

where $K^{\mu}$ is the multiplier of $A^{\mu}$ . We assume that the multiplier $K$ of $A$ and
the branch of the logarithm have been chosen so that $0<K<1$ and $-\log K>0$ .
The function $f_{A}$ is complex analytic on $T(\Gamma)$ and satisfies

${\rm Re}(-\log K^{\mu})>0$, all $[j^{\ell}]\in T(\Gamma)$ .
If $\mu$ is symmetric (and thus represents a point in the Teichm\"uller space), then
$-\log K^{\mu}\in R^{+}$ is the length of the geodesic (closed curve) corresponding to the
element $A\in\Gamma$ on the Riemann surface $U/\Gamma^{\mu}$ . Let

$\dot{f}_{A}[\mu](\nu)=\lim_{tarrow 0}\frac{f_{A}([\mu+t\nu])-f_{A}([\mu])}{t}$ , $\mu\in M(\Gamma),$ $\nu\in L^{\infty}(\Gamma)$ .

It is easy to check that $\dot{f}_{A}[\mu]=0$ if and only if $\dot{f}_{A\mu}[0]=0$ , where

$\dot{f}_{A\mu}[0](\nu)=\lim_{tarrow 0}\frac{f_{A^{\mu}}([t\nu])-f_{A\mu}([0])}{t}$ , $\nu\in L^{\infty}(\Gamma^{\mu})$ .

It is $also_{\wedge}^{-}$-well known that (see [G], [K3], [W])

$\dot{f}_{A^{\mu[0](\nu)=\frac{1}{2\pi}\int\int_{\Omega\mu_{/}\Gamma\mu}\varphi_{A^{\mu(Z)\nu(z)idz\wedge d\overline{z}}}}}$ , $\nu\in M(\Gamma^{\mu})$ .

Thus the critical points of $f_{A}$ are precisely those $[\mu]\in T(\Gamma)$ for which $\varphi_{A\mu}=0$ .
Wolpert [W] has shown that on the Teichm\"uller space, all the critical points

of $f_{A}$ are minima and a minimum occurs if and only if $A$ is essential (the com-
plement of the projection to $U/\Gamma$ of the axis of $A$ consists of discs and punctured
discs). We have established the following

THEOREM. Let $A\in\Gamma$ be a hyperbolic element of a fimtely generated Fuchsian
group $\Gamma$ of the first kind. The following conditions are equivalent:

(a) $l_{A}=0$ on $PH^{1}(\Gamma, \Pi_{2})$ ,
(b) $\varphi_{A}=0$ (for $q=2$), and
(c) the curve on $U/\Gamma$ corresponding to $A$ is essential and has shorter length

on $U/\Gamma$ than on all (nearby) Fuchsian groups.

We also remark that as a consequence of our theorem, condition (c) is veri-
fiable by purely algebraic methods. Thus linear algebra alone can be used to
decide whether a curve is both essential and of minimal length over Teichm\"uller

space. This seems rather surprising.
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\S 4. Cohomological interpretation of the periods.

Let $\Gamma$ be a finitely generated quasi-Fuchsian group of the first kind with $\Delta$

one of its invariant components. Let $A_{q}^{+}(\Delta, \Gamma)$ denote the space of holomorphic
automorphic $q$-forms for $\Gamma$ on $\Delta$ (these are allowed to have a finite limit at the
cusps; whereas cusp forms vanish at the cusps). The Eichler period map

$\mathcal{E}:A_{q}^{+}(\Delta, \Gamma)arrow H^{1}(\Gamma, \Pi_{2q-2})$

has been studied in [K3, \S 4], where we have shown that for loxodromic $A\in\Gamma$ ,

we have

$l_{A}( \mathcal{E}\varphi)=\frac{(-1)^{q-1}}{(2q-2)}(\begin{array}{l}2q-2q-1\end{array})L_{A}(\varphi)$ , all $\varphi\in A_{q}^{+}(\Delta, \Gamma)$ .

A similar interpretation exists for parabolic $A\in\Gamma$ (implied by the results of
[K2] $)$ . The corresponding statements for elliptic $A\in\Gamma$ reduce to trivialities.

For fixed loxodromic $B\in\Gamma$ , the cohomology class $\mathcal{E}(\varphi_{B}|\Delta)$ depends on the
choice of component $\Delta$ of $\Gamma$ . Hence (by the results [K3]) so does the sequence
of complex numbers $\{L_{A}(\varphi_{B})\}$ as $A$ varies over the (conjugacy classes of) loxo-
dromic elements of $\Gamma$ . However, $L_{B}(\varphi_{B})$ is independent of which component is
used.

We will continue to investigate the relations between periods of automorphic
forms and Eichler cohomology in a forthcoming paper.
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