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Introduction.

In this paper we shall consider the Cauchy problem

(0.1) $\partial_{t}\beta(u)=\Delta u+f(u)$ in $(x, t)\in R^{N}\cross(0, T)$ ,

(0.2) $u(x, O)=u_{0}(x)$ in $x\in R^{N}$ ,

where $\partial_{t}=\partial/\partial t,$ $\Delta$ is the $N$-dimensional Laplacian and $\beta(v),$ $f(v)$ with $v\geqq 0$ and
$u_{0}(x)$ are nonnegative functions.

Equation (0.1) describes the combustion process in a stationary medium, in
which the thermal conductivity $\beta’(u)^{-1}$ and the volume heat source $f(u)$ are
depending in a nonlinear way on the temperature $\beta(u)=\beta(u(x, t))$ of the medium.

Throughout this paper we assume
(A1) $\beta(v),$ $f(v)\in C^{\infty}(R_{+})\cap C(\overline{R}_{+})$ , where $R_{+}=(0, \infty)$ and $\overline{R}_{+}=[0, \infty)$ ;

$\beta(v)>0,$ $\beta’(v)>0,$ $\beta’(v)\leqq 0$ and $f(v)>0$ for $v>0; \lim_{varrow\infty}\beta(v)=\infty$ ;
$f\circ\beta^{-1}$ is locally Lipschitz continuous in $[\beta(0),$ $\infty)$ .

(A2) $u_{0}(x)\geqq 0,$ $\not\equiv 0$ and $\in B(R^{N})$ (bounded continuous in $R^{N}$ ).

With these conditions the above Cauchy problem has a unique local solution
$u(x, t)$ (in time) which satisfies (0.1) in $R^{N}\cross(0, T)$ in the following weak sense
(see $e.g.$ , Oleinik et al. [17]), where $T>0$ is assumed sufficiently small.

DEFINITION 1. Let $G$ be a domain in $R^{N}$ . By a solution of equation $(0.1\rangle$

in $G\cross(O, T)$ we mean a function $u(x, t)$ such that
1) $u(x, t)\geqq 0$ in $\overline{G}\cross[0, T)$ , and $\in B(\overline{G}\cross[0, \tau])$ for each $0<\tau<T$ .
2) For any bounded domain $\Omega\subset G,$ $0<\tau<T$ and nonnegative $\varphi(x, t)\in C^{2}(\overline{\Omega}\cross$

$[0, T))$ which vanishes on the boundary $\partial\Omega$ ,

(0.3) $\int_{\Omega}\beta(u(x, \tau))\varphi(x, \tau)dx-\int_{\Omega}\beta(u(x, O))\varphi(x, O)dx$

$= \int_{0}^{\tau}\int_{\Omega}\{\beta(u)\partial_{t}\varphi+u\Delta\varphi+f(u)\varphi\}dxdt-\int_{0}^{\tau}\int_{\partial\Omega}u\partial_{n}\varphi dSdi$ ,
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where $n$ denotes the outer unit normal to the boundary.

If $u(x, t)$ does not exist globally in time, its existence time $T$ is defined by

(0.4) $T= \sup$ { $\tau>0;u(x,$ $t)$ is bounded in $R^{N}\cross[0,$ $\tau]$ }.

In this case we say that $u$ is a blow-up solution and $T$ is the blow-up time.
The main purpose of the present paper is the study of blow-up solutions

near the blow-up time. Especially, we are interested in the shape of the blow-

uP set which locates the “hot-spots” at the blow-up time. In addition, since our
quasilinear equation (0.1) has a property of finite ProPagation, there are some
interesting subjects such as the regularity of the interface and its asymptotic
behavior near the blow-up time. These problems have been studied by one of
the authors, Suzuki [18], in the case $N=1$ . This paper will extend some of
his results to higher dimensional problems.

TO deal with the finite propagation of solutions and the regularity of in-
terfaces, we require the additional conditions

(A3) $\beta(0)=f(0)=0;\int_{0}^{1}\frac{dv}{\beta(v)}<\infty$ .

(A4) Let $D=\{x\in R^{N} ; u_{0}(x)>0\}$ . Then $D$ forms in $R^{N}$ a bounded
convex set with smooth boundary $\partial D$ .

We put

(0.5) $\Omega(t)=\{x\in R^{N} ; u(x, t)>0\}$ , $\Gamma(t)=\partial\Omega(t)$

for $t\in(O, T)$ . Then under $(A1)\sim(A4)$ we can show that $\Omega(r)$ is bounded and
nondecreasing in $t\in[0, T)$ (Theorem 2.4). Moreover, $\Gamma(t)$ is rePresented by a
continuous function $\mathscr{I}:\partial D\cross[0, T)arrow R^{N}$ like

(0.6) $\Gamma(t)=\{x=\mathscr{I}(y, t);y\in\partial D\}$ ,

and if $\mathscr{I}(y_{0}, t_{0})\not\in D$ for some $(y_{0}, t_{0})\in\partial D\cross(0, T),$ $\mathscr{I}(y, t_{0})$ is Lipschitz continuous
in $y\in\partial D$ in a neighborhood of $y_{0}$ (Theorem 2.6).

Note that in the case of the porous medium equation

(0.7) $\partial_{t}(u^{1/m})=\Delta u(m>1)$ in $(x, t)\in R^{N}\cross(0, \infty)$ ,

there are many works studying the interfaces. Among them Caffarelli et al.
[2] proved that $\mathscr{I}(y, t)$ is Lipschitz continuous in $(y, t)\in\partial D\cross(O, \infty)$ in a neigh-
borhood of $(y_{0}, t_{0})$ . So the above continuity of $\mathscr{I}(x, t)$ in $t$ is insufficient.
However, to obtain a stronger regularity in $t$ , as the Barenblatt solutions of
(0.7) have played an important role in [2], it seems necessary to know suitable
exact solutions of (0.1) whose space-time structure reflects the most important
properties of general solutions.
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Next, we restrict ourselves to the blow-up solution of (0.1), (0.2) assuming
that $u_{0}$ satisfies the additional condition (A4) which will be given in the next
section as a condition slightly weaker than (A4).

The determination of blow-up solutions has been discussed in Galaktionov
et al. [10] for equation (0.1) with power nonlinearities

(0.8) $\partial_{t}(u^{1/m})=\Delta u+u^{p/m}$ in $(x, t)\in R^{N}\cross(0, T)$ ,

where $m>1$ . It has been shown that for $1<p<m+2/N$ any nontrivial solution
of (0.8), (0.2) blows-up in finite time, and for $p>m+2/N$ we may find global
solutions. These correspond to Fujita’s classical results ([6]) concerning the
semilinear equation (0.8) with $m=1$ (cf., also Levine et al. [16]). Blow-up
conditions have been studied in Itaya [13], [14] and Imai-Mochizuki [11] for
general nonlinear equation (0.1) in a bounded domain, and the following condi-
tion is given in [11] as a “necessary” condition to raise a blow-up.

(A5) $\int_{1}^{\infty}\frac{\beta’(v)}{f(v)}dv<\infty$ .

$In_{arrow}^{\vee}this$ paper we require also (A5) and classify the blow-up solutions by
the following three conditions.

(A6) (sublinear case) $f(v)=o(v)$ as $varrow\infty$ .
(A7) (asymptotic linear case) There exist 7, $C>0$ such that

$f(v)\leqq\gamma v+C$ for each $v>0$ .
(A8) (superlinear case) There exists a function $\Phi(v)$ such that

(i) $\Phi(v)>0$ , $\Phi’(v)>0$ and $\Phi’’(v)\geqq 0$ for $v>0$ ;

(ii) $\int_{1}^{\infty}\frac{dv}{\Phi(v)}<\infty$ ;

(iii) there are constants $c>0$ and $v_{0}>0$ such that
$f’(v)\Phi(v)-f(v)\Phi’(v)\geqq c\Phi(v)\Phi’(v)$ for $V>V_{0}$ .

REMARK 1. (0.8) satisfies (A1), (A3) and (A6) if $m>1$ and $p>1$ , and satisfies
(A6) (or (A7)) if $1<p<m$ (or $1<p\leqq m$ ). (A8) is originally introduced in Friedman-
McLeod [5] to study the shape of blow-up set for semilinear parabolic equa-
tions. (0.8) satisfies (A8) if $p>m$ . In this case we can choose $\Phi(v)=v^{\delta p/m}$ ,
where $\delta$ is any constant satifying $0<\delta<1$ and $\delta p/m>1$ .

DEFINITION 2. The blow-up set of $u$ is defined as

$S=\{x\in R^{N}$ ; there is a sequence $(x_{i}, t_{i})\in R^{N}\cross(0, T)$ such that
$x_{i}arrow x,$ $t_{i}arrow T$ and $u(x_{i}, t_{i})arrow\infty$ as $iarrow\infty$ } ,

and each $x\in S$ is called a blow-up point of $u$ .
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The shape of the blow-up set will be very different to each other in the
above three cases. Roughly speaking, under (A6), $S=R^{N}$ (Theorem 3.2), and
under (A7), it includes some ball whose radius depends only on $\gamma$ (Theorem 3.3).

On the other hand, under (A8), $S$ is included in a domain depending only on
the shape of the initial data $u_{0}(x)$ (Theorem 4.3). Especially, if $u_{0}=u_{0}(r),$ $r=$

$|x|$ , and is decreasing in $r$ , then the so called single point blow-up occurs, $i.e.$ ,
$S=\{0\}$ (Corollary 4.4).

The above conditions also distinguish the asymptotic behavior of the in-
terface near the blow-up time. We shall show that under (A6), $\Omega(t)$ grows to
the whole $R^{N}$ (Theorem 3.2), and under (A8), it remains bounded (Theorem
4.3) as $t\uparrow T$ .

In the case of (A7), we have no results on the last problem. A very special
equation (0.8) with $N=1$ and $m=p$ has been studied in Galaktionov [9], and the
boundedness of $\Omega(t)$ is shown there by use of an exact solution to (0.8). A
corresponding result to Theorem 3.2 has been proved also by Galaktionov [8]

for the case $N=1$ , where each blow-up solution is compared with a family of
steady-state solutions to (0.1). It has been shown in [18] that $S$ forms a finite
set under (A8) if $u_{0}(x)$ is “sufiiciently smooth” and $N=1$ . In our higher
dimensional problem, it remains unsolved to determine $S$ more strictly to the
case of (A8). Radially symmetric solutions are exceptional as will be shown
in Corollary 4.4.

The methods used in this paper are essentially the same to those of [18].

Namely, we are based on three (smoothness, comparison and reflection) prin-
ciples, and the main proof is done by reduction to absurdity. The three prin-
ciples are summarized in the next \S 1. In \S 2 we first prepare two lemmas to
show Theorem 2.4. These lemmas are also used in showing Theorems 3.2, 3.3
and 4.3 in \S \S 3 and 4, respectively. To show Theorem 2.6 we shall use some
results which follow from the reflection principle. The main parts of Theorems
3.2, 3.3 and 4.3 are proved by contradiction. To do so, for the first two theo-
rems, a nonblow-up result for the Dirichlet problem in a bounded domain plays
a key role. On the other hand, for the last theorem, we can use the argument
of Friedman-McLeod [5] (cf., also Chen-Matano [3], Chen [4] and Fujita-Chen
[7] $)$ . Note that in this case we need some stronger restrictions on $u_{0}$ .

\S 1. A comparison principle and monotonicity of solutions.

In this section we begin with two propositions which will be fundamental $\ovalbox{\tt\small REJECT}$

tools in our study of the interfaces and the blow-up sets.

PROPOSITION 1.1. (Smoothness principle). Let $u$ be a solution of (0.1) in
$G\cross(O, T)$ in the sense of Definition 1. If $u(\overline{x},\overline{t})>0$ for some (X, $t$ ) $\in G\cross(O, T)$ ,
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then $u$ is a classical solution in a neighborhood $W$ of $(\overline{X},\overline{t})$ , and hence $u\in C^{\infty}(W)$ .
PROOF. Note that $\beta(v),$ $f(v)\in C^{\infty}(R_{+})$ and $\beta(v)>0$ for $v>0$ . Then the above

proposition follows from the usual parabolic regularization method (see $e.g$ .
Ladyzenskaja et al. [15] $)$ . $\square$

For each domain $G\subset R^{N}$ , a supersolution (or subsolution) of (0.1) in $G\cross$

$(0, T)$ is defined by 1), 2) of Definition 1 with equality (0.3) replaced by 11(or $\leqq$ ).

PROPOSITION 1.2 (Comparison principle). Let $u$ (or $v$) be a supersolution (or

$subsolution)(0,T),thenof(0.1)inG\cross(0,T).Ifu\geqq vonthewehaveu\geqq vinthewhole\overline{G}\cross[0, T)$

.
parabolic boundary of $G\cross$

PROOF. See $e.g.$ , Appendix of Bertsch et al. [1]. $\square$

In the rest of this section, based on these principles, we shall show some
monotonicity properties of solutions to (0.1), (0.2).

For $z\in R^{N}$ and $\nu\in S^{N-1}$ , we put

(1.1) $A=A(z, \nu)=\{x\in R^{N} ; \nu\cdot(x-z)=0\}$ ,

where “ . means the innerproduct in $R^{N}$ . $A$ forms a hyperplane in $R^{N}$ . The
upper [or lower] half space of $R^{N}$ with respect to $A$ is defined as

(1.2) $R_{A,+}^{N}=\{x;\nu\cdot(x-z)>0\}$ [or $R_{A.-}^{N}=\{x$ ; $\nu\cdot(x-z)<0\}$ ].

For any $xGA$ , the reflection of $x$ in $A$ is denoted by $\sigma_{A}x$ . Thus, we have for
each $\zeta\in A$ ,

(1.3) $\zeta\cdot(\sigma_{A}x-x)=\frac{1}{2}(\sigma_{A}x+x)\cdot(\sigma_{A}x-x)$ .

For any function $v$ in $R^{N}$ , we define the reflection of $v$ in $A$ as

(1.4) $\sigma_{A}v(x)=v(\sigma_{A}x)$ , $x\in R^{N}$ .

Let $u=u(x, t)$ be the solution of (0.1), (0.2).

PROPOSITION 1.3 (Reflection PrinciPle). For some $A=A(z, v)$ suPPose that

(1.5) $\sigma_{A}u_{0}(x)\geqq u_{0}(x)$ in $R_{A,+}^{N}$ .

Then we have

(1.6) $\sigma_{A}u(x, t)$ 1111 $u(x, t)$ in $R_{A,+}^{N}\cross[0, T)$ .
Moreover, if $u(z, t)>0$ for some $\overline{t}\in(0, T)$ , then we have

(1.7) $\partial_{\nu}u(z,\overline{t})\equiv\nu\cdot\nabla u(z,\overline{t})<0$ .

PROOF. Since $\Delta$ is invariant under the reflection of $x$ in $A$ , we see that
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$\sigma_{A}u$ also satisfies (0.1) in $\overline{R}^{N}\cross(0, T)$ . Thus, noting (1.5) and the equality

$\sigma_{A}u(x, t)=u(x, t)$ in $(x, t)\in A\cross(O, T)$ ,

we can use Proposition 1.2 with $G=R_{A.+}^{N}$ to obtain (1.6).

Next suppose that $u(z,\overline{t})>0$ . Then by Proposition 1.1, $u$ becomes a clas-
sical solution of (0.1) in a neighborhood of $(z,\overline{t})$ . Thus, (1.7) follows from the
strong maximal principle applied to the function $u(x, t)-\sigma_{A}u(x, t)$ . $\square$

For $R>0,0<\gamma<\pi/2,$ $z\in R^{N}$ and $\nu\in S^{N-1}$ , we put

(1.8) $B(R, z)=\{x\in R^{N} ; x-z|<R\}$ , $B(R)=B(R, 0)$ ,

(1.9) $U(7, \nu)=\{\mu\in S^{N-1} ; \langle\mu, \nu\rangle<7\}$ ,

where $4\mu,$ $\nu\rangle$ $\in[0, \pi]$ means the angle between $\mu$ and $\nu$ , and

(1.10) $V(7, z, \nu)=\{x\in R^{N}$ ; $\frac{x-z}{|x-z|}\in U(\gamma, \nu)\}$ ,

(1.11) $V^{*}(\gamma, z, \nu)=$ { $x\in R^{N}$ ; $\mu\cdot(x-z)>0$ for any $\mu\in\overline{U}(\gamma,$ $\nu)$ }.

By definition

(1.12) $V^{*}( 7, z, \nu)=V(\frac{\pi}{2}-\gamma,$ $z,$ $\nu)$ .
In the following of this section we require

(A4) There exists a bounded convex domain $D\subset R^{N}$ with smooth
boundary $\partial D$ such that we have

$\sigma_{A}u_{0}(x)\geqq u_{0}(x)$ in $R_{A,+}^{N}$

for any hyperplaneA satisfying $\overline{D}\subset R_{A.-}^{N}$ .

Let $x\not\in\overline{D}$ . Then there exists a unique $y(x)\in\partial D$ such that

(1.13) $|x-y(x)|=dis(x, \partial D)$ .

We denote by $\mu(x)$ the direction of the vector $x-y(x)$ :

(1.14) $\mu(x)-\frac{x-y(x)}{|x-y(x)|}$ .

Obviously $\mu(x)=n(y(x))$ , where $n$ means the outer unit normal to the boundary.
Moreover, we can define $7(x)\in(O, \pi/2)$ to satisfy

(1.15) $D\subset V(\gamma(x), x, -\mu(x))$ , $\partial D\cap\partial V(\gamma(x), x, -\mu(x))\neq\emptyset$ .

LEMMA 1.4. (1) $y(x),$ $\mu(x)$ and $\gamma(x)$ are all continuous in $x\in R^{N}\backslash \overline{D}$ . $y(x)$

and $\mu(x)$ are extended continuously to $x\in\partial D$ as $y(x)=x$ and $\mu(x)=n(x)$ , and
$\gamma(x)$ dePends only on dis $(x, \partial D)$ .
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(2) Let $y\in\partial D$ . Put $\xi=y+sn(y),$ $\eta=y+s’n(y)$ for some $0<s<s’$ , and $\gamma=$

$\min\{\gamma(\xi), \pi/2-\gamma(\xi)\}$ , and define
(1.16)- $K_{-}(7, \xi, \eta)=V(\gamma, \xi, n(y))\cap V(\gamma, \eta, -n(y))$ ,

$(1.16)_{+}$ $K_{+}(\gamma, \xi, \eta)=V(7, \eta, n(y))$ .
Then for any $x\in K_{-}(\gamma, \xi, \eta)$ , we have

(1.17) $V^{*}(7(x), x, \mu(x))\supset K_{+}(\gamma, \xi, \eta)$ .
PROOF. (1) is obvious from the definition of these functions.
(2) Since $V(\gamma(x), x, -\mu(x))\subset V(\gamma(\xi), x, -n(y))$ , it follows from (1.12) that

$V^{*}(\gamma(x), x, \mu(x))\supset V^{*}(\gamma(\xi), x, n(y))$ . Noting $\gamma\leqq\gamma(\xi)$ and $\eta\in V^{*}(\gamma(\xi), x, n(y))$ , we
obtain (1.17). $\square$

LEMMA 1.5. Let $y\in\partial D$ . Then $u(x, t),$ $t\in(O, T)$ , is nonincreasing along the
ray $\ell(y)=\{x=y+sn(y);s>0\}$ .

PROOF. For $0\leqq s<s’$ , we put $\xi=y+sn(y)$ and $\eta=y+s’n(y)$ . Let $A=$

$A((\xi+\eta)/2, n(y))$ . Then obviously $D\subset R_{A.-}^{N}$ , and hence we have $\sigma_{A}u_{0}(x)\geqq 0$

$=u_{0}(x)$ in $R_{A,+}^{N}$ . Since $\eta=\sigma_{A}\xi\in R_{A,+}^{N}$ , it follows from Proposition 1.3 that

$u(\eta, t)\leqq\sigma_{A}u(\eta, t)$

$=u(\xi, t)$ . $\square$

LEMMA 1.6. Let $R>0$ be $chose^{\nu_{l}}$ to sati$sfyD\subset B(R)$ . Then we have for
any $t\in[0, T)$ ,

(1.18) $\inf_{x\in B(R)}u(x, t)\geqq\sup_{x\not\in B(3R)}u(x, t)$ .

PROOF. Let $\xi\in\overline{B}(R)$ a point to attain

$u( \xi, t)=\inf\{u(x, t);x\in B(R)\}$ .

Let $\eta\not\in B(3R)$ and $A=A((\eta+\xi)/2, (\eta-\xi)/|\eta-\xi|)$ . Then noting $|\eta+\xi|/2\geqq R$ ,
we have $D\subset R_{A,-}^{N}$ . Thus, it follows from Proposition 1.3 that

$u(\eta, t)\leqq\sigma_{A}u(\eta, i)=u(\xi, t)$ . $\square$

LEMMA 1.7. Let $x\not\in\overline{D}$ . Then for any $\nu\in U(\pi/2-\gamma(x), \mu(x))$ and $t\in[0, T)$ ,
$u(x+s\nu, t)$ is nonincreasing in $s>0$ . Thus, we have

(1.19) $u(x, t)\geqq u(z, t)$ for any $z\in V^{*}(\gamma(x), x, \mu(x))$ .
PROOF. For $\nu\in U(\pi/2-\gamma(x), \mu(x))$ put $\xi=x+sv$ and $\eta=x+s’\nu_{f}$ where

$0\leqq s<s’$ , and let $A=A((\xi+\eta)/2, \nu)$ . Then since $v\cdot v<0$ for any $v\in U(\gamma(x)$ ,
$-\mu(x))$ , we have $V(\gamma(x), x, -\mu(x))\subset R_{A,-}^{N}$ . Thus, this $A$ divides $\{\xi, D\}$ and $\eta$
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as in the above proof. Combining this and (1.12), we conclude the assertions.
$\square$

LEMMA 1.8. Let $\xi\not\in D.$ If $u(x, t)>0$ for some $(x, t)\in V(7(\xi), \xi, \mu(\xi))\cross(0, T)$ ,

then

(1.20) $\mu(\xi)\cdot\nabla u(x, t)\leqq-\cos\{\gamma(\xi)\}|\nabla u(x, t)|$ .
PROOF. Note that $A=A(x, \nu)$ with $\nu\in U(\pi/2-\gamma(\xi), \mu(\xi))$ also satisfies the

conditions of Proposition 1.3. Then we have $\nu\cdot\nabla u(x, t)<0$ for any $\nu\in$

$U(\pi/2-\gamma(\xi), \mu(\xi))$ . Thus, it follows that $\nabla u(x, t)/|\nabla u(x, t)|\in U(\gamma(\xi), -\mu(\xi))$ ,
which implies

$- \mu(\xi)\cdot\frac{\nabla u(x,t)}{|\nabla u(x,t)|}=\cos\langle-\mu(\xi),$ $\frac{\nabla u(x,t)}{|\nabla u(x,t)|}\rangle\geqq\cos\gamma(\xi)$ . $\square$

\S 2. Existence and regularity of interfaces.

We shall first show three lemmas which describe a finite propagation of
solutions to (0.1), (0.2). All the lemmas are based on the comparison principle.

LEMMA 2.1. If $u(\overline{x},\overline{t})>0$ for some $(x, t)\in R^{N}\cross[0, T)$ , then

(2.1) $u(X, t)>\rho(t)>0$ in $t\in[\overline{t}, T)$ ,

where $\rho(t),$
$t\geqq\overline{t}$ , solves the initial value problem

(2.2) $\rho’=-\frac{\lambda\rho}{\beta’(\rho)}$ in $(\overline{t}, \infty)$ with $\rho(\overline{t})\in(0, u(\overline{x},\overline{t}))$ .

PROOF. Cf., Lemma 2.3 of [18] or [11]. Since $u$ is continuous in $R^{N}\cross$

$(0, T)$ , for given $\rho(\overline{t})$ , there exists a $\delta>0$ such that

$u(x, t)\geqq\rho(\overline{t})$ in $B(\delta,\overline{x})\cross[\overline{t},\overline{t}+\delta)$ .

Let $(\varphi(x), \lambda)$ be the principal eigensolution of $-\Delta$ in $B(\delta,\overline{x})$ with zero Dirichlet
condition. We normalize $\varphi$ to satisfy O<g(x)$l and $\varphi(\overline{x})=1$ . Integrating (2.2),

we have

(2.3) $\rho(t)=W^{-1}(W(a)-\lambda(t-\overline{t}))$ , where $W(s)= \int_{1}^{s}\frac{\beta’(v)}{v}dv$ .

Note that $\beta’(v)>0$ and $\beta’’(v)\leqq 0$ in $v>0$ . Then as is easily seen, $W(s)$ is in-
creasing in $s>0$ and $W(s)arrow-\infty$ as $s\downarrow 0$ . Thus, $\rho(t)>0$ for each $t>\overline{t}$ .

NOW we put
$v(x, t)=\varphi(x)\rho(t)$ .

Then since \beta ’(p)$\beta ’(v), we see that this $v$ forms a subsolution of (0.1) in
$B(\delta,\overline{x})\chi(\overline{t}, T)$ . Moreover,
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$v(x,\overline{t})\leqq\rho(\overline{t})\leqq u(x,\overline{t})$ in $B(\delta,\overline{x})$

and
$v(x, t)=0\leqq u(x, t)$ in $\partial B(\delta,\overline{x})\cross(\overline{t}, T)$ .

Thus, Proposition1.2 shows that $u(x, t)\geqq v(x, t)$ in $B(\delta,\overline{x})\cross(\overline{t}, T)$ . Especially,
$u(\overline{x}, t)\geqq\rho(t)>0$ in $(\overline{t}, T)$ . $\square$

In the following of this section we require (A3) and (A4).

LEMMA 2.2. Suppose that there exist $R>0,\overline{t}\in[0, T)$ and $M>0$ such that

(2.4) $u(x,\overline{t})=0$ in $R^{N}\backslash B(R)$ ,

(2.5) $u(x, t)\leqq M$ in $\partial B(R)\cross(\overline{t}, T)$ .
Then there exist $\ell>0$ and $h\in(O, T-\overline{t})$ depending only on $M$ such that

(2.6) $u(x, t)=0$ in $[R^{N}\backslash B(R+\ell)]\cross[\overline{t},\overline{t}+h]$ .

PROOF. Cf., Lemma 6.4 of [18]. We construct a $suPersolution$ of (0.1) in
the following form.

(2.7) $w(x, t)=\psi^{-1}([\tau(t)-|x|+R]_{+})$ ,

where $[g]_{+}= \max\{g, 0\}$ and

(2.8) $\psi(u)=\int_{0}^{u}\frac{dv}{\beta(v)}$ ,

(2.9) $\tau(t)=C(M)(t-\overline{t})+\psi(M);C(M)=1+\sup_{0<v\leqq 2M}\frac{f(v)}{\beta(v)\beta’(v)}$ .

Note that (2.8) is well defined by (A3). On the other hand, $C(M)<\infty$ by (A1)

and (A3). In fact, $\beta’(v)$ is decreasing in $(0,2M]$ and $f(v)/\beta(v)=f\circ\beta^{-1}(\xi)/\xi$ ,
$\xi=\beta(v)$ , is bounded in $(0,2M]$ since we have $\beta(0)=0$ and $f\circ\beta^{-1}(0)=0$ .

NOW, in the domain $\{[R^{N}\backslash B(R)]\cross[\overline{t},\overline{r}+k]\}\cap\{\tau(t)\geqq|x|-R\}$ , where $k=$

$C(M)^{-1}\{\psi(2M)-\psi(M)\}$ , we have $w=\psi^{-1}(\tau(t)-|x|+R)\leqq\psi^{-1}(\tau(\overline{t}+k))=2M$, and
hence,

(2.10) $\frac{1}{\beta’(w)}\Delta\psi(w)+|\nabla\psi(w)|^{2}+\frac{f(w)}{\beta(w)\beta’(w)}$

$= \frac{-(N-1)}{\beta’(w)|x|}+1+\frac{f(w)}{\beta(w)\beta’(w)}\leqq C(M)=\partial_{t}\psi(w)$ .

This $w$ is extended by $0$ to the whole $[R^{N}\backslash B(R)]\cross[\overline{t},\overline{t}+k]$ as a supersolution
of (0.1). For this aim we have only to note that $f(O)=0$ and $\partial_{|x|}w(\tau(t)+R, t)$

$=-(\psi^{-1})’(0)=-\beta(0)=0$ .
Moreover, we have
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$w(x,\overline{t})\geqq 0=u(x,\overline{t})$ on $R^{N}\backslash B(R)$ ,

$w(x, t)=\psi^{-1}(\tau(t))$

1 $\psi^{-1}(\psi(M))=M\geqq u(x, t)$ on $\partial B(R)\cross(t, T)$ .

Thus, Proposition 1.2 implies that

(2.11) $w(x, t)\geqq u(x, t)$ in $[R^{N}\backslash B(R)]\cross[\overline{t},\overline{t}+k’)$ ,

where $k’= \min\{k, T-\overline{t}\}$ .
Choosing $h=k’/2$ and $\ell=\tau(\overline{t}+h)$ , we conclude the assertion of the lemma

from (2.7) and (2.11). $\square$

LEMMA 2.3. Suppose that there exist $(\overline{x},\overline{t})\in R^{N}\cross[0, T)$ and $R>0$ such that

(2.12) $u(x,\overline{i})=0$ in $B(R, X)$ .

Then for any $\epsilon>0$ there exists a $\delta>0$ such that

(2.13) $u(x, t)=0$ in $B(R-\epsilon,\overline{x})\cross[\overline{t},\overline{t}+\delta)$ .

PROOF. Without loss of generality we can assume $X=0$ . We define
$w(x, t)$ as

(2.7) $w(x, t)=\psi^{-1}([\tau(t)+|x|-R]_{+})$ ,

where $\psi$ is as given in (2.8) and

(2.9) $\tau(t)=c(\epsilon)(t-\overline{t})+\frac{\epsilon}{2}$ ;

$c( \epsilon)=\frac{N-1}{\beta’(\psi^{-1}(\epsilon))(R-\epsilon)}+1+\sup_{0<v\leqq\phi^{-1}(\epsilon)}\frac{f(v)}{\beta(v)\beta’(v)}$ .

Choose $0<\delta<\epsilon/2c(\epsilon)$ so small that

(2.14) $0\leqq u(x, t)\leqq\psi^{-1}(\epsilon/2)$ on $\partial B(R)\cross[\overline{t},\overline{i}+\delta)$ .

Then the above $w$ forms a supersolution of (0.1) in $B(R)\chi(\overline{t},\overline{t}+\delta)$ . In fact,
corresponding to (2.10), we have

$\frac{1}{\beta’(w)}\Delta\psi(w)+|\nabla\psi(w)|^{2}+\frac{f(w)}{\beta(w)\beta’(w)}$

$= \frac{N-1}{\beta’(w)|x|}+1+\frac{f(w)}{\beta(w)\beta’(w)}\leqq c(\epsilon)=\partial_{t}\psi(w)$ .

For the above inequality we have used the fact $0\leqq$ \psi (w):$ \rho (t);$ $\epsilon$ .
If we note (1.14), the inequality

(2.15) $w(x, t)\geqq u(x, t)$
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is easily verified on the parabolic boundary, and hence, it holds in the whole
domain. Since $w=0$ in $\rho(t)\leqq R-|x|$ and $\epsilon/2\leqq$ \rho (t);$\epsilon in $(\overline{t},\overline{t}+\delta)$ , the lemma
follows from (2.7) and (2.15). $\square$

NOW we put

(2.16) $\Omega(t)=\{x\in R^{N} ; u(x, t)>0\}$ and $\Gamma(t)=\partial\Omega(t)$

for $t\in(O, T)$ . The interface $\Gamma$ is then given by

(2.17) $\Gamma=\bigcup_{0\leq t\leqq T}\Gamma(t)\cross\{t\}$ .

THEOREM 2.4. Assume $(A1)\sim(A4)$ . Let $u$ be any weak solution to (0.1),

(0.2). Then $\Omega(t)$ forms a bounded set in $R^{N}$ and is nondecreasing in $t$ :

(2.18) $\Omega(t_{1})\subset\Omega(t_{2})$ if $t_{1}<t_{2}$ .

PROOF. (2.18) directly follows from Lemma 2.1. So, we shall show that
$\Omega(t’)$ is bounded for any $0<t’<T$ . Choose $R>0$ so large that $u(x, 0)=0$ in
$R^{N}\backslash B(R)$ (see (A4)). Let $t’<T’<T$ and

$M= \sup_{(x.t)\in R^{N}\cross(0.T’)}u(x, t)<\infty$ .

Then applying Lemma 2.2 with $\overline{t}=0$ and $T=T’$ , we see that there exist $\ell>0$

and $0<h<T’-t’$ such that $u(x, t)=0$ in $[R^{N}\backslash B(R+l)]\cross[0, h]$ . Note that $\ell$

and $h$ depend only on $M$. Thus, repeating the argument $n$ times, where $n$ is
chosen to satisfy $(n-1)h<t’$ ;$ $nh$ , we conclude that $u(x, t’)=0$ in $R^{N}\backslash B(R+nh)$ .

$\square$

TO show the regularity of the interface we put

(2.19) $r=r(y, t)= \sup\{s\in R;u(y+sn(y), t)>0\}$

for $(y, t)\in\partial D\cross(O, T)$ . Since $\Omega(t)$ is bounded in $R^{N}$ , it follows that $0\leqq r<\infty$ .
With this $r$ we define the function $\mathscr{I}:\partial D\cross[0, T)arrow R^{N}$ as follows;

(2.20) $\mathscr{I}(y, t)=y+r(y, t)n(y)$ .

LEMMA 2.5. Let $z=y+sn(y)$ for some 0:$ $s<r(y, t)$ (or $s>r(y,$ $t)\geqq 0$ ). Then
$u(x, t)>0$ $(or=0)$ in a neighborhood of $x=z$ .

PROOF. If $0\leqq s<r(y, t)$ , then $u(z, t)>0$ by Lemma 1.5 and (2.19). Hence
the assertion follows from the continuity of $u$ . If $s>r(y, t)\geqq 0$ , then for any
$\xi=y+s\sim n(y)$ , where $r(y, t)<S<s$ , we have $z\in V^{*}(\gamma(\xi), \xi, n(y))$ . Since $u(\xi, t)=0$ ,

we have the assertion from Lemma 1.7. $\square$

THEOREM 2.6. Assume $(A1)\sim(A4)$ , and let $u$ be any weak solution to (0.1),
(0.2). (1) Then $\mathscr{I}:\partial D\cross[0, T)arrow R^{N}$ is continuous, and $\Gamma(t)$ is represenied as
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(2.21) $\Gamma(t)=\{x=\mathscr{I}(y, t);y\in\partial D\}$ .
(2) For each $t\geqq 0,$ $\mathscr{I}(\cdot, t):\partial Darrow\Gamma(t)$ is bicontinuous.
(3) If $\mathscr{I}(y_{0}, t_{0})\not\in\overline{D}$ for some $(y_{0}, t_{0})\in\partial D\cross(O, T)$ , then $\mathscr{I}(y, t_{0})$ is Lipschitz

continuous in $y\in\partial D$ in a neighborhood of $y_{0}$ .

PROOF. (1) Firstly, we shall show (2.21). By definition (2.19), $\Gamma(t)\supset$

$\{\mathscr{I}(y, t);y\in\partial D\}$ . On the other hand, let $z\in\Gamma(t)$ . We can write $z=y(z)+s\mu(z)$

for some $s\geqq 0$ . Then by means of the above lemma, we see that $s-r(y(z), t)$ .
Hence, $z=\mathscr{I}(y(z), i)$ and the converse inclusion $\Gamma(t)\subset\{\mathscr{I}(y, t);y\in\partial D\}$ holds.

Secondly, we shall show the continuity in $y\in\partial D$ of $\mathscr{I}(y, t)$ . Let $y_{0}\in\partial D$

and let $\{y_{i} ; i=1, 2, \}\subset\partial D$ be any sequence which converges to $y_{0}$ as $iarrow\infty$ .
Since $\{\mathscr{I}(y_{i}, t)\}$ is bounded in $R^{N}$ , we can choose a convergent subsequence.
For the sake of simplicity, we write this also as $\{\mathscr{I}(y_{i}, t)\}$ . Let

(2.22) $z= \lim_{iarrow\infty}\mathscr{I}(y_{i}, t)$ .

Then from the continuity of $y(x)$ (lemma 1.4 (1)) and the fact that $y(y_{t}+sn(y_{i}))$

$=y_{i}$ for any $s\geqq 0$ , we have

$\langle$2.23) $y(z)= \lim_{iarrow\infty}y(\mathscr{I}(y_{i}, t))=\lim_{iarrow\infty}y_{i}=y_{0}$ .

This shows that $z$ lies on the closed ray $\ell^{-}(y_{0}),$ $i.e.,$ $z=y_{0}+sn(y_{0})$ for some $s\geqq 0$ .
Since $z\in\Gamma(t)$ by (2.22), Lemma 2.5 shows that $s=r(y_{0}, t)$ as above. Hence, $z=$

$\mathscr{I}(y_{0}, t)$ , and we see that any convergent subsequence has the same limit $\mathscr{I}(y_{0}, t)$ .
This implies the desired continuity of $J(y, t)$ .

Thirdly, we shall show the continuity of $\mathscr{I}(y, t)$ in $t\in(O, T)$ . Note that
$r(y, t)$ is nondecreasing in $t$ . If $r(y, t_{0})=0$ for some $t_{0}\in(0, T)$ , then $r(y, t)=0$

for any $t\in(O, t_{0})$ . Thus, to show the left continuity of $r(y, t)$ at $t=t_{0}$ , we can
restrict ourselves to the case $r(y, t_{0})>0$ . Choose any $0<s<r(y, t_{0})$ . Then $u(y+$

$sn(y),$ $t)$ is continuous in $t$ and by Lemma 1.5, $u(y+sn(y), t_{0})>0$ . So, if $t<t_{0}$ is
chosen very close to $t_{0}$ , we have $u(y+sn(y), t)>0$ . Hence,

(2.24) $s<r(y, t)\leqq r(y, t_{0})$ ,

and the left continuity follows. Next let us show the right continuity of $r(y, t)$

at $t=t_{0}$ . Lemma 2.5 shows that for any $s>r(y, t_{0})$ we can choose $7>0$ such
that $u(x, t_{0})=0$ in $x\in B(\gamma, y+sn(y))$ . We use here Lemma 2.3. Then for any
$\epsilon\in(0, \gamma)$ there exists a $\delta$ such that

$\langle$2.25) $u(x, t)=0$ in $(x, t)\in B(\gamma-\epsilon, y+sn(y))\cross(t_{0}, t_{0}+\delta)$ .

This sbows that

$\langle$2.26) $r(y, t_{0})\leqq r(y, i)<s$
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if $t>t_{0}$ is chosen very close to $t_{0}$ , and the right continuity follows.
Summarizing the second and third results, we can say that $\mathscr{I}(y, t)$ is con-

tinuous in $(y, t)\in\partial D\cross(O, T)$ . In fact, since $r(y, t)$ is nondecreasing in $t$ , we
can use the Dini theorem to see its uniform continuity in $t$ . The continuity in
$(y, t)$ is then easily follows.

(2) AS is already discussed, $y(\cdot):\Gamma(t)arrow\partial D$ gives, for fixed any $t\in(O, T)$ ,
the inverse of $\mathscr{I}(\cdot, t):\partial Darrow\Gamma(t)$ . Since $y(\cdot)$ is continuous, this shows the bi-
continuity of $\mathscr{I}(\cdot, t)$ .

(3) We put $\eta=\mathscr{I}(y_{0}, t_{0}),$ $\xi=y(\eta)+s\mu(\eta)$ for $0<s<|\eta-y(\eta)|$ and $\gamma=\min$

$\{\gamma(\xi), \pi/2-\gamma(\xi)\}$ as given in Lemma 1.4 (2). Since $\mathscr{I}(y, t)$ is continuous in $y$ ,

the Lipschitz continuity at $y=y_{0}$ follows if we can prove

(2.28) $\mathscr{I}(y, t)\in R^{N}\backslash \{K_{+}(\gamma, \xi, \eta)\cup K_{-}(\gamma, \xi, \eta)\}$ ,

where $K_{\pm}(7, \eta)$ are as given by $(1.16)_{\pm}$ , when $y\in\partial D$ moves in a neighborhood
of $y_{0}$ . From Lemmas 1.4 (2) and 1.7 and by reduction to absurdity, it follows
that $u(x, t)>0$ in $K_{-}(\gamma, \eta)$ . On the other hand, since $u(\eta, t)=0$ , it also follows
from Lemma 1.7 that $u(x, t)=0$ in $K_{+}(\gamma, \xi, \eta)$ . Thus, (2.28) is proved. $\square$

\S 3. Blow-up sets and asymptotic behavior of interfaces 1.

In this sections we treat the case of (A4), (A5) and (A6), or (A4), (A5)

and (A7). In this case a nonblow-up result to the corresponding Dirichlet
boundary value problem in a bounded domain will play a key role to investigate
the blow-up set.

Let $\Omega\subset R^{N}$ be a bounded domain with smooth boundary $\partial\Omega$ . We consider
the initial-boundary value problem

(3.1) $\partial_{t}\beta(u)=\Delta u+f(u)$ in $(x, t)\in\Omega\cross(O, \infty)$ ,

$\langle$3.2) $u(x, t)=b(x, t)$ on $(x, t)\in\partial\Omega\cross(O, \infty)$ ,

(3.3) $u(x, 0)=u_{0}(x)$ in $x\in\Omega$ .

Here $\beta(v),$ $f(v)$ and $u_{0}(x)$ satisfy (A1) and (A2), and equation (3.1) is considered
in the weak sense as in Definition 1.

Assume further the following

(A6) There exists a $\gamma\in(0, \lambda)$ and $C>0$ such that

$f(v)\leqq\gamma v+C$ for $v\geqq 0$ ,

where $\lambda>0$ is the principal eigenvalue of $-\Delta$ in $\Omega$ with zero
Dirichlet condition.

(A9) $g(x, t)\in C(\partial\Omega\cross(O, T));0$ $ $g(x, t)\leqq M;g(x, 0)=u_{0}(x)$ .
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LEMMA 3.1. Under these conditions the above Problem (3.1), (3.2), (3.3) has
a unique global solution $u=u(x, t)$ , which is uniformly bounded in $\Omega\cross(0, \infty)$ .

REMARK 3.1. Cf. [11] and [12]. In [11] an energy metbod has been used
to obtain similar results. In [12] the above result has been applied to blow-up
problems for radially symmetric solutions in a ball of $R^{N}$ .

PROOF. We choose $\tilde{\Omega}\supset\supset\Omega$ so that the principal eigenvalue of -A in $\tilde{\Omega}$

equals to $\gamma$ . Let $v(x)>0$ be a corresponding eigenfunction, and put

(3.4) $v_{h}(x)=hv(x)- \frac{C}{\gamma}$ for $h>0$ .

If $h$ is sufficiently large, we have

(3.5) $v_{h}(x)\geqq M$ in $\partial\Omega$ , and ) $u_{0}(x)$ in $\Omega$ .
Furthermore, it follows from (A6) that

$- \Delta v_{h}=-h\Delta v=\gamma(hv-\frac{C}{7})+C=\gamma v_{h}+C\geqq f(v_{h})$ .

Thus, $v_{h}$ is a supersolution of (3.1). Noting (3.5) and Proposition 1.2, we have
the a-priori estimate

$v_{h}(x)\geqq u(x, t)$ for any $t\geqq 0$ ,

which ensures simultaneously the global existence and the boundedness of
solutions. $\square$

THEOREM 3.2. Assume (A1), (A2), (A4), (A5) and (A6). Let $u$ be a blow-up
solution of (0.1), (0.2). (1) Then

(3.6) $S=R^{N}$ ,

and $u$ blows up uniformly in each compact set $K$ of $R^{N}$ :

(3.7) $\lim_{t\uparrow T}\inf_{x\in K}u(x, t)=\infty$ .

(2) Assume further (A3) and (A4). Then the suPPort $\overline{\Omega}(t)$ of $u(t)$ grows to
$R^{N}$ as $t\uparrow T$, in other words,

(3.8) $\lim_{t\uparrow T}\inf_{y\in\partial D}|\mathscr{I}(y, t)|=\infty$ .

PROOF. (1) First we shall show that $S=R^{N}$ . Assume contrary that there
exists a point $z\in R^{N}$ and $M>0$ such that

(3.9) $u(z, t)\leqq M$ in $t\in(O, T)$ .
We choose $R>0$ so large that both $D$ in (A4) and this $z$ are contained in the
ball $B(R)$ . By Lemma 1.6
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(3.10)
$\sup_{x\not\in B(3R)}u(x, t)\leqq\inf_{x\in B(R)}u(x, t)$ $ $u(z, t)\leqq M$ ,

Thus, if we consider this $u$ as a solution of (3.1), (3.2), (3.3) with $\Omega=B(4R)$ ,
then $g(x, t)=u(x, t)$ on $\partial\Omega\cross(0, \infty)$ satisfies (A9). Since (A6) is a stronger con-
dition than (A6), we can apply Lemma 3.1 to show the boundedness of $u$ in
$B(4R)\cross(O, T)$ . This and (3.10) imply that $u$ is nonblow-up, and a contradiction
occurs.

Let us next prove(3.7). Choose $R>0$ so large that $K\subset B(R)$ . Let $z\in$

$R^{N}\backslash B(3R)$ . Then since $z\in S$ , there exists a sequence $(x_{i}, t_{i})\in\{R^{N}\backslash B(3R)\}\cross$

$(0, T)$ such that

$x_{i}arrow z,$ $t_{i}\uparrow T$ and $a_{i}\equiv u(x_{i}, t_{i})arrow\infty$ as $iarrow\infty$ .
Then by means of Lemma 1.6 we have

(3.11) $\inf_{x\in B(R)}u(x, t_{i})\geqq a_{i}arrow\infty$ as $iarrow\infty$ .

Let $\rho_{i}(t)$ be the solution of (2.2) with $p_{i}(t_{i})=a_{i}$ . $7I^{\backslash }hen$ by (2.3)

(3.12) $\rho_{i}(t)\geqq W^{-1}(W(a_{\ell})-\lambda(T-t_{i}))$ for $t\in[t_{i}, T)$ .

Since $W(a_{i})- \lambda(T-t_{i})\uparrow\int_{1}^{\infty}\frac{\beta’(v)}{v}dv$ as $iarrow\infty$ , from this it follows that $\rho_{i}(t)arrow\infty$

as $iarrow\infty$ . Thus, by (2.1) and (3.11) we have (3.7).

(2) AS is proved in Theorem 2.4, for each $t\in(O, T),$ $\Omega(t)$ determines a
bounded set in $R^{N}$ which is nondecreasing in $t$ . Since $S=R^{N}$ , the assertion is
obvious. $\square$

THEOREM 3.3. Assume (A1), (A2), (A4), (A5) and (A7). Let $u$ be a blow-uP
solution of (0.1), (0.2). We choose $R_{\gamma}>0$ so that $\gamma$ is the principal eigenvalue of
$-\Delta$ in $B(3R_{\gamma})$ with zero Dirichlet condition. SuPPose that $D$ in (A4) is included
in $B(R_{\gamma})$ . Then we have

(3.13) $S\supset B(R_{\gamma})$ ,

and $u$ blows up uniformly in each compact set of $B(R_{\gamma})$ .
PROOF. By (A4); and Lemma 1.5 we see that $D$ includes blow-up points.

SuPPose that some $z\in B(R_{\gamma})$ does not belong to $S$ . Let $R=|z|<R_{\gamma}$ (without

loss of generality we can assume $z\neq 0$ ). Then by Lemma 1.6 we have

$\sup_{x\not\in B(3R)}u(x, t)\leqq u(z, t)\leqq C<\infty$ for any $t\in(O, T)$ .
Thus, if $u$ is considered as the solution of (3.1), (3.2), (3.3) with $\Omega=B(3R)$ , it
satisfies (A9). Moreover, since $R<R_{\gamma}$ , (A6) also follows from (A7). Then
Lemma 3.1 shows that this $u$ remains bounded in $\Omega\cross(0, T)$ , which contradicts
the fact that $D\cap S\neq\emptyset$ .
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The remainder of the theorem can be proved by the same argument of
Theorem 3.2. $\square$

\S 4. Blow-up sets and asymptotic behavior of interfaces 2.

In this section we treat the case (A4), (A5) and (A8), requiring the follow-
ing additional condition on $u_{0}$ .

(A10) $\Delta u_{0}(x)+f(u_{0}(x))\geqq 0$ in the distribution sense in $R^{N}$ .

We begin with a lemma, which extends the corresponding results for semi-
linear equations due to [5] (see also [3], [4] and [7]). In one dimensional qua-
silinear problems, similar results have already been proved in [11] and [18].

LEMMA 4.1. Assume (A4), (A5) and (A8). Let $\Omega\subset R^{N}$ be a domain and le $t$

$u>0$ be a solution of (0.1) in $\Omega\cross(0, T)$ . If
(4.1) $\partial_{t}u(x, t)\geqq 0$ in $\Omega\cross(0, T)$ ,

and if there exists $\nu\in S^{N-1}$ and $\delta>0$ such that

(4.2) $\nu\cdot\nabla u(x, t)\leqq-\delta|\nabla u(x, t)|<0$ in $\Omega\cross(0, T)$ ,

then $u$ does not unif rmly blow-up in $\Omega$ :

(4.3) $\inf_{\Omega x\in}u(x, t)\leqq M<\infty$ in $t\in(O, T)$ .

PROOF. We shall show this lemma also by contradiction assuming

(4.4) $\lim_{t\uparrow T}\inf_{x\in\Omega}u(x, t)=\infty$ .

For $a=(a_{1}, \cdots , a_{N})\in\Omega$ we choose $\alpha>0$ so small that the rectangular domain

(4.5) $\omega(\alpha)=\{x=(x_{1}, \cdots x_{N})\in R^{N} ; \alpha_{j}<x_{j}<\alpha_{j}+\alpha, J^{=1}, N\}$

is included in $\Omega$ . If we choose $\tau\in(0, T)$ very close to $T$ , then since $u$ is
assumed to blow-up uniformly in $\Omega$ , we see that it is a $C^{\infty}$-classical solution of
(0.1) in $\omega(a)\cross(\tau, T)$ .

Without loss of generality we can choose $\nu=(-1,0, \cdots , 0)$ in (4.2). It then
follows that

(4.6) $0<|\nabla u|\leqq\delta^{-1}\partial_{1}u$ , where $\partial_{1}=\partial/\partial_{X_{1}}$ , in $\overline{\omega(a)}\cross(0, T)$ .

We put

(4.7) $J(x, t)=\partial_{1}u(x, t)-\rho(x)\Phi(u(x, t))$ ,

where $\rho(x)=\epsilon\Pi_{k=1}^{N}\sin\pi(x_{k}-a_{k})/\alpha$ and $\Phi$ is as given in (A8). By a direct
calculation $J$ is shown to satisfy the equation
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(4.8) $\partial_{t}(\beta’J)-\Delta J=p\{f’\Phi-\Phi’f-N(\pi/\alpha)^{2}\Phi\}$

$+2\Phi’\nabla\rho\cdot\nabla u-p\Phi\beta’’\partial_{t}u+\rho\Phi^{\chi}|\nabla u|^{2}+f’J$

in $\omega(a)\cross(\tau, T)$ . Here $\beta’’\partial_{t}u\leqq 0$ by (A1) and (4.1), and

$| \nabla\rho\cdot\nabla u|\leqq\frac{\epsilon N\pi}{\alpha}|\nabla u|\leqq\frac{2\epsilon N\pi}{\alpha\delta}\partial_{1}u$

by (4.6). Thus, we have

(4.9) $\partial_{t}(\beta’J)-\Delta J-(f’-\frac{2\epsilon N\pi}{\alpha\delta}\Phi’)J$

1 $p \{f’\Phi-\Phi’f-N(\pi/\alpha)^{2}\Phi+\frac{2\epsilon N\pi}{\alpha\delta}\Phi’\Phi\}$ .

Since $\Phi’(v)arrow\infty$ as $varrow\infty$ by (A8, li), choosing $\tau$ very close to $T$ , we have
$N(\pi/\alpha)^{2}\Phi^{\prime-1}\leqq c/2$ . We fix such a $\tau$ and take $\epsilon>0$ very small. Then we see
that the right side of (4.9) becomes nonnegative:

(4.10) $\partial_{t}(\beta’J)-\Delta J-(f’-\frac{2\epsilon N\pi}{\alpha\delta}\Phi’)J\geqq 0$ in $\omega(a)\cross(\tau, T)$ .

We can make use of the maximal principle to (4.10) to obtain

(4.11) $J(x, t)>0$ in $\omega(a)\cross(\tau, T)$ .

In fact, the inequality

$J(x, \tau)=\partial_{1}u(x, \tau)-p(x)\Phi(u(x, \tau))>0$ on $\omega(a)$

follows from (4.6) since $\epsilon>0$ has been chosen sufficiently small. Moreover,
since $p(x)=0$ on $\partial\omega(a)$ , we have

$J(x, t)=\partial_{1}u(x, t)>0$ on $\partial\omega(a)\cross(\tau, T)$ .

We rewrite (4.11) as

(4.12) $\Phi^{-1}\partial_{1}u>\rho(x)$ in $\omega(a)\cross(\tau, T)$ ,

and integrate both sides by $x_{1}$ over the interval $(a_{1}, a_{1}+\alpha)$ . Then we have
for any $t\in(\tau, T)$ ,

(4.13) $\int_{u(a_{1}.x’.t)}^{u(a_{1}+\alpha,x’.t)}\Phi(u)^{-1}du>\epsilon\prod_{k=2}^{N}\sin\frac{\pi}{\alpha}(x_{k}-a_{k})\int_{0}^{\alpha}\sin\frac{\pi}{\alpha}x_{1}dx_{1}$

$= \frac{2\epsilon\alpha}{\pi}\prod_{k=2}^{N}\sin\frac{\pi}{\alpha}(x_{k}-a_{k})>0$ ,

where $x’=(x_{2}, , x_{N})$ . By (A8, ii) and (4.4), the left side decays $0$ as $t\uparrow T$ .
Hence, a contradiction occurs and the lemma is proved. $\square$

We need one more lemma which ensures (4.1).
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LEMMA 4.2. Assume (A10), and Let $u$ be the solution of (0.1), (0.2). Then
$u(x, t)$ is nondecreasing in $t$ , and in the domain where $u>0$ , we have $\partial_{t}u(x, t)\geqq 0$ .

PROOF. Let $u_{i}(i=1, 2, )$ be the solution of (0.1) in $R^{N}\cross(0, T_{i})$ , wbere
$T_{i}\uparrow T$ as $iarrow\infty$ , with initial data $u_{0i}(x)=u_{0}(x)+(1/i)$ . Then by Lemma 2.1 each
$u_{i}>0$ in the whole space-time, and hence by Proposition 1.1 it is a $C^{\infty}$-classical
solution. Under (A10), an argument by the maximal principle shows that $\partial_{t}u_{i}$

$>0$ in $R^{N}\cross(0, T_{i})$ . Take $iarrow\infty$ . Then $u_{i}$ converges to $u$ locally uniformly in
$R^{N}\cross(0, T)$ , and the assertion of the lemma holds. $\square$

THEOREM 4.3. Assume (A1), (A2), (A4), (A5), (A8) and (A10). Let $u$ be a
blow-uP solution of (0.1), (0.2). (1) Then

(4.14) $S\subset\overline{D}$ .
(2) Assume further (A3) and (A4). Then the support $\overline{\Omega}(t)$ of $u(t)$ remains

bounded as $t\uparrow T$ , in other words,

(4.15) $\lim_{t\uparrow T}\sup_{y\in\partial D}|\mathscr{I}(y, t)|<\infty$ .

PROOF. (1) We shall first show (4.14). Suppose the contrary that there
exists a point $\zeta\in S\cap\{R^{N}\backslash \overline{D}\}$ . By definition we can choose a sequence $(\zeta_{i}, t_{i})$

$\in R^{N}\cross(0, T)$ such that

$\langle$4.16) $\zeta_{i}arrow\zeta,$ $t_{i}\uparrow T$ and $u(\zeta_{i}, t_{i})arrow\infty$ as $iarrow\infty$ .

Let $\xi=y(\zeta)+s\mu(\zeta),$ $\eta=y(\zeta)+s’\mu(\zeta)$ , where $0<s<s’<|\zeta-y(\zeta)|$ , and $7=\min$

$\{\gamma(\xi), \pi/2-\gamma(\xi)\}$ . Then by Lemmas 1.4 (2) and 1.7, we have for any $x\in$

$K_{-}(7, \xi, \eta)$ and $z\in K_{+}(\gamma, \xi, \eta)$ , where $K_{\pm}(7, \xi, \eta)$ are defined by $(1.16)_{\pm}$ ,

(4.17) $u(x, t)\geqq u(z, t)$ , where $t\in(O, T)$ .

Since $\zeta\in K_{+}(\gamma, \xi, \eta)$ , combining this and (4.16), we have for any $x\in K_{-}(\gamma, \xi, \eta)$ ,

(4.18) $u(x, t_{i})\geqq u(\zeta_{i}, i_{i})arrow\infty$ as $iarrow\infty$ .

By means of Lemma 4.2, $u$ is nondecreasing in $t$ . Thus, (4.18) shows that $u$

blows up uniformly in $K_{-}(7, \xi, \eta)$ .
On the other hand, this result shows that $u(x, t)>0$ in $(x, t)\in\overline{K}_{-}(7, \xi, \eta)\cross$

$[\tau, T)$ if $\tau\in(0, T)$ is sufficiently close to $T$ . Then (4.1) holds from Lemma 4.2
and (4.2) with $\nu=\mu(\xi),$ $\delta=\cos\gamma(\xi)$ and $\Omega=K_{-}(7, \xi, \eta)$ holds by Lemma 1.8.
Thus, Lemma 4.1 shows that $u(x, t)$ never blows up uniformly in $K_{-}(\gamma, \xi, \eta)$ .

This is a contradiction.
(2) We choose $R>0$ so large that $\overline{D}\subset B(R)$ . Then since $S\subset\overline{D},$

$u$ is uni-
formly bounded, say $u\leqq M$, in $\{R^{N}\backslash B(R)\}\cross(0, T)$ (cf. $e.g.$ , Lemma 1.5). Noting
that $u_{0}(x)=0$ in $R^{N}\backslash B(R)$ , we see that the conditions of Lemma 2.2 with $\overline{t}=0$
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are satisfied by this $u$ . Since $\ell>0$ and $0<h<T$ in (2.6) depend only on $M$, we
can repeat the same argument $n$ times, where $n$ is the least integer satisfying
$nh>T$ , to conclude $u(x, t)=0$ in $\{R^{N}\backslash B(R+n\ell)\}\cross(0, T)$ . Hence, (4.15) holds
true. $\square$

COROLLARY 4.4. Assume (A1), (A2), (A5), (A8), (A10) and

(A4)“ $u_{0}=u_{0}(r)$ , where $r=|x|$ ; $u_{0}(r)$ is monotone decreasing in $r>0$ .

Let $u=u(r, t)$ be a blow-up solution of (0.1), (0.2). Then

(4.19) $S=\{0\}$ .

PROOF. We fix any $R>0$ . For $z\not\in B(R)$ put $A=A(z, z/|z|)$ . Then by
(A4) we have

$\sigma_{A}u_{0}(r)\geqq u_{0}(r)$ in $R_{A.+}$ .
Thus, we can apply Theorem 4.3 (1) with $D=B(R)$ to obtain

$S\subset D=B(R)$ .
$R>0$ being arbitrary, this concludes (4.19). $\square$
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