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Introduction

E. Sato [2] considered the structure of varieties which have two bundle
structures whose fibers are projective spaces. It is interesting to consider this
problem from a different point of view. In this paper we consider it from the
homotopical point of view.

Let $X$ be a manifold which has the following two bundle structures:
$i_{1}$ $p_{1}$ Z2 $p_{2}$

$CP^{r}arrow Xarrow CP^{m}$ $CP^{s}arrow Xarrow Y$ ,

where $r,$ $s,$ $m\geqq 1$ and $Y$ is a manifold. The purpose of this paper is to classify
the cohomology ring of $X$ and describe the cohomology ring of $Y$ in terms of
that of $X$. But when we consider this problem from the homotopical point of
view, it is difficult to distinguish fiber bundles from fibrations. Hence what we
do in this paper is to consider manifolds with two maps $p_{1}$ : $Xarrow CP^{m}$ and
$p_{2}$ : $Xarrow Y$ , where $Y$ is a manifold, whose homotopy fibers are complex projec-
tive spaces.

Before we state the results of this paper we list the non-trivial examples
to see that there are many examples.

EXAMPLE. (1) By $H_{m,m}$ we denote the Milnor manifold, that is,

$H_{m}m=$ $\{([x_{0} : \cdots : x_{m}], [y_{0} : \cdots : y_{m}])\in CP^{m}\cross CP^{m}|x_{0}y_{0}+\cdots+x_{m}y_{m}=0\}$ .

The first and second projections $CP^{m}\cross CP^{m}arrow CP^{m}$ induce the two projective
bundle structures on $H_{m,m}$ .

$CP^{n}=U(n+1)/U(1)xU(n)$ $U(2)/U(1)\cross U(1)=CP^{1}$

$\downarrow$ $\downarrow$

(2) $U(n+2)/U(1)\cross U(1)\cross U(n)$ $=$ $U(n+2)/U(1)\cross U(1)\cross U(n)$

$\downarrow$ $\downarrow$

$CP^{n+1}=U(n+2)/U(1)\cross U(n+1)$ $U(n+2)/U(2)\cross U(n)$ .
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In the case $n=1Y=CP^{2}$ . For $n>1H^{*}(Y)=\langle t_{2}, t_{1}^{2}+t_{1}t_{2}\rangle$ (see \S 1).

$CP^{1}=Sp(1)/S^{1}$ $SO(3)/SO(2)=CP^{1}$

$\downarrow$ $\downarrow$

(3) $Sp(2)/S^{1}\cross S^{1}$ $\cong$ $SO(5)/SO(2)\cross SO(2)$

$\downarrow$ $\downarrow$

$CP’=Sp(2)/S^{1}\cross Sp(1)$ $SO(5)/SO(2)\cross SO(3)$ .
In this example $H^{*}(Y)=\langle t_{2}, t_{1}^{2}+t_{1}t_{2}\rangle$ .

(4) Let $\xi$ be an $r+1$-dimensional quaternion vector bundle over $CP^{m}$ and
$S(\xi)$ be its unit sphere bundle. Then we have the following example:

$S^{4r+3}/S^{1}=CP^{2r+1}$

$\downarrow$

$CP^{1}=S^{3}/S^{1}arrow S(\xi)/S^{1}arrow S(\xi)/S^{3}$

$\downarrow$

$CP^{m}$

In this example $H^{*}(Y)=\langle t_{1}, t_{2}^{2}\rangle$ .
(5) Consider a $CP^{1}$ -bundle $p:CP^{2m+1}=S^{4m+3}/S^{1}arrow HP^{m}=S^{4m+3}/S^{3}$ and an

$(r+1)$-dimensional complex vector bundle $\xi’$ over $HP^{m}$ . Let $\xi=p^{*}(\xi’)$ be the
induced bundle over $CP^{2m+1}$ . By $P(\xi),$ $P(\xi’)$ we denote the associated projec-
tive bundles. Then we have

$CP^{r}$

$\downarrow$

$CP^{1}arrow P(\xi)arrow P(\xi’)$

$\downarrow$

$CP^{2m+1}$

In this example $H^{*}(Y)=\langle t_{1}^{2}, t_{2}\rangle$ .
The first result of this paper is

THEOREM A. If $Y$ is homotopy equivalent to a complex projective space,
then $Y$ is homotopy equivalent to $CP^{r}$ or $CP^{m}$ . If $Y$ is not homotopy equivalent
to a complex projective space, then the fiber of $Xarrow Y$ is $CP^{1}$ .

By Theorem A we see that the cohomology ring of $Y$ , if $Y$ is not homo-
topy equivalent to a complex projective space, is generated by two elements
which are in dimension 2 and 4 (see Proposition 5.1). To describe these ele-
ments in the cohomology ring of $X$ we need Theorem B.

We consider the map $p_{1}\circ i_{2}$ : $CP^{1}arrow CP^{m}$ as an element of $\pi_{2}(CP^{m})\cong H_{2}(CP^{m})$
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and under a certain isomorphism $\pi_{2}(CP^{m})\cong Z$ we denote it as $\beta$ . $\pm\beta$ is a
characteristic number of $X$. The second result of this paper is

THEOREM B. If $Y$ is not homotopy equivalent to a comPlex Projective sPace,

then $\beta=0,$ $\pm 1$ or $\pm 2$ .

Theorem $B$ says that there might exist examples with $\beta=\pm 2$ , but we could
not find such examples.

This paper is arranged as follows.
In \S 1 we prove elementary results by using the Serre spectral sequence.

In \S 2 we prove Theorem A except for the case $s=r<m$ . In this case we use
mainly the Steenrod operation to prove it. In \S 4 we prove Theorem A in the
exceptional case. \S 3 is devoted to investigate the relation between the cohomo-
logy rings of $X$ and $Y$ for the exceptional case. In \S 5 we describe the co-
homology ring of $Y$ in terms of that of $X$ and prove Theorem B.

In this paper $H^{*}(X)$ stands for $H^{*}(X;Z)$ .
The author would like to thank E. Sato and A. Kono for helpful conversa-

tion.

\S 1. Elementary results.

In this section we prove elementary results about the cohomology rings of
$X$ and $Y$ . The $K$-comomology ring of $X$, which will be used in \S 4, is also
determined.

PROPOSITION 1.1. $H^{*}(X)\cong Z[t_{1}, t_{2}]/(t_{1}^{m+1}, f)$ , where

$f=t_{2}^{r+1}-c_{1}t_{1}t_{2^{-}}^{r}\ldots-c_{r+1}t_{1}^{r+1}$

for some $c_{i}\in Z,$ $1\leqq i\leqq r+1$ .

PROOF. Consider the following Serre spectral sequence associated to the
fiber bundle $CP^{r}arrow Xarrow CP^{m}$ :

$E_{2}^{*,*}\cong H^{*}(CP^{m})\otimes H^{*}(CP^{r})\cong Z[t_{1}, t_{2}]/(t_{1}^{m+1}, t_{2}^{r+1})\Rightarrow H^{*}(X)$ .

By the dimensional reason this spectral sequence collapses, from which we will
obtain the proposition easily.

REMARK. If a fiber bundle $CP^{r}arrow Xarrow CP^{m}$ is the projective bundle associated
to a vector bundle over $CP^{m},$ $\{c_{1}, \cdots , c_{r+1}\}$ are the Chern classes of the vector
bundle up to sign under the suitable choice of a generator $t_{2}$ . But in general

there is no canonical way of choosing a generator $t_{2}$ . In Proposition 1.1 $t_{2}$ is
only chosen so that $i_{1}^{*}(t_{2})$ generates $H^{2}(CP^{r})$ . Therefore $\{c_{1}, \cdots , c_{\tau+1}\}$ is not
determined uniquely.
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In the examples in Introduction we choose $t_{1},$ $t_{2}$ so that $H^{*}(Y)$ can be des-
cribed as simply as possible. See \S 5.

PROPOSITION 1.2. $Y$ is simply connected. $H^{*}(Y)$ is torsion free and $H^{odd}(Y)$

$=0$ .

PROOF. $CP^{S}$ and $X$ are simply connected, so is $Y$. We have the Serre
exact sequence for any field $k$ since $CP^{S}$ and $Y$ are simply connected:

$p^{*}$

$0arrow H^{3}(Y;k)arrow H^{2}(CP^{S} ; k)(\cong k)arrow H^{2}(X;k)(\cong k\oplus k)arrow H^{2}(Y;k)arrow 0$ .
If $H^{3}(Y;k)$ is isomorphic to $k,$ $p^{*}:$ $H^{2}(Y;k)arrow H^{2}(X;k)$ is isomorphic by the
above exact sequence. Since $H^{*}(X;k)$ is generated by elements of dimension
2, $P^{*}:$ $H^{*}(Y;k)arrow H^{*}(X;k)$ is epimorphic. This contradicts the fact that in
dimension $\dim XH^{*}(Y;k)=0$ and $H^{*}(X;k)\cong k$ , which implies that $H^{3}(Y;k)=0$ .
Since $k$ is any field, we have $H^{3}(Y)=0$ . Then it is easy to obtain the desired
result.

COROLLARY 1.3. $H^{*}(Y)$ is a subring of $H^{*}(X)$ and $0arrow H^{2}(Y)arrow H^{2}(X)arrow$

$H^{2}(CP^{s})arrow 0$ is a short exact sequence.

COROLLARY 1.4. $(s+1)|(r+1)$ or $(s+1)|(m+1)$ and $P(Y)=(1-t^{2r+2})(1-t^{2m+2})$

$/(1-t^{2})(1-t^{2S+2})$ , where $P(Y)$ is the Poincar\’e polynomial of $Y$.

PROOF. Since the Serre spectral sequence associated to the fiber bundle
$CP^{s}arrow Xarrow Y$ collapses, we have $P(CP^{r})P(CP^{m})=P(CP^{s})P(Y)$ . On the other
hand $P(CP^{s})=(1-t^{2S+2})/(1-t^{2})$ and $P(Y)$ is a polynomial. Thus we have the
desired result.

PROPOSITION 1.5. (1) If $H^{*}(Y)$ is generated by an element, $Y$ is homotopy
equivalent to $CP^{r}$ or $CP^{m}$ .

(2) There are two generators $t$ and $u$ in $H^{2}(X)$ such that $\langle t, v\rangle\subset H^{*}(Y)\subset$

$H^{*}(X)$ , where $v=u^{s+1}+a_{s}u^{s}t+\cdots+a_{1}ut^{s}$ for some $a_{i}\in Z,$ $1\leqq i\leqq s$ and $\langle t, v\rangle$ de-
notes the subring generated by the elements $t,$ $v$ . (The fact that $H^{*}(Y)=\langle t, v\rangle$

will be proved in \S 5.)

PROOF. (1) The generator $t$ of $H^{2}(Y)$ induces a map $t:Yarrow CP^{r+m-s}$ , which
is a homology equivalence. Since $Y$ and $CP^{r+m-s}$ are simply connected, $t$ is a
homotopy equivalence. In this case by Corollary 1.4 $s$ must be equal to $r$ or $m$ ,

which implies (1).

(2) Since the Serre spectral sequence associated to the fiber bundle $CP^{s}arrow$

$Xarrow Y$ collapses, we have

$H^{*}(X)\cong H^{*}(Y)[u]/(u^{s+1}+a_{s}u^{s}t+\cdots+a_{1}ut^{s}-v)$ , $v\in H^{2S+2}(Y)$ ,

where $u\in H^{2}(X)$ is corresponding to a generator of $H^{2}(CP^{s})$ , which implies (2).
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Next we consider the $K$-cohomology ring of $X$, which will be used in \S 4.
$t_{1}$ and $t_{2}(\in H^{2}(X))$ determine complex line bundles over $X$ and we denote them
by the same symbols. We set

$\tilde{t}_{i}=t_{i}-1\in\tilde{K}(X)$ for $i=1,2$ .
$\{1, \tilde{i}_{2},\tilde{t}_{2}^{2}, , t^{r}\}$ are elements in $K^{*}(X)$ such that { $p71,$ $p7\tilde{t}_{2}$ , $\cdot$ .. , pft } form

a basis for $K^{*}(CP^{r})$ over $K^{*}(pt)$ . The Leray-Hirsch theorem says that $K^{*}(X)$

is a free $K^{*}(CP^{m})$-module with a basis $\{1, t_{2}^{\nu},\tilde{t}_{2}^{2}, \cdot.. , t^{r}\}$ . Thus there is a unique
relation such that

$X=\tilde{t}_{2}^{r+1}-\delta_{1}t_{2^{-}}^{r}\sim\ldots-c_{r}\sim\tilde{t}_{2}-\delta_{r+1}=0$

with $\delta_{i}\in\tilde{K}(CP^{m}),$ $1\leqq i\leqq r+1$ , and we obtain

PROPOSITION 1.6. $K^{*}(X)\cong K^{*}(pt)[\tilde{t}_{1},\tilde{t}_{2}]/(t_{1}^{m+1}, f)$ .

The relation 7 is given as follows. Consider the Atiyah-Hirebruch spectral
sequence:

$H^{*}(X;K^{*}(pt))=K^{*}(X)$ .
By Proposition 1.1 this spectral sequence collapses and the Chern character ch:
$K(X)arrow H^{*}(X;Q)$ is monomorphic. Let us consider an element of $K(X)\otimes Q$ :

$f^{\chi}= \{\log(1+\tilde{t}_{2})\}^{r+1}-\sum_{i\subset 1}^{r+1}c_{i}\{\log(1+\tilde{t}_{1})\}{}^{t}\{\log(1+\tilde{t}_{2})\}^{r+1-i}$

Since ch $\tilde{f}’=f,\tilde{f}^{p}=0$ . Put $\ln(x)=x^{-1}\log(1+x)$ , tben we have

(1.7) $f’= \tilde{t}_{2}^{r+1}-\sum_{i=1}^{r+1}c_{i}(\ln\tilde{t}_{1}/\ln\tilde{t}_{2})^{l^{N}}t_{1}^{\ell}t_{2}^{r+1- i}$ .

From this relation (1.7) recurrently we can get the relation ; since $\tilde{t}_{2}^{r+1}$ does
not appear in the second term of (1.7). Now the first few terms of $c_{i}\sim$ in $f$ ,

for $r>1$ , is given as follows:

(1.8) $i_{i}^{t}=c_{i}t_{1}^{i}+ \frac{1}{2}\sim\{(i+1)c_{i+1}-ic_{i}+c{}_{1}C_{i}\}t_{1}^{i+1}\sim$

$+ \frac{1}{24}\{(3i+1)(i+2)c_{i+2}-(6i+4)c_{1}c_{i+1}+2c_{2}c_{i}+4c_{1}^{2}c_{i}$

$-6(i+1)c_{1}c_{i}-6(i+1)(2r-i+1)c_{i+1}+(3i^{2}+5i)c_{i}\}\tilde{t}_{1}^{i+2}+\cdots$

where $c_{i}=0$ for $i>r+1$ .

\S 2. Proof of Theorem A (elementary case).

AS for the two generators of $H^{*}(X)$ described in Proposition 1.5, (2) we
put $t=\alpha t_{1}+\beta t_{2}$ and $u=\delta t_{1}+\gamma t_{2}$ and fix this notation from now on. Of course
there are ambiguities in choosing $t_{2}$ and $u$ .
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PROPOSITION 2.1. $Y$ is homotopy equivalent to a projective space or $s\leqq$

$\min\{r, m\}$ .

PROOF. If $s> \min\{r, m\}$ , then $m<s\leqq r$ or $r<s\leqq m$ by Corollary 1.4.
(1) We assume that $m<s\leqq r$ . Since $Y$ is a $2(m+r-s)(<2r)$ dimensional

manifold,

$t^{r}= \sum_{i=0}^{m}(\begin{array}{l}ri\end{array})\alpha^{i}\beta^{r- i}t_{1}^{i}t_{2}^{r- i}=0$ ,

which implies that $\beta=0$ . We may regard $t=t_{1}$ and $u=t_{2}$ . If $s<r$ , this implies
that $t_{2}^{s+1}$ is expressed as another element. Of course this is impossible. If $s=r$ ,
$Y$ is homotopy equivalent to $CP^{m}$ .

(2) Next we assume that $r<s\leqq m$ . Since $Y$ is a $2(m+r-s)(<2m)$ dimen-
sional manifold, $t^{m}=0$ . We investigate this condition in $H^{*}(X;C)\cong C[t_{1}, t_{2}]/$

$(t_{1}^{m+1}, f)$ . Let $\omega\in C$ be a root of the equation $f(1, x)=0$ and put $t_{2}’=t_{2}-\omega t_{1}$ .
Then we have

$f(t_{1}, t_{2})=(t_{2}’+\omega t_{1})^{r+1}-c_{1}t_{1}(t_{2}’+\omega t_{1})^{r}-\cdots-c_{r+1}t_{1}^{r+1}$

$=t_{2}^{\prime r+1}-c_{1}’t_{1}t_{2}^{\prime r}-$ $\cdot$ .. $-c_{r}’t_{1}^{r}t_{2}’$

for some $c_{i}’\in C$ . By using this relation we obtain

$0=t^{m}=(\alpha t_{1}+\beta t_{2})^{m}=(\alpha t_{1}+\beta(t_{2}’+\omega t_{1}))^{m}$

$=((\alpha+\beta\omega)t_{1}+\beta t_{2}’)^{m}=(\alpha+\beta\omega)^{m}t_{1}^{m}+$ ($terms$ which contain $t_{2}’$ ),

which implies that $\alpha+\beta\omega=0$ . If $\beta=0$ , then $\alpha=0$ , which contradicts the assump-
tion. Thus $\beta\neq 0$ and $\omega=-\alpha/\beta$ . On the other hand $\omega$ is an algebraic integer
and a is prime to $\beta$ , so we see that $\omega$ is an integer and $\beta=\pm 1$ . Thus we may
regard $t=t_{2},$ $u=t_{1}$ . If $s<m$ , this implies that $t_{1}^{s+1}$ is expressed as another ele-
ment. This is impossible. If $s=m,$ $Y$ is homotopy equivalent to $CP^{\tau}$ .

LEMMA 2.2. We assume that $H^{2i}(Y ; Z/2)\cap\{u^{i}+x|x\in(t)\}=\emptyset$ for $s+1<i<$

$2s+2$ and that $H^{2S+6}(Y ; Z/3)\cap\{u^{s+3}+x|x\in(t)\}=\emptyset$ if $s>1$ . Then the fiber of
the fiber bundle $Xarrow Y$ is $CP^{1}$ .

PROOF. First we investigate $H^{*}(X;Z/2)$ . Obviously

$Sq^{2i}v=(\begin{array}{l}s+1i\end{array})u^{S+1+i}+$ (terms which contain $t$ ) $\in H^{*}(Y;Z/2)$

for $0<i<s+1$ . By assumption, $(\begin{array}{l}s+1i\end{array})\equiv 0$ mod2 for $0<i<s+1$ , which implies

that $s+1$ is a power of 2. So we put $s+1=2^{k},$ $k\geqq 1$ .
Next we investigate $H^{*}(X;Z/3)$ . By using $P^{1}$ instead of $Sq^{2i}$ in the above

argument we have
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$(s+1)u^{S+3}+$ ($terms$ which contain $t$ )

$=2^{k}u^{2^{k}+2}+$ (terms which contain $t$ ) $\in H^{*}(Y;Z/3)$ .
Thus we obtain that $k=1,$ $i.e.,$ $s=1$ , which completes the proof.

PROPOSITION 2.3. If $H^{*}(X)\cong Z[t_{1}, t_{2}]/(t_{1}^{m+1}, t_{2}^{r+1})$ and $Y$ is not homotopy
equivalent to a Projective sPace, then the fiber of $Xarrow Y$ is $CP^{1}$ and $H^{*}(Y)=\langle t_{1}, t_{2}^{2}\rangle$ ,
$\gamma$ is odd, or $H^{*}(Y)=\langle t_{1}^{2}, t_{2}\rangle,$ $m$ is odd.

PROOF. Since $Y$ is a $2(m+r-s)$-dimensional manifold, we have

$t^{m+r- s+1}=(\alpha t_{1}+\beta t_{2})^{m+r- s+1}$

$= \sum_{i=0}^{m+r- s+1}(\begin{array}{l}m+r-s+1i\end{array})\alpha^{i}\beta^{m+r- s+1- i}t_{12}^{i}t^{m+r- s+1- i}$

$= \sum_{i=m- s+1}^{m}(\begin{array}{l}m+r-s+1i\end{array})\alpha^{\iota}\beta m+r- s+1-\ell_{t_{12}^{\iota}}t^{m+r- s+1- i}=0$ ,

which implies that $\alpha=0$ or $\beta=0$ . So we may regard $t=t_{1}$ or $t_{2}$ . It is sufficient
to examine the case $t=t_{1}$ .

Since $t=t_{1}$ , we can assume that $u=t_{2}$ . For we can choose $t_{2}\in H^{2}(X)$ so
that if $(t_{2})$ generates $H^{2}(CP^{r})$ . In this case we can see easily that $H^{*}(Y)=\langle t, v\rangle$

and that $(s+1)|(r+1)$ , by using the Poincar\’e polynomial of $Y$. If $s=r,$ $H^{*}(Y)$

is generated by $t_{1}$ , which contradicts the assumption by Proposition 1.5. Thus
we obtain that $s\neq r$ and $(s+1)|(r+1)$ .

NOW the first half of the proposition is trivial since the assumption of
Lemma 2.2 is obviously satisfied.

AS proved above

$H^{*}(Y)=\langle t_{1}, v\rangle$ , $v=t_{2}^{2}+at_{1}t_{2}$ , $r+1=2(k+1)$ .
If $a\neq 0$ , then $t_{1}^{i}v^{j}$ , OSi$m, O\leqq j$k, and $v^{k+1}$ are linearly independent in $H^{*}(Y)$ ,

since
$v^{k+1}=(t_{2}^{2}+at_{1}t_{2})^{k+1}=(k+1)at_{1}t_{2}^{2k+1}+lower$ terms.

This contradicts the Poincar\’e polynomial of $Y$ . Thus $v=t_{2}^{2}$ , which completes
the proof.

PROPOSITION 2.4. If $s<r\leqq 2s,$ $(s+1)|(m+1)$ and $s\neq m$ , then the assumption
of Lemma 2.2 is satisfied.

PROOF. We see that $H^{2r+2}(Y)\cong Z$ by the Poincar\’e polynomial. This implies
that there is a relation between $t^{r+1}$ and $vt^{r-s}$ . In $(2r+2)$-dimension we have
only one relation $f$ between $t$ and $u$ , which should be expressed as

$af=bt^{\tau+1}+cvt^{\tau- s}=cu^{S+1}t^{r- S}+ca_{s}u^{s}t^{\mathcal{T}- S+1}+\cdots+ca_{1}ut^{r}+bt^{r+1}$

with some $a,$ $b,$ $c\in Z,$ $a\neq 0,$ $(b, c)\neq(O, 0)$ . From this fact the assumption of
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Lemma 2.2 is obviously satisfied.

The similar arguments establish the following propositions.

PROPOSITION 2.5. If $s<m\leqq 2s,$ $(s+1)|(r+1)$ and $s\neq r$ , then the assumption
of Lemma 2.2 is satisfied.

PROPOSITION 2.6. If $s=m<r$ , then $Y$ is homotopy equivalent to $CP^{r}$ or $s=1$ .

The following two propositions will be easily proved.

PROPOSITION 2.7. If $2s< \min\{r, m\}$ , the assumption of Lemma 2.2 is satisfied.
PROPOSITION 2.8. If $m\leqq s=r$ , then $Y$ is homotopy equivalent to $CP^{m}$ . If

$r\leqq s=m$ , then $Y$ is homotopy equivalent to $CP^{r}$ .

\S 3. Preparation for exceptional case.

In this section we consider the case $r=s<m$ . We assume that $Y$ is not
homotopy equivalent to a complex projective space. In this case the integral
cohomology group of $Y$ is given by

$H^{*}(Y)=Z[t, v’]/(t^{s+1}-nv’, (v’)^{k+1})$ ,

where $v’\in H^{2S+2}(Y)$ is a generator, $n\neq\pm 1$ and $m+1=(s+1)(k+1)$ .
By $P^{i}$ we denote the i-th Steenrod operation for an odd prime and $Sq^{2i}$ for

the prime 2.

LEMMA 3.1. Let $Y$ be a manifold whose cohomology is given by the follow-
ing formula:

$H^{*}(Y)\cong Z[x, y]/(x^{S+1}-ny, y^{k+1})$ ,

where $\deg x=2$ and $s\geqq 1$ . Let $p$ be a prime number such that $p$ divides $n$ but $p^{2}$

does not divide $n$ . Then $(s+1)|(p-1)$ or $k+1\leqq p$ .

PROOF. Let $\tilde{Y}$ be a homotopy fiber of the map $x$ : $Yarrow CP^{m}\subset CP^{\infty},$ $m+1=$

$(s+1)(k+1)$ . Then we have
$H^{*}(\tilde{Y} ; Z/p)\cong\Lambda[y’]\otimes Z/p[y]/(y^{k+1})$ ,

where $\beta y’=y$ (in this proof $\beta$ denotes the Bockstein coboundary operator). If
$we^{w}deny$ the result, we have

$y^{p}=P^{s+1}\beta(y’)=P^{1}\beta P^{s}(y’)-s\beta P^{s+1}(y’)=0$ ,

which contradicts the assumption.

AS in \S 2 we put $t=\alpha t_{1}+\beta t_{2}$ and $u=\gamma t_{1}+\delta t_{2}$ .

LEMMA 3.2. $\beta$ is prime to $n$ . Hence, when we consider the problem in
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$H^{*}(i^{R)},$ $\beta^{-1}\in R$ , we can assume that $t=t_{2}$ and $u=t_{1}$ .
PROOF. Let $p$ be a prime which divides $\beta$ and $n$ . $p$ is prime to $\alpha$ since

$\alpha$ is prime to $\beta$ . Then
$t^{s+1}\equiv\alpha^{s+1}t_{1}^{s+1}\equiv 0$ $mod p$ ,

which contradicts the above. Hence $\beta$ is prime to $n$ .
Put $t_{2}’=t$ and $u’=\pm(\beta u-\delta t)=t_{1}$ . Since $\beta$ is a unit in $R,$ $i_{i}^{\triangleright}’(t_{2}’)$ generates

$H^{2}(CP^{r} ; R)$ and $i_{2}^{*}(u’)$ generates $H^{2}(CP^{S} ; R)$ . Thus we can choose $t_{2}’$ and $u’$

as the generators instead of $t_{2}$ and $u$ .

COROLLARY. If $n=0,$ then $s=1$ .

PROOF. By Lemma 3.2 $\beta=\pm 1$ . We can assume that $t=t_{2}$ and $u=t_{1}$ in
$H^{*}(X)$ . Thus the corollary follows Proposition 2.3.

NOTICE. For the following arguments (in the proofs of Propositions 3.3,
3.5 and 4.4) we make a convention. The statement such as $x\equiv 0mod’(t^{g}, u^{h})$

will be used as follows. That is, if we express $x$ as a linear combination of
the basis $\{u^{i}t^{j} : 0\leqq i\leqq m, 0\leqq j\leqq r\}$ , then $x\equiv 0$ mcd’ $(t^{g}, u^{h})$ means that the coeffi-
cients of $u^{i}t^{j},$ $i<h,$ $j<g$ are zero. Such a convention will be also used when
we argue in K-theory.

From now on until the end of this section we assume that $p$ is a prime
number which divides $n$ and that we discuss the problem in $H^{*}($ ; $Z_{(p)})$ or in
$H^{*}( ; Z/p)$ . By Lemma 3.2 $t=t_{2}$ and $u=t_{1}$ . Then we see that

$H^{*}(X;Z_{(p)})=Z_{(p)}[u, t]/(_{\backslash }\mathcal{U}^{m+1}, f^{f})$ , $H^{\succ’}\cdot(Y ; Z_{(p)})=\langle t, v\rangle$ ,
where

$f’=t^{s+1}-nv=t^{s+1}-n(u^{s+1}+a_{s}u^{s}t+\cdots+a_{1}ut^{s})$

$=t^{s+1}- \sum_{i=1}^{s+1}c_{i}u^{i}t^{s+1- i}$

$n,$ $c_{i}\in Z$ and $c_{i}=na_{t}$ for $1\leqq i\leqq s+1,$ $a_{s+1}=1$ . Of course $a_{i},$ $c_{t}$ for $1\leqq i\leqq s+1$ are
different from those in Propositions 1.1 and 1.5.

PROPOSITION 3.3. If $p^{2}$ divides $n$ or $k+1$ is prime to $p$ , then $v=u^{s+1}$ in
$H^{*}(X;Z_{(p)})$ .

PROOF. Let $k+1=p^{\iota}h,$ $(p, h)=1$ . We can put

$v^{p^{l}}= \sum_{i=0}^{s}e_{i}u^{(s+1)p^{l}-i}t^{i}$ $e_{0}^{-1}\in Z_{(p)}$ .

NOW we assume that there is an integer $d\geqq 1$ such that $p^{a- 1}$ divides $e_{i},$
$1\leqq i\leqq s$ ,

and that $p^{(}i$ divides $e_{i},$ $1\leqq i\leqq g-1$ , but does not divide $e_{g}$ for some $g,$ $1\leqq g\leqq s$ .
Then
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$v^{k+1}=e_{\cup}^{h}+ \sum_{j=1}^{h}(\begin{array}{l}hj\end{array})\{\sum_{i=1}^{s}e_{i}u^{(S+1)p^{l}- i}t^{i}\}^{j}e_{0}^{h-j}u^{(s+1)p^{l}j}$

$\equiv\sum_{J=1}^{h}(\begin{array}{l}hj\end{array})(r+1)p^{l}-ii\}^{j}e_{0}^{h-j}u^{(r+1)p^{l}J}$ $mod p^{a}$

$\equiv he_{0}^{h- 1}e_{g}u^{m+1- g}t^{g}$ $mod’(p^{a}, i^{g+1})$

$=0$ ,

which shows that $p^{cf}$ divides $e_{g}$ . This contradicts the assumption. Therefore
the proposition is proved when $k+1$ is prime to $p$ . So we assume that $p^{2}$

divides $n$ . When we describe

$v^{p^{j}}= \sum_{i=0}^{\delta}e_{i}^{(f)}u^{(s+1)p^{j_{-i}}}t^{i}$
$e_{0}^{(j)^{-1}}\in Z_{(p)}$ ,

we will prove $e_{i}^{(f)}=0,1\leqq i\leqq s$ , inductively. In the case $j=l$ this is proved as
above. We argue as in above, so we take $d$ and $g$ .

$v^{p^{f1}}=e_{0}^{(f+1)}u^{(S+1)p^{j+1}}=(v^{p^{i}})^{p} \perp=\{\sum_{=0}^{s}e_{i}^{(j)}u^{(s+1)p^{i}- i}t^{i}\}^{p}$

$=(e_{0}^{(f)})^{p}u^{(S+1)p^{f+1}}+ \{\sum_{i=1}^{s}e_{i}^{(j)}u^{(S+1)p^{t_{-i}}}t^{i\}^{p}}$

$+ \sum_{f=1}^{p-1}(\begin{array}{l}pf\end{array})(e_{0}^{(j)})^{p}- f\{\sum_{i=1}^{s}e_{\iota}^{(f)}u^{(S+i)p^{j_{-i}}}t^{\ell}\}^{f}u^{(s+1)p^{j_{f}}}$

$\equiv\sum_{f=1}^{p- 1}(\begin{array}{l}pf\end{array})(e_{0}^{(f)})^{p}- f\{\sum_{i=g}^{s}e_{i}^{(j)}u^{(s+1)p^{j_{-}}}{}^{t}i^{i}\}^{f}u^{(s+1)p^{j}f}$

$+ \{\sum_{i=1}^{s}e_{i}^{(j)}u^{(s+1)pJ-t}t^{i\}^{p}}$ $mod’(p^{a+1}, u^{(s+1)p^{j+1}})$

$\equiv p(e_{0}^{(j)})^{p-1}e_{g}^{(j)}u^{(s+1)p^{j+1}-g}t^{g}$

$+ \{\sum_{i=g}^{s}e_{i}^{(j)}u^{(s+1)p^{j_{-i}}}t^{i\}^{p}}$ $mod’(p^{a+1}, t^{g+1}, u^{(s+1)p^{j+1}})$

$\equiv p(e_{0}^{(f)})^{p-1}e_{g}^{(f)}u^{(s+1)p^{j+1}-g}t^{g}$ $mod’(p^{l+1}(t^{g+1}, u^{(S+1)p^{j+1}})$ ,

which shows that $p^{a}$ divides $e_{g}^{(j)}$ . This contradicts the assumption. Thus the
induction step is completed and the proposition is proved.

REMARK. In the above argument when we happen to know that $e \int^{j)}\equiv 0$

$mod p$ for $p(i+1)<2(s+1)$ and $1\leqq$ ] $\leqq l$ , the result is true even if $p^{2}$ does not
divide $n$ .

PROPOSITION 3.4. If $s+1=bp^{a},$ $(b, p)=1,$ then $b|(p-1)$ or $kb<p-1$ .

PROOF. In $H^{*}(X;Z/p)\cong Z/p[t, u]/(t^{s+1}, u^{m+1})$ we consider the condition
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$P{}^{t}(v)\in(\begin{array}{l}s+1i\end{array})u^{s+1+i(p- 1)}+(t)\subset H^{*}(Y ; Z/p)=\langle t, v\rangle$ .

First we consider the case when there appear two non-zero terms in the

$p$-adic expansion of $s+1$ . In this case, since $(\begin{array}{l}s+1p^{a}\end{array})\neq 0$ and $s+1<s+1+p^{a}(p-1)$

$<2(s+1)$ , the above inclusion leads to the contradiction. So we have $0<b<p$ .
Then

$P^{p^{a}}(v)=(\begin{array}{l}s+1p^{a}\end{array})v^{i}$

for some $i$ or $s+1+p^{a}(p-1)\geqq m+1$ , which induces the result.

PROPOSITION 3.5. In $H^{*}(X;Z/p)$ we have

(1) $v=u^{p^{a}}+a_{p^{a-1}}u^{p^{a-1}}t^{p^{a- 1}(p-1)}$ if $b=1$ ,

(2) $v=u^{s+1}$ if $1<b<P-1$ ,

(3) $v=(u+\lambda t)^{s+1}$ for some $\lambda\in Z/p$ if $b=P-1$ .

PROOF. If $p^{2}$ divides $n$ or $(k+1, p)=1$ , we have already proved that $v=u^{s+1}$

in $H^{*}(X)$ . We assume that $p^{2}$ does not divide $n$ and that $p$ divides $k+1$ , which
implies that $b$ divides $p-1$ . Especially, in this case, $u^{j}\neq 0$ for $j<p(s+1)$ .

(1) We assume that there is an integer $d,$ $p^{a- 1}<d<p^{a}$ , such that $a_{s}=$ $=$

$a_{a+1}=0,$ $a_{d}\neq 0$ . Since

$P^{a}(v)=P^{f}((u^{S+1}+a_{a}u^{a}t^{s+1- a}+ )$

$=a_{d}u^{cfp}t^{s+1- d}+\cdots=a_{a}v^{i}t^{s+1- a}$

for some $i$ , we have $dp=i(s+1)=ip^{a}$ , i. e., $d=ip^{a-1},1<i<p$ . Then

$P^{p^{a-1}}(v)=P^{p^{a- 1}}(u^{S+1}+a_{a}u^{a}t^{s+1-(}f+ )$

$=ia_{d}u^{a+p^{a- 1}(p-1)}t^{s+1-a}+\cdots=ia_{a}v^{j}t^{s+1-d}$

for some $j$ . We have $ip^{a-1}+p^{a-1}(p-1)=](s+1)=]p^{a}$ , i. e., $i=j=1$ , which con-
tradicts the assumption. Similarily we see that $a_{j}=0$ for $j<p^{a-1}$ .

(2) and (3) It is easy to prove that $a_{i}=0$ unless $p^{a-1}$ divides $i$ . So we can
assume that $a=1$ without loss of generality. We deal with the case $a=0$ by
considering $a_{i}=0$ unless $p$ divides $i$ .

We assume that there is an integer $d,$ $(b-1)p<d<bp$ , such that $a_{s}=\ldots=$

$a_{d+1}=0,$ $a_{a}\neq 0$ . Since

$P^{d}(v)=P^{d}(u^{bp}+a_{d}u^{d}t^{bp-d}+ )$

$=a_{a}u^{dp}t^{bp-d}+\cdots=a_{a}v^{i}t^{bpl}-($

for some $i$ , we have $dp=i(s+1)=ibp$ , i. e., $d=ib,$ $1<i<p$ . Then
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$P^{1}(v)=P^{1}(u^{bp}+a_{d}u^{f}(t^{bp- a}+ )$

$=iba_{a}u(x+p- 1t^{bp- d}+\cdots=iba_{d}v^{j}t^{bp-a}$

for some $j$ . We have $ib+(p-1)=_{J(S+1)=_{J^{bp}}},$ $i$ . $e.,$ $p-1=b(pj-i)$ . This implies
that $j=1,$ $ib=bp-p+1$ . Thus $d=(bp-p+1)p=(b-1)p+1$ . Then by the remark
to Proposition 3.3 we see that $v=u^{bp}$ if $b<(p-1)$ , which completes the case (2).

NOW we consider the case (3) and show that the assumption $a_{(b-1)p+1}\neq 0$

leads the contradiction.
First we will prove that

(3.6) $v=u^{bp}+ \sum_{i=1}^{p-1}u^{(b- i)p+i}t^{i(p-1)}$

if we assume that $a_{(b-1)p+1}\neq 0$ . We look at the condition that $P^{1}(v)$ is in
$H^{*}(Y;Z/p)$ more carefully. We express $v$ as

$v=u^{bp}+ \sum_{i=1}^{(b- 1)p+1}a_{i}u^{i}t^{bp- i}$

with $a_{(b-1)p+1}\neq 0$ . Then

$P^{1}(v)= \sum_{i=1}^{(b-1)p+1}a_{i}\{iu^{i+p-1}t^{bp-i}-iu^{i}t^{bp-i+p-1}\}$

$= \sum_{i=p}^{(b- 1)p+1}\{(i+1)$ a $i- p+1^{-ia_{i}\}u}$ ’ $t^{bp- i+p- 1}+ \sum_{i=(b- 1)p+2}^{bp}(i+1)$a $i- p+1u^{i}t^{bp- i+p- 1}$

$=a_{(b-1)p+1}vt^{p- 1}$

which implies that

$(i+1)a_{t-p+1}=0$ for $(b-1)p+2\leqq i<bp$ ,

$a_{(b-1)p+1}a_{i}=(i+1)a_{i-p+1}-ia_{\ell}$ for $p\leqq i_{-}(b-1)p+1$ .
Thus we obtain the condition (3.7) about $a_{i}’ s$ :

(3.7) $a_{t}==0$ for $(b-])p+\gamma+1\leqq i<(b-J+1)p$ ,

$ia_{i}=(i-1+a_{(b-1)p+1})a_{\iota+p- 1}$ for $1\leqq i\leqq(b-2)p+2$ .
Next we consider the condition that $P^{p}(v)$ is in $H^{*}(Y;Z/p)$ .

$P^{p}(v)=bu^{2\dot{0}p}+(b-1)a_{(b-1)p+1}u^{2bp-p+1}t^{p- 1}$

$+ \sum_{\ell\approx 1}^{p}a_{i}\sum_{j=1}^{p}(b- 1)(\begin{array}{l}ij\end{array})(\begin{array}{l}bp-ip-j\end{array})u^{i+j(p- 1)}t^{bp-i+(p-j)(p-1)}$

$=-u^{2bp}-2a_{(b-1)p+1}u^{2bp- p+1}t^{p-1}$

$+ \sum_{i=1}^{P}a_{t}\sum_{f=0}^{p}(b-1)(\begin{array}{l}ij\end{array})(\begin{array}{l}bp-ip-j\end{array})u^{i+j(p-1)}t^{bp-i+(p- j)(p- 1)}$

$=- \{u^{bp}+a_{(b-1)p+1}u^{(b-1)p+1}t^{p-1}+\sum_{i=1}^{(b-1)p}a_{i}u^{i}t^{bp-i}\}^{2}$
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$=-u^{2bp}-2a_{(b-1)p+1}u^{2bp- p+1}t^{p- 1}-a_{(b-1)p+1}^{2}u^{2(b- 1)p+2}t^{2p-2}$

$-2 \{u^{bp}+a_{(b-1)p+1}u^{(b- 1)p+1}t^{p-1}\}\sum_{i=1}^{(b-1)p}$ a $\iota^{\mathcal{U}^{i}r^{bp- i}-\{\sum_{i=\iota}^{(b-1)p}a_{i}u^{i}t^{bp- i\}^{2}}}$ ,

which implies that
$a_{(b-2)p+2}=a_{(b- 1)p+1}^{2}$

$a_{(b- 2)p+1}=2a_{(b-1)p+1}a_{(b- 1)p}$ .
From this equation and (3.7) we obtain that $a_{(b-1)p+1}=a_{(b-2)p+2}=1$ and that

$a_{(b-2)p+1}=a_{(b-1)p}=0$ . Then (3.7) induces:

(3.8) $a_{t}=0$ for $(b-j)p+j+1\leqq i<(b-j+1)p$ ,

$ia_{i}=ia_{\ell+p- 1}$ for $1\leqq i\leqq(b-]+1)p+2$ .
Then inductively the assertion (3.6) follows (3.8) and the above equation of $P^{p}(v)$ .

NOW we consider the formula (3.6) in $H^{*}(X;Z_{(p)})$ . In this case $k+1=p$

by Lemma 3.1 implies

$v=u^{bp}+ \sum_{=i1}^{p- 1}e_{i}u^{bp-i(p-1)}t^{(p- 1)i}+p\Psi$ ,

and $e_{i}\equiv 1mod p$ . Since $k+1=p$ , we have

$0=v^{p}=\{u^{bp}+\sum_{\ell=1}^{p-1}e_{i}u^{bp-i(p- 1)}t^{(p- 1)i}+p\Psi\}^{p}$

$\equiv\{u^{bp}+\sum_{i=1}^{p-1}e_{i}u^{bp- i(p-1)}t^{(p- 1)i}\}^{p}mod p^{2}$

$\equiv\sum_{j=1}^{p-1}(\begin{array}{l}pj\end{array})\mathcal{U}^{bp(p- j)\{\sum_{=}^{p- 1}e_{i}u^{bp-i(p-1)}t^{(p}}i1-1)i\}^{p-j}+\{\sum_{i=1}^{p- 1}e_{i}u^{bp-i(p- 1)}t^{(p- 1)i}\}^{p}mod p^{2}$

$\equiv(p+ne_{1}^{p})e_{1}u^{bp^{2}- p+1}t^{p-1}$

$+\{(p+ne_{1}^{p})e_{2}+(\begin{array}{l}p2\end{array})e_{1}^{2}\}u^{bp^{2}-2p+2}t^{2p- 2}$ $mod’(p^{2}, t^{3(p- 1)})$ ,

which means that $(p+ne\not\in)e_{1}\equiv(p+ne8)e_{2}+(\begin{array}{l}p2\end{array})e_{1}^{2}\equiv 0mod p^{2}$ . But this contradicts

the fact that $e_{1}\equiv 1mod p$ . Thus we proved that $a_{(b-1)pa+pa-1}=0$ in $H^{*}(X;Z/p)$ .
Then it is easy to prove that $a_{i}=0$ unless $p^{a}$ divides $i$ and that $v=(u+\lambda t)^{s+1}$

for some $\lambda\in Z/p$ .
By the remark to Proposition 3.3 with Proposition 3.4 we have

COROLLARY. Let $p$ be an odd prime and $s+1=bp^{a}$ with $b<P-1$ , then $v=u^{s+1}$

in $H^{*}(X;Z_{(p)})$ .

\S 4. Proof of Theorem A (exceptional case).

In this section we prove Theorem A for the exceptional case. That is, we
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will prove that if a manifold $X$ has two bundle structures: $CP^{s}arrow Xarrow CP^{m},$ $CP^{s}$

$arrow Xarrow Y$ and $Y$ is not homotopy equivalent to a projective space, then $s=1$ .

PROPOSITION 4.1. If 2 divides $n$ , then $s=1$ .

PROOF. By Proposition 3.4 $s+1=2^{a}$ for some $a\geqq 1$ . If 4 divides $n$ , by
Proposition 3.3 we see that $v=u^{2^{a}}$ in $H^{*}(X;Z/2)$ . Applying the secondary co-
homology operation to $v\in H^{*}(Y;Z/2)$ we obtain a contradiction if $a>1$ (see

below).

If 4 does not divide $n$ , Lemma 3.1 says that $s=1$ or $k=1$ . So let us con-
sider the latter case. By Proposition 3.5 $v$ is expressed as

$v=u^{2}+a’u^{2}t^{2}aa- 1a- 1$

in $H^{*}(X;Z/2)$ . If $a\geqq 3$ , we can apply the secondary cohomology operation
$\Phi_{0,a-1}$ to the above equation (see [1, Theorem 4.5.1]). Thus we obtain

$\Phi_{0,a-1}(v)=u^{2+2}aa- 1+a’(u^{2+2}a- 1a- 2t^{2^{a- 1}}+u^{2^{a- 1}}t^{2^{\alpha- 1}+2^{a- 2}})$ ,

which contradicts the fact that $\Phi_{0,a-1}(v)\in H^{*}(Y;Z/2)=\langle t, v\rangle$ .
NOW we consider the case $s=3$ and $k=1$ in $H^{*}(X;Z_{(2)})$ . Then we have

$t^{4}=nv=n(u^{4}+a_{8}u^{3}t+a_{2}u^{2}t^{2}+a_{1}ut^{3}=c_{4}u^{4}+c_{3}u^{3}t+c_{2}u^{2}t^{2}+c_{1}ut^{3}$

By Proposition 3.5 we see that $a_{1}\equiv a_{3}\equiv 0$ mod2. If $a_{2}\equiv 1$ mod2, a coefficient of
$c_{2}\sim$ does not belong to $Z_{(2)}$ by a routine argument using the formula (1.8). Thus
$a_{1}\equiv a_{2}\equiv a_{3}\equiv 0$ mod2, which leads the contradiction as above.

NOW we restrict ourselves to the case $n$ is divisible by an odd prime $p$ .

PROPOSITION 4.2. Let $p$ be an odd prime which divides $n$ . Then $s+1<p$ .

PROOF. Let $s+1=bp^{a}$ with $a\geqq 1$ . By Proposition 3.3 and its corollary we
see that $v=(u+\lambda t)^{bp^{a}}$ in $H^{*}(X;Z/p)$ . As in the proof of Proposition 4.1 if we
apply the secondary operation to this equation (see [3, Theorem 4.3]), we obtain
the contradiction.

LEMMA 4.3. Let $p$ be an odd prime which divides $n$ . Then $v=u^{s+1}$ in
$H^{*}(X;Z_{(p)})$ .

PROOF. This lemma is already proved except for the case $s+1=p-1$ and
$k+1=p^{l}h,$ $(p, h)=1,$ $l\geqq 1$ . By the corollary to Proposition 3.5 and the proof
of Proposition 3.3 we have

$v^{p^{l- 1}}=(u^{p^{l-1}}+\lambda^{p^{l- 1}}t^{p^{l- 1}})^{s+1}+p\Psi$ , $v^{p^{l}}=u^{p^{l_{(S+1)}}}$ ,

in $H^{*}(X;Z_{(p)})$ . By the induction on 1 we can prove the lemma. But for the
simplicity we prove only the case $1=1$ .
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$0=v^{p}=\{(u+\lambda t)^{s+1}+p\Psi\}^{p}\equiv(u+\lambda t)^{p(s+1)}$

$\equiv\sum_{i=0}^{p(s+1)}\lambda^{i}(\begin{array}{l}p(s+1)i\end{array})u^{p(s+1)-i}t^{i}$

$\equiv$ $\sum_{i=1}^{s}\lambda^{i}(\begin{array}{l}p(s+1)i\end{array})u^{p(s+1)-i}t^{i}+\sum_{\ell=0}^{s}\lambda^{i+s+1}n(\begin{array}{l}p(s+1)s+1+i\end{array})u^{(p-1)(S+1)- i}\{(u+\lambda t)^{S+1}+p\Psi\}t^{i}$

$\equiv\sum_{i=1}^{s}\lambda^{i}(\begin{array}{l}p(s+1)i\end{array})u^{p(s+1)-i}t^{i}+\lambda^{p}n(\begin{array}{l}p(s+1)p\end{array})u^{(p- 1)(s+1)- 1}\sum_{i=0}^{s+1}\lambda^{i}(\begin{array}{l}s+1i\end{array})u^{(s+1)- i}t^{i+1}$

$\equiv\sum_{i=1}^{s}\{\lambda^{i}(\begin{array}{l}p(s+1)i\end{array})+n\lambda^{p}+i- 1(\begin{array}{l}p(s+1)p\end{array})(\begin{array}{l}s+1i-1\end{array})\}u^{p(S+1)- i}t^{i}$ $mod p^{2}$ ,

which implies that

$\lambda p(s+1)+n\lambda^{p}(\begin{array}{l}p(s+1)p\end{array})\equiv 0$ $mod p^{2}$

and

$\lambda^{2}(\begin{array}{l}p(s+1)2\end{array})+n\lambda^{p+1}(\begin{array}{l}p(s+1)p\end{array})(s+1)\equiv 0$ $mod p^{2}$

From this equation we obtain $\lambda\equiv 0mod p$ , which ilnplies that $v=u^{s+1}$ in
$H^{*}(X;Z_{(p)})$ by the remark to Proposition 3.3.

NOW we will complete the proof of Theorem A.

PROPOSITION 4.4. Let $n$ be an odd integer, then $s=1$ .

PROOF. Let $p$ be the smallest prime which divides $n$ . Then $s+1<p$ by
Proposition 4.2. What we have proved up to now is that

$(\alpha t_{1}+\beta t_{2})^{S+1}=nt_{1}^{s+1}$ $n\in Z$ ,

which induces a relation in $H^{*}(X)$ :

$t_{2}^{s+1}+ \sum_{i=1}^{s}(\begin{array}{l}s+1i\end{array})(\frac{\alpha}{\beta})^{i}t_{1}^{\iota}t_{2}^{r+1-i}+\frac{\alpha^{s+1}-n}{\beta^{s+1}}=0$ .

Therefore these coefficient must be integers, i. e., $\beta=\pm 1$ or $s=1,$ $\beta=\pm 2$ . We
consider the case $\beta=\pm 1$ . By changing the generator $t_{2}$ we may assume that

$t_{2}^{s+1}=nt_{1}^{s+1}$ in $H^{*}(X)$ .
Thus by (1.7) we have

$\tilde{t}_{2}^{s+1}=n(\ln\tilde{t}_{1}/\ln\tilde{t}_{2})^{s+1}\tilde{t}_{1}^{s+1}\equiv n(\ln\tilde{t}_{1})^{s+1}\tilde{t}_{1}^{s+1}$ $mod’(\tilde{t}_{1}^{2S+2},\tilde{t}_{2})$ .
Since $s+1<p\leqq n$ ,

$n(\ln\tilde{t}_{1})^{s+1}\in Z[\tilde{t}_{1}]/(\tilde{t}_{1}^{s+1})$

if and only if
$(\ln\tilde{t}_{1})^{s+1}\in Z[i_{1}]/(\tilde{t}_{1}^{s+1})$ .

Let $q$ be a prime which divides $s$ . Then the coefficient of $\tilde{i}_{1}^{q-1}$ in the expansion
of $(\ln\tilde{t}_{1})^{s+1}$ is
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$(-1)^{q- 1} \frac{s+1}{q}+\frac{b}{a}$ , $(q, a)=1$ ,

which is not an integer since $q$ is prime to $s+1$ . Therefore $s$ must be equal
to 1.

Moreover in the case $\beta=\pm 1$ we show that $m=3$ . Since $s=1$ we have

$\tilde{t}_{2}^{2}=n(\tilde{t}_{1}^{2}-\tilde{t}_{1}^{3})(1+^{f_{2}})+\frac{n(11-5n)}{12}\tilde{t}_{1}^{4}-\frac{5n(1-n)}{6}\tilde{t}_{1}^{5}$

$+ \{\frac{n(11-3n)}{12}\tilde{t}_{1}^{4}+\frac{n(3n-5)}{6}\tilde{t}_{1}^{5}\}\tilde{t}_{2}+\cdots$

Since $n$ in an odd integer, one of the above coefficients can not be an integer.
Thus $m=2k+1\leqq 3$ , which implies that $m=3$ .

\S 5. Cohomology ring of $Y$.
In this section we describe the cohomology ring of $Y$ in terms of that of

$X$ and prove Theorem B. We assume that $Y$ is not homotopy equivalent to a
projective space throughout this section. When we change a generator $u$ of
$H^{*}(X)$ for $u’=u+bt,$ $v$ changes into $v’=u^{\prime 2}+(a-2b)u’t+(b^{2}-ab)t^{2}$ , where $v=$

$u^{2}+aut$ . Therefore we choose the generators of $H^{*}(X)$ so that
$t=\alpha t_{1}+\beta t_{2}$ , $u=\gamma t_{1}+\delta t_{2}$ ,

$t_{1}=\pm(\delta t-\beta u)$ , $t_{2}=\pm(-\gamma r+\alpha u)$ ,

$v=u^{2}$ or $u^{2}+ut$ ,
where $\alpha\delta-\beta\gamma=\pm 1$ .

PROPOSITION 5.1. For $m\leqq r$ we have

$t_{1}^{m+1}=g_{1}(t, v)= \sum_{i=0}^{[(m+1)/2]}a_{i}t^{m+1- 2i}v^{i}$

$f(t_{1}, t_{2})=g_{2}(t, v)=t_{2}^{r+1}- \sum_{\ell=1}^{r+\iota}c_{i}t_{1}^{i}t_{2}^{r+1- i}=\sum_{i=0}^{[(r+1)/2]}b_{i}t^{r+1- 2i}v^{i}$

for some $a_{i},$ $b_{i}\in Z$ . For $r<m$ we have

$t_{1}^{m+1}+g_{2}(t, v)h(t, v)u=g_{1}(t, v)= \sum_{i=0}^{[(m+1)/2]}a_{i}t^{m+1-2i}v^{i}$ ,

$f(t_{1}, t_{2})=g_{2}(t, v)=t_{2}^{r+1}- \sum_{i=1}^{+1}c_{\ell}t_{1}^{i}t_{2}^{\gamma+1- i}=\sum_{i=0}^{[(r+1)/2)]}b_{\ell}t^{r+1- 2i}v^{i}$ ,

for some $a_{i},$ $b_{i}\in Z$ and $h(t, v)\in Z[t, v]$ . With this notaion we have

$H^{*}(Y)=\langle t, v\rangle 0Z[t, v]/(g_{1}, g_{2})$ .

PROOF. We prove only the case $r<m$ , for the proof of the other cases are



Two projective space bundle structures 655

quite similar.
By the Poincar\’e polynomial of $Y$ it is easy to see that $H^{2r+2}(Y)\cong Z^{[(r+1)/2]}$ .

On the other hand $\langle t, v\rangle^{2r+2}=\{t^{r+1}, t^{r-1}v, , t^{r+1- 2[(r+1)/2]}v^{[(r+1)/2]}\}$ . Therefore
there must be a relation among these elements and the relation corresponds to $f=0$ .

Next in dimension $2m+2$ we have

rank $H^{2m+2}(Y)=[r/2]$

and
generators of $\langle t, v\rangle^{2m+2}=\{t^{m+1}, t^{m-1}v, \cdots , t^{m+1-2[(m+1)/2]}v^{[(m+1)/2]}\}$ .

In this dimension there are $[(m-r)/2]+1$ relations which are induces by the
relation $\sum a_{i}t^{m+1-2i}v^{\ell}=0$ . If there were no other relations, we would have

rank $H^{2m+2}(Y)\geqq$ rank $\langle t, v\rangle^{2m+2}$

$\geqq[(m+1)/2]+1-[(m-r)/2]-1=[r/2]+1$ .

The last equation follows by the fact that $m$ or $r$ is odd. Therefore there must
be a new relation among these elements and the relation can be written as
(5.2) $at_{1}^{m+1}+f_{1}(t_{1}, t_{2})h’(t_{1}, t_{2})$

in $H^{*}(X)$ . To see that this relation can be written as in the proposition we
use the following elementary facts, which we state as a lemma.

LEMMA 5.3. (1) Let $R$ be a ring. $R[t_{1}, t_{2}]=R[t, u]$ is a free module over
$R[t, v]$ with a basis $\{1, u\}$ . (2) Let $R$ be an integral domain. Let $f\in R[t_{1}, t_{2}]$

and $g\in R[t, v]$ such that $fg\in R[t, v]$ , then $f\in R[t, v]$ .

By Lemma 5.3 (1) the relation (5.2) can be choosen so that

(5.2) $at_{1}^{m+1}+g_{2}(t, v)h(t, v)u$

is a new relation among the elements $\{t^{m+1}, t^{m-1}v, \cdots , t^{m+1-2[(m+1)/2]}v^{[(m+1)/2]}\}$ .
NOW we will see that $a=\pm 1$ in (5.2). Let $p$ be a prime dividing $a$ . We con-
sider the relation (5.2) in $H^{*}(X;Z/p)$ . The relation (5.2) induces a relation
$g_{2}(t, v)h(t, v)u$ among the elements $\{t^{m+1}, t^{m-1}v, \cdots , t^{m+1-2[(m+1)/2]}v^{[(m+1)/2]}\}$ by the
naturality, which implies that $h(t, v)=0$ in $H^{*}(X;Z/p)$ . But of course this is
impossible. Hence we see that $a=\pm 1$ in (5.2), which completes the proof of
the first part of the proposition in the case $r<m$ .

Here we remark about the statement of the proposition in the case $m<r$ .
In this case there are a lot of ways to choose a relation $f(t_{1}, t_{2})$ . Therefore
the relation $f(t_{1}, t_{2})$ in Proposition 5.1 should be modified.

TO prove that $H^{*}(Y)=\langle t, v\rangle$ it is sufficient to see that rank $H^{*}(Y)=rank\langle t, v\rangle$

and that an element of $\langle t, v\rangle$ is divisible in $\langle t, v\rangle$ if and only if it is divisible
in $H^{*}(X)$ . But these facts are trivial.

By making use of Proposition 5.1 we will prove Theorem B. First we con-
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sider the case $m\leqq r$ , which is divided into four cases.

Case I. $m$ is even and $r$ is odd. Since by Proposition 5.1 $t=\alpha t_{1}+\beta t_{2}$ divides
$t_{1}^{m+1},$ $\alpha=-1$ and $\beta=0$ . Therefore under the suitable choice of generators of
$H^{*}(X)$

$t=t_{1}$ , $u=t_{2}$ , $g_{1}(t, v)=t^{m+1}$

Case II. $m$ is odd and $\gamma$ is even. Since by Proposition 5.1 $t=\alpha t_{1}+\beta t_{2}$

divides $f(t_{1}, t_{2}),$ $\beta=\pm 1$ . Therefore under the suitable choice of generators of
$H^{*}(X)$ we have $t=t_{2},$ $u=t_{1}$ .

When $v=u^{2}+aut,$ $a\neq 0$ , the formula $t_{1}^{m+1}=g_{1}(t, v)$ is written as follows:

$u^{2m^{i}+2}= \sum_{\iota=0}^{m’+1}a_{i}t^{2m’+2-2i}(u^{2}+aut)^{i}$

where $m+1=2m’+2$ . But this is impossible. Thus we have

$t=t_{2}$ $u=t_{1}$ , $v=u^{2}$ $g_{1}(t, v)=v^{[(m+1)/2]}$ .

Under this choice of the generators we have $c_{odd}=0$ .
Case III. $m$ and $r$ are odd and $v=u^{2}$ . In this case the formula $t_{1}^{m+1}=g_{1}(t, v)$

is written as follows:

$( \delta t-\beta u)^{m+1}=\sum_{i\Rightarrow 0}^{2}a_{\ell}t^{m+1- 2i}u^{2i}(m+1)$

’

From this formula we have $(\beta, \delta)=(\pm 1,0)$ or $(0, \pm 1)$ .
Case IV. $m$ and $r$ are odd and $v=u^{2}+ut$ . In this case the formula $t_{1}^{m+1}=$

$g_{1}(t, v)$ is written as follows:

$( \delta t-\beta u)^{m+1}=\sum_{i=0}^{m+1}(\begin{array}{l}m+1i\end{array})\delta^{i}(-\beta)^{m+1- i}t^{i}u^{m+1-i}$

$= \sum_{i=0}^{(m+1)/2}a_{i}t^{m+1-2i}(u^{2}+ut)^{i}=\sum_{k=0}^{m+1}\{\sum_{i+j=k,i\leqq(m+1)/2}a_{i}(\begin{array}{l}iJ\end{array})\}t^{m+1-k}u^{k}$

Put $m+1=2m’+2$ . From the above equation we have $a_{m’+1}=\beta^{2m^{l}+2}$ and
$a_{m+1}(\begin{array}{l}m’+1m’\end{array})=-(2m’+2)\delta\beta^{2m’+1}$ , which implies that $\beta^{2m^{r}+1}(\beta+2\delta)=0$ . Since $\beta$

is prime to $\delta$ , we obtain $\beta=0$ or $(\beta, \delta)=\pm(-2,1)$ .
Before we proceed to consider the case $r<m$ , we prepare an elementary

lemma. Let $p$ be a prime number. We write $\nu_{p}(n)$ for the exponent to which
the prime $p$ occurs in the decomposition of $n$ into prime powers.

LEMMA 5.4. For $i<m$ if $p$ is an odd prime, $i<m-1$ if $p=2$ , we have

$\nu_{p}((\begin{array}{l}m+1i\end{array})p^{m-i})\geqq\nu_{p}(m+1)+1$ .

PROOF.
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$\nu_{p}((\begin{array}{l}m+1i\end{array})p^{m- i})\geqq\nu_{p}(m+1)-\nu_{p}(m+1-i)+m+1-i-1$

$\geqq\nu_{p}(m+1)-\nu_{p}(m+1-i)+\nu_{p}(m+1-i)+2-1$

$=\nu_{p}(m+1)+1$ .
Case I. $r$ is even and $m$ is odd. Since $t=\alpha t_{1}+\beta t_{2}$ divides $f(t_{1}, t_{2}),$ $\beta=\pm 1$ .
Case II. $r$ is odd, $m$ is even and $v=u^{2}$ . Put $m=2m’$ .

$( \delta t-\beta u)^{m+1}=\sum_{i=0}^{m+1}(\begin{array}{l}m+li\end{array})\delta^{i}(-\beta)^{m+1- i}t^{i}u^{m+1-i}$

$=- \sum_{i=0}^{m’}(\begin{array}{l}m+12i\end{array})(\delta^{2}t^{2})^{\iota}(\beta^{2}v)^{m’-i}\beta u+\sum_{i=0}^{m’}(\begin{array}{l}m+12i+1\end{array})(\delta t)^{2i+1}(\beta^{2}v)^{m’-i}$ .

By Proposition 5.1 $f(t_{1}, t_{2})=g_{2}(t, v)$ divides

$\beta\sum_{\ell=0}^{m’}(\begin{array}{l}m+12i\end{array})(\delta^{2}t^{2})^{i}(\beta^{2}v)^{m^{l}- i}$

We will prove that this implies that $\beta=0$ or $(\beta, \delta)=(\pm 1, \pm 1)$ . We assume that
$\beta\neq 0$ . Let $p$ be a prime which divides $\beta$ . By Lemma 5.4 we see that

$\nu_{p}((\begin{array}{l}m+12i\end{array})\beta^{2m^{l}- 2i)}\geqq\nu_{p}(m+1)+1=\nu_{p}((m+1)\delta^{2m’})+1$

for $i<m’$ , which means that

$\nu_{p}$ (the coefficient of $t^{2i}v^{m’- i}$ ) $>\nu_{p}$ (the coefficient of $t^{2m’}$ )

for $i<m’$ . From this fact we have

$f(t_{1}, t_{2})=g(t, t))=g_{2}’(\delta^{2}t^{2}, pv)$

for some $g_{2}’$ . If we substitute $0$ for $t_{1}$ into the above formula, we obtain

$t_{2}^{r+1}=g_{2}’(\delta^{2}\beta^{2}t_{2}^{2}, p\delta(\delta+\beta)t_{2}^{2})$ ,

which implies that $\delta=\pm 1$ and that there is no prime which divides $\beta$ .
Case III. $\gamma$ is odd, $m$ is odd and $v=u^{2}$ . Put $m+1=2m’+2$ .

$( \delta t-\beta u)^{m+1}=\sum_{i=0}^{m+1}(\begin{array}{l}m+1i\end{array})\delta^{i}(-\beta)^{m+1-i}t^{i}u^{m+1-i}$

$= \sum_{i=0}^{m’+1}(\begin{array}{l}m+12i\end{array})(\delta^{2}t^{2})^{i}(\beta^{2}v)^{m’+1- i}-\{\beta\delta t\sum_{i=0}^{m’}(\begin{array}{l}m+12i+1\end{array})(\delta^{2}t^{2})^{i}(\beta^{2}v)^{m’-i\}\mathcal{U}}$ .

By Proposition 5.1 $f(t_{1}, t_{2})=g_{2}(t, v)$ divides

$\beta\delta t\sum_{t=0}^{m’}(\begin{array}{l}2m’+22i+1\end{array})(\delta^{2}t^{2})^{i}(\beta^{2}v)^{m’-t}$

which implies that $(\beta, \delta)=(0, \pm 1),$ $(\pm 1,0)$ or $(\pm 1, \pm 1)$ as before.
Case IV. $r$ is odd, $m$ is even and $v=u^{2}+ut$ . Put $u^{k}=x_{k}(t, v)+y_{k-1}(t, v)u$ .

Using the recurrent formula
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$x_{k+1}=y_{k-1}v$ , $y_{k}=x_{k}-y_{k-1}t$ ,

we have

$y_{k}=(-1)^{k} \sum_{i=0}^{k}(\begin{array}{l}k-ii\end{array})v^{i}t^{k-2i}$

Then

$( \delta t--\beta u)^{m+1}=\sum_{i\approx 0}^{m+1}(\begin{array}{l}m+1i\end{array})\delta^{i}(-\beta)^{m+1- i}t^{i}u^{m+1- i}$

$= \sum_{i\subset 0}^{m+1}(\begin{array}{l}m+1i\end{array})(\delta t)^{i}\{x_{m+1-i}(-\beta t, \beta^{2}v)-y_{m-i}(-\beta t, \beta^{2}v)\beta u\}$ .

By Proposition 5.1 $f(t_{1}, t_{2})=g_{2}(t, v)$ divides

(5.5) $\beta\sum_{i=0}^{m}(\begin{array}{l}m+1i\end{array})(\delta t)^{i}y_{m-i}(-\beta t, \beta^{2}v)$

$= \beta\sum_{f=0}^{m}\{\sum_{i=0}^{m}(\begin{array}{l}m+1i\end{array})(\begin{array}{l}m-i-]j\end{array})\delta^{i}\beta^{m-i}\}v^{j}t^{m- 2j}$ ,

which implies that $\beta=0$ or $\beta=\pm 1$ by the similar method to the case II.
Case V. $r$ is odd, $m$ is odd and $v=u^{2}+ut$ . Similar to the case IV $f(t_{1}, t_{2})$

$=g_{2}(t, v)$ divides the formula (5.4), but in this case this vanishes if $\beta=0$ or
$(\beta, \delta)=\pm(-2,1)$ . Thus we have $\beta=0,$ $\pm 1$ or $(\beta, \delta)=\pm(-2,1)$ .
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