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\S 1. Introduction.

This paper is a continuation of [19] and [21]. Unless otherwise stated, we
use the same notation as in [21] and we assume the results in [19] and [21].
(This paper is a revised version of [20]. \S 7 and Appendix $B$ in \S 10 are added.)

Let $V$ be a germ of complete intersection variety at the origin of $C^{n}$ . The
singularity of $V$ is not necessarily isolated. The purpose of this paper is to
describe the canonical toroidal resolution of $V$ , the limits of the tangent spaces
and to construct a canonical Whitney $b$-regular stratification on $V$ under a certain
condition (IND-condition). It is very important to get a regular stratification to
study non-isolated singularities. In [4], J. Damon considered the topological
stability problem of a family of complex hypersurfaces $V_{t}=\{f_{t}(z)=0\}$ with non-
isolated singularities using the vector field argument. He showed that the
topological types of $V_{t}$ do not change if the Newton boundary is strongly non-
degenerate and $\Gamma(f_{t})=\Gamma(f_{0})$ . One motivation of this research is to understand
this property from the stratification point of view. In [19], we have showed
the existence of a canonical stratification for a good hypersurface. However,
in the process of the stratification of a hypersurface with non-isolated singularities,
it turns out that the stratification of a hypersurface which is not good involves
the stratification of the complete intersection varieties. See Example (9.3). Thus
we consider the following situation. Let $V=\{z\in C^{n} ; f_{1}(z)=\cdots=f_{a}(z)=0\}$ and
let $V^{*}=V\cap C^{*n}$ where $f_{1},$ $\cdots$ , $f_{\alpha}$ are analytic functions defined in a neighborhood
of the origin. We assume that $V$ is a complete intersection variety with the
inductive non-degeneracy condition. (See \S 6 for the definition.) Let $I$ be a subset
of $\{$ 1, $\cdots$ , $n\}$ and let $V^{*I}=V\cap C^{*I}$ where $C^{*I}=\{z;z_{i}\neq 0\Leftrightarrow i\in I\}$ . Let $V_{pr}$ be
the closure of $V^{*}$ in $C^{n}$ and let $V_{pr}^{*I}=V_{pr}\cap C^{*I}$ . Note that $V_{pr}^{*I}\subset V^{*I}$ .

In \S 3, we construct a canonical toroidal resolution of $V_{pr}$ . In \S 4, we study
the geometry of $V_{pr}^{*I}$ . We introduce the concept of the I-primary boundary
componenfs which play an important role for the stratification of $V$ . Its rough
description is as follows. Let $P=^{t}(p_{1}, \cdots , p_{n})$ be a positive rational dual vector
and let $I=\{i;p_{i}=0\}$ . Let $f_{1P}$ , , $f_{aP}$ be the face functions with respect to $P$
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and let $e(P)$ be the set of $\nu’ s$ such that $f_{\nu P}(z)$ is essentially of $z_{I}$-variables, i. e.
$f_{\nu P}(z)$ is a product $z^{L_{p}}fSp(z_{I})$ where $fS_{P}(z_{I})$ is a function of $\{z_{i} ; i\in I\}$ and $z^{L_{v}}$ is
a monomial. We consider the varieties $V^{*}(P)$ and $\partial V^{*}(P)$ which are defined by

$V^{*}(P)=\{z\in C^{*n} ; f_{1P}(z)=\ldots=f_{\alpha P}(z)=0\}$ ,

$\partial V^{*}(P)=\{z_{I}\in C^{*I} ; f_{vP}(z_{I})=0, v\in e(P)\}$ .

We call $\partial V^{*}(P)$ an I-pnmary boundary component (with respect to $P$ ) if $V^{*}(P)$

is non-empty. A criterion for the non-emptyness of $V^{*}(P)$ is given in
Appendix $B$ of \S 10. Then we will show that $V_{pr}^{*I}$ is a union of I-primary
boundary components (Lemma (4.1)). In \S 5, we prove a key lemma (Theorem

(5.1) $)$ which states the $b$-regularity of the pair $(V^{*}, \partial V^{*}(P))$ . Using this, we
will construct in \S 6 a canonical Whitney $b$-regular stratification 8 of $V$ which
depends only on the Newton boundaries $\{\partial\Gamma(f.);v=1, \cdots , \alpha\}$ . $S$ is the simplest
regular stratification under the assumption that each $V^{*I}$ is a union of strata
in 8. By the non-degeneracy assumption, the singular locus of $V$ is a union of
certain $V^{*I}’ s$ . However the $b$-regularity for the pair $(V^{*}, V^{*I})$ does not hold
in general even when $V^{*I}$ is smooth. Thus we have to know the locus where
the regularity fails. This is why the notion of the primary boundary component
is inevitable.

The idea of the stratification of $V$ is as follows. First we start from the
biggest stratum $V^{*}$ . Suppose that we have obtained a regular stratification
$S(I)$ of $V^{*I}$ for $|I|\geqq n-k$ so that $U_{|I|\geqq n-k}S(I)$ is a regular stratification of
$V- \bigcup_{|J|<n-k}V^{*J}$ . Let $J$ be a subset of $\{$ 1, $\cdots$ , $n\}$ with $|J|=n-k-1$ . On the
subvariety $V^{*J}$ , we consider all the $J$-primary boundary components of the strata
of $S(I)$ with $|I|\geqq n-k$ . Under the IND-condition, they generate a regular
stratification $S(J)$ of $V^{*J}$ and each stratum is a non-degenerate complete intersec-
tion variety in $C^{*J}$ . By the inductive argument, we obtain a regular stratifica-
tion $S$ of $V$ which only depends on the respective Newton boundaries $\partial\Gamma(f_{\nu})$

(Theorem (6.1)). In \S 7, we generalize the result about the principal zeta-func-
tion in [21] for non-degenerate complete intersection variety with non-isolated
singularity. We also show that the IND-condition is stable under a generic
hyperplane (or hypersurface) section. In \S 8, we consider the topological stability
problem from the stratification point of view. In \S 9, we give several examples
of the stratifications.

\S 2. Stratifications.

Let $V$ be an analytic variety in an open set $D$ of $C^{n}$ . We recall the neces-
sary notions of the stratification which is induced by Whitney and Thom. For
further details and recent developments, see [27], [24], [15], [13] and [6]. Let
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$S$ be a family of subsets of $V$ such that $V$ is covered disjointly by elements of
8. 8 is called a Whitney stratification if the following conditions are satisfied.

(i) ( $D$-strictness) Each element $M$ of 8 (which is called a stratum) is a
connected smooth analytic variety such that $\overline{M}$ and $\overline{M}-M$ are closed analytic
varieties in $D$ . Here $\overline{M}$ is the closure of $M$ in $D$ .

(ii) (Frontier property) Let $M$ and $N$ be strata of 8 and assume that $M\neq N$

and $M\cap\overline{N}\neq\emptyset$ . Then $M\subset\overline{N}-N$.
We recall the Whitney $b$-condition for a Whitney stratification 8. Let $(N, M)$

be a pair of strata of 8 with $\overline{N}\supset M$ and let $P$ be a point of $M$. Let $p_{i}$ and $q_{i}$

be sequences on $N$ and on $M$ respectively. We assume that

(2.1) $p_{i}arrow P$ , $q_{i}arrow p$ , $T_{p_{i}}Narrow\tau$ and $[p_{i}-q_{i}]arrow l$ .
Here the arrows imply the convergence in the respective spaces and $[v]$ is the
complex line generated by $Ii$ . Thus $\tau\in G(r, n)(r=\dim N)$ and $l\in G(1, n)=P^{n- 1}$

where $G(r, n)$ is the Grassmannian manifold of $r$-planes in $C^{n}$ . We say that
$(N, M)$ satisfies the Whitney $b$-condition (respectively $a$-condition) at $p$ if $1\in\tau$ (resp.
$\tau\supset T_{p}M)$ for any such sequences. When each pair $(N, M)$ with $M\subset\overline{N}$ satisfies
the Whitney $b$-condition (respectively $a$-condition) at any point $p$ of $M$, we call
8 a $b$-regular (resp. $a$-regular) Whitney stratification. The following proposition
is a direct consequence of the Curve Selection Lemma (\S 3 of [16] or [5]) and
Theorem 17.5 of [27].

PROPOSITION (2.2). Let $p_{i}$ and $q_{i}$ be as in (2.1). Then there are analytic
curves $p(t)$ and $q(t)$ defined on the interval $[0,1]$ such that

(i) $p(O)=q(O)=p$ and $p(t)\in N$ for $t\neq 0$ and $q(t)\in M$ ,
(ii) $T_{p}(t)Narrow\tau$ and $[p(t)-q(t)]arrow l$ as $tarrow 0$ .
It is known tbat the $b$-condition for analytic varieties follows from the ratio

condition (R) by Kuo [11]. See also [26]. It is known that the Whitney a-
condition follows from the $b$-condition ([15]).

REMARK (2.3). Let $S$ be a stratification and assume that a pair of strata
$(N, M)$ satisfies the Whitney $b$-regular condition. Let 8‘ be any stratification
which is finer than 8. Let $(N’, M’)$ be a pair of strata of 8’ with $\overline{N}’\supset M’$

where $N’$ is open dense in $N$ and $M’\subset M$. Then this pair satisfies the Whitney
$b$-regular condition. Though the varieties which we consider in this paper are
complex analytic varieties, every argument which follows in later sections can
be easily translated into real analytic varieties with few modifications.

\S 3. Complete intersection variety and its resolution.

Let $f(z)=\Sigma_{\nu}a_{\nu}z^{\nu}$ be an analytic function of $n$-variables which is defined in
a neighborhood of the origin. The Newton polyhedron $\Gamma_{+}(f)$ is the convex
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hull of the union of $\{\nu+R_{+}^{n}\}$ for $\nu$ such that $a_{\nu}\neq 0$ . The Newton boundary
$\Gamma(f)$ is the union of the compact faces of the Newton polyhedron. As we are
mainly interested in non-isolated singularities, we also use the notation $\partial\Gamma_{+}(f)$

which is the union of the boundaries of $\Gamma_{+}(f)$ which are not necessarily compact.
The inclusion $\Gamma(f)\subset\partial\Gamma_{+}(f)$ is obvious by the definition. We use the same
notations as those in \S 4 of [21] unless otherwise stated. Let $f_{1}(z)$ , , $f.(z)$

be analytic functions which are defined in a neighborhood $U$ of the origin $\vec{0}$ .
We say that the variety $V^{*}=\{z\in U;f_{1}(z)=\cdots=f_{\alpha}(z)=0\}$ is a germ of a smooth
complete intersection variety at the origin if $df_{1}\wedge\cdots\Lambda df_{\alpha}(z)\neq 0$ for any $z\in V^{*}\cap B_{\epsilon}$

for some $\epsilon>0$ where $B_{\epsilon}=\{z\in C^{n} ; ||z||<\epsilon\}$ . We say that $V^{*}$ is a non-degenerate
complete intersection variety (with respect to the Newton boundary) if for any
strictly positive integral dual vector $P={}^{t}(p_{1}, \cdots , p_{n})$ , the a-form $df_{1P}\Lambda\cdots\Lambda df_{\alpha P}$

does not vanish on $V^{*}(P)=\{z\in C^{*n} ; f_{1P}(z)= =f_{\alpha P}(z)=0\}([8], [17], [21])$ .
Here $f_{vP}$ is the face function of $f_{\nu}$ with respect to $P$. We will see that a
non-degenerate complete intersection variety is a smooth intersection variety in
an $\epsilon$ -neighborhood of the origin (Lemma (3.7)).

Let $\Sigma*$ be a fixed unimodular simplicial subdivision which is compatible
with the dual Newton diagrams $\Gamma^{*}(f_{1}$ , $\cdot$ .. , $f_{\alpha})$ and let it : $Xarrow C^{n}$ be tbe asso-
ciated modification map. See [21] for the definition. One thing which is
crucially different comparing with the toroidal modification map for an isolated
non-degenerate complete intersection case is that the $|I|$ -simplex $\sigma$ with vertices
$\{R_{i} ; i\in I\}$ is not necessarily an equivalent class in $\Gamma^{*}(f_{1}, \cdots , f_{\alpha})$ . Recall that
positive dual vectors $P$ and $Q$ are called equivalent if and only if $\Delta(P;f_{\nu})=$

$\Delta(Q;f_{\nu})$ for $\nu=1,$ $\cdots$ , $\alpha([21])$ . Here $R_{i}={}^{t}(0, \cdots , i\check{1}, \cdots , 0)$ . Thus $\Sigma*may$ have
many vertices which is not strictly positive other than $R_{1},$ $\cdots$ , $R_{n}$ . $X$ is covered
by affine spaces $C_{\sigma}^{n}$ with coordinate $y_{\sigma}=(y_{\sigma 1}$ , $\cdot$ .. , $y_{\sigma n})$ where $\sigma$ moves in n-
simplices of $\Sigma*$ Let $(p_{tj})$ be the unimodular matrix corresponding to $\sigma$ . Then
$j?|C_{\sigma}^{n}$ is defined by $\hat{\pi}(y_{\sigma})=z=(z_{1}$ , $\cdot$ .. , $z_{n})$ where $z_{i}=\Pi_{J=1}^{n}y_{\sigma j}^{pij}$ . Let $P$ be a vertex
of $\Sigma*$ Then $P$ defines a divisor $\hat{E}(P)$ of $X$ as follows. Let $\sigma=(P_{1}, \cdot , P_{n})$ be
an $n$ -simplex of $\Sigma^{*}$ such that $P=P_{1}$ . Then $\text{\^{E}}(P)\cap C_{\sigma}^{n}$ is defined by $y_{\sigma 1}=0$ . For
an $n$ -simplex $\tau,$

$\text{\^{E}}(P)\cap C_{\tau}^{n}\neq\emptyset$ iff $P$ is a vertex of $\tau$ . Let $\text{\^{E}}(P)^{*}=\text{\^{E}}(P)-\bigcup_{Q\neq P}\text{\^{E}}_{(Q)}$ .
This is isomorphic to the affine torus $C^{*(n-1)}$ . Let $I$ be a subset of $\{$ 1, $\cdot$ .. , $n\}$ .
Recall that the coordinate subspace $C^{I}$ and $C^{*I}$ are defined by $C^{I}=$

$\{z=(z_{1}, , z_{n});z_{j}=0, j\not\in I\}$ and $C^{*I}=\{z\in C^{n};z_{j}=0\Leftarrow;]\not\in I\}$ respectively. If
$I=\{1, , n\}$ , we usually write $C^{*n}$ instead of $C^{*I}$ . Let $P={}^{t}(p_{1}, , p_{n})$ be a
vertex of $\Sigma*$ and let $I(P)=\{i;p_{i}=0\}$ . We call $I(P)$ the kernel of $P$. Then
$j?(\text{\^{E}}(P))=C^{I(P)}$ (respectively $\hat{\pi}(\text{\^{E}}(P)^{*})=C^{*I(P)}$ ). Thus the fiber dimension of
a : $\text{\^{E}}(P)arrow C^{I(P)}$ is $n-1-|I(P)|$ .

Let $V_{pr}$ be the closure of $V^{*}$ and let $\nu$ be the proper transform of $V_{pr}$ by
$\hat{\tau_{\iota}}$ . Let $\pi$ : $\tilde{V}arrow V_{pr}$ be the restriction of $\hat{\pi}$ to $\nu$ . For finite vertices $Q_{1}$ , , $Q_{s}$
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of $\Sigma*$ we define a subvariety $E(Q_{1}, \cdots , Q_{s})$ of $\hat{V}$ by $\text{\^{E}}(Q_{1})\cap\cdots\cap\hat{E}(Q_{s})\cap\tilde{V}$ and
let $E(Q_{1}, \cdots , Q_{s})^{*}=E(Q_{1}, \cdots , Q_{S})-\bigcup_{P\neq Q_{i}}E(P)$ . For the non-emptyness condition
of $E(Q_{1}, , Q_{s})$ , see Appendix (B) in \S 10. Let $\sigma=(P_{1}$ , $\cdot$ .. , $P_{n})$ . Then we have

(3.1) $\tilde{V}\cap C_{\sigma}^{n}=\{y_{\sigma}\in C_{\sigma}^{n} ; f_{1\sigma}(y_{\sigma})=\cdots=f_{a\sigma}(y_{\sigma})=0\}$

where $f_{\nu\sigma}(y_{\sigma})=f_{\nu}(\hat{\pi}(y_{\sigma}))/\Pi_{J=1}^{n}y_{\sigma j^{(P_{j};f_{\nu})}}(f$ We claim

THEOREM (3.2). There is an $\epsilon>0$ such that $\hat{V}$ is a smooth complex manifold
and $\pi:\tilde{V}arrow V_{pr}$ is a proper modification of $V_{p\tau}$ over $B_{\epsilon}$ .

The assertion is well known if the origin is an isolated singular point of
$V_{pr}$ . For the general case, we need several lemmas.

LEMMA (3.3). Let $P=^{t}(p_{1}, \cdots , p_{n})$ be a positive rational dual vector and let
$V^{*}(P)=\{z\in C^{*n} ; f_{\nu P}(z)=0, \nu=1, \cdot , \alpha\}$ . Then there exists a $po\alpha$ tive number $\epsilon$

such that $V^{*}(P)$ is a non-srngular complete intersection over the $\epsilon$-ball $B_{\epsilon}^{I}=\{z_{I}\in$

$C^{I}$ ; $\Sigma_{i\in I}|z_{i}|^{2}<\epsilon^{2}$ }. Here $I=I(P)$ and $z_{I}$ is the $C^{I}$ -projection of $z$ . We can
take a uniform $\epsilon$ for all $P$.

PROOF. The assertion is non-trivial only for $P$ which is not strictly positive.
Note that $f_{\nu P}(z)(\nu=1, \cdots , \alpha)$ and their partial derivatives are weighted homo-
geneous with the weight $P$. Thus $df_{1P}\Lambda\cdots$ A $df_{\alpha P}(z)=0$ if and only if $df_{1P}\wedge\cdots$

$\wedge df_{aP}(u\cdot z)=0(u\neq 0)$ where the $C^{*}$-action $C^{*}\cross C^{n}arrow C^{n}$ is defined by $u\cdot z=$

$(z_{1}u^{p_{1}}, \cdots , z_{n}u^{p_{n}})$ . Note that $u\cdot z$ converges to $z_{I}$ as $uarrow 0$ . Assume that the
assertion is false. Using the above observation and the Curve Selection Lemma
([16], [5]) we can find a real analytic curve $z(t)(0\leqq t\leqq 1)$ with the Taylor ex-
pansion $z_{i}(t)=a_{i}t^{b_{i}}+$ ($higher$ terms) $(i=1, \cdots , n)$ such that (i) $f_{\nu P}(z(t))\equiv 0$

$(\nu=1, \cdots, \alpha)$ and (ii) $df_{1P}\Lambda\cdots\wedge df_{aP}(z(t))\equiv 0$ where $a_{i}$ is a non-zero complex
number and $b_{i}$ is a positive integer for $i=1,$ $\cdots$ $n$ . Let $B={}^{t}(b_{1}, \cdots b_{n})$ and $\alpha=$

$(a_{1}, \cdots a_{n})$ . We put $R=P+cB$ for a sufficiently small rational number $c>0$ . Then
it is easy to see that $(f_{\nu P})_{B^{--f_{\nu R}}}$ . Looking at the leading terms of (i), we have
that $f_{vR}(a)=0$ for $\nu=1,$ $\cdots$ $\alpha$ . As $R$ is strictly positive, the non-degeneracy
assumption guarantees the existence of a subset $J=\{j_{1}, \cdots , j_{a}\}$ of $\{$ 1, $\cdots$ , $n\}$

such that the coefficient $c_{J}(a)$ of $dz_{J}=dz_{j_{1}}\Lambda\cdots\Lambda dz_{j_{\alpha}}$ in $df_{1R}\Lambda\cdots\Lambda df_{\alpha R}(\alpha)$ is non-
zero. Here $c_{J}(a)$ is the determinant of $\alpha\cross\alpha$-matrix $(\partial f_{\nu}/\partial z_{i\mu}(\alpha))_{\nu.\mu=1.\cdots,a}$ . Com-
bining this with the assumption (ii), we get the following contradiction

$0\equiv the$ coefficient of $dz_{J}$ in $df_{1P}\Lambda\cdots\wedge df_{\alpha P}(z(t))\equiv c_{J}(a)t^{\beta}+(higherterms)\neq 0$

for sufficiently small $t$ where $\beta=\Sigma_{v=1}^{\alpha}(d(B;f_{\nu P})-b_{j_{\nu}})$ . Thus we can find a
positive number $\epsilon$ which only depends on $\underline{\Delta}=(\Delta(P;f_{1}), \cdots , \Delta(P;f.))$ . As there
are only finitely many such 4, we can take a uniform $\epsilon$ . This completes the
proof.
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LEMMA (3.4). There is a positive number $\epsilon$ such that $E(P_{1}, \cdots , P_{s})=\hat{E}(P_{1})$

$\cap\cdots\cap\text{\^{E}}_{(P_{s})\cap}V$ is a smooth comPlete intersection in $j?^{-1}(B_{\epsilon})$ . In Particular, $E(P_{i})$

is non-singular over $B_{\epsilon}$ .

PROOF. AS we may assume that $E(P_{1}, \cdots , P_{s})^{*}$ is non-empty, we can find an
$n$ -simplex $\sigma=(P_{1}, \cdots , P_{n})$ . Then $E(P_{1}, \cdots , P_{s})^{*}\subset C_{\sigma}^{*n}$ . In $C_{\sigma}^{*n},$

$i^{f}$ is defined by
$\{y_{\sigma}\in C_{\sigma}^{*n} ; f_{1\sigma}(y_{\sigma})=\cdots=f_{a\sigma}(y_{\sigma})=0\}$ where $f_{v\sigma}(y_{\sigma})$ is defined by the equality:
$f_{\nu\sigma}(y_{\sigma})\Pi_{J=1}^{n}y_{\sigma j}(:(P_{ji}f_{\nu^{)}=f_{\nu}(\hat{\pi}(y_{\sigma}))}$ Let $\Delta_{\nu}=\bigcap_{t=1}^{s}\Delta(P_{t} ; f_{\nu}),$ $\nu=1$ , – , $\alpha$ and let $P=$

$(P_{1}+\cdots+P_{s})$ . (Note that $P$ is not necessarily a vertex of $\Sigma^{*}.$ ) As $P_{i}(i=1_{;}\cdots, s)$

are positive integral vectors, it is easy to see that $\Delta_{\nu}=\Delta(P;f_{\nu})$ . Define $h_{\nu}(y_{\sigma})$ by

(3.5) $h_{\nu}(y_{\sigma}) \prod_{j\Leftarrow 1}^{n}y_{\sigma j}^{ci(P_{j};f)}\nu=f_{\nu P}(j?(y_{\sigma}))$ .

By the definition of $f_{\nu\sigma}$ and $h_{\nu}$ , we have

(3.6) $f_{v\sigma}(y_{\sigma})\equiv h_{v}(y_{\sigma})$ modulo $(y_{\sigma 1}, \cdots , y_{\sigma s})$

where $(y_{\sigma 1}$ , $\cdot$ .. , $y_{\sigma S})$ is the ideal generated by $\{y_{\sigma 1}, , y_{\sigma s}\}$ . Recall that $E(P_{1}$ ,

, $P_{s})^{*}$ is defined by

$y_{\sigma 1}=\ldots=y_{\sigma s}=f_{1\sigma}(y_{\sigma})=\ldots=f_{\alpha\sigma}(y_{\sigma})=0$ .

This is equivalent to

$y_{\sigma 1}=\ldots=y_{\sigma S}=h_{1}(y_{\sigma})=\ldots=h_{\alpha}(y_{\sigma})=0$ .

Note that $h_{v}(y_{\sigma})$ is independent of the first $s$ -variables $\{y_{\sigma 1}, \cdots , y_{\sigma s}\}$ . Let $u=$

$(0, \cdots , 0, u’)\in E(P_{1}, \cdots , P_{s})^{*}$ in this coordinate and let $u_{\theta}=(\theta, \cdots , \theta, u’)$ . As
$u\in E(P_{1}, \cdots , P_{s})^{*}$ , we have that $h_{v}(u_{\theta})=0$ for any $\theta$ and $\nu=1,$ $\cdots$ , $\alpha$ . Thus $z=$

$\pi(u_{\theta})\in V^{*}(P)$ by (3.5). By Lemma (3.3), there exists a positive number $\epsilon$ such
that $df_{1P}\wedge\cdots\Lambda df_{sP}(\hslash(u_{\theta}))\neq 0$ if $z_{I}\in B_{\epsilon}^{l}$ . As ft is biholomorphic at $u_{\theta}$ , this and
(3.5) imply that $dh_{1}\wedge\cdots\Lambda dh_{a}(u_{\theta})\neq 0$ . As $\{h_{\nu}\}(\nu=1, , \alpha)$ do not contain the
variables $y_{\sigma 1}$ , , $y_{\sigma s}$ , there is a subset $I=\{i_{1}, , i_{\alpha}\}$ of $\{s+1, , n\}$ such that
the coefficient of $dy_{\sigma I}=dy_{\sigma i_{1}}\Lambda\cdots\wedge dy_{\sigma i_{\alpha}}$ in $dh_{1}\wedge\cdots\Lambda dh_{\alpha}(u_{\theta})$ is non-zero. Let
$df_{1\sigma}\Lambda\cdots\Lambda df_{\alpha\sigma}(y)=\Sigma_{J}c_{J}(y)dy_{\sigma J}$ . Then by (3.6), we have $c_{I}(u)=\det(\partial f_{v\sigma}/\partial y_{\sigma i_{\mu}})(u)$

$=\det(\partial h_{\nu}/\partial y_{\sigma i_{\mu}})(u)$ . The last determinant is equal to $\det(\partial h_{\nu}/\partial y_{\sigma t_{\mu}})(u_{\theta})$ which
is non-zero by the above assumption. This says that the divisors $\hat{E}(P_{1}),$ $\cdots\hat{E}(P_{s})$

and $\tilde{V}$ are transverse at $u$ . In particular, $V$ is smooth at $u$ . As the non-empty
strata $\{E(P_{1}, \cdots , P_{s})^{*}\}$ are finite, we can also take a common $\epsilon$ . This completes
the proof of Lemma (3.4).

LEMMA (3.7). (i) $V^{*}$ is a smooth complete intersection over B\’e for some
$\epsilon>0$ .

(ii) $\hat{V}$ is non-szngular over $B_{\epsilon}$ . Thus $\pi$ : $\tilde{V}arrow V_{p\tau}$ is a resolution.

PROOF. By Lemma (3.4), $V$ is smooth on $U_{P}E(P)$ . As $\pi$ : $V-U_{P}E(P)arrow$
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$V^{*}$ is biholomorphic, it suffices to show (i). Assume that (i) is false. Then
we can use the Curve Selection Lemma to find a real analytic curve $z(t)$ with
the Taylor expansion $z_{i}(t)=a_{i}t^{b_{i}}+$ ($higher$ terms) $(a_{i}\neq 0, b_{i}>0, i=1, \cdots , n)$ such
that $f_{v}(z(t))\equiv 0$ and $df_{1}\Lambda\cdots\wedge df_{a}(z(t))\equiv 0$ . Let $B={}^{t}(b_{1}, \cdots , b_{n})$ and $a=(a_{1}, \cdots , a_{n})$ .
Looking at the leading terms, we obtain that $f_{vB}(a)=0,$ $\{\nu=1, \cdots , \alpha\}$ and $df_{1B}$

$\wedge\cdots\wedge df_{aB}(a)=0$ . AS $B$ is strictly positive, this is a contradiction to the non-
degeneracy assumption. This completes the proof.

NOW Theorem (3.2) is an immediate consequence of Lemmas (3.4) and (3.7).

\S 4. Primary boundary components.

Let $V_{pr}$ be the closure of $V^{*}$ as in \S 3. Let $I$ be a subset of $\{$ 1, $\cdot$ .. , $n\}$ .
We define the $I$-proper boundary $V_{pr}^{*I}$ of $V$ in $C^{*I}$ by $V_{pr}^{*I}=V_{pr}\cap C^{*I}$ . We will
describe the structure of the proper boundaries. We say that an analytic func-
tion $g(z)$ is essentially of $z_{I}$ -variables if $g(z)$ is a product of a monomial $z^{L}$ of
variables $\{z_{j} ; j\not\in I\}$ and an analytic function $g^{e}(z_{I})$ which only contains the
variables $\{z_{i} ; i\in I\}$ . Then we call $g^{e}(z_{I})$ the essential part of $g$ . Let $Q_{+}(I)$ be
the set of the prositive rational dual vectors $P={}^{t}(p_{1}, \cdots , p_{n})$ such that $I(P)=I$ .
For a given $P\in Q_{+}(I)$ , we consider the face functions $f_{1P}(z),$ $\cdots$ , $f_{\alpha P}(z)$ . Though
$f_{\nu P}(z)$ is not necessarily a polynomial in the variables $\{z_{i} ; i\in I\}$ , it is a polyno-
mial in the variables $\{z_{j} ; j\not\in I\}$ for $\nu\not\in e(P)$ . Let $e(P)$ be the set of $\nu’ s$ such
that $f_{vP}(z)$ is essentially of $z_{I}$ -variables. We define the varieties $\partial V^{*}(P)$ and
$V^{*}(P)$ by

$\partial V^{*}(P)=\{z_{I}\in C^{*I}\cap B_{\epsilon}^{I} ; f_{vP}^{e}(z_{I})=0, \nu\in e(P)\}$ and
$V^{*}(P)=\{z\in C^{*n}\cap p_{I}^{-1}(B_{\epsilon}^{I});f_{\nu P}(z)=0, \nu=1, \cdots \alpha\}$

where $\epsilon$ is a small enough positive number and $p_{I}$ : $C^{n}arrow C^{I}$ is the canonical
projection. If $V^{*}(P)$ is not empty, we call $\partial V^{*}(P)$ the $I$-primary boundary
component of $V^{*}$ with respect to $P$. The necessary and sufficient condition for
non-emptyness of $V^{*}(P)$ is given in Appendix $B$ in \S 10. Note that $\partial V^{*}(P)=$

$C^{*I}$ by the definition if $e(P)$ is empty. Let $q_{I}$ : $V^{*}(P)arrow\partial V^{*}(P)$ be the restric-
tion of $p_{I}$ to $V^{*}(P)$ . We say that $V_{pr}$ satisfies the primary non-degeneracy

condition (or simply the PND-condition) if the following conditions are satisfied
for any primary boundary component $\partial V^{*}(P)$ . Let $\hat{f}_{\nu}=f_{v}-f_{vP}$ and let $\hat{f}_{P}$ be
the face function of $\hat{f}_{\nu}$ with respect to $P$. We call $\hat{f}_{vP}$ the secondary face
function of $f_{\nu}$ with respect to $P$. Let $p_{\max}= \max\{p_{1}, , p_{n}\}$ and $p_{\min}=$

$\min\{p_{j} ; j\not\in I\}$ . The $p_{\max}\geqq P_{min}>0$ .
(PNDI) (a) For each $\nu\in e(P)$ , either (i) $d(P;f_{v})=0$ or (ii) $d(P;f_{\nu})>0$

and $d(P;f_{v})\geqq d(P;f_{\nu})+p_{\max}$ .
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(b) $\partial V^{*}(P)$ is a non-degenerate complete intersection in $C^{*I}$ in an $\epsilon$ -ball $B_{\epsilon}^{l}$

for some $\epsilon$ .
(PND2) For each fixed $z_{I}\in\partial V^{*}(P)\cap B_{\epsilon}^{I}$ , the fiber $q_{I}^{-1}(z_{I})=\{f_{\nu P}(z)=0, \nu\not\in e(I)\}$

is a smooth complete intersection variety in $C^{*I^{C}}\cross\{z_{I}\}$ . Here $I^{c}$ is the comple-
ment of $I$ in $\{$ 1, $\cdots$ , $n\}$ .

If $a=1,$ $(PND1)-(a)$ can be replaced by the following weaker condition. Let
$f=f_{1}$ and assume that $f_{P}(z)$ is essentially of $z_{I}$ -variables. Write $f_{P}(z)=z^{K}f_{P}^{e}(z_{I})$

where $K=(k_{1}, \cdots , k_{n})$ . $(a)’(\alpha=1)(i)d(P;f)=0$ or (ii)’ $d(P;f)>0$ and $d(P;f)$

$\geqq d(P;f)+p_{\min}$ or (iii) $\{z\in C^{*n} ; f_{P}(z)=0, z_{j}(\partial f_{P}/\partial z_{j})(z)-k_{j}f_{P}(z)=0j\not\in I\}=\emptyset$ .
(See [19].)

The projection $q_{I}$ : $\partial V^{*}(P)arrow V^{*I}(P)$ is a submersion over an $\epsilon$ -ball $B_{\epsilon}^{I}$ by
the PND2-condition. Note that $Q_{+}(I)$ is infinite but the primary boundary com-
ponents are finite. Note also that $\partial V^{*}(P)\subset V_{pr}^{*I}$ but $V^{*}(P)$ has no inclusion
relation with $V_{pr}$ . Usually the PND2-condition is more difficult to be checked
and we will give sufficient conditions for the PND-condition in \S 10. We assume
that $V$ satisfies the PND-condition hereafter. The main result of this section is:

LEMMA (4.1). The $I$-proper boundary $V_{pr}^{*I}$ of $V$ is the union of the I-pnmary
boundary components.

PROOF. Let $\pi:\tilde{V}arrow V_{pr}$ be the resolution of $V_{pr}$ constructed in \S 3. Let
$\tilde{V}^{*I}$ be the union of the strata $E(P_{1}, , P_{s})^{*}$ of the stratification $\tilde{S}$ of $\tilde{V}$ such
that $\pi(E(P_{1}, \cdots , P_{S})^{*})\subset C^{*I}$ . As $\pi$ is a proper surjective mapping, it is clear
that $\pi(\tilde{V}^{*I})=V_{pr}^{*I}$ . Let $E(P_{1}, \cdots , P_{s})^{*}$ be such a stratum and let $\sigma=(P_{1}, \cdots , P_{n})$

be an $n$ -simplex of $\Sigma*$ The assumption $\pi(E(P_{1}, \cdots , P_{S})^{*})\subset C^{*I}$ implies that
$\bigcap_{i=1}^{s}I(P_{i})=I$ . Let $P=P_{1}+\cdots+P_{s}$ . Then $P$ is a positive dual vector in $Q_{+}(I)$ .
We may assume that $I=\{m+1, , n\}(m\geqq s)$ for simplicity and let $\sigma=(p_{ij})$ .

SUBLEMMA (4.2). The restnction of $\hat{\pi}$ to $E(P_{1}, \cdots , P_{s})^{*}$ is a submersion onto
$\partial V^{*}(P)$ .

PROOF. Recall that $E(P_{1}, , P_{s})^{*}$ is defined by

$\{y_{\sigma 1}=\ldots=y_{\sigma s}=h_{1}(y_{\sigma})=\ldots=h_{\alpha}(y_{\sigma})=0\}$

where $h_{v}$ is characterized by

(4.3) $h_{v}(y_{\sigma}) \prod_{i=1}^{n}y_{\sigma i}^{d(f_{\nu};P_{i)}}=f_{\nu P}(\hat{\pi}(y_{\sigma}))$ .

Note that $\Delta(f_{v} ; P)=\bigcap_{i=1}^{s}\Delta(P_{i} ; f_{\nu})$ . Thus $h_{v}(y_{\sigma})$ does not contain the vari-
ables $y_{\sigma 1},$

$\cdots$ , $y_{\sigma S}$ . Let $E^{*}$ be the subvariety of $C_{\sigma}^{*n}$ defined by { $y_{\sigma}\in C_{\sigma}^{*n}$ ;
$h_{1}(y_{\sigma})=\cdots=h_{\alpha}(y_{\sigma})=0\}$ . $E^{*}$ is nothing but the product of $C^{*s}\cross E(P_{1}, \cdot , P_{s})^{*}$ .
Recall that $V^{*}(P)=\{z\in C^{*n} ; f_{1P}(z)=\cdots=f_{\alpha P}(z)=0\}$ . It is clear that ft : $E^{*}arrow$
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$V^{*}(P)$ is an isomorphism by (4.3). Let $q_{I}$ : $V^{*}(P)arrow\partial V^{*}(P)$ and $p:E^{*}arrow$

$E(P_{1}, \cdots , P_{s})^{*}$ be the canonical projections. We have the commutative diagram:

$\hat{\pi}$

$E^{*}$ $-V^{*}(P)$
$\downarrow p$

$\pi$

$q_{I}\downarrow$

$E(P_{1}, \cdots P_{s})^{*}-\partial V^{*}(P)$ .

Let $\phi$ be the composition $q_{I}\circ\hat{\pi}$ : $E^{*}arrow\partial V^{*}(P)$ . As $q_{I}$ is a submersion by PND2-
condition, $\phi$ is a submersion. As $p$ is obviously a submersion, this implies that
$\pi:E(P_{1}, \cdots , P_{s})^{*}arrow\partial V^{*}(P)$ is a submersion. This completes the proofs of Sublem-
ma (4.2).

Let $P\in Q_{+}(I)$ and assume that $P$ gives a primary boundary component
$\partial V^{*}(P)$ . Taking a subdivision of $\Sigma*$ if necessary, we may assume that $P$ is a

vertex of $\Sigma*$ Then the above sublemma says that $E(P)^{*}arrow\partial V^{*}(P)\hat{\pi}$ is a submer-
sion. In particular, $\partial V^{*}(P)\subset V_{pr}^{*I}$ . This completes the proof of Lemma (4.1).

REMARK (4.4). The proof of Lemma (4.1) shows that $\partial V^{*}(P)$ is the image
of the intersection $\hat{V}\cap\hat{E}(P)^{*}=E(P)^{*}$ . Thus it is necessary to add $\partial V^{*}(P)$ as a
stratum in the stratification of $V_{pr}$ . Assume that $f_{\nu}^{I}(z_{I})$ is not identically zero
for each $\nu=1$ , , $\alpha$ . Then $V^{*I}$ is defined by $f_{1}^{I}(z_{I})=\cdots=f_{\alpha}^{I}(z_{I})=0$ . In this
case, $f_{vP}(z)=f_{v}^{I}(z_{I})$ and $e(P)=\{1, , \alpha\}$ for any $P\in Q_{+}(I)$ . Thus $V^{*I}$ itself is
the unique $I$-primary boundary component. In this case, $V$ is non-singular on
$V^{*I}$ .

REMARK (4.5). Consider a primary boundary component $\partial V^{*}(P)$ . Then
Lemma (4.1) implies that $\dim\partial V^{*}(P)\leqq\dim E(P)=\dim V^{*}-1$ .

\S 5. Whitney conditions for the primary boundary components.

In this section, we prove the following theorem which is essentially equi-
valent to the Whitney $b$-condition for the pair $(V^{*}, \partial V^{*}(P))$ . Let $p(t)=(p_{1}(t)$ ,

, $p_{n}(r))$ be an analytic curve defined in the interval $[0,1]$ with the Taylor
expansion $p_{i}(t)=a_{i}t^{b_{i}}+$ ($higher$ terms). We assume that (i) $f_{\nu}(p(t))\equiv 0,$ $\nu=1,$ $\cdots$ ,
$\alpha$ , (ii) $a_{j}\neq 0,$ $j=1,$ $\cdots$ , $n$ and (iii) $b_{i}=0$ if and only if $i\in I$ .

Let $B={}^{t}(b_{1}, , b_{n}),$ $\alpha=(a_{1}, , a_{n})$ . The condition (iii) implies that $I(B)=I$ .
Let $b_{\min}= \min\{b_{j} ; j\not\in I\},$ $b_{\max}= \max\{b_{1}, , b_{n}\}$ and let $J_{\min}=\{j;b_{j}=b_{\min}\}$ . Let
$q(t)$ be an analytic curve in $\partial V^{*}(B)$ with $q(O)=p(O)$ . Note that $p(t)\in v*$ for
$0<t<1$ by (i) and (ii). We assume that (iv) $T_{p(t)}V^{*}arrow\tau$ and $[p(t)-q(t)]arrow l$ as
$tarrow 0$ . Then we assert

THEOREM (5.1). 1 is contained in $\tau$ .
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This is the heart of the stratification theory of $V$ which will be discussed
in the next section. The proof of Theorem (5.1) occupies the rest of this section.

(I) Case of hypersurfaces $(\alpha=1)$ . This case coincides with the Key Lemma
(4.1) of [19]. As the proof is also important for the case $a>1$ , we repeat the
proof. We put $f=f_{1}$ . It is well-known that the tangent space $T_{z}V^{*}$ is chara-
cterized by $df(z)^{\perp}=\{v\in T_{Z}C^{n} ; df(z)(v)=0\}$ . Let us consider the limit of $df(p(t))$ .
For a real analytic function $k(t)$ , we define an integer $ord(k(t))$ by the order of
the zeros $k(t)=0$ at $t=0$ . Similarly we define the order of a vector-valued
analytic function by the minimum of the order of the coordinate functions. Thus
$ord(df(p(t)))$ is the minimum of $ord(\partial f/\partial z_{i}(p(t)))$ for $i=1,$ $\cdots$ , $n$ . Let $m=$

$ord(df(p(t)))$ and let $\vec{\gamma}=df(p(t))/t^{m}|_{t}=0$ . Let $\vec{\gamma}=\Sigma_{i=1}^{n}\gamma_{i}dz_{\ell}$ . Then we have an
obvious equality $\tau=\gammaarrow\perp$ . Considering the leading term of (i), we obtain the
equality $f_{B}(a)=0$ .

Case (I-a). Assume first that $f_{B}(z)$ is not essentially of $z_{I}$ -variables. Then
$\partial V^{*}(B)=C^{*I}$ by the definition. Then by PND2, there exists an index $j$ with
$j\not\in I$ such that $\partial f_{B}/\partial z_{j}(a)\neq 0$ if $\Sigma_{i\in I}|a_{i}|^{2}$ is small enough. Thus we have $m\leqq$

$d(B;f)-b_{\min}$ . AS $d(B;\partial f/\partial z_{j})\geqq d(B;f)-b_{j}$ , we must have

(5.2) if $m=d(B;f)-b_{\min},$ $\frac{\partial f_{B}}{\partial_{Z_{f}}}(a)=\{0\gamma_{j}$

,
$j\in J_{m}j\not\in J_{m}\cup I|_{n}^{n}$

,

(5.3) if $m<d(B;f)-b_{\min}$ , $\gamma_{j}=0$ , $j\in J_{m\ln}\cup I$ .
Note that $\gamma_{i}=0$ for $i\in I$ in both cases. This implies that $\vec{\gamma}|C^{I}=0$ and the
Whitney $a$-condition follows immediately.

NOW we consider the line $[p(t)-q(t)]$ . Let $k=ord(p(t)-q(t))$ . As $q(t)\in C^{*I}$ ,
it is easy to see that $1\leqq k\leqq b_{\min}$ . Let $l=(p(t)-q(t))/t^{k}|_{t=0}$ . By the definition of
$l$ , we have that $[l]=l\in P^{n-1}arrow$ . If $k<b_{\min},$ $i$ is a vector in $C^{I}$ . In this case, it
is clear that $\gammaarrow(I)=0$ . Assume that $k=b_{\min}$ . Then $l_{j}=a_{j}$ for $j\in J_{\min}$ and $l_{j}=0$

for $j\not\in J_{\min}\cup I$ . We consider the equality

$0 \equiv\sum_{j^{=1}}^{n}\frac{\partial f}{\partial_{Z_{j}}}(p(r))\frac{dp_{j}(r)}{dt}\equiv(\sum_{J\not\in I}\frac{\partial f_{B}}{\partial_{Z_{j}}}(a)b_{j}a_{j})t^{d(B,f)-1}+$ ($higher$ terms).

In particular, this implies the following.

(5.4) $\sum_{J\not\in I}\frac{\partial f_{B}}{\partial_{Z_{j}}}(a)b_{j}a_{j}=0$ .

If $m<d(B;f)-b_{\min}$ , the equality $\gammaarrow(f)=0$ is immediate from (5.3). Assume that
$m=d(B;f)-b_{\min}$ . By (5.2) and (5.4), we can see easily that $\gammaarrow(i)=0$ . Here $larrow$ is
identified with the tangent vector $\sum_{J=}^{n}l\partial/\partial z_{j}$ at $p(O)$ .

Case (I-b). Assume that $f_{B}(z)$ is essentially of $z_{I}$ -variables. Let $f_{B}(z)=$

$z^{L}f_{B}^{e}(z)$ where $z^{L}$ is a monomial in the variables $\{z_{j} ; j\not\in I\}$ . Then $V^{*I}(B)=$

$\{z_{I}\in C^{*I} ; f_{B}^{e}(z_{I})=0\}$ and $ord(f_{B}(p(t)))=ord(p(t)^{L})+ord(f_{B}^{e}(p(t)))$ . We have two
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equalities:

(5.5) $\sum_{J^{=_{1}}}^{n}\frac{\partial f}{\partial_{Z_{j}}}(p(t))\frac{dp_{j}(t)}{dt}\equiv 0$ , $\sum_{i\in I}\frac{\partial f_{B}^{e}}{\partial_{Z_{i}}}(q(t))\frac{dq_{i}(t)}{dt}\equiv 0$ .

Let $\beta=ord(fg(p(t)))$ and $\delta=ord(f(p(t)))$ . We assume the PNDl-(a)-(ii)-condition.

AS $f(p(t))=f_{B}(p(t))+f(p(t))\equiv 0$ , we have

(5.6) $\beta+d(B ; f)=\delta\geqq d(B ; f)$

where $\hat{f}_{B}(z)$ is the secondary face function of $f$ with respect to the weight $B$ .
The equality holds if and only if $\hat{f}_{B}(a)\neq 0$ . We consider the equality which
follows immediately from (5.5).

(5.7) $\sum_{j^{=}1}^{n}\frac{\partial f}{\partial_{Z_{j}}}(p(t))\frac{d}{dt}(p_{j}(r)-q_{j}(t))+\sum_{i\in I}(\frac{\partial f}{\partial z_{i}}(p(t))-\frac{\partial f_{B}}{\partial_{Z_{i}}}(p(t)))\frac{dq_{i}(t)}{dt}$

$+ \sum_{i\in I}p(t)^{L}(\frac{\partial f_{B}^{e}}{\partial_{Z_{i}}}(p(t))-\frac{\partial f_{B}^{e}}{\partial_{Z_{i}}}(q(t)))\frac{dq_{i}(t)}{dt}\equiv 0$ .

By the assumption, $p_{j}(t)\equiv q_{j}(t)$ , modulo $(t^{k})$ for any $j$ . This implies that
$ord(\partial f_{B}^{e}/\partial z_{i}(p(t))-\partial f_{B}^{e}/\partial z_{i}(q(t)))\geqq k$ . Thus the order of the last sum is at least
$d(B;f)+k$ . On the other hand, we have $ord(\partial f/\partial z_{i}(p(t))-\partial f_{B}/\partial z_{\ell}(p(t)))\geqq$

$d(B;\hat{f})\geqq d(B;f)+b_{\max}(i\in I)$ by PNDl-(a)-(ii). As $k\leqq b_{\min}$ , the order of the
second sum in (5.7) is also at least $d(B;f)+k$ . The order of the first sum in
(5.7) is (at least) $m+k-1$ . As $m\leqq d(B;f)$ by PNDl-(b) and $k\leqq b_{\min}$ , the coeffi-
cient of $t^{m+k-1}$ of (5.7) is equal to $k\vec{\gamma}(?)$ . Thus we conclude that $\gammaarrow(i)=0$ . We
assert that $m=d(B;f)$ . In fact, as $\partial f/\partial z_{j}(p(t))=\partial f/\partial z_{j}(p(r))+\partial z^{L}/\partial z_{j}\cdot fg(p(t))$ ,

we have ord $\partial f/\partial z_{j}(p(t))\geqq\min\{d(B;;)-b_{j}, \beta+d(B;f)-b_{j}\}\geqq d(B;f)$ by (5.6)

and PNDl-(a)-(ii).

Assume $(a)-(i):d(B;f)=0$ . We consider the following equality instead of
(5.7).

$\sum_{J^{\Rightarrow 1}}^{n}\frac{\partial f}{\partial z_{j}}(p(t))\frac{d}{dt}(p_{j}(t)-q_{j}(t))+\sum_{t\in I}(\frac{\partial f}{\partial z_{i}}(p(t))-\frac{\partial f}{\partial z_{i}}(q(t)))\frac{dq_{i}(t}{dt}\equiv 0$ .

Here we have used the equality $\partial f/\partial z_{i}(q(t))=\partial f_{B}/\partial z_{i}(q(t))$ . By PNDl-(b), $m=0$ .
Thus by a similar argument, we have $\gammaarrow(i)=0$ . Note that $\gamma_{i}=a^{L}\partial f_{B}^{e}(a)/\partial z_{i}$ for
$i\in I$ in the both cases of PNDl-(a).

(II) General case $(a>1)$ . The case of $\alpha>1$ requires more delicate care than
the case of $\alpha=1$ . The main difficulty comes from the fact that the limits of
the 1-forms $df_{1}(p(t)),$ $\cdots$ , $df.(p(t))$ as $tarrow 0$ are not linearly independent in general.
We first prepare several lemmas. A non-singular holomorphic $p$-form $\omega$ is called
decomposable at $z$ if there exist linearly independent holomorphic 1-forms $\omega_{1}$ , – ,
$\omega_{p}$ in a neighborhood of $z$ such that $\omega(z)=\omega_{1}\wedge\cdots\Lambda\omega_{p}(z)$ . To such an $\omega$, we
associate an $(n-p)$-dimensional subspace $\omega(z)^{\perp}$ of $T_{Z}C^{n}$ by

$\omega(z)^{\perp}=\{v\in T_{Z}C^{n} ; v\dashv\omega(z)=0\}$ .
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Here $v\dashv$ is the inner derivative by $v$ . We will use the following formula later.

(5.8) $v \dashv(\omega_{1}\wedge\cdots\Lambda\omega_{p})=\sum_{j=1}^{p}(-1)^{j-1}\omega_{j}(v)\omega_{1}\Lambda\cdot\cdot\Lambda\omega_{p}i.$ .

Here $\omega_{1}\wedge\cdot\vee l\wedge\omega_{p}$ is the exterior product of $\omega_{k}’ s$ with $\omega_{j}$ being omitted. This
can be proved by an elementary argument. (Use for example (4.10) of [22].)

NOW we consider the tangent space $T_{p(t)}V$ . As $V$ is a complete intersection
variety at $z=p(t)(t>0)$ by Lemma (3.7), $T_{p(t)}V$ is characterized by

(5.9) $T_{p(t)}V=\{v\in T_{z}C^{n} ; v\dashv df_{1}\wedge\cdots\wedge df_{\alpha}(p(t))=0\}$ .
By (5.8), the right side of (5.9) is equal to the intersection $\bigcap_{v=1}^{\alpha}df_{\nu}(p(t))^{\perp}$ . Let
$m=ord(df_{1}\wedge\cdots\wedge df_{a}(p(t)))$ and let $\omega(t)=df_{1}\wedge\cdots\Lambda df_{\alpha}(p(t))/t^{m}$ . We define $\omega$ by
$\omega(0)$ . AS $\omega(t)^{\perp}=T_{p(t)}V,$ $\omega$ is an $a$-covector $(i. e., \omega\in\wedge^{\alpha}T_{p(0)}^{*}C^{n})$ such that $\tau=\omega^{\perp}$ .
In fact, we will see later that $\omega$ is a decomposable covector. We may assume
that $f_{\nu B}(z)$ is essentially of $z_{I}$ -variables if and only if $s<\nu\leqq\alpha$ . By multiplying
suitable monomials if necessary, we may also assume that

(5.10) $d(B;f_{1})=\ldots=d(B;f_{s})$ .

This makes our calculation much easier. Let $d=d(B;f_{1})$ .

LEMMA (5.11). After renumbenng $f_{1},$ $\cdots$ , $f_{s}$ if necessary, we can find poly-
nomials $c_{v\mu}(t)$ for $1\leqq\mu<\nu\leqq s$ such that the following conditions are satisfied. Let

(5.11.1) $d$ ‘ $f_{\nu}(p(t))=df_{v}(p(t))- \sum_{\mu=1}^{v-1}c_{\nu\mu}(t)df_{\mu}(p(t))$

and let $d’f_{\nu}(p(t))=\omega_{v}t^{m_{\nu}}+$ ($1ugher$ terms) with $\omega_{\nu}\neq 0$ for $v=1$ , , $s$ .
(i) $\omega_{1},$

$\cdots$ , $\omega_{s}$ are linearly independent cotangent vectors which are linear
combinations of $\{dz_{j} ; j\not\in I\}$ . (ii) $m_{1}\leqq m_{2}\leqq\cdots Sm_{s}\leqq d-b_{\min}$ .

PROOF. We first define the relative order $ord(df_{\nu} ; df_{1}, \cdots , df_{\nu-1})$ by the
maximum of the order of $(df_{v}-\Sigma_{j=1}^{\nu-1}g_{j}(t)df_{j})(p(t))$ where $g_{1}(t),$ $\cdots$ , $g_{\nu-1}(t)$ move
in the arbitrary polynomials. By renumbering $f_{1},$ $\cdots$ , $f_{s}$ if necessary, we may
assume that $ord(df_{1}(P(t)))\leqq ord(df_{v}(p(t)))$ for $\nu=2,$ $\cdots$ , $s$ . Let $df_{1}(t)=\omega_{1}t^{m_{1}}+$

(higher terms). By the PND2-condition, we have the inequality $m_{1}\leqq d-b_{min}$ and
$\omega_{1}$ is a linear combination of $\{dz_{j} ; j\not\in I\}$ . By the assumption, we have the
inequality $ord(df_{\nu} ; df_{1})\geqq m_{1}(\nu=2, \cdots , s)$ . We prove the assertion by the induc-
tion. We assume that we have chosen polynomials $c_{\nu\mu}(t)(1\leqq\mu<\nu\leqq k)$ and that
we have renumbered $f_{1},$ $\cdots$ , $f_{s}$ so that
(0) $d’f_{\nu}(p(t))=\omega_{v}t^{m_{\nu}}+$ ($higher$ terms), $\nu=1$ , , $k$ . $(i)_{k}\omega_{1},$ $\cdots$ , $\omega_{k}$ are linearly
independent cotangent vectors which are linear combinations of $\{dz_{j} ; j\not\in I\}$ .
$(ii)_{k}m_{1}\leqq\cdots\leqq m_{k}\leqq d-b_{\min}$ and $ord(df_{v} ; df_{1}, \cdots , df_{k})\geqq m_{k}$ for $\nu=k+1,$ $\cdots$ , $s$ .

Note that $ord(df_{\nu} ; df_{1}, \cdots , df_{k})=ord(df_{v} ; d’f_{1}, \cdots , d’f_{k})$ . We renumber $f_{k+1}$ ,
... , $f_{s}$ if necessary so that



Canonical stratification 409

(5.12) $ord(df_{k+1} ; df_{1}, \cdots , df_{k})\leqq ord(df_{\nu} ; df_{1}, \cdots , df_{k})$ , $\nu=k+2,$ $\cdots$ , $s$ .
Let $m_{k+1}=ord(df_{k+1} ; df_{1}, \cdots , df_{k})$ . As $df_{1}\wedge\cdots\wedge df_{k+1}(p(t))\neq 0$, the analyticity
implies that $m_{k+1}$ is finite. We can find polynomials $c_{k+1,1}(t),$ $\cdots$ , $c_{k+1,k}(t)$ such
that $d’f_{k+1}(p(t))=df_{k+1}(p(t))-\Sigma_{J=1}^{k}c_{k+1,j}df_{j}(p(t))$ has order $m_{k+1}$ . Let $d’f_{k+1}(p(t))$

$=\omega_{k+1}t^{m_{k+1}}+$ (higher terms). Then we have $m_{k+1}\geqq m_{k}$ and $\omega_{1}\Lambda\cdots$ A $\omega_{k+1}\neq 0$ . (If

not, the relative order of $df_{k+1}$ is strictly larger than $m_{k+1}.$ ) Assume that

(5.13) $m_{k+1}>d-b_{\min}$ .

We will show that this gives a contradiction. Let $df_{1}\wedge\cdots\Lambda df_{k}(p(t))=\Sigma_{1J\rceil k}=$

$d_{J}(t)dz_{J}$ where $dz_{J}=dz_{j_{1}}\wedge\cdots\Lambda dz_{J_{k}}$ for $J=\{j_{1}, , j_{k}\}$ . Recall that $d_{J}(t)$ is the
determinant of $k\cross k$ matrix $(\partial f_{\nu}/\partial z_{j_{\mu}}(p(t))),$ $(\nu, \mu=1, , k)$ . Thus we have

(5.14) $ord(d_{J}(t))\geqq kd-(b_{j_{1}}+\cdots+b_{J_{k}})$

and the equality holds if and only if

(5.15) $\det(\frac{\partial f_{vB}}{\partial z_{J_{\mu}}}(a))_{\nu.\mu=1.\cdots.k}\neq 0$ .

Let $df_{1}\wedge\cdots\Lambda df_{k+1}(p(t))=\Sigma_{|K|}e(t)dz_{K}$ . As $df_{1}\Lambda\cdots\Lambda df_{k+1}=d’f_{1}\Lambda\cdots$ A d’ $\int_{k+1}$ ,

(5.13) and (5.14) imply that

(5.16) $ord(e_{K}(t))>(k+1)d-(b_{j_{1}}+\cdots+b_{j_{k+1}})$

where $K=\{j_{1}, \cdots , j_{k+1}\}$ . On the other hand, the PND2-condition guarantees the
existence of $K$ such that $K\cap I=\emptyset$ and $ord(e_{K}(t))=(k+1)d-(b_{J_{1}}+\cdots+b_{j_{k+1}})$ . This
is a contradiction to (5.16). Thus we have proved that $m_{k+1}\leqq d-b_{\min}$ . As the
order of the coefficient of $dz_{i}(i\in I)$ in $df_{v}(p(t))(\nu\leqq s)$ is greater than or equal
to $d,$ $\omega_{k+1}$ does not contain any non-zero $dz_{i}(i\in I)$ terms. This proves (0) ,
$(i)_{k+1}$ and $(ii)_{k+1}$ and completes the proof of Lemma (5.11).

COROLLARY (5.17). Let $m_{1}$ , , $m_{s}$ be as in Lemma (5.11) and let $df_{v}(p(t))$

$=\omega_{\nu}t^{m_{v}}+$ (higher terms) for $v=s+1$ , , $a$ . Then $m=ord(df_{1}\Lambda\cdots\Lambda df_{\alpha}(p(t)))$ is
equal to $m_{1}+\cdots+m_{\alpha}$ and to $=\omega_{1}\Lambda\cdots\Lambda\omega_{\alpha}$ . In particular, $\omega$ is a decomposable $\alpha-$

covector and $T_{p(t)}V$ converges to $\omega^{\perp}$ .

PROOF. In the proof of Theorem (5.1) in Case (I-b), we have shown that
$m_{v}=d(B;f_{\nu})$ for $\nu=s+1,$ $\cdots$ , $\alpha$ . There exists a subset $L=\{l_{1}, , 1_{\alpha-s}\}$ of $I$

such that $\omega_{s+1}\wedge\cdots\Lambda\omega_{\alpha}$ has a non-zero coefficient in $dz_{L}$ by the PNDl-(b)-condi-

tion. Thus $\omega_{1}\Lambda\cdots\Lambda\omega_{\alpha}\neq 0$ by (i) of Lemma (5.11). As $df_{1}\Lambda\cdots\Lambda df_{a}=(\Lambda_{\nu=1}^{s}d’f_{\nu})$

$\Lambda df_{S+1}\Lambda\cdots\Lambda df_{\alpha}$ , the assertion is now immediate.

NOW we are ready to prove Theorem (5.1) for the case $a>1$ . Let $k=$

$ord(p(t)-q(t))$ and let $l=(l_{1}$ , $\cdot$ .. , $l_{n})=(p(t)-q(t))/t^{k}|_{t=0}$ . By the argument in
Case (I), we have that
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(5.18) $w.(l)=0$, for $\nu=s+1,$ $\cdots$ , $\alpha$ .
On the other hand, by differentiating the equality $f_{v}(p(t))-\Sigma_{\mu=1}^{\nu-1}c_{\nu\mu}(t)f_{\mu}(p(t))\equiv 0$ ,
we get

(5.19) $(df_{v}(p(t))- \sum_{\mu}c_{v\mu}(t)df_{\mu}(p(t)))(\frac{dp(t)}{dt})\equiv 0$ .
Here we have used the equality $f_{\mu}(p(t))\equiv 0$ and $dp(t)/dt$ is identified with the
tangent vector $\Sigma_{J=1}^{n}(dp_{j}(p(t))/dt)(\partial/\partial z_{j})$ . Looking at the coefficient of $t^{d-1}$ in
(5.19), we obtain the equality

(5.20) $\sum_{J\not\in I}(\frac{\partial f_{\nu B}}{\partial z_{j}}(a)-\sum_{\mu}c_{\nu\mu}(O)\frac{\partial f_{\mu B}}{\partial z_{j}}(a))b_{j}a_{j}=0$ .
Case (II-a). Assume that $l\in C^{I}$ . In this case, by (ii) of Lemma (5.11) we

have that

(5.21) $\omega_{v}(l)=0$ , $\nu=1,$ $\cdots$ $s$ .
Thus by (5.18), (5.21) and the formula (5.8), we obtain $1\sim\dashv\omega=?\dashv(\omega_{1}\Lambda\cdots\wedge\omega_{\alpha})$

$=0i$ . $e.,$
$i\in\omega^{\perp}$ .

Case (II-b). Assume that $l_{j}\neq 0$ for some $j\not\in I$ . This implies that

(5.22) $k=b_{\min}$ , $l_{j}=\{\begin{array}{l}a_{j} ifj\in J_{\min}0 ifj\not\in J_{\min}\cup I.\end{array}$

Here $J_{\min}=\{j;b_{j}=b_{\min}\}$ . Fix a $\nu$ with $\nu\leqq s$ and let $\omega_{\nu}=\Sigma_{j\not\in I}\omega_{vj}dz_{j}$ . There are
two possible cases.

(II-b-l) $\omega_{vj}\neq 0$ for some $j$ such that $j\in J_{\min}$ or $( \prod- b- 2)\omega_{vj}-0$ for any $j$ with
$j\in J_{\min}$ .
In Case (II-b-2), $\omega.(l)=0$ is immediate from (5.22) and ( i) of Lemma (5.11).

Assume (II-b-l). Then we have $m_{\nu}=d-b_{\min}$ . In general, we have the canonical
inequality

(5.23) ord $( \frac{\partial f_{v}}{\partial z_{j}}(p(t))-\sum_{\mu}c_{\nu\mu}(t)\frac{\partial f_{\mu}}{\partial_{Z_{j}}}(p(t)))\geqq d-b_{j}$ .

Combining this inequality and the assumption that $m_{\nu}=d-b_{\min}$ , we must have

(5.24) $\frac{\partial f_{vB}}{\partial z_{j}}(a)-\sum_{\mu}c_{v\mu}(0)\frac{\partial f_{\mu B}}{\partial z_{j}}(a)=0$ , for $j\not\in J_{\min}\cup I$ and

(5.25) $\omega_{vj}=\frac{\partial f_{vB}}{\partial_{Z_{j}}}(a)-\sum_{\mu}c_{v\mu}(0)\frac{\partial f_{\mu B}}{\partial_{Z_{j}}}(a)$ , for $j\in J_{\min}$ .

Thus by (i) of Lemma (5.11), (5.20), (5.22), (5.24) and (5.25), we obtain $\omega_{v}(l)=0arrow$ .
Therefore we have the equality $\omega_{\nu}(l)=0$ in any cases for $v=1$ , , $\alpha$ . By the
formula (5.8), this implies that $i\in\omega^{\perp}$ . This completes the proof of Theorem (5.1).
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\S 6. Canonical stratification of $V$ .
Let $V=\{z\in C^{n} ; f_{1}(z)=\cdots=f_{a}(z)=0\}$ , $V^{*}=V\cap C^{*n}$ and $V_{pr}$ be the closure

of $V^{*}$ as before. Note that $V\supset V_{pr}$ but $V$ may have other irreducible com-
ponents in general. We will construct a $b$-regular stratification 8 of $V$ in a
canonical way using the results of \S 5. For a subset $I$ of $\{1, , n\}$ , we define
$V^{*I}=V\cap C^{*I}$ . Recall that $V_{pr}^{*I}=V_{pr}\cap C^{*I}$ . If $V^{*I}\neq V_{pr}^{*I},$ $V$ is not irreducible.

Assume first the following general situation. Let $W$ be a smooth analytic
variety in an open set $D$ of $C^{n}$ and let $W_{i}(i\in A)$ be a finite family of the smooth
analytic subvarieties of $W$. We define the ’stratification’ 8 generated by $W_{i}$

$(i\in A)$ by the collection of strata $W_{I}^{*}$ where $I$ is a subset of $A$ and $W_{I}^{*}= \bigcap_{i\in I}W_{i}$

$- \bigcup_{j\not\in I}W_{j}$ . Strictly speaking, a stratum is a connected component of $W_{I}^{*}$ . For
$I=\emptyset,$ $W_{\emptyset}^{*}=W-U_{i\in A}W_{i}$ by definition. If $\{W_{I}^{*}\}$ is a smooth complete intersection
variety for each $I,$ $S$ gives a regular stratification of $W$ .

Our construction of the stratification of $V$ is inductive. Namely we construct
a stratification 8(I) of $V^{*I}$ by the induction on $n-|I|$ . Then we take the union
$S=U_{I}S(I)$ . We will show that 8 is a regular stratification of $V$ under a suitable
condition. We start from the biggest stratum $V^{*}$ . Let $I(i)=\{1, \cdots , n\}-\{i\}$ .
$V$ has the unique $I(i)$-primary boundary component $V_{pr}^{*I(i)}$ which is defined by

$V_{pr}^{*I(i)}=\{z_{I(t)}\in C^{*I(i)} ; f_{\nu R_{i}}^{e}(z_{I(i)})=0, \nu=1, \cdots , \alpha\}$ where $R_{i}={}^{t}(0, \cdots , 1\vee i\ldots , 0)$ .
Note that $f_{v}(z)\equiv z_{i}^{a_{\nu i}}f_{\nu R_{i}}^{e}(z_{I(t)})$ modulo $z_{i}^{d_{\nu i}+1}$ where $d_{\nu i}=d(R_{i} ; f_{v})$ for $v=1$ , ,
$\alpha$ . Thus $e(R_{i})=\{1, \cdots , a\}$ . As the stratification $S(I(i))$ of $V^{*I(i)}$ , we simply
take the stratification generated by $V_{pr}^{*I(i)}$ . Namely $s(I(i))=\{V^{*I(i)}-V_{pr}^{*I(i)}, V_{pr}^{*I(i)}\}$ .
Of course, $V^{*I(i)}-V_{pr}^{*I(i)}$ can be empty. This simple description is no more
valid in general for higher codimensional cases. Assume that we have obtained
stratifications 8(I) of $V^{*I}$ for $|I|\geqq n-k$ which satisfies the following conditions.

(i) For $I_{0}=\{1, \cdots , n\},$ $S(I_{0})$ is $V^{*}$ .
$(ii)_{k}$ Let $I$ be a subset of $\{$ 1, $\cdots$ , $n\}$ with $|I|\geqq n-k$ . Then 8(I) is the

stratiPcation of $V^{*I}$ generated by $I$-primary boundary components of the strata
$Y$ of $S(J)$ with $J\supset I$ and $J\neq I$ .

$(iii)_{k}$ Let $X\in S(I)(|I|\geqq n-k)$ . Then $\overline{X}$ is a non-degenerate complete in-
tersection variety in $C^{I}$ which satisfies the PND-condition. If $X,$ $Y\in S(I)$ and
$\overline{X}\supset Y,$ $Y$ is a smooth submanifold of $\overline{X}$.

Assume $|I|=n-k-1$ . We define 8(I) by be the stratification generated by
the primary boundary components of the strata $Y$ of $S(K)$ for $K$ such that
$I\subset K,$ $I\neq K$. We say that $V$ satisfies the inductive non-degeneracy condition
(or $IND$-condition) if $(iii)_{k}$ is satisfied for every $k$ . We assume that $V$ satisfies
the IND-condition hereafter. We admit that the IND-condition is a hysteric
condition in general but this is a necessary condition and it is usually satisfied
for a complete intersection variety which is not too bad. Then we can complete
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the stratification of $V^{*I}$ for any $I$ by the inductive argument.

THEOREM (6.1). Assume that $V$ satisfies the $IND$-condition and let 8 be the

stratification of $V$ which is defined by the union of 8(I). Then $S$ is a b-regular

stratification of $V$ .

PROOF. Let $Y$ and $Z$ be a pair of strata of $S$ such that $\overline{Y}\cap Z\neq\emptyset$ . We
assume that $Y\in 8(J)$ and $Z\in 8(K)$ . Then we must have $J\supset K$. If $J=K$, the
$b$-regularity follows from the transversality assumption (iii) in the IND-condition.
Thus we may assume that $J\neq K$. If $Y$ is an open dense stratum in $C^{*j}$ , the
$b$-regularity for $(Y, Z)$ is obvious. Thus we assume that $\overline{Y}\neq C^{J}$ . Let $p(t)$ and
$q(t)$ be real analytic curves defined on $[0,1]$ such that (i) $p(O)=q(0)\in Z$ . (ii)

$p(t)\in Y$ for $t>0$ . (iii) $q(t)\in Z$ for $t\geqq 0$ . Assume that the tangent space $T_{p(t)}Y$

converges to $\tau$ and the line $[p(t)-q(t)]$ converges to 1. Let $h_{1}(z_{J})=\cdots=h_{\delta}(z_{J})$

$=0$ be the defining equations of Y. $Y$ is a non-degenerate complete intersection
variety by the IND-condition. Assume that $p_{j}(t)=a_{j}t^{b_{j}}+$ ($higher$ terms) for $j\in J$.
For brevity’s sake, we assume that $J=\{1, , m\}$ . Let $I=\{i\in J;b_{j}=0\}$ . Let
$B={}^{t}(b_{1}, \cdots , b_{m})$ and $a=(a_{1}, \cdots , a_{m})$ . As $p(O)=q(O)=a_{I}\in Z$ and $I=K$. By look-
ing at the leading terms of the equality $h_{\nu}(p(t))\equiv 0$ for $\nu=1$ , , $\delta$ , we can see
that $a_{I}$ belongs to the $I$-primary boundary component $\partial Y^{*}(B)$ . As $\partial Y^{*}(B)$ is a
member of the subvarieties which generate $S(K)$ , our construction of $S(K)$

implies that $Z\subset\partial Y^{*}(B)$ . Thus Theorem (6.1) follows immediately from Theorem
(5.1) and Remark (2.3).

In the rest of this section, we give a few remarks about the IND-condition.
Let $X$ be a strata in $S(I)$ . By the construction of the stratification 8 of $V$ ,
there are three possibilities: (S1) $X$ is open dense in $V^{*I}$ . (S2) There are a
sequence of strata $X_{0}$ , , $X_{r}$ of 8 such that $X_{0}=V^{*}$ and $X=X_{r}$ and $X_{i}$ is an
open dense subvariety of a proper primary boundary component of $X_{i-1}$ . $X$ is
called a primary boundary component of $V^{*}$ of order $r$ . (S3) The other case.

We first study a primary boundary component of order two. Let $Y=\partial V^{*}(P)$

be a proper primary boundary component and we assume that $e(P)=\{1, \cdots , s\}$ .
Then we have $\partial V^{*}(P)=\{z_{I}\in C^{*I} ; f_{1}^{e_{P}}(z_{I})=\cdots=f_{sP}^{e}(z_{I})=0\}$ . Let $Q={}^{t}(q_{1}, \cdots , q_{n})$

be a rational weight vector and let $J=\{j;q_{j}=0\}$ . We assume that $J\subset I$ and
that $Q$ gives a primary boundary component $\partial Y^{*}(Q)$ of $Y$ . Let $R=P+rQ$ for
a sufficiently small $r>0$ . Then it is an easy linear algebra to see the following.
(i) $(f_{vP})_{Q}=f_{\nu R}$ for $\nu=1$ , , $s$ . (ii) The secondary face function $\hat{f}_{vR}$ of $f_{v}$ with
respect to $R$ is equal to the secondary face function of $f_{\nu P}$ with respect to $Q$

for $\nu=1$ , , $s$ . In general, it is possible that $e(R)\cap\{s+1, \cdot.. , \alpha\}\neq\emptyset$ . If we
have tbe inclusion $e(R)\subset e(P)$ , the $Q$-primary boundary component of $Y$ is equal
to the $R$-primary boundary component of $V$ . Namely we have the transitivity:
$\partial Y^{*}(Q)=\partial X^{*}(R)$ . In general, we have $\partial Y^{*}(Q)\supset\partial V^{*}(R)$ . For a subset $\Xi$ of
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$\{1, , a\}$ , we define the variety $V_{\Xi}$ by $V_{\Xi}=\{z\in C^{*n} ; f_{v}(z)=0, v\in\Xi\}$ . Then
we have shown that $\partial Y^{*}(Q)=\partial(V_{e(P)})^{*}(R)$ . In particular, the PND-condition
for $Y$ with respect to $Q$ is equivalent to tbe PND-condition for $V_{e(P)}$ with
respect to $R$ . By an inductive argument, we can show the following. Let $X$

be a stratum of $S(I)$ of type (S2). We can find a weight vector $P\in Q_{+}(I)$ and
subset $--$ of $\{$ 1, $\cdot$ .. , $\alpha\}$ such that $X$ is open dense in $\partial(V_{\Xi})^{*}(P)=\{z_{I}\in C^{*I}$ ;
$f_{\nu P}^{e}(z_{I})=0,$ $v\in_{\cup}-\cap e(P)\}$ . The description of a stratum of type (S3) is more
complicated and unpleasant.

We say that $V$ is a good non-degenerate complete intersection if the stra-
tification 8 does not have any strata of type (S3). In this case, the IND-condition
follows from the PND-condition for $V_{\Xi}’ s$ . In the case of a hypersurface, $V$ is
a good hypersurface if $V$ has at most one proper $I$-primary boundary component
for each $I$ with $|I|>2$ . For a good hypersurface, the IND-condition is equi-
valent to the PND-condition and the stratification is much simpler than the
general case ([19]).

We assume that $V=V_{pr}$ . Let $s$ be tbe dimension of the singular locus $V_{sg}$

of $V$ . Let $9=\{I\subset\{1, -- , n\} ; \exists\nu, f_{\nu}^{I}\equiv 0\}$ . Then $V_{sg}=U_{I\in\sigma\tau}V*I$ The IND-
condition for small $s$ is quite simple. In fact, the case that $s=1$ , the PND-
condition is enough for the IND-condition. Assume that $s=2$ . Take any
primary boundary component $\partial V^{*}(P)$ . If $\dim\partial V^{*}(P)\geqq 3$ , we have that $e(P)=$

$\{1, \cdots , \alpha\},$ $\partial V^{*}(P)\subset V-V_{sg}$ and any proper primary boundary component of
$\partial V^{*}(P)$ is a primary boundary component of $V^{*}$ . If the dimension of $\partial V^{*}(P)$

is two, its possible primary components have dimension one or zero. Let $s_{i}=$

$\{\partial V^{*}(P);\partial V^{*}(P)\subset V_{sg}, \dim\partial V^{*}(P)=i\}(i=1,2)$ and let $S_{1}’$ be the set of primary
boundary components of order 2 which are not contained in $S_{1}$ . Each strata
$X\in S_{1}’$ has dimension one. In this case, the IND-condition is equivalent with the
PND-condition for $S_{2},$ $S_{1}$ and $S_{1}’$ .

\S 7. Generic hyperplane section and its zeta-function.

In this section, we consider generic hyperplane sections of a non-degenerate
hypersurface which has non-isolated singularity at the origin. Let $H=\{z\in C^{n}$ ;
$f(z)=0\}$ be a given non-degenerate hypersurface with non-isolated singularity
of dimension $s$ at the origin. Let $f_{1}(z),$ $\cdots$ , $f_{k-1}(z)$ be given analytic function
defined on a neighbourhood of the origin. Let $V_{k-1}=\{z\in C^{n}$ ; $f_{1}(z)=\cdots=f_{k-1}(z)$

$=0\}$ and $V_{k}=\{z\in C^{n} ; f_{1}(z)=\cdots=f_{k}(z)=0\}$ . Here $f_{k}(z)=f(z)$ . We assume that
(i) the hypersurface $H_{i}=f_{i}^{-1}(0)$ is non-degenerate with isolated singularity at
the origin and $f_{i}(z)$ is convenient for $i=1$ , , $k-1$ and (ii) $V_{k-1}$ and $V=V_{k}$

are non-degenerate complete intersection varieties. Then we can consider the
restriction of the Milnor fibration of the mapping $f=(f_{1}, \cdots , f_{k}):(C^{n},\vec{0})arrow$

$(C^{k},\vec{0})$ to $\{f_{1}=\cdots=f_{k- 1}=0, |f_{k}|\neq 0\}$ . We use the same notation as in \S 6 of
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[21]. Let $B_{\epsilon}$ be a small disc of radius $\epsilon$ and let $U_{\delta}=\{\eta\in C;|\eta|<\delta\}$ and let
$U_{\delta}^{*}=U_{\delta}-\{0\}$ where $\delta$ is sufficiently small comparing with $\epsilon$ . Let $X_{k-1}=V_{k-1}\cap$

$B_{\epsilon}\cap f_{k}^{-1}(U_{\delta})$ and $X_{k-1}^{*}=V_{k- 1}\cap B_{\epsilon}\cap f_{k}^{-1}(U_{\delta}^{*})$ . By the assumption, $V_{k-1}^{*}$ is non-
singular and the restriction of $f_{k}$ to $V_{k-1}^{*}$ is a fibration: $f_{k}$ : $X_{k-1}^{*}arrow U_{\delta}^{*}-\{0\}$ .
Let $\tilde{X}_{k- 1}=\pi_{k-1}^{-1}(X_{k-1})$ and $\tilde{X}_{k-1}^{*}=\pi_{k-1}^{-1}(X_{k-1}^{*})$ . We may assume that the unimodular
simplicial subdivision $\Sigma*$ is chosen so that

$(\#)$ $P\in\Sigma*,$ $I(P)\neq\emptyset$ and $P\neq R_{1},$ $\cdots$ , $R_{n}=f^{I(P)}\equiv 0$ .

AS $\pi_{k- 1}$ : $\tilde{X}_{k-1}^{*}arrow X_{k-1}^{*}$ is biholomorphic, the above fibration is equivalent to
$f_{k}’$ : $\tilde{X}_{k-1}^{*}arrow U_{\delta}^{*}$ where $f_{k}’=\pi_{k-1}\circ f_{k}$ . Now $\pi_{k-1}$ : $\tilde{X}_{k-1}arrow X_{k- 1}$ is already a good resolu-
tion of $X_{k-1}$ which satisfies the conditions of Theorem (3.2) of \S 3, [21]. There-
fore by the same argument as [21], Theorem (6.8) of [21] can be generalized
in this situation as follows. Let $S_{I}$ be the set of primitive strictly positive
weight vectors $Q$ in $N_{I}$ such that (a) (Non-emptiness) $\{\Delta(Q ; f_{i}^{I});i=1, \cdots, k-1\}$

satisfies the $(A_{0})$-condition, (b) $f_{k}^{I}\neq 0$ and (c) (Maximal dimension) $\dim(\Delta(Q;f_{1}^{l})+\cdots$

$+\Delta(Q;f_{k}^{I}))=|I|-1$ . $S_{I}$ is called the $I$-data set of $V_{k}$ . (If $f_{k}^{I}\equiv 0,$ $f_{k^{-1}}’(0)\supset$

$\text{\^{E}}(Q)\cap\tilde{X}_{k-1}^{*}.)$ Then we have

THEOREM (7.1). We have

$\zeta_{k}(t)=\prod_{|I|\geqq k}\prod_{Q\in s_{I}}(1-t^{d(Q:f_{k^{)})^{-\chi_{(Q)}}}^{I}}$ .

Here the integer $\chi(Q)$ is as in \S 6 of [21]. Compare the definition of $S_{I}$

with that in the case of an isolated non-degenerate complete intersection variety.
Assume that $f_{1},$ $\cdots$ , $f_{k-1}$ are generic linear forms so that $V=V_{k}$ is nothing but
$(k-1)$-times iterated generic hyperplane sections. Then Theorem (7.1) describes
the zeta-function of $f^{L}$ where $L=V_{k-1}$ . If $k\geqq s+1,$ $V_{k}$ has an isolated singularity
at the origin and the Milnor fiber is homotopically a bouquet of $(n-k)$-spheres.
Thus the Milnor number $\mu$ is well-defined. Thus we have

COROLLARY (7.2). Assume that $k\geqq s+1$ . Then

$1+(-1)^{n-k} \mu=\sum_{|I|\geq k}\sum_{Q\in S_{I}}d(Q;f_{k}^{I})\chi(Q)$ .

NOW we consider the stratifications of $H$ and $V_{k}$ . Assume that the hyper-
surface $H$ satisfies the IND-condition and let $S=U_{I}S(I)$ be the stratification of
$H$ as in \S 6.

THEOREM (7.3). Assume that the coefficients of $f_{1},$ $\cdots$ , $f_{k-1}$ are sufficiently
genenc. Then $V_{k}$ satisfies the $IND$-condition and the corresponding stratification
$S’$ of $V_{k}$ is simply $\bigcup_{I}S’(I)$ where

$S’(I)= \bigcup_{X\in S(I)}X’$ , $X’=\{z_{I}\in C^{*I} ; z_{I}\in X, f_{1}^{I}(z_{I})=\cdots=f_{k-1}^{I}(z_{I})=0\}$ .
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Namely we have $X’=X\cap V_{k-1}^{I}$ . If $H$ is a good $hyPersurface,$ $V=V_{k}$ is also a
good comPlete intersection variety.

PROOF. By the definition of 8(I), $X\in S(I)$ is defined by an open dense subset
of $\partial X_{1}^{*}(P_{1})\cap\cdots\cap\partial X_{t}^{*}(P_{\iota})$ . Here $X_{i}\in S(J_{i})withJ_{i}\supset I$ and $J_{t}\neq I$ . We prove the
assertion by the descending induction on $|I|$ . Let $X_{i}=\{z_{J_{i}}\in C^{*J_{i}}$ ; $h_{i1}(z_{J_{i}})=\cdots$

$=h_{i\nu_{i}}(z_{J_{i}})=0\}$ . By the induction’s assumption, we have $X_{i}’=X_{i}\cap V_{k-1}^{J_{i}}\in S’(J_{i})$ .
It is easy to see that

$X_{i^{*}}’(P_{i})=\{z_{J_{i}}\in C^{*J_{i}}$ ; $h_{t1P_{i}}(z_{J_{i}})=\cdots=h_{i\nu_{i}P_{i}(z_{J_{i}})=f_{1}^{I}(z_{I})=\cdots=f_{k-1}^{I}(z_{I})=0\}}$

$\partial X_{i^{*}}’(P_{i})=\{z_{I}\in C^{*I} ; h_{i1P_{t}}^{e}(z_{I})=\cdots=h_{i\nu_{i^{P}i}}^{e}(z_{I})=f_{1}^{I}(z_{I})=\cdots=f_{k-1}^{I}(z_{I})=0\}$

where $h_{ijP_{i}}^{e}\equiv 0$ if hijp, is not essentially of $z_{I}$ -variables. Thus the PND-condi-
tion for $(X_{i}’, \partial X_{i^{*}}’(P_{i}))$ follows immediately from that of $(X_{i}, \partial X_{l}^{*}(P_{i}))$ . Now
the non-degeneracy of the intersection variety $n_{t=1}^{t}\partial X_{i^{*}}(P_{i})$ also follows from
the non-degeneracy assumption of $X$ as $\bigcap_{t=1}^{t}\partial X_{i^{*}}’(P_{i})=X\cap V_{k-1}^{I}$ . Note that if
$H$ is a good hypersurface, $V_{k}$ is also a good complete intersection variety. This
completes the proof.

REMARK (7.4). Theorem (7.3) can be obviously extended to the case that
$H$ is a non-degenerate complete intersection variety with the IND-condition: $H=$

$\{z\in C^{n} ; f_{k}(z)=\cdots=f_{k+s}(z)=0\}$ .

\S . opoogca say.8Tliltbilit

In this section, we consider a family of the complete intersection varieties
and we study the topological stability. Let $f_{1}(z, u),$ $\cdots$ , $f_{\alpha}(z, u)$ be analytic
functions defined on $W\cross U$ where $W$ is a neighborhood of the origin of $C^{n}$ and
$U$ is an open connected subset of $C^{m}$ . Let

$CV=\{(z, u)\in W\cross U ; f_{\nu}(z, u)=0, \nu=1, \cdots , \alpha\}$ .

Let $\pi$ : $\varphiarrow U$ be the projection map and let $V_{u}=\pi^{-1}(u)$ . We assume that $V_{u}$

satisfies the simultaneous IND-condition for each $u\in U$ in the following sense.
(i) $\partial\Gamma(f_{v})$ is independent of $u\in U$ .
(ii) For each weight vector $P$, the degrees of $f_{vP}(z, u)$ and $\hat{f}_{\nu P}(z, u)$ are

independent of $u\in U$ .
(iii) For each $u\in U,$ $V_{u}$ satisfies IND-condition.
Here $u$ is considered as a fixed parameter when we say something about

the Newton boundary, face functions and so on. Under this assumption, the
argument in \S \S 5, 6 can be extended easily with parameter $u$ to obtain a regular
stratification 8 of $CV$ . Only thing we have to do is to extend Theorem (5.1)

with a parameter $u$ : Let $p(t)=(z(t), u(t))$ be an real analytic function defined
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on the interval $[0,1]$ . Let $z_{i}(t)=a_{i}t^{b_{i}}+$ ($higher$ terms) as in \S 5. Let $I=\{i;b_{i}$

$=0\},$ $B=^{t}(b_{1}, \cdots , b_{n})$ and $a=(a_{1}, , a_{n})$ as before. Let $q(t)$ be a real analytic

curve in $CV^{*I}(B)$ such that $p(O)=q(O)$ . Let $\tau$ be the limit of the tangent space
$T_{p(t)}q\nearrow$ of $\varphi$ at $p(t)$ and let 1 be the limit line of $[p(t)-q(t)]$ when $t$ goes to
zero. In this case, $\tau$ is a subspace of codimension a of $C^{n+m}$ and $l$ is a line of
$C^{n+m}$ . Then we assert

THEOREM (5.1). 1 is contained in $\tau$ .

The proof is completely parallel to that of Theorem (5.1). We only use
the fact that $ord(\partial f_{v}/\partial u_{j}(p(t)))\geqq d(B;f_{\nu})$ . For instance, assume that $\alpha=1$ . For
brevity’s sake, we use the notation that $z_{n+j}=u_{j}$ $(]=1, \cdots , m),$ $f=f_{1}$ and $\hat{I}=$

$I\cup\{n+1, \cdots , n+m\}$ . We start the canonical identities

$\sum_{i=_{1}}^{n+m}\frac{\partial f}{\partial_{Z_{i}}}(p(t))\frac{dz_{i}(p(t))}{dt}\equiv 0$ and $\sum_{j\in l^{\wedge}}\frac{\partial f_{B}^{e}}{\partial_{Z_{j}}}(q(t))\frac{d_{Z_{j}}(q(t))}{dt}\equiv 0$ .

Let $m=ord(df(p(t)))$ and $k=ord(p(t)-q(t))$ . We put $\vec{\gamma}=df(p(t))/t^{m}|_{t=0}$ and $l=arrow$

$(p(t)-q(t))/t^{k}|_{t=0}$ . If $f_{B}(z, u)$ is not essentially of $z_{I}$ -variables, $\vec{\gamma}=\Sigma_{j^{\wedge}}\not\in l\gamma_{J}dz_{j}$

and the proof is exactly the same as that of Case (I-a) in the proof of Theorem
(5.1). Assume that $f_{B}(z, u)$ is essentially of $z_{I}$ -variables. Let $f_{B}(z, u)=z^{L}f_{B}^{e}(z, u)$ .
We use the following equality instead of (5.6).

$\sum_{j^{=}1}^{n+m}\frac{\partial f}{\partial_{Z_{j}}}(p(t))\frac{d}{dt}(z_{j}(p(t))-z_{j}(q(t)))+$ $\sum_{\wedge,J\in I}(\frac{\partial f}{\partial_{Z_{j}}}(p(t))-\frac{\partial f_{B}}{\partial_{Z_{j}}}(p(t)))\frac{dz_{j}(q(t))}{dt}$

$+$ $\sum_{\wedge,j\in I}p(t)^{L}(\frac{\partial f_{B}^{e}}{\partial_{Z_{f}}}(p(t))-\frac{\partial f_{B}^{e}}{\partial_{Z_{j}}}(q(t)))\frac{d_{Z_{j}}(q(t))}{dt}=0$ .

Assume that the $PNDl-(a)-(ii)$-condition holds. Then the order of the first sum
is $m+k-1$ . The order of second sum is at least $d(B;f)+b_{\max}\geqq d(B;f)\perp k$ .
The order of the last sum is at least $d(B;f)+k$ . Thus we conclude that $\vec{\gamma}(l)arrow$

$=0$ as in the proof of Case (I-b) of Theorem (5.1). We have also the equality
$m=d(B;f)$ . The case of PNDl-(a)-(i) can be treated similarly. The general
case $\alpha>1$ can be proved in the exact same way using modified Lemma (5.11)

with parameter $u$ .
Let $U_{1}$ be an arbitrary relatively compact connected subset of $U$ . We use

the same argument as in \S 6 to construct a regular stratification 8 of $\subset\nu\cap(B_{\epsilon}\cross$

$U_{1})$ for some $\epsilon>0$ such that $S=U_{I}S(I)$ and each stratum $Y$ of $S(I)$ is described
as $Y-\{(z_{I}, u)\in B_{\epsilon}^{*I}xU_{1} ; h_{1}(z_{I}, u)=\cdots=h_{\beta}(z_{I}, u)=0\}$ for some $h_{\nu}(\nu=1, \cdots , \delta)$

where $B_{\epsilon}^{*I}=\{z_{I}\in C^{*I} ; \Sigma_{i\in I}|z_{i}|^{2}<\epsilon\}$ and $Y$ is a non-degenerate complete intersec-
tion for each fixed $u$ . This implies that the projection $\pi$ : $Yarrow U_{1}$ is a submersion.
Consider the $b$-regular stratification $\mathscr{F}$ of $B_{\epsilon}\cross U_{1}$ which is the union $U_{I}g(I)$

where $q(I)=S(I)\cup\{B_{\epsilon}^{*I}\cross U_{1}-\subset\nu^{*I}\}$ where $\subset v^{*I}=\varphi\cap(B_{\epsilon}^{*I}\cross U_{1})$ . We apply the
Thom’s first isotopy theorem ([24, 15]) to obtain the following.
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THEOREM (8.2). Under the simultaneous $IND$-condition for $V_{u}$ , the topological
type of. $(B_{\epsilon}, V_{u})$ is constant for $u\in U_{1}$ .

\S 9. Examples.

In this section, we study several examples.
(I) Hypersurfaces. Let $V$ be a hypersurface defined by $f(z)=0(\alpha=1)$ . Let

$V_{sg}$ be the singular locus.

EXAMPLE (9.1). Let $f(z_{1}$ , $\cdot$ .. , $z_{4})=\Sigma_{i=1}^{4}(z_{i}z_{i+1}z_{i+3})^{3},$ $(z_{i+4}=z_{i})$ . For brevity’s
sake, we use the variable $x,$ $y,$ $z,$ $w$ for $z_{1},$ $z_{2},$ $z_{3}$ and $z_{4}$ respectively. Then $V_{sg}$

is the union of the 2-dimensional coordinate planes. $V^{*I}$ is empty for each $I$

such that $|I|=3$ . Let us consider the case of $I=\{1,2\}$ . We consider I-primary
boundary components. Let $P=^{t}(0,0, a, b)$ . If $a\neq b,$ $f_{P}(z)$ is a monomial. Assume
$a=b$ . Then $f_{P}(x, y, z, w)=(xy)^{3}(z^{3}+w^{3})$ . This satisfies PND2-condition and the
corresponding primary boundary component is $C^{*(1.2I}$ . Thus $S(\{1,2\})$ consist
of a stratum $C^{*\{1.2\}}$ . The same is true for any $I$ with $|I|=2$ . Namely $8(\{i, j\})$

$=\{C^{*(i.j)}\}$ . Thus the stratification 8 of $V$ is given by 12 strata $S=V^{*},$ $C^{*(i.j1}$ ,
$C^{*\{i\}},$ $\{0\}$ . $V$ is irreducible as $V^{*I}=V_{pr}^{*I}$ for any $I$ . This is a good hypersurface.

EXAMPLE (9.2) (Damon [4]). Let $f(z)=xyz^{3}(x^{3}+y^{3})+x^{2}y^{2}w^{4}+yz^{2}w^{6}+xzw^{6}$ .
It is easy to see that $V^{*I}$ is empty for $I=\{2,3,4\},$ $\{1,3,4\},$ $\{1,2,4\}$ . For $I=$

$\{1,2,3\},$ $V^{*I}$ is defined by $x^{3}+y^{3}=0$ and $V$ is non-singular on $V^{*I}$ . It has
three connected components $L_{i}=\{x+\omega^{i}y=0\}(i=0,1,2)$ where $\omega=\exp(2\pi\sqrt{-1}/3)$ .
NOW we consider the case $|I|=2$ . First let $I=\{1,2\}$ . We consider a dual
vector $P=^{t}(0,0, a, b)$ . If $3a=4b,$ $P$ gives a non-trivial face function $f_{P}(z)=$

$xyz^{3}(x^{S}+y^{3})+x^{2}y^{2}w^{4}$ . This is the face where $f$ is not strongly non-degenerate in
the terminology of Damon ([4]). However $f_{P}$ satisfies PND2-condition as $\partial f_{P}/\partial z$

$=\partial f_{p}/\partial w=0$ has no solution in $C^{*\{1.2.3\}}$ . The corresponding primary boundary
component is $C^{*\{1.2\}}$ . If $3a<4b,$ $P$ gives the face function $f_{p}(z)=xyz^{3}(x^{3}+y^{3})$ .
This satisfies the PND1-condition. As the secondary face function $\hat{f}_{B}(z)$ is a
monomial, $PNDl-(a)-(iii)$ is satisfied. Thus $P$ gives the primary boundary com-
ponent $x^{3}+y^{3}=0$ which gives three strata $C_{i}$ : $\{x+\omega^{i}y=0\}$ .

EXAMPLE (9.3). Let $f(z)=x^{5}(x^{4}+z^{4}+w^{4}+u^{\overline{o}})+(xy)^{2}zwu+y^{5}(ay^{4}+bz^{4}+cw^{4}+$

$du^{4})$ . $(n=5, u=z_{5})$ . If $I$ contains 1 or 2, $V_{pr}^{*I}=V^{*I}$ and it is non-singular. Let
$I=\{3,4,5\}$ . Then $V^{*I}=C^{*I}$ . Let $P=^{t}(s, t, 0,0,0)$ . If $3s<2t$ or $3t<2s,$ $P$

gives face functions $x^{4}(z^{4}+w^{4}+u^{4})$ and $y^{5}(bz^{4}+cw^{4}+du^{4})$ respectively. Assume
that $s\leqq 2t/3$ for example. PNDl-(b) is clearly satisfied. $d(P;\hat{f})<d(P;f)+p_{\min}$

if and only if $t/2<s<2t/3$ . In this case, $\hat{f}_{P}(z)=(xy)^{2}zwu$ and therefore PNDI-
$(a)’-(iii)$ is satisfied. The other case is similar. The corresponding primary
boundary components are $W_{1}=\{z^{4}+w^{4}+u^{4}=0\}$ and $W_{2}=\{bz^{4}+cw^{4}+du^{4}=0\}$ . If
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$F3t/2\geqq s\geqq 2t/3$ , it is easy to see that the corresponding face functions satisfy
$PN$D2-condition. The corresponding primary boundary component is $C^{*I}$ . Thus
$8(I)=\{W_{1}^{*}, W_{2}^{*}, W_{t1,2\}}^{*}, W_{\emptyset}^{*}\}$ where $W_{\{1,2I}^{*}=W_{1}\cap W_{2}$ and $W_{\emptyset}^{*}=C^{*I}-W_{1}\cup W_{2}$ . Let
$I=\{4,5\}$ . Let $P=^{t}(a, b, c, 0,0)$ be a dual vector. As PNDl-type face functions,
$P$ can give $x^{5}(w^{4}+u^{4})(a<b, 3a<2b+c)$ and $y^{5}(cw^{4}+du^{4})(b<a, 3b<2a+c)$ . They
satisfy the PNDl-condition. The corresponding primary boundary components
are $w^{4}+u^{4}=0$ and $cw^{4}+du^{4}=0$ (8 strata). As $PND2$-type face functions, $f_{P}$ can
be $x^{5}(w^{4}+u^{4})+(xy)^{2}zwu+y^{5}(cw^{4}+du^{4})$ (if $a=b=c$ ), $x^{5}(w^{4}+u^{4})+y^{5}(cw^{4}+du^{4})$ (if $a=$

$b<c),$ $x^{5}(w^{4}+u^{5})+(xy)^{2}zwu$ (if $3a=2b+c,$ $a<b$ ) and $(xy)^{2}zwu+y^{5}(cw^{4}+du^{4})$ (if $3b=$

$2a+c,$ $b<a)$ . They satisfy the PND2-condition. This example shows that in
general cases, the stratification of a hypersurface involves the stratification of
a complete intersection variety. $V$ is not a good hypersurface.

(II) General case. Let $V=\{f_{1}(z)=\cdots=f_{\alpha}(z)=0\}$ . We give two examples
for $\alpha=2$ .

EXAMPLE (9.4). Let $f_{i}(x, y, z, w)=\Sigma_{j=1}^{4}a_{ij}(z_{j}z_{j+1}z_{j+2})^{a}$ for $i=1,2$ . Here $z_{j}$

$=z_{j+4}$ . Using the calculation of Example (9.1), we can see easily that $V$ satisfies
the IND-condition if $a_{ij}\neq 0$ and $a_{1j}a_{2k}-a_{1k}a_{2j}\neq 0$ for $j\neq k$ . The stratification $S$ is
given by 12 strata $V^{*},$ $C^{*\{i,j)},$ $C^{*ti\}},$ $\{0\}$ . For $I$ with $|I|=2,$ $V^{*I}=\emptyset$ while we
have $V^{*I}=C^{*I}$ . This implies that $C^{I}(|I|=2)$ are irreducible components of $V$ .

EXAMPLE (9.5) (cf. Example (9.2)). Let $f_{i}(x, y, z, w)=xyz^{3}(a_{i}x^{3}+b_{i}y^{3})+$

$c_{i}x^{2}y^{2}w^{4}+d_{t}yz^{2}w^{5}+e_{i}xzw^{6}$ for $i=1$ and 2. We need the condition that $a_{i}\neq 0,$ $\cdots$ ,
$e_{i}\neq 0$ and any $2\cross 2$ minor of

$(\begin{array}{lllll}a_{1} b_{1} c_{1} d_{1} e_{1}a_{2} b_{2} c_{2} d_{2} e_{2}\end{array})$

is non-zero. $V^{*I}$ is empty for $|I|=3$ . Let $|I|=2$ and suppose that $I\neq\{1,2\}$ .
Then $PN$D2 is satisfied. Let $I=\{1,2\}$ and let $P=^{t}(0,0,4a, 3a)$ . Then the cor-
responding non-trivial face functions are $f_{iP}(z)=xyz^{3}(a_{i}x^{3}+b_{i}y^{3})+c_{t}x^{2}y^{2}w^{4}=0$

for $i=1,2$ . This does not satisfy the PND2-condition along

(9.6) $C:(a_{1}c_{2}-a_{2}c_{1})x^{3}+(b_{1}c_{2}-b_{2}c_{1})y^{3}=0$ .
Thus this time, $V$ does not satisfy the IND-condition. To obtain a regular
stratification of $V$ , we need to add a stratum defined by (9.6).

\S 10. Appendix.

(A) PND2-condition. We first consider sufficient conditions for the PND2-
condition. Let $P,$ $e(P)$ and $I$ be as in the $PND$-condition in \S 4. We will replace
the $PND2$-condition for a given $P$ by the condition on the coefficients of $f_{\nu}$ on
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$\Gamma(f_{\nu})$ . Let $Q$ be a strictly positive rational dual vector and let

$\partial V^{*}(P, Q)=\{z_{I}\in C^{*I} ; (f_{\nu P}^{e})_{Q}(z_{I})=0, \nu\in e(P)\}$ and
$V^{*}(P, Q)=\{z\in C^{*n} ; (f_{vP})_{Q}(z)=0, \nu=1, \cdots \alpha\}$

and let $q_{I}$ : $V^{*}(P, Q)arrow\partial V^{*}(P, Q)$ be the projection. Here $(f_{\nu P})_{Q}$ is the face
function of $f_{vP}$ with respect to $Q$ and it has a compact support on a face of
$\Gamma(f_{v})$ . We assert

LEMMA (10.1). The following is a suficient condition for the PND2-
condition for a given P. (PND2)’ For any strictly $po\alpha$ tive rational dual vector
$Q$ such that $V^{*}(P, Q)$ is not empty, the fiber $q^{-1}(z_{I})\cap V^{*}(P, Q)$ is a smooth com-
plete intersection for each fixed $z_{I}\in\partial V^{*}(P, Q)$ .

PROOF. Assume that PND2 does not hold for $P$. We may assume that
$e(P)=\{s+1, \cdot.. , \alpha\}$ . Let $df_{1}\Lambda\cdots\Lambda df_{s}(z)=\Sigma_{K}c_{K}(z)dz_{K}$ . Here $K$ is a subset of

$\{$ 1, $\cdots$ , $n\}$ with $|K|=s$ and $dz_{K}=dz_{k_{1}}\wedge\cdots\wedge dz_{k_{S}}$ , if $K=\{k_{1}, \cdots , k_{s}\}$ . Then we
apply the Curve Selection Lemma to find a real analytic curve $p(t)(0\leq t<1)$

such that (i) $p(O)=\vec{0},$ $f_{\nu P}(p(t))\equiv 0$ for $v=1,$ $\cdots$ , $\alpha$ and $p(t)\in C^{*n}$ for $t\neq 0$ and
(ii) $c_{K}(p(t))\equiv 0$ for any $K$ with $K\cap I=\emptyset$ . Let $p_{i}(t)=a_{i}t^{b_{i}}+$ ($higher$ terms) where
$a_{i}\neq 0$ and $b_{i}>0$ for $i=1,$ $\cdots$ $n$ . Let $Q=^{t}(b_{1}, \cdots , b_{n})$ and $a=(a_{1}, \cdots , a_{n})$ . Con-
sidering the leading terms of the above equalities, we obtain $(f_{vP})_{Q}(a)=0$ , for
$\nu=1,$ $\cdots$ , $a$ and $\det(\partial(f_{vP})_{Q}/\partial z_{k_{\mu}}(a))_{(1\leqq\nu,\mu\leqq s)}=0$ for any $K=\{k_{1}, \cdots , k_{s}\}$ with $K\cap I$

$=\emptyset$ . This contradicts to $(PND2)’- condition$ .
In general (PND2)’ is still not so easy to be checked. We have also the

following sufficient condition for (PND2)’. For a positive rational dual vector
$R=^{t}(r_{1}$ , $\cdot$ .. , $r_{n})$ , recall that we have defined $I(R)=\{j;r_{j}=0\}$ . For brevity’s
sake, we assume that $e(P)=\{s+1, \cdot.. , \alpha\}$ . Let $h_{\nu}(z)=f_{\nu P}(z)$ (resp. $(f_{\nu P})_{Q}$ ) for
$\nu=1$ , $\cdot$ .. , $s$ . We say that $Q$ is compatible with $h_{1}$ , $\cdot$ . , $h_{s}$ if each $h_{v}(z)$ is a
weighted homogeneous polynomial with the weight $Q$ .

LEMMA (10.2). Assume that there exist posrtive rational dual vectors $R_{0}(=P)$ ,
... , $R_{m-1}$ which are compatible with $h_{1},$ $\cdots$ , $h_{s}$ such that $I(R_{0})\supset\cdots\supset I(R_{7n-1})$ . Here
$m=|I|$ and $|I(R_{i})|=m-i$ . Assume that $W=\{z\in C^{*n}\cap B_{\epsilon} ; h_{1}(z)=\cdots=h_{s}(z)=0\}$

is a smooth complete intersection variety. Let $q_{I}$ : $Warrow C^{*I}\cap B_{\text{\’{e}}}$ be the canomcal
projection. Then for any fixed $z_{I}\in C^{*I}\cap B_{\epsilon},$ $q^{-1}(z_{I})$ is a smooth complete intersec-
tion. In particular, the $PND2$-condition for $P(resp$ . (PND2)’-condition for $P$ and
$Q)$ is true.

PROOF. We prove the assertion by the induction on $m$ . The assertion is
trivial if $m=0$ . Assume that the assertion is true for $|I|=m-1$ . By changing
the ordering of the coordinates if necessary, we may assume that $I=I(R_{0})=$

$\{1, \cdots , m\}$ and $I(R_{1})=\{1, \cdots , m-1\}$ . Let $dh_{1}\Lambda\cdots\wedge dh_{s}(z)=\Sigma_{|K|s}=c_{K}\langle z)dz_{K}$ .
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Assume that the assertion does not hold. Then there exists a point $a$ of $W$

such that $c_{K}(a)=0$ for any $K\subset\{m+1, , n\}$ . We will prove that this implies
that $c_{K}(a)=0$ for any $K\subset\{m, \cdots, n\}$ . Let $\Lambda=\{f_{1}, l_{2}, \cdots , l_{S-1}\}$ where $l_{1}=m$ and
$l_{j}>m$ . By the assumption, we can write $R_{1}=^{t}(r_{11}, \cdots , r_{1n})$ where $r_{1j}=0$ for $j<$

$m$ and $r_{1j}>0$ for $j\geqq m$ . Let $d_{\nu}$ be the degree of $h_{\nu}(z)$ under the weight $R_{1}$ .
Then $h_{v}$ satisfies the following equation:

(10.3) $d_{v}h_{\nu}(z)= \sum_{j=m}^{n}r_{1j}z_{j}\frac{\partial h_{\nu}}{\partial_{Z_{j}}}(z)$ , $\nu=1,$ $\cdots$ , $s$ .

AS $c_{\Lambda}(a)$ is equal to $\det(\partial h_{\nu}/\partial z_{\iota_{\mu}}(a))_{v,\mu=}1\ldots..$
$ we use (10.3) and the equality

$h_{\nu}(a)=0$ to eliminate the $\partial h_{\nu}/\partial z_{m}(a)$ of the first column of the above matrix
to obtain

(10.4) $r_{1}ma_{m}c_{\Lambda}(\alpha)=-r_{1j}a_{j}c_{\Lambda_{j}}(\alpha)j^{-}m+1n$

where $\Lambda_{j}=\{], l_{2}, \cdot.. , l_{s}\}$ . As $\Lambda_{j}\subset\{m+1, , n\}$ , the right side of (10.4) is zero
by the induction’s assumption. As $r_{1m}a_{m}\neq 0$ , we obtain $c_{\Lambda}(a)=0$ . This is true
for any such $\Lambda$ which is a contradiction to the induction’s assumption.

(B) Non-emptyness for $V^{*}(P)$ . We consider the variety $V^{*}(P)=\{z\in C^{*n}\cap$

$B_{\epsilon}$ ; $f_{ip}(z)=\cdots=f_{\alpha P}(z)=0\}$ which appeared in the definition of the primary
boundary components. Let $V(P)_{pr}$ be the closure of $V^{*}(P)$ . Let $\Delta_{1;}\ldots$ $\Delta_{\alpha}$ be
compact convex polyhedra in $R^{n}$ . Recall that $A_{0}$ -condition is defined by the
following: $(A_{0})$ For any subset $K\subset\{1, \cdots , \alpha\},$ $\dim\Sigma_{v\in K}\Delta_{\nu}\geqq|K|$ . We consider
the non-emptyness condition of $V^{*}(P)$ as a germ of variety at the origin. For
this purpose, we fix a toric resolution of $V^{*}(P),$ $\pi:Xarrow V(P)_{pr}$ which is associated
to $\Sigma*(P)$ , a unimodular simplicial subdivision of $\Gamma^{*}(f_{1P}, \cdots , f_{\alpha P})$ . Then it is
obvious that $V(P)_{pr}$ is non-empty as a germ of an analytic variety at the origin
if and only if there exists a strictly positive vertex $Q\in\Sigma*(P)$ such that the
corresponding exceptional divisor $E(Q)$ is non-empty. However the non-emptyness
of $E(P)$ is equivalent to the $A_{0}$-condition for $\{\Delta(Q;f_{1P}), \cdot.. , \Delta(Q ; f_{\alpha P})\}$ (Prop-

osition (5.4), [21] $)$ . Note also the existence of such a vertex $Q$ does not de-
pend on the choice of $\Sigma*(P)$ . Thus we have proved the following.

LEMMA (10.5). The germ of $V(P)_{pr}$ at the origin is non-empty if and only
if there exists a strictly $p0\alpha tive$ dual vector $Q\in N^{+}$ such that { $\Delta(Q;f_{1P}),$ $\cdots$ ,
$\Delta(Q;f.p)\}$ satisfies the $A_{0}$ -condition.

REMARK (10.6). Assume that $h_{1},$ $\cdots$ , $h_{\alpha}$ be polynomials and let $Z=\{z\in C^{*n}$ ;
$h_{1}(z)=\cdots=h_{\alpha}(z)=0\}$ be a non-degenerate complete intersection variety. Let $\overline{Z}$

be the closure of $Z$ in $C^{n}$ . Then tbe $A_{0}$-condition for $\{\Delta(h_{1}), \cdots , \Delta(h_{a})\}$ is enough
for the non-emptyness of $Z$ but it is not enough for the non-emptyness of $\overline{Z}$
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as a germ of a variety at the origin.
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