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Complete metrics of negative Ricci curvature
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Gao and Yau have constructed metrics of negative Ricci curvature on every
compact 3-manifold ([1], [2], [3]). They however used techniques peculiar to
3-manifolds and it is hard to see how their method is applicable to general
higher dimensional manifolds. In this paper we use simple triangulation argu-
ment to construct metrics of negative Ricci curvature on the complement of a
point, which will be a partial evidence for affirmative answer to the question
whether every manifold with dimension 13 can admit a metric with negative
Ricci curvature (Problem 24 of [4]).

THEOREM. For any connected closed manifold $M$ of dimension 1112 and a
Point $p$ of $M,$ $M\backslash \{p\}$ admits a complete metric of negative Ricci curvature.

Note that the conclusion is false if Ricci curvature is replaced by sectional
curvature. For example, take $M=RP^{n},$ $n\geqq 3$ .

\S 1. Preliminaries

LEMMA. Let $g$ and $\overline{g}$ be metrics on an $n$-manifold which are conformaly
related as $\overline{g}=e^{-2u}g$ for some smooth function $u$ . Then,

(1) $Ric(\overline{g})\leqq(n-2)\nabla^{2}u+(\Delta u)g+Ric(g)$ ,

where Hessian etc. in the right side are taken with respect to $g$ . Assume further
that $n\geqq 2,$ $u=u(t)$ for some other function $t$ and that $\ddot{u}=(d/dt)^{2}u\leqq 0$ . Then,

(2) $Ric(\overline{g})\leqq$ ti $|dt|^{2}g+\dot{u}((n-2)\nabla^{2}t+(\Delta t)g)+Ric(g)$ .

PROOF. Both inequalities follow immediately from the formula; $Ric(\overline{g})=$

$(n-2)\nabla^{2}u+(\Delta u)g+(n-2)(du\otimes du-|du|^{2}g)+Ric(g)$ .

PROPOSITION 1. Let $D$ be a $d$-dimensional disk in $R^{n}$ and $g$ a metric of $R^{n}$ .
Suppose $n>d,$ $n\geqq 2$ and $Ric(g)<0$ in a neighborhood of $\partial D$ . Then, there exists
another metric $\overline{g}$ such that $\overline{g}=g$ near $\partial D$ and $Ric(\overline{g})<0$ in a neighborhood of $D$ .

PROOF. Put $D(r)=\{(x, 0)\in R(f\cross R^{n-(}f;|x|<r\}\subset R^{n}$ , where $|x|=(\Sigma_{j=1}^{\iota l}(x_{j})^{2})^{1/2}$ .
We may assume $D=D(3)$ and $Ric(g)<0$ on $D\backslash D(1)$ .
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Define $v\in C^{\infty}(R^{n})=C^{\infty}(R^{d}\cross R^{n-d})$ as $v(x, y)=|y|^{2}=\Sigma_{j=1}^{n-\dot{a}}(y_{j})^{2}$ . Since $dv=0$

on $D,$ $\nabla^{2}v|_{D}$ is independent of the choice of the metric. The Hessian of $v$ with
respect to the Euclidean metric is $\geqq$ and $\neq 0$ . Therefore, $\nabla^{2}v\geqq 0$ on $D$ , and
$\Delta v\geqq a>0$ on $D$ for some constant $a$ .

Let $w\in C^{\infty}(R^{n})$ be a nonnegative function such that $w(x, y)=0$ if $|x|\geqq 2$ ,
and $w(x, y)=b$ if $|x|\leqq 1$ , where $b$ is a constant such that $Ric(g)<abg$ on $D$ .

NOW put $u(x, y)=-v(x, y)w(x, y)$ and $\overline{g}=e^{-2u}g$ . Note that $v=0$ and $dv=0$

on $D$ , and we have from (1) of Lemma

$Ric(\overline{g})\leqq-(n-2)w\nabla^{2}v-(w\Delta v)g+Ric$ (g);$ $-awg+Ric(g)$ on $D$ .
Therefore, $Ric(\overline{g})<0$ on $D\backslash D(1)$ since $Ric(g)<0$ on $D\backslash D(1)$ . Also $Ric(\overline{g})<0$ on
$D(1)$ since $w=b$ on $D(1)$ . Thus $\overline{g}$ has negative Ricci curvature in a neightbor-
hood of $D$ . Clearly $\overline{g}=g$ in a neighborhood of $D\backslash D(2)$ .

REMARK. If the proposition is true in the case when $n=d$ 1113, our theorem
implies the existence of negatively Ricci curved metrics on any compact mani-
fold of dimension $\geqq 3$ .

PROPOSITION 2. Let $N$ be a compact manifold with boundary $\partial N$ and $g$ a
metric of $N$ with $Ric(g)<0$ . Then there is a $u\in C^{\infty}(N\backslash \partial N)$ such that $e^{-2u}g$ is
a complete metric of $N\backslash \partial N$ with negative Ricci curvature.

PROOF. Let $\partial N\cross[0,1)\subset N$ be a collar neighborhood of $\partial N$, and $t:\partial N\cross[0,1)$

$arrow[0,1)$ be the projection. Let $a>0,$ $b>0$ and $0<\epsilon<1/2$ be constants such that
$a<|dt|^{2},$ $(n-2)\nabla^{2}t+(\Delta t)g<bg$ on $\partial N\cross[1/2,1]\subset N$ and $\epsilon<a/b$ .

Define $u\in C^{\infty}(N\backslash \partial N)$ as

$u(x)=\{$
$-e^{2/\epsilon} \int_{t(x)}^{\epsilon}\frac{1}{s}e^{1/(s-\epsilon)}ds$ if $x\in\partial N\cross(O, \epsilon)\subset N$

$0$ otherwise.

It is easy to see that $u$ is smooth and $e^{-u(x)}>\epsilon/2t(x)$ if $t(x)<\epsilon/2$ , which implies
that $e^{-2u}g$ is a complete metric of $N\backslash \partial N$. On the other hand, $\dot{u}=du/dt>0$ and
$\ddot{u}<0$ on $\partial N\cross(O, \epsilon)$ . Hence, it follows from (2) of Lemma that

$Ric(e^{-2u}g)<(a\ddot{u}+b\dot{u})g<\frac{1}{t}e^{2/\epsilon}e^{1/(t-\epsilon)(-\frac{a}{t}}+b)g<0$ on $\partial N\cross(O, \epsilon)$ .

Therefore $Ric(e^{-2u}g)<0$ on $N\backslash \partial N$ because $Ric(e^{-2u}g)=Ric(g)<0$ on $N\backslash \partial N\cross[0, \epsilon)$ .

\S 2. Proof of Theorem

We fix a triangulation of $M$ and denote its $d$ -skeleton by $lII_{tz}$ ; $M_{0}\subset_{1}M_{1}\subset\ldots$

$\subset M_{n}=M,$ $n\geqq 2$ . Obviously we have a metric $g_{0}$ of $M$ which has negative
curvature in a neighborhood of $M_{0}$ . Suppose that $d<n$ and $g_{d-1}$ is a metric
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of $M$ with $Ric(g_{i-1}()<0$ on $M_{d-1}$ . We apply Proposition 1 to each d-dimensional
simplex to get a metric $g_{d}$ of $M$ with $Ric(g_{a})<0$ on $AM_{d}$ . Thus, by induction,
we get a metric $g=g_{n-1}$ whose Ricci curvature is negative in a neighborhood
$U$ of $M_{n-1}$ . We may assume $U=M\backslash disjoint$ open $n$ -balls. Removing further a
neighborhood of curves each of which connects one of the removed balls with
every other ball, we have $N\subset U$ such that $N=M\backslash an$ open $n$ -ball. Applying
Proposition 2 to $(N, g|_{N})$ , we have a complete metric of $N\backslash \partial N$ with negative
Ricci curvature. Clearly, $N\backslash \partial N$ is diffeomorphic to $M\backslash a$ point, and the proof
is completed.
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