The quasi $K O$-homology types of the stunted real projective spaces

Dedicated to Professor Akio Hattori on his sixtieth birthday

By Zen-ichi Yosimura

(Received June 30, 1989)

0. Introduction.

Let E be an associative ring spectrum with unit, and X, Y be $C W$-spectra. We say that X is quasi E_{*}-equivalent to Y if there exists a map $h: Y \rightarrow E \wedge X$ such that the composite $(\mu \wedge 1)(1 \wedge h): E \wedge Y \rightarrow E \wedge X$ is an equivalence where $\mu: E \wedge E \rightarrow E$ stands for the multiplication of E. In this case we write $X \underset{E}{ } Y$, and we call such a map $h: Y \rightarrow E \wedge X$ a quasi E_{*}-equivalence. We shall be concerned with the quasi $K O_{*}$-equivalence where $K O$ is the real K-spectrum. In [Y2] we have determined the quasi $K O_{*}$-types of the real projective n-spaces $R P^{n}$. The purpose of this note is to determine the quasi $K O_{*}$-types of the stunted real projective spaces $R P^{n} / R P^{m}$ as a continuation of [Y2].

In order to describe our main result precisely we have to introduce some elementary suspension spectra with three or four cells (see [Y3, Y4]). The Moore spectrum $S Z / n$ of type Z / n is constructed by the cofiber sequence $\Sigma^{0} \xrightarrow{n} \Sigma^{0} \xrightarrow{i} S Z / n \xrightarrow{j} \Sigma^{1}$. Let $M_{2 m}$ and $V_{2 m}$ denote the cofibers of the maps $i \eta: \Sigma^{1} \rightarrow$ $S Z / 2 m$ and $i \bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow S Z / m$ respectively. Here $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ stands for the stable Hopf map of order 2 and $\bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow \Sigma^{0}$ its extension satisfying $\bar{\eta} i=\eta$. The complex K-spectrum $K U$ possesses the conjugation $t: K U \rightarrow K U$ which gives rise to an involution t_{*} on $K U_{*} X$ for any $C W$-spectrum X. By comparing $K U_{*} R P^{n}$ with $K U_{*} M_{2 m}$ or $K U_{*} V_{2 m}$ as an abelian group with involution, and then by characterizing a $C W$-spectrum X which admits the same quasi $K O_{*}$-type as $M_{2 m}$ or $V_{2 m}$, we have established the following determination [Y2, Theorem 5] (cf. [F]).

Theorem 1. $\Sigma^{1} R P^{n}$ is quasi $K O_{*}$-equivalent to $S Z / 2^{4 r}, M_{2^{4} r}, V_{2^{4 r+1}}$, $\Sigma^{4} \vee V_{2^{4 r+1}}, \quad V_{2^{4 r+2}}, \quad M_{2^{4 r+2}}, S Z / 2^{4 r+3}, \quad \Sigma^{0} \vee S Z / 2^{4 r+3}$ according as $n=8 r, 8 r+1$, $\cdots, 8 r+7$.

Let $M_{2 m}^{\prime}$ and $M P_{2 m}$ denote the cofibers of the maps $\eta j: S Z / 2 m \rightarrow \Sigma^{0}$ and $i \eta \vee \tilde{\eta}: \Sigma^{1} \vee \Sigma^{2} \rightarrow S Z / 2 m$ respectively. Here $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 m$ stands for a coexten-
sion of η satisfying $j \tilde{\eta}=\eta$. By applying the same method as in the proof of Theorem 1 established in [Y2] we will show the following main result (cf. [FY].

Theorem 2. i) $\Sigma^{4 m}\left(R P^{4 m+n} / R P^{4 m}\right)$ is quasi $K O_{*}$-equivalent to $R P^{n}$.
ii) $\Sigma^{4 m}\left(R P^{4 m+n} / R P^{4 m-1}\right)$ is quasi $K O_{*}$-equivalent to the wedge $\Sigma^{0} \vee R P^{n}$.
iii) $\Sigma^{4 m}\left(R P^{4 m+n-2} / R P^{4 m-2}\right)$ is quasi $K O_{*-\text { equivalent to } R P_{\sigma}^{n} \text { where } \Sigma^{1} R P_{\sigma}^{n}=}$ $S Z / 2^{4 r}, \Sigma^{0} \vee S Z / 2^{4 r}, S Z / 2^{4 r+1}, M_{2^{4 r+1}}, V_{2^{4 r+2}}, \Sigma^{4} \vee V_{2^{4 r+2}}, V_{2^{4 r+3}}, M_{2^{4 r+3}}$ according as $n=8 r, 8 r+1, \cdots, 8 r+7$.
iv) $\sum^{4 m+2}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)$ is quasi $K O_{*}$-equivalent to $M_{2^{4 r}}^{\prime}, \Sigma^{1} \vee M_{2^{4 r}}^{\prime}$, $M_{2^{4 r+1}}^{\prime}, \quad \Sigma^{1} M P_{2^{4 r+2}}, \quad \Sigma^{4} M_{2^{4 r+2}}^{\prime}, \quad \Sigma^{5} \vee \Sigma^{4} M_{2^{4 r+2}}^{\prime}, \quad \Sigma^{4} M_{2^{4 r+3}}^{\prime}, \quad \Sigma^{1} M P_{2^{4 r+4}}$ according as $n=8 r, 8 r+1, \cdots, 8 r+7$.

In $\S 1$ and $\S 2$ we will characterize a $C W$-spectrum X admitting the same quasi $K O_{*}$-type as $S A \vee \Sigma^{1} S D \vee M_{2 m}^{\prime}$ or $\Sigma^{2} S B \vee \Sigma^{3} S E \vee M P_{4 m}$ under some restrictions on A, D, B and E (Theorems 1.6 and 2.6), where $S G$ denotes the Moore spectrum of type G. In particular, Theorem 2.6 shows that $\Sigma^{4} M P_{4 m}$ is quasi $K O_{*}$-equivalent to $M P_{4 m}$ Corollary 2.7). In $\S 3$ we will first investigate the $K U$ - and $K O$-homologies of the stunted real projective spaces $R P^{n} / R P^{m}$ (cf. [Ad1], [FY], and then prove our main result Theorem 2) by means of results obtained in $\S 1, \S 2$ and [Y2]. In fact, Theorem 2 i) and iii) are shown by applying [Y2, Theorem 2.5] as Theorem 1 was done in [Y2]. Moreover, Theorem 2 iv) is established by applying Theorem 1.6 and Corollary 2.7 (or Theorem 2.6). On the other hand, Theorem 2 ii) is obtained by making use of the Thom isomorphism in $K O$-theory as was done in [FY].

In this note we will work in the stable homotopy category of $C W$-spectra.

1. The cofiber $M_{2 m}^{\prime}$ of the map $\eta j: S Z / 2 m \rightarrow \Sigma^{0}$.
1.1. Let $K O, K U$ and $K C$ denote the real, complex and self-conjugate K spectrum respectively. These K-spectra are closely related each other. Thus we have nice relations among them given by the cofiber sequences as follows ([An] or [B]):

$$
\begin{align*}
& \Sigma^{1} K O \xrightarrow{\eta \wedge 1} K O \xrightarrow{\varepsilon_{u}} K U \xrightarrow{\varepsilon_{0} \pi_{u}^{-1}} \Sigma^{2} K O \tag{1.1}\\
& \Sigma^{2} K O \xrightarrow{\eta^{2} \wedge 1} K O \xrightarrow{\varepsilon_{c}} K C \xrightarrow{\tau \pi_{c}^{-1}} \Sigma^{3} K O \tag{1.2}\\
& K C \xrightarrow{\zeta} K U \xrightarrow{\pi_{u}^{-1}(1-t)} \Sigma^{2} K U \xrightarrow{\gamma \pi_{u}} \Sigma^{1} K C \tag{1.3}
\end{align*}
$$

which are related by the commutative diagram below

In place of (1.3) we sometimes use the cofiber sequence

$$
\begin{equation*}
K C \xrightarrow{\zeta} K U \xrightarrow{1-t} K U \xrightarrow{\gamma} \Sigma^{1} K C . \tag{1.3}
\end{equation*}
$$

We denote by $M_{2 m}$ and $M_{2 m}^{\prime}, m \geqq 1$, the suspension spectra with three cells constructed by the cofiber sequences

$$
\begin{gather*}
\Sigma^{1} \xrightarrow{i \eta} S Z / 2 m \xrightarrow{i_{M}} M_{2 m} \xrightarrow{j_{M}} \Sigma^{2} \tag{1.5}\\
S Z / 2 m \xrightarrow{\eta j} \Sigma^{0} \xrightarrow{i_{M}^{\prime}} M_{2 m}^{\prime} \xrightarrow{j_{M}^{\prime}} \Sigma^{1} S Z / 2 m . \tag{1.6}
\end{gather*}
$$

Note that $M_{2 m}^{\prime}$ is the Spanier-Whitehead dual of $M_{2 m}$, thus $M_{2 m}^{\prime}=\Sigma^{2} D M_{2 m}$. The $K U$ - and $K O$-homologies of these elementary suspension spectra $M_{2 m}$ and $M_{2 m}^{\prime}$ are easily calculated in [Y3, Propositions 4.1 and 4.2].

PROPOSITION 1.1. i) $K U_{0} M_{2 m} \cong Z \oplus Z / 2 m$ on which $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$, and $K U_{1} M_{2 m}=0$.
ii) $K U_{0} M_{2 m}^{\prime} \cong Z, \quad K U_{1} M_{2 m}^{\prime} \cong Z / 2 m$ on both of which $t_{*}=1$.
iii) $K O_{i} M_{2 m} \cong Z / 2 m \quad 0 \quad Z \oplus Z / 2 \quad Z / 2 \quad Z / 4 m \quad 0 \quad Z \quad 0$

$$
K O_{i} M_{2 m}^{\prime} \cong \quad Z \quad Z / 4 m \quad Z / 2 \quad Z / 2 \quad Z \quad Z / 2 m \quad 0 \quad 0
$$

according as $i=0,1, \cdots, 7$.
We denote by $M P_{2 m}, m \geqq 1$, the suspension spectrum with four cells constructed by the cofiber sequence

$$
\begin{equation*}
\Sigma^{1} \vee \Sigma^{2} \xrightarrow{i_{\eta \vee \tilde{\eta}}} S Z / 2 m \xrightarrow{i_{M P}} M P_{2 m} \xrightarrow{j_{M P}} \Sigma^{2} \vee \Sigma^{3} \tag{1.7}
\end{equation*}
$$

where $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2 m$ stands for a coextension of η satisfying $j \tilde{\eta}=\eta$. Then there exists a cofiber sequence

$$
\begin{equation*}
\Sigma^{2} \xrightarrow{i_{M}^{\tilde{\eta}}} M_{2 m} \xrightarrow{k_{M P}} M P_{2 m} \xrightarrow{l_{M P}} \Sigma^{3} \tag{1.8}
\end{equation*}
$$

making the diagram below commutative

PROPOSITION 1.2. i) $K U_{0} M P_{2 m} \cong Z \oplus Z / m$ on which $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$, and $K U_{1} M P_{2 m} \cong Z$ on which $t_{*}=-1$.
ii) $K O_{i} M P_{2 m} \cong Z / 2 m, 0, Z, Z$ according as $i \equiv 0,1,2,3 \bmod 4$.

Proof. i) Use the two exact sequences

$$
\begin{aligned}
& 0 \longrightarrow K U_{1} M P_{2 m} \longrightarrow K U_{0} \Sigma^{2} \xrightarrow{\tilde{\eta}_{*}} K U_{0} S Z / 2 m \longrightarrow K U_{0} M P_{2 m} \longrightarrow K U_{-1} \Sigma^{1} \longrightarrow 0 \\
& 0 \longrightarrow K U_{1} M P_{2 m} \longrightarrow K U_{0} \Sigma^{2} \xrightarrow{\left.i^{i} M\right)^{\tilde{\eta})_{*}}} K U_{0} M_{2 m} \longrightarrow K U_{0} M P_{2 m} \longrightarrow 0
\end{aligned}
$$

induced by the cofiber sequences (1.7), (1.8). Here $\tilde{\eta}_{*}: K U_{0} \Sigma^{2} \rightarrow K U_{0} S Z / 2 m$ is expressed to be $\tilde{\eta}_{*}=m: Z \rightarrow Z / 2 m$, as is shown in the proof of [Y3, Proposition 4.1]. Hence we obtain that $K U_{1} M P_{2 m} \cong Z$ and $K U_{0} M P_{2 m} \cong Z \oplus Z / m$. Moreover, it follows immediately that $t_{*}=-1$ on $K U_{1} M P_{2 m} \cong Z$ and $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} M P_{2 m}$ $\cong Z \oplus Z / m$ because $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ on $K U_{0} M_{2 m} \cong Z \oplus Z / 2 m$.
ii) Use the long exact sequence of $K O$-homology induced by the cofiber sequence (1.7), Then $K O_{i} M P_{2 m}$ is easily calculated except $i=4$. On the other hand, the cofiber sequence (1.8) gives rise to a short exact sequence $0 \rightarrow K O_{4} \Sigma^{2}$ $\rightarrow \mathrm{KO}_{4} \mathrm{M}_{2 m} \rightarrow \mathrm{KO}_{4} M P_{2 m} \rightarrow 0$ in the $i=4$ case. So the result is immediately obtained.
1.2. The short exact sequences

$$
\begin{equation*}
0 \longrightarrow\left[\Sigma^{2}, K U \wedge X\right] \xrightarrow{j_{M}^{*}}\left[M_{2 m}, K U \wedge X\right] \xrightarrow{i_{M}^{*}}[S Z / 2 m, K U \wedge X] \longrightarrow 0 \tag{1.10}
\end{equation*}
$$

(1.11) $0 \longrightarrow\left[\Sigma^{1} S Z / 2 m, K U \wedge X\right] \xrightarrow{j_{M}^{*}}\left[M_{2 m}^{\prime}, K U \wedge X\right] \xrightarrow{i_{M}^{*}}\left[\Sigma^{0}, K U \wedge X\right] \longrightarrow 0$
induced by the cofiber sequences (1.5), (1.6) are split for any $C W$-spectrum X. Moreover the universal coefficient sequence

$$
\begin{align*}
0 \longrightarrow \operatorname{Ext}\left(K U_{0} S Z / 2 m, K U_{i+1} X\right) & \longrightarrow\left[\Sigma^{i} S Z / 2 m, K U \wedge X\right] \\
& \xrightarrow{\kappa_{i}} \operatorname{Hom}\left(K U_{0} S Z / 2 m, K U_{i} X\right) \longrightarrow 0 \tag{1.12}
\end{align*}
$$

is also a split exact sequence for each i (cf. [ArT]), where the arrow κ_{i} assigns to any map f its induced homomorphism f_{*} of $K U$-homology in dimension i.

Let A, D be a 2-torsion free abelian groups and $m=2^{k}, k \geqq 0$. We now deal with a $C W$-spectrum X such that
(1.13) $K U_{0} X \cong A \oplus Z$ and $K U_{1} X \cong D \oplus Z / 2 m$ on both of which $t_{*}=1$, and in addition $K O_{1} X \cong(A \otimes Z / 2) \oplus D \oplus Z / 4 m$ and $K O_{6} X=0=K O_{7} X$.
By means of Proposition 1.1 we note that the wedge sum $S A \vee \Sigma^{1} S D \vee M_{2 m}^{\prime}$ satisfies the above condition (1.13). In this section we will conversely prove that a $C W$-spectrum X satisfying (1.13) is quasi $K O_{*}$-equivalent to $S A \vee \Sigma^{1} S D \vee M_{2 m}^{\prime}$. In order to investigate the behaviour of the conjugation t_{*} on $\left[M_{2 m}^{\prime}, K U \wedge X\right]$ for such a $C W$-spectrum X, we will first show

Lemma 1.3. There exists a direct sum decomposition

$$
\begin{aligned}
{\left[\Sigma^{1} S Z / 2 m, K U \wedge X\right] } & \cong \operatorname{Hom}\left(K U_{0} S Z / 2 m, K U_{1} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 2 m, K U_{2} X\right) \\
& \cong Z / 2 m \oplus(A \oplus Z) \otimes Z / 2 m
\end{aligned}
$$

on which $t_{*}=\left(\begin{array}{rr}1 & 0 \\ i_{2} & -1\end{array}\right)$ where $i_{2}: Z / 2 m \rightarrow(A \otimes Z / 2 m) \oplus Z / 2 m$ denotes the injection into the last factor.

Proof. Denote by $t_{2 m}$ the conjugation t_{*} on $\left[\Sigma^{1} S Z / 2 m, K U \wedge X\right]$. Consider the commutative diagram

with split exact rows. Note that the left vertical arrow is just multiplication by 2 and the right one is trivial.

In order to give a matrix representation of the central arrow $1-t_{2 m}$, we here observe the connecting homomorphism $\delta: \operatorname{Hom}\left(Z / 2 m, K U_{1} X\right) \rightarrow$ $\operatorname{Ext}\left(Z / 2 m, K U_{2} X \otimes Z / 2\right)$ associated with the short exact sequence $0 \rightarrow K U_{2} X \otimes Z / 2$ $\rightarrow K C_{1} X \rightarrow K U_{1} X \rightarrow 0$ induced by the cofiber sequence (1.3)'. This short exact sequence is obtained as the canonical exact sequence $0 \rightarrow(A \otimes Z / 2) \oplus Z / 2 \rightarrow$ $(A \otimes Z / 2) \oplus D \oplus Z / 4 m \rightarrow D \oplus Z / 2 m \rightarrow 0$ because $\varepsilon_{c *}: K O_{1} X \rightarrow K C_{1} X$ is an isomorphism. So it is easily seen that the connecting homomorphism $\delta: Z / 2 m \rightarrow(A \otimes Z / 2) \oplus Z / 2$ is given by $\delta(1)=(0,1)$. Hence we can express as $1-t_{2 m}=\left(\begin{array}{cc}0 & 0 \\ -i_{2} & 2\end{array}\right)$ on $\left[\Sigma^{1} S Z / 2 m, K U \wedge X\right] \cong \operatorname{Hom}\left(K U_{0} S Z / 2 m, K U_{1} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 2 m, K U_{2} X\right) \quad$ by choosing suitably a splitting of κ_{1} if necessary. Thus [$\left.\Sigma^{1} S Z / 2 m, K U \wedge X\right]$ has
a direct sum decomposition so that $t_{2 m}=\left(\begin{array}{rr}1 & 0 \\ i_{2} & -1\end{array}\right)$ on it as desired.
Let P denote the cofiber of the stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$. The cofiber sequence $\Sigma^{1} \xrightarrow{\eta} \Sigma^{0^{i} P} P^{j} \rightarrow \Sigma^{2}$ gives rise to a split exact sequence $0 \rightarrow\left[\Sigma^{2}, K U \wedge X\right] \rightarrow$ $[P, K U \wedge X] \rightarrow\left[\Sigma^{0}, K U \wedge X\right] \rightarrow 0$. As is well known (cf. [Y3, (2.3)]), $[P, K U \wedge X]$ has a direct sum decomposition

$$
[P, K U \wedge X] \cong K U_{0} X \oplus K U_{2} X \quad \text { on which } t_{*}=\left(\begin{array}{rr}
1 & 0 \tag{1.14}\\
-1 & -1
\end{array}\right) .
$$

Lemma 1.4. There exists a direct sum decomposition
$\left[M_{2 m}^{\prime}, K U \wedge X\right] \cong K U_{0} X \oplus \operatorname{Hom}\left(K U_{0} S Z / 2 m, K U_{1} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 2 m, K U_{2} X\right)$

$$
\cong(A \oplus Z) \oplus Z / 2 m \oplus(A \oplus Z) \otimes Z / 2 m
$$

on which $t_{*}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -\rho & i_{2} & -1\end{array}\right)$ where $\rho: A \oplus Z \rightarrow(A \oplus Z) \otimes Z / 2 m$ denotes the canonical projection.

Proof. Use the commutative diagram

which gives rise to the following commutative diagram

with two split exact rows. The central composite $\kappa_{1} k^{\prime *}:[P, K U \wedge X] \rightarrow$ $\operatorname{Hom}\left(K U_{1} M_{2 m}^{\prime}, K U_{1} X\right)$ is evidently trivial, and the left vertical arrow $j^{*}:\left[\Sigma^{2}, K U \wedge X\right] \rightarrow\left[\Sigma^{1} S Z / 2 m, K U \wedge X\right]$ is expressed as the column $\binom{0}{\rho}$ where [$\left.\Sigma^{1} S Z / 2 m, K U \wedge X\right]$ is decomposed as in Lemma 1.3 and $\rho: \operatorname{Hom}\left(Z, K U_{2} X\right) \rightarrow$ $\operatorname{Ext}\left(Z / 2 m, K U_{2} X\right)$ denotes the canonical projection. Hence $k^{\prime *}:[P, K U \wedge X] \rightarrow$
[$\left.M_{2 m}^{\prime}, K U \wedge X\right]$ is written into the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ a & \rho\end{array}\right)$ for some homomorphism $a: A \oplus Z \rightarrow(A \oplus Z) \otimes Z / 2 m$, where [P, $K U \wedge X]$ is decomposed as in (1.14) and [$\left.M_{2 m}^{\prime}, K U \wedge X\right]$ is decomposed by making use of the splitting exact sequence (1.11) and Lemma 1.3.

Denote by t_{P} and $t_{M^{\prime}}$ the conjugations t_{*} on $[P, K U \wedge X]$ and $\left[M_{2 m}^{\prime}, K U \wedge X\right]$ respectively. Then (1.14) says that $t_{P}=\left(\begin{array}{rr}1 & 0 \\ -1 & -1\end{array}\right)$, and Lemma 1.3 asserts that $t_{M^{\prime}}$ is written into the matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ b & 1 & 0 \\ c & i_{2} & -1\end{array}\right)$ for some homomorphisms $b: A \oplus Z \rightarrow$ $Z / 2 m, c: A \oplus Z \rightarrow(A \oplus Z) \otimes Z / 2 m$. However $i_{2} b=0: A \oplus Z \rightarrow(A \oplus Z) \otimes Z / 2 m$ which implies $b=0$, because $t_{M^{\prime}}^{2}=1$. Moreover the equality $t_{M^{\prime}} k^{\prime *}=k^{\prime *} t_{P}$ shows that $c=2 a-\rho: A \oplus Z \rightarrow(A \oplus Z) \otimes Z / 2 m$. So we may take to be $c=-\rho$ by replacing suitably the splitting of $i_{M}^{\prime *}$ if necessary. Thus $\left[M_{2 m}^{\prime}, K U \wedge X\right]$ has a direct sum decomposition so that $t_{M^{\prime}}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -\rho & i_{2} & -1\end{array}\right)$ on it as desired.
1.3. For any $C W$-spectrum X satisfying (1.13) we consider the commutative diagram below

where the arrows $\kappa_{i}(i=0,1)$ assign to any map f its induced homomorphism of $K U$-homology in dimension i. Then we can rewrite the direct sum decomposition on $\left[M_{2 m}^{\prime}, K U \wedge X\right]$ obtained in Lemma 1.4 as follows:

$$
\begin{align*}
& {\left[M_{2 m}^{\prime}, K U \wedge X\right]} \tag{1.15}\\
& \cong \operatorname{Hom}\left(K U_{0} M_{2 m}^{\prime}, K U_{0} X\right) \oplus \operatorname{Hom}\left(K U_{1} M_{2 m}^{\prime}, K U_{1} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 2 m, K U_{2} X\right)
\end{align*}
$$

Proposition 1.5. Let A, D be 2-torsion free abelian groups, $m=2^{k}, k \geqq 0$, and X be a $C W$-spectrum satisfying the condition (1.13). Then there exists a map
$f_{M^{\prime}}: M_{2 m}^{\prime} \rightarrow K U \wedge X$ with $(t \wedge 1) f_{M^{\prime}}=f_{M^{\prime}}$, whose induced homomorphisms of $K U$ homologies in dimensions 0,1 are respectively the canonical inclusions $i_{0}: Z \rightarrow A \oplus Z$ and $i_{1}: Z / 2 m \rightarrow D \oplus Z / 2 m$.

Proof. Under the direct sum decomposition on [$M_{2 m}^{\prime}, K U \wedge X$] given in (1.15), we can choose a map $f_{M^{\prime}}: M_{2 m}^{\prime} \rightarrow K U \wedge X$ corresponding to the element $w=\left(i_{0}, i_{1}, 0\right)$. Then it is immediate that $(t \wedge 1) f_{M^{\prime}}=f_{M^{\prime}}$ because $t_{M^{\prime}}(w)=w$ as is easily calculated by means of the matrix representation of $t_{M^{\prime}}$, obtained in Lemma 1.4.

We will now prove a main result in this section, which characterize a $C W$ spectrum X admitting the same quasi $K O_{*}$-type as $S A \vee \Sigma^{1} S D \vee M_{2 m}^{\prime}$ where $S G$ denotes the Moore spectrum of type G for $G=A$ or D.

Theorem 1.6. Let A, D be 2-torsion free abelian groups such that $\operatorname{Ext}(D, A \oplus Z)$ is uniquely 2-divisible, and $m=2^{k}, k \geqq 0$. Then a $C W$-spectrum X is quasi $K O_{*}$-equivalent to the wedge sum $S A \vee \Sigma^{1} S D \vee M_{2 m}^{\prime}$ if and only if $K U_{0} X$ $\cong A \oplus Z$ and $K U_{1} X \cong D \oplus Z / 2 m$ on both of which $t_{*}=1$ and in addition $K O_{1} X \cong$ $(A \otimes Z / 2) \oplus D \oplus Z / 4 m$ and $K O_{6} X=0=K O_{7} X$.

Proof. The "only if" part is evident from Proposition 1.1.
The "if" part: By use of Proposition 1.5 we can choose a map $f_{M^{\prime}}: M_{2 m}^{\prime}$ $\rightarrow K U \wedge X$ with $(t \wedge 1) f_{M^{\prime}}=f_{M^{\prime}}$ inducing the canonical inclusions $i_{0}: Z \rightarrow A \oplus Z$, $i_{1}: Z / 2 m \rightarrow D \oplus Z / 2 m$ in $K U$-homologies. By virtue of [Y2, Lemma 1.1] there exist maps $g_{M^{\prime}}: M_{2 m}^{\prime} \rightarrow K C \wedge X, h_{0}: \Sigma^{0} \rightarrow K O \wedge X$ and $h_{1}: S Z / 2 m \rightarrow \Sigma^{2} K O \wedge X$ making the diagram below commutative

with $(\zeta \wedge 1) g_{M^{\prime}}=f_{M^{\prime}}$. However the map $h_{1}: S Z / 2 m \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial because $K O_{6} X=0=K O_{7} X$. Hence we get a map $h_{M^{\prime}}: M_{2 m}^{\prime} \rightarrow K O \wedge X$ with $\left(\varepsilon_{u} \wedge 1\right) h_{M^{\prime}}=f_{M^{\prime}}$.

Choose next maps $f_{A}: S A \rightarrow K U \wedge X$ and $f_{D}: \Sigma^{1} S D \rightarrow K U \wedge X$ whose induced homomorphisms are respectively the canonical inclusions $i_{A}: A \rightarrow A \oplus Z$ and $i_{D}: D \rightarrow D \oplus Z / 2 m$ in $K U$-homologies. By use of [Y2, Lemma 1.2] there exists a map $g_{D}: \Sigma^{1} S D \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g_{D}=f_{D}$ because $\operatorname{Ext}\left(D, K U_{2} X\right)$ is uniquely

2-divisible. Then the composite maps $\left(\varepsilon_{0} \pi_{u}^{-1} \wedge 1\right) f_{A}: S A \rightarrow \Sigma^{2} K O \wedge X$ and $\left(\tau \pi_{c}^{-1} \wedge 1\right) g_{D}: S D \rightarrow \Sigma^{2} K O \wedge X$ are both trivial because $K O_{6} X=0=K O_{7} X$. Hence we get maps $h_{A}: S A \rightarrow K O \wedge X$ and $h_{D}: \Sigma^{1} S D \rightarrow K O \wedge X$ with $\left(\varepsilon_{u} \wedge 1\right) h_{A}=f_{A}$ and $\left(\varepsilon_{u} \wedge 1\right) h_{D}=f_{D}$.

We finally apply [Y3, Proposition 1.1] to show that the map $h=h_{A} \vee h_{D} \vee h_{M^{\prime}}$: $S A \vee \Sigma^{1} S D \vee M_{2 m}^{\prime} \rightarrow K O \wedge X$ is a quasi $K O_{*}$-equivalence.
2. The cofiber $M P_{4 m}$ of the map $i \eta \vee \tilde{\eta}: \Sigma^{1} \vee \Sigma^{2} \rightarrow S Z / 4 m$.
2.1. Let B, E be 2 -torsion free abelian groups and $m=2^{k}, k \geqq 0$. We here deal with a $C W$-spectrum X such that

$$
K U_{0} X \cong B \oplus Z \oplus Z / 2 m \text { on which } t_{*}=\left(\begin{array}{rrr}
-1 & 0 & 0 \tag{2.1}\\
0 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) \text {, and } K U_{1} X \cong E \oplus Z
$$ on which $t_{*}=-1$, and in addition $K O_{i} X \cong Z / 4 m, 0, B \oplus Z$ or $E \oplus Z$ according as $i=0,1,2$ or 7 (cf. Proposition 1.2).

For such a $C W$-spectrum X it is verified that $K O_{6} X \cong B \oplus Z$ because $\left(\tau \pi_{c}^{-1}\right)_{*}$: $K C_{1} X \rightarrow K O_{6} X$ is an isomorphism. By means of Proposition 1.2 we note that the wedge sum $\Sigma^{2} S B \vee \Sigma^{3} S E \vee M P_{4 m}$ satisfies the above condition (2.1). In this section we will conversely prove that a $C W$-spectrum X satisfying (2.1) is quasi $K O_{*}$-equivalent to $\Sigma^{2} S B \vee \Sigma^{3} S E \vee M P_{4 m}$. For this purpose we will first investigate the behaviour of the conjugations t_{*} on $[S Z / 4 m, K U \wedge X]$ and $\left[M_{4 m}, K U \wedge X\right]$ as in Lemmas 1.3 and 1.4 because we can use the cofiber sequences (1.5), (1.8),

Consider the map $\lambda=\lambda_{4 m, 2 m}: S Z / 4 m \rightarrow S Z / 2 m$ associated with the canonical epimorphism $\rho_{4 m, 2 m}: Z / 4 m \rightarrow Z / 2 m$. This map λ gives rise to the following commutative diagram

with split exact rows. Hence $\lambda^{*}:[S Z / 2 m, K U \wedge X] \rightarrow[S Z / 4 m, K U \wedge X]$ is represented by the matrix

$$
\lambda^{*}=\left(\begin{array}{ll}
1 & 0 \tag{2.3}\\
l & 2
\end{array}\right) \quad \text { for some homomorphism } l: Z / 2 m \rightarrow(E \oplus Z) \otimes Z / 4 m
$$

where $[S Z / 2 n, K U \wedge X] \cong \operatorname{Hom}\left(K U_{0} S Z / 2 n, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 2 n, K U_{1} X\right) \cong$ $Z / 2 m \oplus(E \oplus Z) \otimes Z / 2 n$ for $n=m$ or $2 m$. In fact, we may take to be $2 l=0$ as is shown in the proof of the following lemma.

Lemma 2.1. There exists a direct sum decomposition

$$
\begin{aligned}
{[S Z / 4 m, K U \wedge X] } & \cong \operatorname{Hom}\left(K U_{0} S Z / 4 m, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 4 m, K U_{1} X\right) \\
& \cong Z / 2 m \oplus(E \oplus Z) \otimes Z / 4 m
\end{aligned}
$$

on which $t_{*}=\left(\begin{array}{rr}1 & 0 \\ 2 i_{2} & -1\end{array}\right)$ where $2 i_{2}: Z / 2 m \rightarrow(E \otimes Z / 4 m) \oplus Z / 4 m$ denotes the canonical injection into the last factor.

Proof. Denote by $t_{2 n}$ the conjugation t_{*} on $[S Z / 2 n, K U \wedge X], n=m$ or $2 m$. Obviously we may express as $t_{2 n}=\left(\begin{array}{rr}1 & 0 \\ a_{2 n} & -1\end{array}\right)$ for some homomorphism $a_{2 n}: Z / 2 m$ $\rightarrow(E \oplus Z) \otimes Z / 2 n$ where $[S Z / 2 n, K U \wedge X]$ is decomposed as in (2.3). In order to represent $t_{2 n}$ precisely we first observe the connecting homomorphism $\delta: \operatorname{Hom}\left(Z / 2 m, K U_{0} X\right) \stackrel{\cong}{\rightleftarrows} \operatorname{Hom}(Z / 2 m, Z / 2 m) \rightarrow \operatorname{Ext}\left(Z / 2 m, K U_{1} X \otimes Z / 2\right)$ associated with the short exact sequence $0 \rightarrow K U_{1} X \otimes Z / 2 \rightarrow K C_{0} X \rightarrow Z / 2 m \rightarrow 0$ induced by the cofiber sequence (1.3), as in the proof of Lemma 1.3. This short exact sequence is obtained as the canonical exact sequence $0 \rightarrow(E \otimes Z / 2) \oplus Z / 2 \rightarrow(E \otimes Z / 2) \oplus Z / 4 m$ $\rightarrow Z / 2 m \rightarrow 0$ because the cofiber sequence (1.2) gives rise to an exact sequence $0 \rightarrow K O_{0} X \rightarrow K C_{0} X \rightarrow K O_{5} X \rightarrow 0$. So it is easily seen that the connecting homomorphism $\delta: Z / 2 m \rightarrow(E \otimes Z / 2) \oplus Z / 2$ is given by $\delta(1)=(0,1)$.

Hence the homomorphism $a_{2 m}: Z / 2 m \rightarrow(E \otimes Z / 2 m) \oplus Z / 2 m$ may be taken to be the injection i_{2} into the last factor, by replacing the splitting of the upper κ_{0} in (2.2) suitably if necessary. Thus $t_{2 m}=\left(\begin{array}{rr}1 & 0 \\ i_{2} & -1\end{array}\right)$. Then the equality $\lambda^{*} t_{2 m}=t_{4 m} \lambda^{*}$ shows that $a_{4 m}=2 i_{2}+2 l: Z / 2 m \rightarrow(E \otimes Z / 4 m) \oplus Z / 4 m$. By replacing suitably the splitting of the lower κ_{0} in (2.2) if necessary, we may take to be $a_{4 m}=2 i_{2}$, and hence $2 l=0$. Thus $[S Z / 4 m, K U \wedge X]$ has a direct sum decomposition so that $t_{4 m}=\left(\begin{array}{rr}1 & 0 \\ 2 i_{2} & -1\end{array}\right)$ on it as desired.

Lemma 2.2. There exists a direct sum decomposition

$$
\begin{aligned}
{\left[M_{4 m}, K U \wedge X\right] } & \cong \operatorname{Hom}\left(K U_{0} S Z / 4 m, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 4 m, K U_{1} X\right) \oplus K U_{2} X \\
& \cong Z / 2 m \oplus(E \oplus Z) \otimes Z / 4 m \oplus(B \oplus Z \oplus Z / 2 m)
\end{aligned}
$$

on which $t_{*}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 i_{2} & -1 & 0 \\ i_{3} & 0 & -t_{0}\end{array}\right)$ where $t_{0}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1\end{array}\right)$ on $B \oplus Z \oplus Z / 2 m$ and $2 i_{2}$: $Z / 2 m \rightarrow(E \oplus Z) \otimes Z / 4 m$ and $i_{3}: Z / 2 m \rightarrow B \oplus Z \oplus Z / 2 m$ denote the canonical injections into the last factor respectively.

Proof. Use the commutative diagram

which gives rise to the following commutative diagram

with split exact rows. Denote by t_{P} and t_{M} the conjugations t_{*} on [$\left.P, K U \wedge X\right]$ and $\left[M_{4 m}, K U \wedge X\right]$ respectively. As is easily verified, t_{P} may be represented by the matrix $\left(\begin{array}{cc}t_{0} & 0 \\ t_{0} & -t_{0}\end{array}\right)$ on $[P, K U \wedge X] \cong K U_{0} X \oplus K U_{2} X$ where $t_{0}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1\end{array}\right)$ on $B \oplus Z \oplus Z / 2 m$. Moreover, Lemma 2.1 asserts that t_{M} is written into the matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 i_{2} & -1 & 0 \\ b & c & -t_{0}\end{array}\right)$ for some homomorphisms $b: Z / 2 m \rightarrow B \oplus Z \oplus Z / 2 m$ and $c:(E \oplus Z) \otimes Z / 4 m \rightarrow B \oplus Z \oplus Z / 2 m$, where [$\left.M_{4 m}, K U \wedge X\right]$ is decomposed by using the splitting exact sequence (1.10) and Lemma 2.1.

On the other hand, we may express $k^{*}:\left[M_{4 m}, K U \wedge X\right] \rightarrow[P, K U \wedge X]$ as the matrix $\left(\begin{array}{lll}i_{3} & 0 & 0 \\ d & e & 1\end{array}\right)$ for some homomorphisms $d: Z / 2 m \rightarrow B \oplus Z \oplus Z / 2 m$ and $e:(E \oplus Z) \otimes Z / 4 m \rightarrow B \oplus Z \oplus Z / 2 m$. Then the equality $t_{P} k^{*}=k^{*} t_{M}$ shows that $b=$ $-i_{3}-2 d-e\left(2 i_{2}\right)$ and $c=0$. So we may take to be $b=i_{3}$ and $c=0$ by replacing
 decomposition so that $t_{M}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 2 i_{2} & -1 & 0 \\ i_{3} & 0 & -t_{0}\end{array}\right)$ on it as desired.
2.2. The realification map $\varepsilon_{0} \pi_{u}^{-1}: K U \rightarrow \Sigma^{2} K O$ gives rise to the following commutative diagram

with exact rows, for any $C W$-spectrum X satisfying (2.1). The top exact sequence is evidently split, and the bottom one is also split because
$j^{*}:\left[\Sigma^{1}, \Sigma^{2} K O \wedge X\right] \otimes Z / 4 m \rightarrow\left[S Z / 4 m, \Sigma^{2} K O \wedge X\right]$ is an isomorphism. We will explicitly give a matrix representation of the induced homomorphism $e_{M}:\left[M_{4 m}, K U \wedge X\right] \rightarrow\left[M_{4 m}, \Sigma^{2} K O \wedge X\right]$.

The short exact sequence $0 \rightarrow K O_{2} X \rightarrow K U_{2} X \xrightarrow{e_{0}} K O_{0} X \rightarrow 0$ is obtained as the exact sequence $0 \rightarrow B \oplus Z \xrightarrow{\varphi} B \oplus Z \oplus Z / 2 m \xrightarrow{\varphi} Z / 4 m \rightarrow 0$, where φ and ψ are represented by the matrices $\left(\begin{array}{rr}1 & 0 \\ 0 & 2 \\ 0 & -1\end{array}\right)$ and ($\left.\begin{array}{lll}0 & 1 & 2\end{array}\right)$. Thus
(2.5) $\quad e_{0}: K U_{2} X \rightarrow K O_{0} X$ is expressed as the row ($\left.\begin{array}{lll}0 & 1 & 2\end{array}\right)$.

We will next investigate the right arrow $e_{4 m}$ in (2.4) by making use of the commutative diagram

$$
0 \rightarrow \operatorname{Ext}\left(K U_{0} S Z / 2 n, K U_{1} X\right) \rightarrow[S Z / 2 n, K U \wedge X] \xrightarrow{\kappa_{0}} \operatorname{Hom}\left(K U_{0} S Z / 2 n, K U_{0} X\right) \rightarrow 0
$$

$$
\begin{equation*}
\underset{\operatorname{Ext}\left(K O_{0} S Z / 2 n, K O_{7} X\right) \xrightarrow{\natural} \stackrel{e_{2 n} \downarrow}{\cong}\left[S Z / 2 n, \Sigma^{2} K O \wedge X\right]}{ } \tag{2.6}
\end{equation*}
$$

with a split exact row, where $n=m$ or $2 m$. The short exact sequence $0 \rightarrow K U_{1} X$ $\rightarrow K O_{7} X \rightarrow Z / 2 \rightarrow 0$ induced by the cofiber sequence (1.1) is obtained as the canonical exact sequence $0 \rightarrow E \oplus Z \rightarrow E \oplus Z \rightarrow Z / 2 \rightarrow 0$. Hence the left vertical arrow is expressed as the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ on $(E \otimes Z / 2 n) \oplus Z / 2 n$. Therefore $e_{2 n}:[S Z / 2 n, K U \wedge X] \rightarrow\left[S Z / 2 n, \Sigma^{2} K O \wedge X\right]$ is written into the matrix $\left(\begin{array}{lll}u_{2 n} & 1 & 0 \\ v_{2 n} & 0 & 2\end{array}\right)$ for some homomorphisms $u_{2 n}: Z / 2 m \rightarrow E \otimes Z / 2 n$ and $v_{2 n}: Z / 2 m \rightarrow$ $Z / 2 n$ where $[S Z / 2 n, K U \wedge X] \cong Z / 2 m \oplus(E \oplus Z) \otimes Z / 2 n$ is decomposed as in (2.3) and $\left[S Z / 2 n, \Sigma^{2} K O \wedge X\right] \cong(E \oplus Z) \otimes Z / 2 n$.

In order to express $e_{2 n}(n=m, 2 m)$ precisely we here use the commutative diagram

where the two long exact sequences are induced by the cofiber sequences (1.1) and (1.3), Since the left column is obtained as the canonical exact sequence $0 \rightarrow E \oplus Z \rightarrow E \oplus Z \rightarrow E \otimes Z / 2 \rightarrow 0$, the discussion given in the proof of Lemma 2.1 shows that $2 u_{2 m}=0$ and $v_{2 m}=-1$. So we may take to be $u_{2 m}=0$ and $v_{2 m}=-1$, thus $e_{2 m}=\left(\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 2\end{array}\right)$ where $[S Z / 2 m, K U \wedge X]$ is decomposed as in the proof of Lemma 2.1 and $\left[S Z / 2 m, \Sigma^{2} K O \wedge X\right]$ might be changed by a suitable direct sum decomposition if necessary.

On the other hand, the induced homomorphism $\lambda^{*}:[S Z / 2 m, K U \wedge X] \rightarrow$ $[S Z / 4 m, K U \wedge X]$ is represented by the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ l_{1} & 2 & 0 \\ l_{2} & 0 & 2\end{array}\right)$ for some homomorphism $l=\binom{l_{1}}{l_{2}}: Z / 2 m \rightarrow(E \oplus Z) \otimes Z / 4 m$ with $2 l=0$, because of (2.3). Moreover the induced homomorphism $\lambda^{*}:\left[S Z / 2 m, \Sigma^{2} K O \wedge X\right] \rightarrow\left[S Z / 4 m, \Sigma^{2} K O \wedge X\right]$ is given by the canonical inclusion $i_{2 m, 4 m}:(E \oplus Z) \otimes Z / 2 m \rightarrow(E \oplus Z) \otimes Z / 4 m$. Therefore the equality $\lambda^{*} e_{2 m}=e_{4 m} \lambda^{*}$ shows that $u_{4 m}=-l_{1}$ and $v_{4 m}=-2$. So we may take to be $u_{4 m}=0, v_{4 m}=-2$ by replacing suitably the splitting of κ_{0} in (2.6) if necessary. Thus we see that
(2.7) $\quad e_{4 m}:[S Z / 4 m, K U \wedge X] \rightarrow\left[S Z / 4 m, \Sigma^{2} K O \wedge X\right]$ is expressed as the matrix $\left(\begin{array}{rrr}0 & 1 & 0 \\ -2 & 0 & 2\end{array}\right)$.

Remark that the conjugation $t_{4 m}$ on $[S Z / 4 m, K U \wedge X]$ remains to be expressed by the same matrix as given in Lemma 2.1 because $2 l_{1}=0$, in spite of changing the direct sum decomposition on $[S Z / 4 m, K U \wedge X]$ slightly in the above discussion.

Lemma 2.3. There exist direct sum decompositions

$$
\begin{aligned}
{\left[M_{4 m}, K U \wedge X\right] } & \cong \operatorname{Hom}\left(K U_{0} S Z / 4 m, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{0} S Z / 4 m, K U_{1} X\right) \oplus K U_{2} X \\
& \cong Z / 2 m \oplus(E \oplus Z) \otimes Z / 4 m \oplus(B \oplus Z \oplus Z / 2 m) \\
{\left[M_{4 m}, \Sigma^{2} K O \wedge X\right] } & \cong \operatorname{Ext}\left(K O_{0} S Z / 4 m, K O_{7} X\right) \oplus K O_{0} X \cong(E \oplus Z) \otimes Z / 4 m \oplus Z / 4 m
\end{aligned}
$$

so that $\left(\varepsilon_{0} \pi_{u}^{-1}\right)_{*}:\left[M_{4 m}, K U \wedge X\right] \rightarrow\left[M_{4 m}, \Sigma^{2} K O \wedge X\right]$ is represented by the matrix $\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 2\end{array}\right)$.

Proof. From (2.5) and (2.7) it follows that $e_{M}:\left[M_{4 m}, K U \wedge X\right] \rightarrow$ $\left[M_{4 m}, \Sigma^{2} K O \wedge X\right]$ is written into the matrix $\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & 0 \\ -2 & 0 & 2 & 0 & 0 & 0 \\ r & s & t & 0 & 1 & 2\end{array}\right)$ for some homomorphisms $r: Z / 2 m \rightarrow Z / 4 m, s: E \otimes Z / 4 m \rightarrow Z / 4 m$ and $t: Z / 4 m \rightarrow Z / 4 m$. Since the conjugation t_{M} on $\left[M_{4 m}, K U \wedge X\right]$ is explicitly given in Lemma 2. 2 , the
equality $e_{M} t_{M}=-e_{M}$ then implies that $2 t=-2 r-2: Z / 2 m \rightarrow Z / 4 m$. So we may take to be $r=0, s=0$ and $t=-1$ by replacing suitably splittings of i_{M}^{*} 's in (2.4) if necessary. Thus we have direct sum decompositions on [$M_{4 m}, K U \wedge X$] and [$\left.M_{4 m}, \Sigma^{2} K O \wedge X\right]$ as desired.

We again remark that the conjugation t_{M} on $\left[M_{4 m}, K U \wedge X\right]$ remains to be expressed by the same matrix as given in Lemma 2.2, in spite of changing slightly the direct sum decomposition on $\left[M_{4 m}, K U \wedge X\right]$ in the above lemma.
2.3. For any $C W$-spectrum X satisfying (2.1) we use the commutative diagram

in order to rewrite the direct sum decomposition on [$\left.M_{4 m}, K U \wedge X\right]$ given in Lemma 2.3 as follows:

$$
\begin{align*}
& {\left[M_{4 m}, K U \wedge X\right] \cong \operatorname{Hom}\left(K U_{0} M_{4 m}, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{0} M_{4 m}, K U_{1} X\right) } \tag{2.8}\\
\cong & \operatorname{Hom}\left(K U_{0} S Z / 4 m, K U_{0} X\right) \oplus \operatorname{Hom}\left(K U_{0} \Sigma^{2}, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{0} M_{4 m}, K U_{1} X\right) \\
\cong & Z / 2 m \oplus(B \oplus Z \oplus Z / 2 m) \oplus(E \oplus Z) \otimes Z / 4 m
\end{align*}
$$

The cofiber sequence (1.8) gives rise to a short exact sequence

$$
0 \longrightarrow\left[\Sigma^{3}, K U \wedge X\right] \xrightarrow{i_{M P}^{*}}\left[M P_{4 m}, K U \wedge X\right] \xrightarrow{k_{M P}^{*}}\left[M_{4 m}, K U \wedge X\right] \longrightarrow 0 .
$$

Notice that the universal coefficient sequence

$$
0 \rightarrow \operatorname{Ext}\left(K U_{0} M P_{4 m}, K U_{1} X\right) \rightarrow\left[M P_{4 m}, K U \wedge X\right] \rightarrow \underset{i=0,1}{\oplus} \operatorname{Hom}\left(K U_{i} M P_{4 m}, K U_{i} X\right) \rightarrow 0
$$

is a pure exact sequence (use [Y1, Theorem 5]). Then we see by means of [HM, Lemma 3.6] that its pure exact sequence is split because $\operatorname{Pext}((B \oplus E) * Q / Z$, $(E \oplus Z) \otimes Z / 2 m)=0$ for $m=2^{k}, k \geqq 0$. We will here give a matrix representation of the induced homomorphism $k_{M P}^{*}$ explicitly.

Lemma 2.4. There exists a direct sum decomposition

$$
\begin{aligned}
& {\left[M P_{4 m}, K U \wedge X\right]} \\
& \cong \operatorname{Hom}\left(K U_{0} M P_{4 m}, K U_{0} X\right) \oplus \operatorname{Hom}\left(K U_{1} M P_{4 m}, K U_{1} X\right) \oplus \operatorname{Ext}\left(K U_{0} M P_{4 m}, K U_{1} X\right) \\
& \cong(Z / 2 m \oplus B \oplus Z \oplus Z / 2 m) \oplus(E \oplus Z) \oplus(E \oplus Z) \otimes Z / 2 m
\end{aligned}
$$

so that $k_{M P}^{*}:\left[M P_{4 m}, K U \wedge X\right] \rightarrow\left[M_{4 m}, K U \wedge X\right]$ is represented by the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2\end{array}\right)$ where $\left[M_{4 m}, K U \wedge X\right] \cong \operatorname{Hom}\left(K U_{0} M_{4 m}, K U_{0} X\right) \oplus \operatorname{Ext}\left(K U_{1} M_{4 m}, K U_{1} X\right) \cong$ $(Z / 2 m \oplus B \oplus Z \oplus Z / 2 m) \oplus(E \oplus Z) \otimes Z / 4 m$.

Proof. Consider the following commutative diagram

with exact row and columns. The top arrow is the canonical monomorphism $i_{2 m, 4 m}:(E \oplus Z) \otimes Z / 2 m \rightarrow(E \oplus Z) \otimes Z / 4 m$ and the bottom one is just multiplication by 2 on $E \oplus Z$. Observe the connecting homomorphism $\delta: \operatorname{Hom}\left(K U_{1} M P_{4 m}, K U_{1} X\right)$ $\rightarrow \operatorname{Ext}\left(Z / 2, K U_{1} X\right)$ associated with the short exact sequence $0 \rightarrow K U_{1} M P_{4 m} \rightarrow$ $K U_{1} \Sigma^{3} \rightarrow Z / 2 \rightarrow 0$ induced by the cofiber sequence (1.8). Since the connecting homomorphism $\delta: E \oplus Z \rightarrow(E \oplus Z) \otimes Z / 2$ is evidently the canonical epimorphism, $k_{M P}^{*}:\left[M P_{4 m}, K U \wedge X\right] \rightarrow\left[M_{4 m}, K U \wedge X\right]$ may be expressed as the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2\end{array}\right)$. Here $\left[M_{4 m}, K U \wedge X\right]$ is decomposed as in (2.6) and $\left[M P_{4 m}, K U \wedge X\right]$ is done by choosing splittings of κ_{0} and κ_{1} suitably.

Proposition 2.5. Let B, E be 2-torsion free abelian groups, $m=2^{k}, k \geqq 0$, and X be a $C W$-spectrum satisfying the condition (2.1). Then there exists a map $f_{M P}: M P_{4 m} \rightarrow K U \wedge X$ such that the composite $\left(\varepsilon_{0} \pi_{u}^{-1} \wedge 1\right) f_{M P} k_{M P}: M_{4 m} \rightarrow M P_{4 m} \rightarrow$ $K U \wedge X \rightarrow \Sigma^{2} K O \wedge X$ is trivial, whose induced homomorphisms of $K U$-homologies in dimensions 0 , 1 are respectively the canonical inclusions $i_{0}: Z \oplus Z / 2 m \rightarrow B \oplus Z \oplus Z / 2 m$
and $i_{1}: Z \rightarrow E \oplus Z$.
Proof. Among maps $f: M P_{4 m} \rightarrow K U \wedge X$ inducing the canonical inclusions i_{0}, i_{1} in $K U$-homologies we pick up the map $f_{M P}: M P_{4 m} \rightarrow K U \wedge X$ corresponding to the element $w=(1,0,1,0,0,1,0,0)$ under the direct sum decomposition on [$\left.M P_{4 m}, K U \wedge X\right]$ given in Lemma 2.4. By means of Lemmas 2.3 and 2.4 we can easily compute that $e_{M} k_{M P}^{*}(w)=0$. Thus the composite $\left(\varepsilon_{o} \pi_{u}^{-1} \wedge 1\right) f_{M P} k_{M P}$: $M_{4 m} \rightarrow \Sigma^{2} K O \wedge X$ becomes trivial.
2.4. We will now prove a main result in this section, which characterize

Theorem 2.6. Let B, E be 2-torsion free abelian groups such that $\operatorname{Ext}(E, B \oplus Z)$ is uniquely 2-divisible, and $m=2^{k}, k \geqq 0$. A CW-spectrum X is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2} S B \vee \Sigma^{3} S E \vee M P_{4 m}$ if and only if $K U_{0} X$ $\cong B \oplus Z \oplus Z / 2 m$ on which $t_{*}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1\end{array}\right)$, and $K U_{1} X \cong E \oplus Z$ on which $t_{*}=-1$, and in addition $K O_{i} X \cong Z / 4 m, 0, B \oplus Z$ or $E \oplus Z$ according as $i=0,1,2$ or 7 .

Proof. The "only if" part is evident from Proposition 1.2.
The "if" part: By means of Proposition 2.5 we can choose a map $f_{M P}: M P_{4 m} \rightarrow K U \wedge X$ inducing the canonical inclusions $i_{0}: Z \oplus Z / 2 m \rightarrow B \oplus Z \oplus Z / 2 m$, $i_{1}: Z \rightarrow E \oplus Z$ in $K U$-homologies such that the composite $\left(\varepsilon_{0} \pi_{u}^{-1} \wedge 1\right) f_{M P} k_{M P}: M_{4 m}$ $\rightarrow \Sigma^{2} K O \wedge X$ is trivial. So there exist maps $h_{0}: M_{4 m} \rightarrow K O \wedge X, h_{1}: \Sigma^{1} \rightarrow K O \wedge X$ making the diagram below commutative

Since the map h_{1} is trivial, we get a map $h_{M P}: M P_{4 m} \rightarrow K O \wedge X$ with $\left(\varepsilon_{u} \wedge 1\right) h_{M P}$ $=f_{M P}$.

Choose next maps $f_{B}: \Sigma^{2} S B \rightarrow K U \wedge X$ and $f_{E}: \Sigma^{3} S E \rightarrow K U \wedge X$ whose induced homomorphisms are respectively the canonical inclusions $i_{B}: B \rightarrow B \oplus Z \oplus Z / 2 m$ and $i_{E}: E \rightarrow E \oplus Z$ in $K U$-homologies. The composite $\left(\varepsilon_{0} \pi_{u}^{-1} \wedge 1\right) f_{B}: S B \rightarrow K O \wedge X$ becomes trivial because the realification $\left(\varepsilon_{0} \pi_{u}^{-1}\right)_{*}: K U_{2} X \rightarrow K O_{0} X$ restricted to B is trivial by (2.5) and $K O_{1} X=0$. On the other hand, there exists a map $g_{E}: \Sigma^{3} S E \rightarrow K C \wedge X$ with $(\zeta \wedge 1) g_{E}=f_{E}$ by means of [Y2, Lemma 1.2] because $\operatorname{Ext}\left(E, K U_{4} X\right)$ is uniquely 2-divisible. Making use of this map g_{E} we will show that the composite $\left(\varepsilon_{0} \pi_{u}^{-1} \wedge 1\right) f_{E}: \Sigma^{1} S E \rightarrow K O \wedge X$ is trivial, too.

Consider the commutative diagram

with $K O_{1} X=0$. In order to show that the central arrow $(\eta \wedge 1)_{*}$ is trivial, we observe the connecting homomorphism $\delta: \operatorname{Hom}\left(E, K O_{0} X\right) \rightarrow \operatorname{Ext}\left(E, K O_{2} X\right)$ associated with the short exact sequence $0 \rightarrow K O_{2} X \rightarrow K U_{2} X \rightarrow K O_{0} X \rightarrow 0$ induced by the cofiber sequence (1.1). Since $K O_{0} X \cong Z / 4 m$ and $\operatorname{Ext}\left(E, K O_{2} X\right) \cong \operatorname{Ext}(E, B \oplus Z)$ is uniquely 2 -divisible, the connecting homomorphism δ is trivial. Thus $(\eta \wedge 1)_{*}:[S E, K O \wedge X] \rightarrow\left[S E, \Sigma^{-1} K O \wedge X\right]$ is trivial, and hence $\left(\varepsilon_{0} \pi_{u}^{-1} \wedge 1\right) f_{E}:$ $\Sigma^{1} S E \rightarrow K O \wedge X$ becomes trivial.

Consequently we get maps $h_{B}: \Sigma^{2} S B \rightarrow K O \wedge X$ and $h_{E}: \Sigma^{3} S E \rightarrow K O \wedge X$ as well as $h_{M P}: M P_{4 m} \rightarrow K O \wedge X$ with $\left(\varepsilon_{u} \wedge 1\right) h_{H}=f_{H}$ for $H=B, E$ and $M P$. We can now apply [Y3, Proposition 1.1] to show that the map $h=h_{B} \vee h_{E} \vee h_{M P}$: $\Sigma^{2} S B \vee \Sigma^{3} S E \vee M P_{4 m} \rightarrow K O \wedge X$ is a quasi $K O_{*}$-equivalence.

Combining Theorem 2.6 with Proposition 1.2 we obtain the following result immediately.

Corollary 2.7. $\quad \Sigma^{4} M P_{4 m}$ is quasi $K O_{*}$-equivalent to $M P_{4 m}$ for any $m, m \geqq 1$.

3. The stunted real projective spaces $R P^{n} / R P^{m}$.

3.1. Let $R P^{n}$ be the real projective n-space, and X_{n} be the suspension spectrum $\Sigma^{-n} S P^{2} S^{n}$ whose n-th term is the symmetric square $S P^{2} S^{n}$ of n-sphere. The spectrum X_{n+1} is exhibited by the following two cofiber sequences [L, JTTW]:

$$
\begin{align*}
& \Sigma^{n} \longrightarrow X_{n} \longrightarrow X_{n+1} \longrightarrow \Sigma^{n+1} \tag{3.1}\\
& R P^{n} \longrightarrow \Sigma^{0} \longrightarrow X_{n+1} \longrightarrow \Sigma^{1} R P^{n} \tag{3.2}
\end{align*}
$$

which are related by the commutative diagram below

Hence we may regard that the stunted real projective space $R P^{n} / R P^{m}$ is
obtained by the cofiber sequence

$$
\begin{equation*}
R P^{n} / R P^{m} \longrightarrow X_{m+1} \longrightarrow X_{n+1} \longrightarrow \Sigma^{1}\left(R P^{n} / R P^{m}\right), \quad m<n . \tag{3.4}
\end{equation*}
$$

In [Y2, Theorem 2.7] we have determined the quasi $K O_{*}$-type of X_{n+1} as follows.

Theorem 3.1. $\quad X_{n+1}$ is quasi $K O_{*}$-equivalent to $\Sigma^{0}, P, \Sigma^{4}, \Sigma^{4} \vee \Sigma^{4}, \Sigma^{4}, P, \Sigma^{0}$, $\Sigma^{0} \vee \Sigma^{0}$ according as $n=8 r, 8 r+1, \cdots, 8 r+7$.

As a result we note that

$$
\begin{equation*}
\Sigma^{4 m} X_{4 m+n} \text { is quasi } K O_{*} \text {-equivalent to } X_{n} . \tag{3.5}
\end{equation*}
$$

The conjugation t on $K U$ gives rise to an involution t_{*} on $K U_{*} X$ for any $C W$-spectrum X. Thus the $K U$-homology $K U_{*} X$ is regarded as a $Z / 2$-graded abelian group with involution. In order to investigate the structure of $K U_{*}\left(R P^{n} / R P^{m}\right)$ as a $Z / 2$-graded abelian group with involution, we recall the following result (see [Ad1], [F]] or [Y2, Proposition 2.6]).

Proposition 3.2. i) $K U_{0} R P^{n}=0$, and $K U_{-1} R P^{n} \cong Z / 2^{s}$ or $Z \oplus Z / 2^{s}$ according as $n=2 s$ or $2 s+1$.
ii) The conjugation t_{*} on $K U_{-1} R P^{n}$ behaves as $t_{*}=1$ if $n \not \equiv 1 \bmod 4$ and $t_{*}=$ $\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ if $n \equiv 1 \bmod 4$.
iii) $K O_{0} R P^{n}=0$ if $n \equiv 2,3,4 \bmod 8, K O_{4} R P^{n}=0$ if $n \equiv 0,6,7 \bmod 8$ and $K O_{6} R P^{n}=0$ for all n.

Let $R P_{\sigma}^{n}$ be a fixed $C W$-spectrum such that $K U_{*} R P_{\sigma}^{n} \cong K U_{*} R P^{n}$ and the conjugation t_{*} on $K U_{-1} R P_{\sigma}^{n}$ behaves as
$t_{*}=1$ if $n \not \equiv 3 \bmod 4$ and $t_{*}=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$ if $n \equiv 3 \bmod 4$, and in addition $K O_{0} R P_{\sigma}^{n}=0$ if $n \equiv 4,5,6 \bmod 8, K O_{4} R P_{\sigma}^{n}=0$ if $n \equiv 0,1,2 \bmod 8$ and $K O_{6} R P_{\sigma}^{n}=0$ for all n.

As an abelian group with involution $K U_{*} R P_{o}^{n}$ differs from $K U_{*} R P^{n}$ when n is odd, although they coincide when n is even. For example, as in Theorem 2 ii) we may set $\Sigma^{1} R P_{\sigma}^{n}$ to be $S Z / 2^{4 r}, \Sigma^{0} \vee S Z / 2^{4 r}, S Z / 2^{4 r+1}, M_{2^{4 r+1}}, V_{2^{4 r+2}}$, $\sum^{4} \vee V_{2^{4 r+2}}, \quad V_{2^{4 r+3}}, \quad M_{2^{4 r+3}}$ according as $n=8 r, 8 r+1, \cdots, 8 r+7$. By applying [Y2, Theorem 2.5] with (3.6) we notice that $R P_{\sigma}^{n}$ is uniquely determined up to quasi $K O_{*}$-equivalence.
3.2. We will first study the $K U$-homology of $R P^{n} / R P^{m}$ with the involution t_{*} (cf. [Ad1]). For simplicity $R P^{n} / R P^{m}$ is sometimes abbreviated to be $R P_{m+1}^{n}$.

Proposition 3.3. As abelian groups with involution the KU-homologies of the stunted real projective spaces are isomorphic to the following $K U$-homologies:

| X | $=R P^{4 m+n} / R P^{4 m}$ | $R P^{4 m+n} / R P^{4 m-1}$ | $R P^{4 m+n-2} / R P^{4 m-2}$ | $R P^{4 m+n-2} / R P^{4 m-3}$ |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $K U_{0} X \cong$ | 0 | $K U_{0} \Sigma^{4 m}$ | 0 | $K U_{0} \Sigma^{4 m-2}$ |
| $K U_{-1} X \cong$ | $K U_{-1} R P^{n}$ | $K U_{-1} R P^{n}$ | $K U_{-1} R P_{\sigma}^{n}$ | $K U_{-1} R P_{\sigma}^{n}$. |

Proof. i) The $X=R P^{2 t+n} / R P^{2 t}$ case: Use the two cofiber sequences $R P^{2 t}$ $\rightarrow R P^{2 t+n} \rightarrow R P_{2 t+1}^{2 t+n} \rightarrow \Sigma^{1} R P^{2 t}$ and $X_{2 t+1} \rightarrow X_{2 t+n+1} \rightarrow R P_{2 t+1}^{2 t+n} \rightarrow \Sigma^{1} X_{2 t+1}$. Then it follows from Theorem 3.1 and Proposition 3.2 that $K U_{0} R P_{2 t+1}^{2 t+n}=0$, and hence the sequence $0 \rightarrow K U_{-1} R P^{2 t} \rightarrow K U_{-1} R P^{2 t+n} \rightarrow K U_{-1} R P_{2 t+1}^{2 t+n} \rightarrow 0$ is exact. The result is now immediate.
ii) The $X=R P^{2 t+n} / R P^{2 t-1}$ case: Use the two cofiber sequences $\Sigma^{2 t} \rightarrow R P_{2 t}^{2 t+n}$ $\rightarrow R P_{2 t+1}^{2 t+n} \rightarrow \Sigma^{2 t+1}$ and $\Sigma^{2 t-1} \rightarrow R P_{2 t-1}^{2 t+n} \rightarrow R P_{2 t}^{2 t+n} \rightarrow \Sigma^{2 t}$. Assume that $K U_{0} R P_{2 t}^{2 t+n}=0$. Then there exist two exact sequences $0 \rightarrow K U_{1} R P_{2 t}^{2 t+n} \rightarrow K U_{1} R P_{2 t+1}^{2 t+n} \rightarrow K U_{0} \Sigma^{2 t} \rightarrow 0$ and $0 \rightarrow K U_{0} \Sigma^{2 t} \rightarrow K U_{-1} R P_{2 t-1}^{2 t+n} \rightarrow K U_{-1} R P_{2 t}^{2 t+n} \rightarrow 0$. By use of the former sequence we see that $K U_{1} R P_{2 t+1}^{2 t+n} \cong Z \oplus K U_{1} R P_{2 t}^{2 t+n}$. When $n=2 s$, this is a contradiction because $K U_{1} R P_{2 t+1}^{2 t+n} \cong K U_{1} R P^{n} \cong Z / 2^{s}$ by the above i) and Proposition 3.2. On the other hand, the latter sequence is obtained in the form of the short exact sequence $0 \rightarrow Z \rightarrow Z \oplus Z / 2^{s+1} \rightarrow Z / 2^{s} \rightarrow 0$ when $n=2 s+1$, because $K U_{-1} R P_{2 t-1}^{2 t+n} \cong$ $K U_{-1} R P^{n+2} \cong Z \oplus Z / 2^{s+1}$. This is obviously a contradiction, too. Therefore it is easily verified that $K U_{0} R P_{2 t}^{2 t+n} \cong Z$, and hence $K U_{0} R P_{2 t}^{2 t+n} \cong K U_{0} \Sigma^{2 t}$ and $K U_{1} R P_{2 t}^{2 t+n} \cong K U_{1} R P_{2 t+1}^{2 t+n}$. The result is now immediate from the above i).
 show that $K O_{i}\left(R P^{2 t+n} / R P^{2 t}\right)=0$ for certain dimensions i as so are $K O_{i} R P^{n}$ and $K O_{i} R P_{\sigma}^{n}$.

Lemma 3.4. i) $K O_{4 m}\left(R P^{4 m+n} / R P^{4 m}\right)=0=K O_{4 m}\left(R P^{4 m+n} / R P^{4 m-2}\right)$ if $n \equiv 1$, 2, 3, 4, $5 \bmod 8$.
ii) $K O_{4 n+4}\left(R P^{4 m+n} / R P^{4 m}\right)=0=K O_{4 m+4}\left(R P^{4 m+n} / R P^{4 m-2}\right)$ if $n \equiv 0,1,5,6$, $7 \bmod 8$.
iii) $K O_{4 m+6}\left(R P^{4 m+n} / R P^{4 m}\right)=0=K O_{4 m+6}\left(R P^{4 m+n} / R P^{4 m-2}\right)$ for all n.

Proof. Since $\varepsilon_{u *}: K O_{j} R P_{2 t+1}^{2 t+n} \otimes Z[1 / 2] \rightarrow K U_{j} R P_{2 t+1}^{2 t+n} \otimes Z[1 / 2]$ is a monomorphism, Proposition 3.3 implies that $K O_{j} R P_{2 t+1}^{2 t+n}$ is 2 -torsion whenever j is even. Use the cofiber sequence $R P_{2 t+1}^{2 t+n} \rightarrow X_{2 t+1} \rightarrow X_{2 t+n+1} \rightarrow \Sigma^{1} R P_{2 t+1}^{2 t+n}, t=2 m$ or $2 m-1$. By means of (3.5) we then get epimorphisms $K O_{i+1} X_{n+1} \rightarrow K O_{i+4 m} R P_{4 m+1}^{4 m+n}$ and $K O_{i+1} X_{n-1} \rightarrow K O_{i+4 m} R P_{4 m-1}^{4 m+n-2}$ for $i=0$, 4 or 6 , because $X_{1}=\Sigma^{0}$ and $X_{\tau_{K O}} \sim \Sigma^{0}$. The result is now immediate from Theorem 3.1.

Proof of Theorem 2 i) and iii). Combire Proposition 3.3 with Lemma 3.4 and then apply Theorem 2.5 in [Y2], as was previously done in [Y2] to prove Theorem 1.
3.3. In order to determine the quasi $K O_{*}$-type of $R P^{4 m+n-2} / R P^{4 m-3}$ we will
here calculate the $K O$-homology of $R P^{4 m+n-2} / R P^{4 m-3}$ although it has completely done by [FY].

Lemma 3.5. The KO-homology $K O_{i+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)$ is isomorphic to the following abelian group $A_{i, n}$ for each i and n :

$$
\begin{aligned}
A_{i, n}= & K O_{4} R P^{n+2}, K O_{5} R P^{n+2}, K O_{4} \Sigma^{0}, K O_{7} R P^{n+2}, K O_{0} R P^{n+2}, K O_{5} R P_{\sigma}^{n}, \\
& K O_{0} \Sigma^{0}, K O_{3} R P^{n+2} / K O_{2} \Sigma^{0} \quad \text { according as } i=0,1, \cdots, 7 .
\end{aligned}
$$

Proof. Use the three cofiber sequences $\Sigma^{4 m-3} \rightarrow R P_{4 m-3}^{4 m+n-2} \rightarrow R P_{4 m-2}^{4 m+n-2} \rightarrow \Sigma^{4 m-2}$, $\Sigma^{4 m-2} \rightarrow R P_{4 m-2}^{4 m+2-2} \rightarrow R P_{4 m-1}^{4 m+n-2} \rightarrow \Sigma^{4 m-1}$ and $R P_{4 m-2}^{4 m+n-2} \rightarrow X_{4 m-2} \rightarrow X_{4 m+n-1} \rightarrow \Sigma^{1} R P_{4 m-2}^{4 m+n-2}$. By means of Theorems 2 i), iii) and 3.1 we notice that $R P_{4 m-3}^{4 m+2}{ }_{K 0}{ }^{\Sigma^{4 m-4}} R P^{n+2}$, $R P_{4 m-1}^{4 m+n} \underset{K O}{\sim} \sum^{4 m} R P_{\sigma}^{n}$ and $X_{4 m-2}^{\sim} \sim$. Consider the long exact sequences of $K O$ homologies associated with the three cofiber sequences. By use of the first two exact sequences we see easily that $A_{4, n} \cong K O_{0} R P^{n+2}, A_{3, n} \cong K O_{7} R P^{n+2}, A_{5, n} \cong$ $K O_{5} R P_{\sigma}^{n}, A_{2, n} \cong Z$ and $A_{0, n}$ is 2 -torsion. By use of the third exact sequence we then get that $A_{6, n} \cong K O_{6} P, A_{0, n} \cong K O_{1} X_{n-1}$ and hence $A_{6, n} \cong K O_{0} \Sigma^{0}, A_{0, n} \cong$ $\mathrm{KO}_{4} R P^{n+2}$. So there exist short exact sequences $0 \rightarrow \mathrm{KO}_{2} \Sigma^{0} \rightarrow K O_{3} R P^{n+2} \rightarrow A_{7, n} \rightarrow 0$ and $0 \rightarrow A_{1, n} \rightarrow K O_{1} R P_{\sigma}^{n} \rightarrow K O_{2} \Sigma^{0} \rightarrow 0$. Therefore it follows that $A_{7, n} \cong K O_{3} R P^{n+2} /$ $K O_{2} \Sigma^{0}, A_{1, n} \cong K O_{5} R P^{n+2}$, and hence $A_{2, n} \cong K O_{4} \Sigma^{0}$.

In particular, Lemma 3.5 shows that
(3.7) i) $K O_{4+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)=0=K O_{5+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)$ if $n \equiv 0,1,2$ $\bmod 8$, and $K O_{7+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right) \cong Z / 2^{4 r+1}, Z \oplus Z / 2^{4 r+1}$ or $Z / 2^{4 r+2}$ according as $n=8 r, 8 r+1$ or $8 r+2$.
ii) $K O_{4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)=0=K O_{1+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right) \quad$ if $n \equiv 4,5,6$ $\bmod 8$, and $K O_{3+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right) \cong Z / 2^{4 r+3}, Z \oplus Z / 2^{4 r+3}$ or $Z / 2^{4 r+4}$ according as $n=8 r+4,8 r+5$ or $8 r+6$.
iii) $K O_{4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)=0=K O_{4+4 m}\left(R P^{4 m+n-2} / R P^{4 m-3}\right)$ if $n \equiv 3 \bmod 4$.

Proof of Theorem 2 iv). The $n \not \equiv 3 \bmod 4$ case: Combine Proposition 3.3 with (3.7) i) and ii), and then apply Theorem 1.6. The result is easily shown.

The $n \equiv 3 \bmod 4$ case: Set $n=4 s-1$. Putting Theorems 1 and 2 i) together we see that $R P_{4 m-3}^{4 m+n-2}$ is quasi $K O_{*}$-equivalent to $\sum^{4 m-5} M_{2^{2 s}}$. Thus there exists a map $h_{M}: \Sigma^{4 m-5} M_{2^{2 s}} \rightarrow K O \wedge R P_{4 m-3}^{4 m+n-2}$ which induces the canonical isomorphism in $K U$-homology. Using the cofiber sequence (1.8) we consider the following diagram

The complexification $\varepsilon_{u *}: K O_{4 m-3} R P_{4 m-3}^{4 m+n-2} \rightarrow K U_{4 m-3} R P_{4 m-3}^{4 m+n-2}$ is a monomorphism
because of (3.7) iii). Therefore the left square in the above diagram becomes commutative by means of Propositions $1.1,1.2$ and 3.3 . Hence there exists a map $h_{M P}: \Sigma^{4 m-5} M P_{2^{2 s}} \rightarrow K O \wedge R P_{4 m-2}^{4 m+n-2}$ making the above diagram commutative. Obviously the map $h_{M P}$ is a quasi $K O_{*}$-equivalence. Thus $\sum^{4 m+2} P R_{4 m-2}^{4 m+n-2}$ is quasi $K O_{*}$-equivalent to $\Sigma^{5} M P_{2^{2 s}}$, which is also so to $\Sigma^{1} M P_{2^{2 s}}$ by Corollary 2.7,

Remark. We may directly apply Theorem 2.6 combining Proposition 3.3 with Lemma 3.5 in the $n \equiv 3 \bmod 4$ case, in place of the above discussion using the cofiber sequence (1.8) and Corollary 2.7.
3.4. Let E be an associative ring spectrum with unit and ξ be an n-dimensional real vector bundle over a $C W$-complex X. Let $T(\xi)$ denote the Thom complex of ξ, thus $T(\xi)=D(\xi) / S(\xi)$ where $D(\xi)$ and $S(\xi)$ are respectively the associated disc and sphere bundle. We say ξ to be E-orientable if there exists a Thom class $u_{\xi} \in E^{n} T(\xi)$ such that the composite $\left(u_{\xi} \wedge p^{+}\right) \Delta: T(\xi) \rightarrow T(\xi) \wedge D(\xi)^{+}$ $\rightarrow \Sigma^{n} E \wedge X^{+}$gives rise to an isomorphism $E_{*} T(\xi) \rightarrow E_{*-n} X^{+}$. Here Δ denotes the map induced by the diagonal map and p denotes the projection of the disc bundle $D(\xi)$ over X, and Y^{+}stands for the based $C W$-complex with the additional base point + for any $C W$-complex Y.

Hence we notice
(3.8) the Thom complex $T(\xi)$ is quasi E_{*}-equivalent to $\Sigma^{n} X^{+}$whenever its n-dimensional vector bundle ξ over X is E-orientable.

Proof of Theorem 2 ii). Let ξ_{n} be the canonical line bundle over $R P^{n}$ and θ be the trivial line bundle over $R P^{n}$. As is well known, the $8 m$-dimensional vector bundle $4 m \xi_{n} \oplus 4 m \theta$ over $R P^{n}$ is $K O$-orientable because it has a spin reduction, thus its first and second Stiefel-Whitney classes vanish (see [ABS]). On the other hand, the Thom complex $T\left(4 m \xi_{n}\right)$ is homeomorphic to the stunted real projective space $R P^{4 m+n} / R P^{4 m-1}$ (see [A]). The result follows immediately from (3.8).

References

[Ad1] J.F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-622.
[Ad2] J.F. Adams, Stable homotopy and generalized homology, Univ. of Chicago, Chicago, 1974.
[An] D.W. Anderson, A new cohomology theory, Thesis, Univ. of California, Berkeley, 1964.
[ArT] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories, I, Osaka J. Math., 2 (1965), 71-115.
[At] M.F. Atiyah, Thom complexes, Proc. London Math. Soc., 11 (1961), 291-310.
[ABS] M.F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology, 3 (1964), 3-38.
[B] A.K. Bousfield, A classification of K-local spectra, preprint.
[F] M. Fujii, $K_{o-\text {-groups of projective spaces, }}$ Osaka J. Math., 4 (1967), 141-149.
[FY] M. Fujii and T. Yasui, $K_{o-\text { groups of the stunted real projective spaces, Math. }}^{\text {, }}$ J. Okayama Univ., 16 (1973), 47-54.
[HM] M. Huber and W. Meier, Cohomology theories and infinite $C W$-complexes, Comment. Math. Helv., 53 (1978), 239-257.
[JTTW] I.M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of an sphere, J. Math. Mech., 12 (1963), 771-776.
[L] S.D. Liao, On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954), 520-551.
[Y1] Z. Yosimura, Universal coefficient sequences for cohomology theories of $C W$. spectra, II, Osaka J. Math., 16 (1979), 201-217.
[Y2] Z. Yosimura, The quasi $K O$-homology types of the real projective spaces, Homotopy theory and related topics, Lecture Notes in Math., 1418, Springer, 1990, pp. 156-174.
[Y3] Z. Yosimura, Quasi K-homology equivalences, I, Osaka J. Math., 27 (1990), to appear.
[Y4] Z. Yosimura, Quasi K-homology equivalences, II, Osaka J. Math., 27 (1990), to appear.

Zen-ichi Yosimura

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi, Osaka 558
Japan

