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\S 1. Introduction.

In [Z1], Zariski considered the family of projective curves of degree 6 with
6 cusps on a conic. This family is defined by: $f(X, Y, Z)=f_{2}(X, Y, Z)^{3}+$

$f_{3}(X, Y, Z)^{2}=0$ where $f_{i}$ is a homogeneous polynomial of degree $i,$ $i=2,3$ . He
showed that the fundamental group $\pi_{1}(P^{2}-C)$ is isomorphic to the free product
$Z_{2}*Z_{3}$ for a generic member of this family. He also proved that the fundamental
group of the complement of a curve of degree 6 with 6 cusps which are not on
a conic is not isomorphic to $Z_{2}*Z_{3}$ . In fact, we will show in \S 5 that this
fundamental group is abelian. Zariski also studied a curve of degree 4 with 3
cusps as a degeneration of the first family in [Z1] and he claims that the com-
plement of such a curve has a non-commutative finite fundamental group of
order 12. We will reprove this assertion (\S 3 Theorem (3.12)).

The purpose of this note is to construct systematically plane curves with
nodes and cusps which are defined by symmetric polynomials $f(x, y)$ . A sym-
metric polynomial $f(x, y)$ can be written as a polynomial $h(u, v)$ where $u=x+y$

and $v=xy$ . In this expression, the degree of $h$ in $v$ is half of the original degree
and the calculation of the fundamental group becomes comparatively easy. Let
$p:C^{2}arrow C^{2}$ be the two-fold branched covering defined by $p(x, y)=(u, v)$ . The
branching locus is the discriminant variety $D=\{u^{2}-4v=0\}$ . Let $C=\{h(u, v)=0\}$

and $\tilde{C}=p^{-1}(C)$ . Under a certain condition, the homomorphism $p_{*}:$
$\pi_{1}(C^{2}-\tilde{C})arrow$

$\pi_{1}(C^{2}-C)$ is an isomorphism (Theorem (2.3), \S 2). Symmetric polynomials give
enough models for the cuspidal curves with small degree. In fact, we will
give examples of symmetric plane curves of the following type and we will
compute their fundamental groups.

(1) Symmetric curve of degree 4 with 3 cusps (Theorem (3.12), \S 3).
(2) Symmetric curve of degree 5, with 4 cusps (Theorem (3.14), \S 3).
(3) Symmetric curve of degree 6, with conical 6 cusps (Theorem (4.5), \S 4).
(4) Symmetric curve of degree 6, with non-conical 6 cusps (Theorem (5.8),

\S 5).
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The fundamental groups of the complement of the above examples (2), (4)

are abelian. We also discuss the degenerations of the above curves. For ex-
ample, we will show that the symmetric curves of degree 5 with 4 cusps can
be degenerated to a curve with 5 cusps (\S 3). The conical 6 cuspidal curve of
degree 6 can be degenerated to a curve with $d$ nodes and $6+s$ cusps for any
$d,$ $s$ with $d+s\leqq 3$ (\S 4). We will also prove that the moduli space of curves of
degree 4 with 3 cusps is an irreducible surface. All the curves which we treat
in this paper except in \S 6 are defined over the real numbers and the essential
information can be obtained from their real graphs. In \S 6, we will give explicit
examples of a maximal nodal curve and a cuspidal curve of degree $n$ which has
asymptotically $n^{2}/4$ cusps. The three cuspidal curves of degree 4 is also treated
in [D.L]. I would like to thank Professors M. Namba and H. Tokunaga for
pointing out an error in the first version and Professor A. Dimca for the in-
formation about [D-L].

\S 2. Symmetric covering.

Let $p:C^{2}arrow C^{2}$ be the two-fold covering mapping defined by $p(x, y)=(u, v)$

where $u=x+y,$ $v=xy$ . This is branched along the discriminant variety: $D=$

$\{(u, v);g(u, v)=0\}$ where $g(u, v)=u^{2}-4v$ . As $u$ and $v$ are elementary sym-
metric polynomials, we refer $p:C^{2}arrow C^{2}$ as the symmetric covering. Hereafter
we consider the symmetric weight: $\deg u=1,$ $\deg v=2$ unless otherwise stated.
Thus $g(u, v)$ is a weighted homogeneous polynomial of degree 2 under the
symmetric weight. Let $h(u, v)$ be a reduced polynomial of degree $n$ (under the
symmetric weight) and let $C=\{(u, v)\in C^{2} ; h(u, v)=0\}$ . We denote the inverse
image $p^{-1}(C)$ of $C$ by $\tilde{C}$ . The defining equation of $\tilde{C}$ is $p^{*}h(x, y)=h(x+y, xy)$

$=0$ . Note that $p^{*}h(x, y)$ is a polynomial of degree $n$ in $x$ and $y$ . We say that
$C$ is symmetrically regular at infinity if

$(R_{\infty})$ $\{(u, v)\in C^{2} ; h_{n}(u, v)=g(u, v)=0\}=\emptyset$

where $h_{n}$ is the weighted homogeneous part of degree $n$ of $h$ . The geometric
meaning of $(R_{\infty})$ is the following. First, under the condition $(R_{\infty})$ , the com-
pactification of $\tilde{C}$ and the line $D=\{X-Y=0\}$ in $P^{2}$ do not intersect at infinity
$i.e.$ , on the infinite line $Z=0$ . Secondly,

LEMMA (2.1). Assume that $C$ is symmetrically regular at infinity. Let $g_{C}$ :
$Carrow C$ be the restriction of the function $g(u, v)=u^{2}-4v$ to C. Then the number
of the fiber $g_{\overline{c}^{1}}(c)$ , counting the multiplicity, is constant for $c\in C$.

PROOF. Assume the contrary. Then there is a sequence $P_{\nu},$ $\nu=1,2,$ $\cdots$ of
$C$ such that $g(P_{\nu})$ is bounded and $||P_{\nu}||arrow\infty$ . We apply the Curve Selection



Symmetric plane curves with nodes and cusps 377

Lemma $([M], [H])$ to find a real analytic curve $(u(t), v(t)),$ $0<t<1$ so that $u(t)$ ,
$v(t)$ can be expanded in a Laurent series at $t=0$ and (1) $h(u(t), v(t))\equiv 0,$ $(2)$

$\lim_{tarrow 0}g(u(t), v(t))=c$ for some $c\in C$ and (3) $\lim_{tarrow 0}||(u(t), v(t))||=\infty$ . Let $u(t)=$

$at^{p}+$ (higher terms) and $v(t)=bt^{q}+$ ($higher$ terms) be the respective Laurent series.
Here $a$ (respectively $b$ ) is non-zero unless $u(t)\equiv 0$ (resp. $v(t)\equiv 0$ ). We consider
the leading terms of $h(u(t), v(t))$ and $g(u(t), v(t))$ . Let $P=^{t}(p, q)$ and $X=(a, b)$ .
For a given polynomial $f,$ $f_{P}(u, v)$ denotes the leading part of $f$ with respect
to the weight $P$ and $f_{P}(u, v)$ is a weighted homogeneous polynomial of degree
$d(P;f)$ . This is a usual notation. See for instance [04]. Note that

$g(u(t), v(t))=\{$

$a^{2}t^{2p}+$ (higher terms) if $2p<q$

$(a^{2}-4b)t^{2p}+$ ($higher$ terms) if 2$p=q$
$-4bt^{9}+$ (higher terms) if 2$p>q$ .

Therefore the assumption (2) and (3) can not be satisfied simultaneously unless
$g_{P}=g$ and $g(a, b)=0$ . Namely $X\in C^{*2},$ $P={}^{t}(c, 2c)$ for some negative number $c$

and $a^{2}-4b=0$ . On the other hand, the assumption (1) implies that $h_{P}(a, b)=0$ .
AS $h_{P}=h_{n}$ , we get a contradiction to the assumption $(R_{\infty})$ . Q. E. D.

(A) Correspondence of fundamental groups.
We consider the fundamental groups $\pi_{1}(C^{2}-C)$ and $\pi_{1}(C^{2}-\tilde{C})$ and their

relation. Hereafter we always fix a suitable base point and we omit it.

LEMMA (2.2). Assume that $C$ is symmetrically regular at infinity.
(i) If $C$ meets transversely with $D$ , the canonical homomorphism

$\phi=(\phi_{1}, \phi_{2}):\pi_{1}(C^{2}-C\cup D)arrow\pi_{1}(C^{2}-C)\cross\pi_{1}(C^{2}-D)$

is an isomorphism where $\phi_{1}$ and $\phi_{2}$ are induced by the respective inclusion mappings.
(ii) The homomorphism $g_{\#}$ : $\pi_{1}(C^{2}-D)arrow\pi_{1}(C^{*})\cong Z$ is an isomorPhism and

the composition homomorphism $\psi:\pi_{1}(C^{2}-C\cup D)arrow\pi_{1}(C^{2}-D)arrow Z\psi_{2^{g}}\#$ is the rotation
number:

$\psi(\omega)=\frac{1}{2\pi i}\int_{\omega}\frac{dg}{g}$ , $\omega\in\pi_{1}(C^{2}-C\cup D)$ .

(iii) The image of $P*:$ $\pi_{1}(C^{2}-\hat{c}_{\cup}D)arrow\pi_{1}(C^{2}-C\cup D)$ consists of the loops $\xi$

with even rotation number $\psi(\xi)$ .

PROOF. Note that $(u, g)$ is a global system of coordinates. Let $\Sigma=$

$\{c_{1}, , c_{k}\}$ be the set of the critical value of $g_{C}$ : $Carrow C$ . Then $g:C^{2}-g_{\overline{c}^{1}}(\Sigma)$

$arrow C-\Sigma$ is a locally trivial fibration by virtue of Lemma (2.1) and $0\not\in\Sigma$ by the
transversality assumption. By van Kampen Theorem $([K])$ , the homomorphism
$c:\pi_{1}(g^{-1}(c)-g^{-1}(c)\cap C)arrow\pi_{1}(C^{2}-C)$ is surjective for any $c\not\in\Sigma$ . Note that
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$\pi_{1}(g^{-1}(c)-g^{-1}(c)\cap C)$ is a free group of rank $n$ . We fix a system of generators
$\rho_{1}$ , , $\rho_{n}$ . AS $g:(C^{2}, C)arrow C$ has no critical point at infinity by Lemma (2.1),

the generating relations of $\rho_{1},$
$\cdots$ , $\rho_{n}$ as the generators of $\pi_{1}(C^{2}-C)$ are given

by the monodromy relations around $c=c_{1},$ $\cdots$ , $c_{k}$ . The generators of $\pi_{1}(C^{2}-$

$C\cup D)$ are given by $\rho_{1},$
$\cdots$ , $\rho_{n}$ and $\rho$ where $\rho$ is represented by a small loop

which goes around $D$ outside of the intersection $D\cap C$ . In particular, we have
$\phi(\rho)=(e, a)$ where $a$ is the canonical generator of $\pi_{1}(C^{2}-D)$ . The generating
relations are given by the same monodromy relations at $c=c_{1},$ $\cdots$ , $c_{k}$ and the
commutation relation of $\rho$ with other generators: $[\rho, \rho_{i}]=e,$ $i=1,$ $\cdots$ $n$ . The
last commutation relations follows from the topological triviality of the projec-
tion $g:(C^{2}, C)arrow C$ near $c=0$ . Now the first assertion (i) follows immediately.
The assertion (ii) follows also from the observation that $g:C^{2}-Darrow C^{*}$ is a
homotopy equivalence. The assertion (iii) is also clear as the image of $p_{*}:$

$\pi_{1}(C^{2}-\tilde{C}\cup\tilde{D})arrow\pi_{1}(C^{2}-C\cup D)$ is a normal subgrouP of index 2 and $p^{*}g(x, y)=$

$(x-y)^{2}$ . Q. E. D.

We remark here that the transversality of $C$ and $D$ does not imply the
generic intersection as projective curves. In fact, the number of the intersec-
tion poins $C\cap D$ in $C^{2}$ is not 2 $\deg C$ but $\deg C$ . Thus the assertion (i) does
not follow from [O-S]. We fix an element $\rho\in\pi_{1}(C^{2}-C\cup D)$ where $\rho$ is re-
presented by a small loop which goes around $D$ outside of the intersection $C\cap D$ .
By the above isomorphism, $\phi(\rho)=(e, 1)$ where $e$ is the unit element of $\pi_{1}(C^{2}-C)$ .
Let $\tilde{D}$ be the inverse image of the discriminant variety $D$ . Note that $D=$

$\{x-y=0\}$ and the defining polynomial $p^{*}g(\chi, y)=(x-y)^{2}$ is not reduced. The
following theorem says that we can compute the fundamental group $\pi_{1}(C^{2}-\tilde{C})$

from $\pi_{1}(C^{2}-C)$ in a certain case.

THEOREM (2.3). Let $C$ be a curve which is symmetrically regular at infinity.
(i) The canonical homomorphism $p_{\#}$ : $\pi_{1}(C^{2}-\tilde{C})arrow\pi_{1}(C^{2}-C)$ is $sur_{J}$ ective.
(ii) If the homomorphism $\phi=(\phi_{1}, \phi_{2}):\pi_{1}(C^{2}-C\cup D)arrow\pi_{1}(C^{2}-C)\cross\pi_{1}(C^{2}-D)$

is isomorPhic, in particular if $C$ meets transversely with $D$ in the base space $C^{2}$ ,

the above homomorphism $p_{*}:$ $\pi_{1}(C^{2}-\tilde{C})arrow\pi_{1}(C^{2}-C)$ is $bi_{J^{eCr}}ive$ .

PROOF. We consider the commutative diagram:

$\pi_{1}(C^{2}-\tilde{C}\cup\tilde{D})arrow\pi_{1}(C^{2}-C\cup D)p_{\#}’$

$\downarrow c\sim$

$p_{*}$

$\downarrow t$

$\pi_{1}(C^{2}-\tilde{C})arrow\pi_{1}(C^{2}-C)$

The horizontal maps are induced by the projection $P$ and the vertical maps $ar^{-}$

induced by the respective inclusion maps. It is obvious that the vertical maps
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are surjective. Take any loop $\omega\in\pi_{1}(C^{2}-C)$ . Choose $\omega’\in\pi_{1}(C^{2}-C\cup D)$ so that
$c(\omega’)=\omega$ . The loop $\omega’$ can be lifted to a loop by $P$ if and only if the rotation
number $\psi(\omega’)$ is even. (Of course, $\omega’$ is always liftable as a path.) Thus either
$\omega’$ or $\omega’\rho$ can be lifted to a loop ‘Of’. Therefore $p_{2}(c\sim(\omega’’))=\omega$ . Thus $p_{\#}$ is
surjective. Now we prove the injectivity of $P\#$ assuming that $\phi$ is an isomor-
phism. Let $\sigma\in\pi_{1}(C^{2}-\tilde{C})$ be an arbitrary element and take an element $\sigma’\in$

$\pi_{1}(C^{2}-\tilde{C}\cup\tilde{D})$ which is mapped to $\sigma$ by Z. Assume that $p_{\#}(\sigma)=e$ . Then by
Lemma (2.2), $pg(\sigma’)=\rho^{2k}$ for some even integer $2k$ . Thus $\sigma’$ is represented by
the lift of $\rho^{2k}$ as $p_{\#}’$ is injective. This corresponds obviously to the unit element
$e$ by Z. Thus $\sigma$ is trivial in $\pi_{1}(C^{2}-C)$ . Q. E. D.

If $C\cap D$ has at least one transversal intersection, the canonical homomorphism
$\phi=(\phi_{1}, \phi_{2}):\pi_{1}(C^{2}-C\cup D)arrow\pi_{1}(C^{2}-C)\cross\pi_{1}(C^{2}-D)$ is often isomorphic.

(B) Correspondence of singularities.
NOW we consider the correspondence of the singularities of $C$ and $\tilde{C}$ . For

the calculation’s sake we use the coordinates $(u, g)$ in the base space of $p$ :
$C^{2}arrow C^{2}$ and the coordinate $(u, 1)$ in the source where $g=u^{2}-4v,$ $u=x+y$ and
$l=x-\mathcal{Y}$ . In \S 3, we simply write $\sqrt{g}$ instead of 1. In these coordinates, the
projection $p$ is simply defined by $p(u, l)=(u, l^{2})$ and the discriminant variety $D$

is the horizontal line $\{g=0\}$ . Let $h(u, g)$ be the defining polynomial of $C$ . Then
$\tilde{C}$ is defined by $\tilde{h}(u, l)=0$ wbere $\tilde{h}(u, l)=h(u, l^{2})$ . Let $w\in C$ . Assume first that
$w\not\in C\cap D$ . Then $p^{-1}(w)$ consists of two points, say $\tilde{w}_{1}$ and $\tilde{w}_{2}$ . As $P$ is locally
isomorphic, the germs $(C, w_{i}),$ $i=1,2$ are isomorphic to the germ $(C, w)$ .

NOW we assume that $w\in C\cap D$ and let $p^{-1}(w)=\tilde{w}$ . In the above coordinates,
we can write $w=(\alpha, O)=\tilde{w}$ for some $\alpha\in C$ . We calculate the differentials:

(2.4) $\frac{\partial h}{\partial u}(u, l)=\frac{\partial h}{\partial u}(u, l^{2})$ , $\frac{\partial\tilde{h}}{\partial l}(u, l)=2l\frac{\partial h}{\partial g}(u, l^{2})$ .

Thus $\tilde{w}$ is a singular point of $\tilde{C}$ if and only if

(2.5) $\frac{\partial h}{\partial u}(\alpha, 0)=0$ .

This implies the following.

PROPOSITION (2.6). $\tilde{w}$ is a singular Point of $\tilde{C}$ if and only if
$( i )$ $w$ is a singular point of $C$ , or
(ii) $w$ is a regular point of $C$ and $C$ is tangent to $D$ at $w$ .

Recall that $w$ is called a cusp singularity if $C$ is locally isomorphic to the
curve $\xi^{2}+\zeta^{3}=0$ for a system of coordinates $(\xi, \zeta)$ centered at $w$ . This is a
generic property in the class of the singularity with the condition $H(h)(w)=0$
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where $H(h)(w)$ is the Hessian of $h$ at $(u, g)=w$ . We give a criterion for a
given singularity to be a cusp singularity. Let $(\xi, \zeta)$ be a local coordinate
system centered at $w$ and let $h(e, \zeta)=h(u(\xi, \zeta),$ $g(\xi, \zeta))$ . Let $\mathscr{M}$ be the maximal
ideal of $O_{C2w}$ .

PROPOSITION (2.7). Assume that $w$ is a singular Point of $C$ and $\hat{h}(\xi, \zeta)\equiv a\xi^{2}$ ,
$a\neq 0$ modulo $\mathscr{M}^{3}$ . Then $w\in C$ is a cusp singularity if and only if $h(\xi, \zeta)$ contains
the monomial $\zeta^{3}$ with a non-zero coefficient.

PROOF. The necessity follows from the fact that the local Milnor number
is 2. The proof for the sufficiency is easily obtained by the standard argument
of the generalized Morse lemma. Q. E. D.

NOW we consider the Hessian of $\hslash$ at $\tilde{w}=(\alpha, 0)$ assuming $\tilde{w}$ is a singular
point of $\tilde{C}$ . From (2.4), we have

(2.8) $H( \tilde{h})(\tilde{w})=2\frac{\partial h}{\partial g}(\alpha, 0)\frac{\partial^{2}h}{\partial u^{2}}(\alpha, 0)$ .

Let $\mu(C, D;w)$ be the intersection multiplicity of $C$ and $D$ at $w$ . We claim that

LEMMA (2.9). Assume that $w\in C\cap D$ and let $\tilde{w}$ as above. Then
(i) $\tilde{w}\in\tilde{C}$ is an ordinary double point if and only if $w$ is a regular point

of $C$ with $\mu(C, D;w)=2$ .
$(^{f}ii)$

$\tilde{w}\in a$ is a cusp singularity if and only if $w$ is a regular Point of $C$

with $\mu(C, D;w)=3$ .

PROOF. AS a coordinate system centered at $w$ , we can take $(u_{\alpha}, g)$ where
$u.=u-a$ . Recall that $\mu(C, D;w)=va1_{u_{\alpha}}k(u_{\alpha})$ where $k(u.)=h(u.+a, 0)$ . Thus

$\mu(C, D;w)=s\Leftarrow\ni\frac{d^{i}k}{du_{a}^{i}}(0)=\frac{\partial^{i}h}{\partial u^{i}}(\alpha, 0)\{=\neq 00$

for $i<s$ and
for $i=s$ .

Inlparticular we have $\mu(C, D;w)\geqq 2$ if $\tilde{w}$ is a singular point. On the other
hand, by (2.8) we have the equivalence

$\tilde{w}$ : ordinary double $point\Leftarrow\Rightarrow\frac{\partial h}{\partial u}(\alpha, 0)=0$ , $H(\tilde{h})(\tilde{w})\neq 0$

$\Leftrightarrow\frac{\partial h}{\partial u}(\alpha, 0)=0,$ $\frac{\partial h}{\partial g}(\alpha, 0)\neq 0$ , $\frac{\partial^{2}h}{\partial u^{2}}(\alpha, 0)\neq 0$ .

The last condition implies that $w\in C$ is a regular point and $\mu(C, D;w)=2$ .
This proves the assertion (i).

NOW we prove the assertion (ii). Let $s=\mu(C, D;w)$ and assume that
$\partial h/\partial u(\alpha, 0)=0$ . Let $h_{\alpha}(u_{\alpha}, g)=h(u_{\alpha}+\alpha, g)$ . Then $h.=0$ is a defining equation

of $C$ . By the assumption, we can write
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$h_{\alpha}(u_{\alpha}, g)=u_{a}^{s}U+g^{j}V$

where $U,$ $V\in O_{C2w},$ $j\geqq 1$ and $U$ is a suitable unit in $O_{C.w}2$ . Then the defining
equation of $\tilde{C}$ is:

$p^{*}h_{a}(u_{a}, l)=u_{\alpha}^{s}p^{*}U+l^{2j}p^{*}V=0$ .
Thus using Proposition (2.7), we can see easlly that $\tilde{w}\in\tilde{C}$ is a cusp singularity
if and only if $j=1,$ $s=3$ and $V$ is a unit. This implies that $w\in C$ is a regular
point and $\mu(C, D;w)=3$ . Q. E. D.

DEFINITION (2.10). Recall that a regular point $P$ of a curve $C$ is called a
flex of order $k$ if the intersection multiplicity of $C$ and the tangent line at $P$

is $(k+2)([Z1])$ . We call a regular point $P$ of $C$ a D-flex of order $k$ if $P\in$

$C\cap D$ and the intersection multiplicity of $C$ and $D$ at $P$ is $k+2$ . Hereafter we
call an ordinary double point simply a node.

The following corollary follows immediately from Lemma (2.9).

COROLLARY (2.11). Let $C=\{h(u, g)=0\}$ be a curve in the base space and let
$\hat{C}=p^{-1}(C)$ . We assume that the singular Points of $C$ are either nodes or cusps
and there is no singular Point of $C$ on the intersection $C\cap D$ . Let $d(C)$ and $s(C)$

be the number of the nodes and cusps of $C$ respectively and let $d(\tilde{C})$ and $s(\tilde{C})$ be
the number of nodes and cusps of $\tilde{C}$ respectively. We also assume that $\mu(C, D;P)$

$\leqq 3$ for any $P\in C\cap D$ . Let $t_{2}(C)$ and $t_{3}(C)$ be the number of the D-flex of order
$0$ and of order 1 respectively. Then the lifted curve $\tilde{C}$ has only nodes and cusps
and we have

$d(\tilde{C})=2d(C)+t_{2}(C)$ , $s(\tilde{C})=2s(C)+t_{3}(C)$ .

\S 3. Construction of cusPidal curves.

In this section, we consider irreducible projective curves with many cusps.
Let $F(X, Y, Z)$ be an irreducible homogeneous polynomial of degree $n$ and let
$C=\{(X;Y;Z)\in P^{2} ; F(X, Y, Z)=0\}$ be the corresponding projective curve.
For convenience, we assume that the intersection of $C$ with the infinite line
$Z=0$ is generic. Namely $F(X, Y, 0)=0$ consists of $n$ distinct points and we
consider hereafter the affine equation $f(x, y)=0$ of $C$ where $f(x, y)=F(x, y, 1)$ .
We assume that $C$ has only nodes and cusps as its singular points. Let $d(C)$

and $s(C)$ be the number of nodes and cusps respectively. We first recall the
known bounds for $d(C)$ and $s(C)$ . Suppose that $C$ is non-singular. Then by
the Pl\"ucker’s formula, the genus of $C$ is $(n-1)(n-2)/2$ . For the general case,
we deform the curve by $C_{t}=\{f(x, y)=t\}$ . For any sufficiently small $t,$ $C_{t}$ is
non-singular. Let $C’$ be the non-singular model of $C=C_{0}$ . Then tbe Euler-
Poincar\’e characteristic $\chi(C’’)$ satisfies $\chi(C’)=\chi(C_{t})+2(d(C)+s(C))$ . Thus by con-
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sidering the genus of $C’$ , we have

(3.1) $d(C)$ , $s(C)\leqq d(C)+s(C)$ $ $\frac{(n-1)(n-2)}{2}$

The second equality holds if and only if $C$ is rational. If $C$ is rational, by
Pl\"ucker’s formula for the dual curve, $s(C)$ satisfies:

(3.2) $s(C) \leqq\frac{3(n-2)}{2}$ ( $C$ : rational).

We refer to [B] for the detail about these things. See also [W]. For a non-
rational curve, the number $s(C)$ may be much bigger but we do not know the
maximum of $s(C)$ for a generic $n$ . For $n=4,5,6,$ $s=3,5,9$ is the maximum
respectively. See \S \S 3, 4, 6. Let $P_{1}$ , $\cdot$ .. , $P_{s}$ be the cusps of $C$ . We say tbat
$\{P_{1}, \cdots , P_{s}\}$ are indePendent if for any $P_{1}’,$ $\cdots$ , P\’{s} which are sufficiently near to
$P_{1},$ $\cdots$ , $P_{s}$ resPectively, there exists an irreducible curve $C’$ of degree $n$ which
has cusps at $P=P_{1}’,$ $\cdots$ , $P_{s}’$ . Note that the necessary condition for a curve
$\{f(x, y)=0\}$ to have a cusp singularity at a given point $P=(\alpha, \beta)$ is given by

three linear equations and one quadratic equation in the coefficients of $f(x, y)$ :

(3.3) $f( \alpha, \beta)=\frac{\partial f}{\partial x}(\alpha, \beta)=\frac{\partial f}{\partial x}(\alpha, \beta)=H(f)(\alpha, \beta)=0$ .

Therefore counting the number of coefficients of $f(x, y)$ , we get the following
estimation for the independent cusps:

(3.4) $s(C) \leqq\frac{n(n+3)}{8}$ for independent cusps.

The following example shows that the number of cusps which are not in-
dependent may be much bigger.

EXAMPLE (3.5). Let $n_{2}=n-2[n/2]$ and $n_{3}=n-3[n/3]$ and let $C$ be the
curve defined by the following Join type polynomial

$f(x, y)=n_{2}(x) \prod_{i=1}^{[n/2]}(x-a_{i})^{2}-\delta\prod_{k=1}^{n\epsilon}(y-\gamma_{k})\prod_{j=1}^{[n/3]}(y-\beta_{f})^{3}$

where $n_{2}(x)=1$ or $x-\alpha_{0}$ according to $n$ is even or odd respectively. For a
generic choice of $\{\delta, \alpha_{0}, \cdots , \alpha_{[n/2]}, \gamma_{1}, \cdots , \gamma_{n_{3}}, \beta_{1}, \cdots , \beta_{[n/3]}\},$ $C$ has $[n/2][n/3]$

cusps $\{(\alpha_{i}, \beta_{j});i=1, , [n/2], j=1, \cdot.. , [n/3]\}$ . Thus asymptotically, we can
put $n^{2}/6$ cusps. In the case of $n_{3}=2$ , we can replace $\Pi_{k=1}^{n_{3}}(y-\gamma_{k})$ by $(y-\gamma)^{2}$ .
Then our curve also obtains $[n/2]$ nodes: $\{(\alpha_{i}, \gamma);1\leqq i\leqq[n/2]\}$ . If we take
special $\alpha_{i}$ , lf\leq -i$ $[n/2],$ $\gamma,$ $\beta_{j}$ , 1$iS $[n/3]$ , we can put more nodes or cusps.
See \S 4 and \S 6. These cusps are not independent. The following table shows
the above estimations.
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Table (3.A)

Hereafter we consider the case that $f(x, y)$ is a symmetric polynomial. We
use the systems of coordinates $(u, g)$ in the base space and $(u, l)$ in the source
space as in \S 2. For brevity’s sake, we simply denote $\sqrt{g}$ instead of $l$ . Thus
$u=x+y$ and $\sqrt{g}=x-y$ . Note that $g$ is a weighted homogeneous coordinate
of weight 2. Let $h(u, g)$ be a polynomial of degree $n$ under the symmetric
weight as in \S 2 and let $C=\{(u, v);h(u, g)=0\}$ . We assume that $C$ is sym-
metrically regular at infinity as before. We study the curve $\tilde{C}$ of degree $n$

which is the inverse image of $C$ by $p:C^{2}arrow C^{2}$ . Its defining polynomial is
$f(u, \sqrt{g})=p^{*}h(u, \sqrt{}\overline{g})=h(u, g)$ where $g=\sqrt{g}2$ We also assume that $h_{n}(u, g)$

$=0$ has no multiple roots. This says that the infinite line $Z=0$ is generic with
respect to $\tilde{C}$ . The number of free coefficients of $h(u, v)$ is $[n/2]([n/2]+2)$ for
$n$ even and $[n/2]^{2}+3[n/2]+1$ for $n$ odd. Thus by the same argument as above,
we have an estimation

$s(C)\leqq\{$

$\frac{[n/2]([n/2]+2)}{4}$ $n$ : even

$\frac{[n/2]^{2}+3[n/2]+1}{4}$ $n$ : odd

for the number of the independent cusps of $C$ . Of course, this estimation is
asymptotically equivalent to (3.4) for $s(\tilde{C})$ . One advantage of the study of
symmetric curves $\tilde{C}$ is that we can read almost all information about $\tilde{C}$ from
the information about $C$ and the intersection $C\cap D$ . On the other hand if $C$

is defined by a polynomial $h(u, g)$ of symmetric degree $n$ , the degree of $h$ in
the variable $g$ in the usual sense is $[n/2]$ . Thus the number of the generators
of the fundamental group $\pi_{1}(C^{2}-C)$ can be half of the generators of the fun-
damental group $\pi_{1}(C^{2}-\tilde{C})$ .

(A) Admissible change of coordinates.
NOW we consider the change of coordinates in the base space which does

not change the symmetric degree. As $\deg g=2$ , we can not carry out a general
linear change of coordinates without changing the symmetric degree but a
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change of $coord^{;}Anates$ of the following type does not change the symmetric
degree of $C$ .

$\Phi(u, g)=(U, G)$ ; $U=\alpha u+\beta$ , $G=\gamma g+\delta u^{2}+\epsilon u+\zeta$ , $\alpha,$
$\gamma\in C^{*}$

In the case of $\delta=0$ (respectively $\delta\neq 0$), we call $\Phi$ an admissible linear change of
coordinates (resp. an admissible quadratic change of coordinates). An admissible
linear or quadratic change of coordinates changes nothing about the curve $C$ or
its complement $C^{2}-C$ up to an isomorphism but the lifted curves $\tilde{C}$ and $\Phi(\tilde{C})$

are not necessarily isomorphic if the intersection of $C$ and $D$ changes. In fact,

the following proposition says that we can always put one node or cusp in $\tilde{C}$

if $C$ and $D$ are transverse.

PROPOSITION (3.6). (I) Assume that $C$ and $D$ are transverse. Then
(i) there is an admissible linear change of coordinates $\Phi$ so that the curve

$\Phi(C)$ gets a D-flex of order $0$ in the new coordinates and
(ii) there exists also an admissible quadratic change of coordinates $\Phi$ so that

$\Phi(C)$ gets a D-flex of order 1 in the new coordinates.
(II) Assume that $C$ has a single D-flex of order $0$ . Then we can change

this flex into a D-flex of order 1 by an admissible quadratic change of coordinates.
(m) The above changes of coordinates can be done in a family of admissible

change of coordinates $\Phi_{t}$ with $\Phi_{0}$ being identity.

PROOF. Let $P\in C$ be a regular point where $\partial h/\partial g(P)\neq 0$ . Then the tangent
line $L_{P}$ at $P$ can be written as $g-\alpha u+\beta=0$ . For almost all $P$, the intersection
multiplicity of $C$ and $L_{P}$ is 2. So assume that $\mu(C, L_{P} ; P)=2$ and let $\Phi(u, g)$

$=(U, G)$ where $U=u,$ $G=g-au-\beta$ be new coordinates. As $\mu(\Phi(C), D;\Phi(P))$

$=\mu(C, L_{P} ; P)$ , it is obvious that $\Phi(C)$ gets a D-flex of order $0$ in this coor-
dinates. This proves (i). For the assertion (ii), we consider a quadratic change
of coordinates $\Phi(u, g)=(U, G)$ where $U=u,$ $G=g-\gamma u^{2}-\alpha u-\beta$ where $g=\alpha u+\beta$

is the tangent line of $C$ at $P$. Let $E=\{g-\gamma u^{2}-\alpha u-\beta=0\}$ . It is easy to see
that there is a unique $\gamma\in C$ such that $\mu(C, E;P)\geqq 3$ and the equality holds for
almost all $P$. We assume $\mu(C, E;P)=3$ and we consider the above quadratic
change of coordinates. Then $\Phi(C)$ gets a D-flex of order 1 in this system of
coordinates. This proves the assertion (ii). If $C$ has some nodes or cusps before
the above change of coordinates, we can choose $P\in C$ so that the tangent line
$L_{P}$ or parabola $E$ does not pass through the singularities. Assume that $D$ is
simply tangent to $C$ at $(\alpha, 0)$ . Then we can take a quadratic change of coor-
dinates $U=u,$ $G=g+\beta(u-\alpha)^{2}$ for a suitable $\beta$ to change this D-flex of order $0$

into a D-flex of order 11. If $P$ is not generic in the sense of (I-ii), we take
the similar quadratic change of coordinates centered at a sufficiently near regular
point $P’\in C$ . The assertion (m) is almost trivial. Q. E. D.
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NOW we study several examples of cuspidal curves of degree $n$ for small $n$

in detail. A symmetric curve of degree 3 with one cusp is simply given by
the lifting of a curve $C$ : $h(u, g)=0$ with one D-flex of order 1. For example,
we can take $C=\{h(u, g)=(u+l)g-u^{3}\}$ .

(B) Maximal cuspidal curve of degree 4.
We first construct a curve $A=\{h(u, g)=0\}$ of degree 4 which has 1 cusp

singularity at $w\in A-D$ and a D-flex $w’\in A\cap D$ of order 1. In the notation of
Corollary (2.11), $A$ has the invariants $s=1$ and $t_{3}=1$ . For such a curve, we
have $s(\tilde{A})=3$ and the above Table (3.A) says that $\tilde{A}$ is a rational curve. The
determination of the defining polynomial $h(u, g)$ is much simpler if we choose
the singular point and D-flex point in special position. Thus we take $w=(1,1)$

and $w’=(0,0)$ . We first consider the condition for $w$ to be a cusp singularity.
Write first

(3.7) $h(u, g)=h_{(4)}(u)+h_{(2)}(u)(g-1)+\gamma(g-1)^{2}$

where $\{h_{(t)}(u);i=2,4\}$ are polynomials of $u$ with $\deg h_{(i)}\leqq i$ . As $w=(1,1)$ is
a singular point of $A$ , we have

(3.8) $h_{(4)}(1)= \frac{dh_{(4)}}{du}(1)=h_{(2)}(1)=0$ .

The condition for $w$ being a cusp is:

(3.9) $H(h)(w)=2 \frac{d^{2}h_{(4)}}{du^{2}}(1)\gamma-(\frac{dh_{(2)}}{du}(1))^{2}=0$ .

The condition (3.9) is a quadratic equation. By (3.8), we can write

(3.10) $h_{(4)}(u)=(u-1)^{2}(au^{2}+bu+c)$ , $h_{(2)}(u)=(u-1)(du+e)$ .

Then (3.9) is equivalent to:

$4(a+b+c)\gamma-(d+e)^{2}=0$ .

NOW the condition that $\mu(A, D;w’)=3$ is equivalent to val $h(u, 0)=3$ . Thus

$c+e+\gamma=0$ , $-2c+b+d-e=0$ , $a-2b+c-d=0$ .
The solution space is 1-dimensional. For instance, we can take

(3.11) $A:h(u, g)=(u-1)^{3}(3u+5)-6(u-1)^{2}(g-1)-(g-1)^{2}=0$ .
Figure (3.B) shows the real plane sections of $A$ and $\tilde{A}$ respectively.
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Figure (3.B) $A$ : left, 4: right

NOW we consider the fundamental groups $\pi_{1}(C^{2}-A)$ and $\pi_{1}(C^{2}-\tilde{A})$ . Zariski
claims in [Z1] that three cusPidal curves of degree 4 are the excePtional rational
curves whose complements have a non-commutative fundamental group of order
12. We will reprove this assertion. In fact, as the moduli space of curves of
degree 4 with three cusps is irreducible (see Appendix $(3.A)$), the fundamental
grouP of the comPlement of any curve of degree 4 with three cusPs is isomor-
phic to the group described in the following.

THEOREM (3.12). The fundamental groups $\pi_{1}(C^{2}-\tilde{A})$ is isomorphic to the
group

$\langle\rho, \xi;\rho\xi\rho=\xi\rho\xi, \rho^{2}=\xi^{2}\rangle$

and $\pi_{1}(P^{2}-\tilde{A})$ is isomorphic to the finite non-abelian group of order 12:

$\langle\rho, \xi;\rho\xi\rho=\xi\rho\xi, \rho^{2}\xi^{2}=e\rangle$ .

PROOF. We consider the fundamental group $\pi_{1}(C^{2}-A)$ and $\pi_{1}(C^{2}-\tilde{A})$

simultaneously. Let $q:(C^{2}, A)arrow C$ be the projection into the $u$ -coordinate and
let $\tilde{q}:(C^{2},\tilde{A})arrow C$ be the composition $\tilde{q}=q\circ p$ . We consider the pencil { $q^{-1}(a)$ ;
$\alpha\in C\}$ and $\{\tilde{q}^{-1}(a);\alpha\in C\}$ . There are only two critical values $u=1/3$ and $u=1$

for $q:C^{2}-Aarrow C$ . As $h(u, 0)=u^{3}(3u-4)$ , we get two more critical values $u=$

$0,4/3$ for the pencil $\{\tilde{q}^{-1}(a)\}$ . See Figure (3.B). We take a system of generators
$\xi_{1},$ $\xi_{2}$ for $\pi_{1}(C^{2}-A)$ , in $q^{-1}(1/3-\epsilon)$ where $\epsilon$ is small enough. As a system of
generators for $n_{1}(C^{2}-\tilde{A})$ , we take $\rho_{1},$ $\rho_{2},$

$\rho_{1}’,$ $\rho_{2}’$ as in Figure (3.C). For the
simplicity of Figures which follow, we assume hereafter every small loop is
oriented counterclockwise unless otherwise stated. The monodromy relation
around $u=1/3$ gives the relation:

$(R_{1})$ $\{\xi_{1}=\xi_{2} for A$
$\rho_{1}=\rho_{2}$ , $\rho_{1}’=\rho_{2}’$ for $\tilde{A}$ .



Symmetric plane curves with nodes and cusps 387

Figure (3.C) $(u=1/3-\epsilon)$

Thus we have that $\pi_{1}(C^{2}-A;w_{0})\cong Z$ . The monodromy relation around $u=0$

for $\tilde{A}$ gives the following cusp relation for $\tilde{A}$ :
$(R_{2})$ $\rho_{1}\rho_{1}’\rho_{1}=\rho_{1}’\rho_{1}\rho_{1}’$ .
For the sake of the calculation of the monodromy relations around $u=1$ and
$u=4/3$ , we show in Figure (3.D) how the two intersection points $A\cap q^{-1}(u)$

(resp. the four intersection points $\tilde{A}\cap\tilde{q}^{-1}(u)$ ) move homotopically when $u$ moves
from $u=1/3+\epsilon$ to $u=1-\epsilon$ .

Figure (3.D)

From $u=1/3-\epsilon$ to $u=1/3+\epsilon$ or from $u=1-\epsilon$ to $u=1+\epsilon,$ $u$ moves on the circle
$|u-1/3|=\epsilon$ or $|u-1|=\epsilon$ clockwise. The essential point here is that two points
of $q^{-1}(u)\cap A$ (resp. four points $\tilde{q}^{-1}(u)\cap\tilde{A}$ ) do not cross the real axis (resp. the
real axis and the imaginary axis) during the motion of $u$ from $u=1/3+\epsilon$ to
$u=1-\epsilon$ and they are symmetric with respect to the real axis (resp. the real
axis and the imaginary axis). Figure (3.E) shows how our generators are de-
formed in the fibers $\tilde{q}^{-1}(1-\epsilon)$ and $\tilde{q}^{-1}(4/3-\epsilon)$ .

Strictly speaking, each loop in a different fiber has a temporary base point
in that fiber. This base point is joined to the original base point through the
triviality of the fibering structure over the fixed path. Thus the monodromy
relation around $u=1$ can be easily computed as:
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$\tilde{q}^{-t}(1-\epsilon)$ $\overline{q}(4/3-\epsilon)$

Figure (3.E)

$(R_{3})$ $\{\begin{array}{l}\rho_{2}\rho_{1}’\rho_{2}=\rho_{1}’\rho_{2}\rho_{1}’(\rho_{1^{-1}}’\rho_{1}\rho_{1}’)\rho_{2}’(\rho_{1}^{J-1}\rho_{1}\rho_{1}’)=\rho_{2}’(\rho_{1^{-1}}’\rho_{1}\rho_{1}’)\rho_{2}’\end{array}$

It is easy to see that these relatlons are derived from $(R_{1})$ and $(R_{2})$ . Finally
the monodromy relation at $u=4/3$ gives

$(R_{4})$ $\rho_{2}=(\rho_{1^{-1}}’\rho_{1}\rho_{1}’)\rho_{2}’(\rho_{1^{-1}}’\rho_{1}\rho_{1}’)^{-1}$

which reduces to $\rho_{1}^{2}=(\rho_{1}’)^{2}$ by $(R_{1})$ and $(R_{2})$ . Thus writing $\rho=\rho_{1}=\rho_{2}$ and $\xi=$

$\rho_{1}’=\rho_{2}’,$
$\pi_{1}(C^{2}-\tilde{A})$ is isomorphic to the group

$\langle\rho, \xi;p\xi\rho=\xi\rho\xi, p^{2}=\xi^{2}\rangle$

as desired. For the fundamental group $\pi_{1}(P^{2}-\tilde{A})$ we add the vanishing relation
of the big circle: $\rho_{2}p_{1}\rho_{1}’\rho_{2}’=e$ . Thus $\pi_{1}(P^{2}-\tilde{A})$ is represented as

$\langle p, \xi;\rho\xi\rho=\xi\rho\xi, p^{2}=\xi^{2}, \rho^{2}\xi^{2}=e\rangle$ .

NOW the relation $\rho^{2}=\xi^{2}$ is derived from the other relations as

$\rho^{2}=(\rho\xi\rho)^{2}=(\xi\rho\xi)^{2}=\xi^{2}$ .
This is a finite non-abelian group of order 12 which is studied by [Z1].

Q. E. D.
(C) Cuspidal curves of degree 5.
We consider an irreducible curve $B$ of degree 5 defined by $h(u, g)=0$ . We

can have at most 2 independent cusps as we have only 11 free coefficients. So
we consider the case that $B$ has only two cusPs at $(1, 1)$ and $(-1,1)$ . We first
write $h(u, g)$ as

$h(u, g)=h_{(5)}(u)+h_{(3)}(u)(g-1)+h_{(1)}(u)(g-1)^{2}$

where $\{h_{\mathfrak{c}t)}(u);i=1,3,5\}$ are polynomials of $u$ with $\deg h_{(t)}(u)\leqq i$ . The singu-
larity condition gives the divisibility:

$(u^{2}-1)^{2}|h_{(\overline{o})}(u)$ , $(u^{2}-1)|h_{(3)}(u)$ .
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Considering the cusp condition, we can choose as $h(u, g)$ for instance:

(3.13) $h(u, g)=2u(g-1)^{2}+2(u^{2}-1)(u+1)(g-1)+(u^{2}-1)^{2}(u+1)$ .
(The moduli of curves with two cusps at (1, 1) and $(-1,1)$ is three dimensional.)
Figure (3.F) is the graph of the section of $B$ with the real plane.

Figure (3.F)

By the Rolle theorem, there exists a positive number $b$ such that the line $L$ :
$g=b$ is tangent to $B$ , say at $w=(a, b)$ . As the curve $B$ intersects with the
$g$-axis at $(0,3/2)$ and $\partial h/\partial g(O, 3/2)=-2<0$ , we can see that $a>0$ . As $B$ is
defined over $R$, we can easily see from Figure (3.F) that $\mu(B, L;w)=2$ . Now
let us consider the change of coordinates $\Psi(u, g)=(U, G)$ where $U=u$ and $G=$

$g-b$ and let $B’=\Psi(B)$ . This is a typical admissible linear change of coordinates
and it does not change anything about the curve $B$ . However by the choice
of $b$ , the new curve $B’$ has the invariant $s=2$ and $t_{2}=1$ . Thus $\tilde{B}’$ has four
cusps and a node. Now we consider the fundamental group. We assert that

THEOREM (3.14). $\pi_{1}(C^{2}-B)$ , $\pi_{1}(C^{2}-B’)$ , $\pi_{1}(C^{2}-\tilde{B})$ and $\pi_{1}(C^{2}-\tilde{B}’)$ are
isomorphic to Z. Therefore $\pi_{1}(P^{2}-\tilde{B}’)$ and $\pi_{1}(P^{2}-\tilde{B})$ are isomorphic to $Z_{5}$ .

PROOF. The second assertion is immediate from the first assertion $([O1])$ .
So we will show the first assertion. As $\tilde{B}’$ is obtained as the degeneration of
$\tilde{B}$ under the family $B_{\epsilon,t}$ where $B_{\overline{o}.t}=\{h(u, g+tb)=0\}_{0\leq t\leq 1},$ $\pi_{1}(C^{2}-\tilde{B})$ is a quotient
group of $\pi_{1}(C^{2}-\tilde{B}’)$ . Thus we may consider only the case of $B’$ . Instead of
considering $\tilde{B}’$ , we will show that $\pi_{1}(C^{2}-B’\cup D)\cong Z\cross Z$ in the base space.
Then by Theorem (2.3) the commutativity of $\pi_{1}(C^{2}-B’)$ also follows. As
$\pi_{1}(C^{2}-B’\cup D)$ is isomorphic to $\pi_{1}(C^{2}-B\cup L)$ by the definition where $L$ is the
line $g=b$ , we will show that $\pi_{1}(C^{2}-B\cup L)\cong Z$ . We consider again the pencil
$\{q^{-1}(\alpha);\alpha\in C\}$ . We have four critical fibers at $u=+1,$ $a,$ $c$ where $c$ is the u-
coordinate of the another intersection of $B$ and $L$ . Note that $0<c<1$ .
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Figure (3.G) $(u=\epsilon)$ Figure (3.H) $(u=\gamma-\epsilon)$

We take the generators $\rho_{1},$ $\rho_{2}$ and $p_{L}$ of $\pi_{1}(C^{2}-B\cup L)$ in the fiber $q^{-1}(\epsilon)$ as in
Figure (3.G). The loop $\rho_{L}$ goes around the intersection with the line $L$ . We
consider the monodromy relations. We move the fiber $q^{-1}(u)$ along the real
axis. At the critical points, we take the upper circle. First we consider the
monodromy around $u=0$ . We can solve the equation $h(u, g)=0$ as

$g-1= \frac{1-u^{2}}{2u}\{u+1\pm\sqrt{1-u^{2}}\}$

where the value of $\sqrt{1-u^{2}}$ is chosen so that it takes 1 at $u=0$ . When $u$ goes
around the small circle $|u|=\epsilon$ counterclockwise, one of the intersection $q^{-1}(u)\cap B$

which is given by

$g-1= \frac{1-u^{2}}{2u}\{u+1-\sqrt{1-u^{2}}\}$

is analytic and stays almost fixed near $g=3/2$ and the intersection $q^{-1}(u)\cap L$

does not move. The other intersection described by

$g-1= \frac{1-u^{2}}{2u}\{u+1+\sqrt{1-u^{2}}\}$

goes around the origin clockwise near infinity. Thus we get the relation:

$(R_{1})$ $\rho_{1}(\rho_{L}\rho_{2})=(\rho_{L}\rho_{2})\rho_{1}$ .

This is a commutation relation which we call a strange monodromy relation at
infinity. Usually a commutation relation is obtained around an ordinary double
point. However the Pber $q^{-1}(0)$ does not pass through any ordinary double
point ! We will give another example of a strange relation later (see Appendix
$($ 3. $B)$). We do not need the monodromy relation for $u=a$ for the present pur-
pose. We deform the fiber $q^{-1}(u)$ from $u=\epsilon$ to $u=\gamma-\epsilon$ along the real axis.
At $u^{-a}$ , we take the upper semi-circle of $|u-a|=\epsilon$ . See Figure (3.H). The
monodromy relation at $u=\gamma$ is the commutation relation of two elements
$(\rho_{L}\rho_{2})^{-1}\rho_{1}(\rho_{L}\rho_{2})$ and $\rho_{L}$ . The first element is equal to $p_{1}$ by $(R_{1})$ . Thus we get:



Symmetric plane curves with nodes and cusps 391

$(R_{2})$
$\rho_{1}\rho_{L}=\rho_{L}\rho_{1}$

Combining this with $(R_{1})$ , we get the commutation relation:

$(R_{3})$
$\rho_{1}\rho_{2}=\rho_{2}\rho_{1}$ .

NOW the monodromy relation at $u=1$ modulo $(R_{1})$ and $(R_{2})$ is the cusp relation:
$\rho_{1}\rho_{2}\rho_{1}=\rho_{2}\rho_{1}\rho_{2}$ which reduces by $(R_{3})$ to:

$(R_{4})$ $\rho_{1}=p_{2}$

NOW we can easily see that $\pi_{1}(C^{2}-B\cup L)$ is isomorphic to $Z\cross Z$ . Q. E.D.

NOW we consider a quadratic change of coordinates at $(0,3/2)$ by

$\Psi(u, g)=(U, G)$ where $U=u,$ $G=g- \frac{1}{2}u^{2}+\frac{u}{4}-\frac{3}{2}$

Let $B’’=\Psi(B)$ . The lifted curve $\tilde{B}’’$ gets 5 cusps. As $\tilde{B}^{\nu}$ has already 5 cusps
and a rational curve can get at most 4 cusps by (3.2), we see that 5 is the
maximum number of cusps for the irreducible curves of degree 5. The funda-
mental group $\pi_{1}(C^{2}-\tilde{B}’’)$ is also abelian. The proof is parallel. Figure (3.I)

shows the intersection of the parabola $E=g-u^{2}/2+u/4-3/2$ and $B$ .

Figure (3.I)

APPENDIX (3.A). In this appendix we prove the irreducibility of the moduli
space of curves of degree 4 with three cusps. First we consider a curve
$f(X, Y, Z)=0$ of degree 4 with three cusps $P_{1},$ $P_{2},$ $P_{3}$ . Note that $P_{1},$ $P_{2}$ and $P_{3}$

are not colinear. In fact assume that they are colinear. Taking a linear change
of coordinates if necessary, we assume that $P_{1}=(a_{1},0),$ $P_{2}=(\alpha_{2},0),$ $P_{S}=(\alpha_{3},0)$

in the affine coordinate space $C^{2}=P^{2}-\{Z=0\}$ . Then in this affine coordinate,
it is necessary that $f$ is divisible by $\Pi_{t=1}^{3}(x-\alpha_{i})^{2}$ which is ridiculous as $\deg f$

$=4$ . We consider the subvariety $\mathscr{M}’$ of $P^{14}\cross(P^{2})^{3}$ defined by

$\mathscr{M}’=$ { $(f,$ $P_{1},$ $P_{2},$ $P_{3});\deg f=4,$ $C=\{f=0\}$ irreducible, $P_{1},$ $P_{2},$ $P_{3}\in C$ cusps}.

$\mathscr{M}’$ has the canonical projection $\pi:\mathscr{M}’arrow(P^{2})^{3}-\Delta$ where $\Delta$ is the set of ordered
colinear points. The symmetric grouP $S_{3}$ canonically acts on $\mathscr{M}’$ and the
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quotient space $\mathscr{M}=\mathscr{M}’/S_{3}$ is the moduli space which we are interested in. To
prove the irreducibility of $\mathscr{M}$ , it is enough to prove the irreducibility of $\mathscr{M}’$ .
Let $P_{1},$ $P_{2},$ $P_{3}$ be given three points which are not colinear. Let $\mathscr{M}(P_{1}, P_{2}, P_{3})$

$=\pi^{-1}(P_{1}, P_{2}, P_{3})$ . This is the moduli space of curves with three cusps at pres-
cribed positions $P_{1},$ $P_{2},$ $P_{3}$ . First we assert

PROPOSITION (3.15). $\pi$ : $\mathscr{M}’arrow(P^{2})^{3}-\Delta$ is a locally trivial fibration.
PROOF. Let $Z=0$ be a fixed infinite line and let $U=P^{2}-\{Z=0\}$ . We show

that $\pi:\mathscr{M}’arrow(P^{2})^{3}-\Delta$ is trivial over $U^{3}-\Delta$ . We use the affine coordinate. For
given $P_{1}=(\alpha_{1}, \beta_{1}),$ $P_{2}=(\alpha_{2}, \beta_{2}),$ $P_{3}=(\alpha_{3}, \beta_{3})$ , there is a unique linear change of
coordinates $\Phi(\chi, y)=(l_{1}(x, y),$ $l_{2}(x, y))$ so that $\Phi(P_{1})=O,$ $\Phi(P_{2})=E_{1},$ $\Phi(P_{3})=E_{2}$

where $0=(0,0),$ $E_{1}=(1,0)$ and $E_{2}=(0,1)$ . This map $\Phi$ depends algebraically
on $P_{1},$ $P_{2},$ $P_{3}$ and $\Phi$ gives an isomorphism $\Psi:\mathscr{M}(P_{1}, P_{2}, P_{3})arrow \mathscr{M}(O, E_{1}, E_{2})$ . Thus
it gives the triviality and the assertion follows immediately. Q. E. D.

We study the typical fiber $\mathscr{M}(O, E_{1}, E_{2})$ .
PROPOSITION (3.16). $\mathscr{M}(O, E_{1}, E_{2})$ is an irreducible rational surface.
PROOF. We prove the assertion by a direct calculation. Let

$f(x, y)= \sum_{i+J\leqq 4}a_{i.j}x^{i}y^{j}$

We have 15 coefficients and our moduli space $\mathscr{M}(0, E_{1}, E_{2})$ is a subvariety of
$P^{14}$ whose homogeneous coordinates are $\{a_{i.j} ; i+] 4\}$ . As the curve $f=0$ has
three cusps at $(0,0),$ $(1,0)$ and $(0,1)$ , the following conditions are necessary:

$a_{0,0}=a_{1.0}=a_{0,1}=a_{3,0}+2a_{2.0}=a_{4.0}-a_{2.0}=a_{0.3}+2a_{0.2}$

(3.16.1)
$=a_{0.4}-a_{0.2}=a_{1.1}+a_{2.1}+a_{3.1}=a_{1,1}+a_{1.2}+a_{1.3}=0$

(3.16.2) $4a_{2.0}a_{0.2}=a_{1.1}^{2}$

(3.16.3) $4a_{2,0}(a_{0.2}+a_{1,2}+a_{2.2})=(a_{1.1}+2a_{2.1}+3a_{3.1})^{2}$

(3.16.4) $4a_{0.2}(a_{2.0}+a_{2.1}+a_{2.2})=(a_{1.1}+2a_{1.2}+3a_{1.3})^{2}$

We denote the projective variety defined by $(3.16.1)\sim(3.16.4)$ by S7. First we
isomorphically project the variety Su into $P^{7}$ whose homogeneous coordinates
are $a_{2,0},$ $a_{1.1},$ $a_{1.2},$ $a_{1.S},$ $a_{0,s},$ $a_{2,1},$ $a_{2.8},$ $a_{3.1}$ . Now we take the following new
linear coordinate: a2.0, $a_{1,1},$ $a_{0,8},$ $a_{2,8},$ $b_{1},$ $b_{2},$ $c_{1},$ $c_{2}$ where

$b_{1}=a_{1.1}+a_{2.1}+a_{S.1}$ , $b_{2}=a_{1.1}+2a_{2.1}+3a_{3,1}$

$c_{1}=a_{1,1}+a_{1,2}+a_{1.3}$ , $c_{2}=a_{1,1}+2a_{1,2}+3a_{1,3}$

Again we project our variety Su into $P^{6}$ whose coordinates are $a_{2.0},$ $a_{1,1},$ $a_{0,2}$ ,
$a_{2,8},$

$b_{2},$ $c_{2}$ and our variety is described by three quadratic equations:
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(3.16.5) $b_{2}^{2}=4a_{2,0}(a_{0,2}-c_{2}-2a_{1.1}+a_{2,2})$

(3.16.6) $c_{2}^{2}=4a_{0.2}(a_{2,0}-b_{2}-2a_{1,1}+a_{2,2})$

(3.16.7) $a_{1.1}^{2}=4a_{2.0}a_{0.2}$

From (3.16.5) and (3.16.6), we obtain

$4(b_{2}^{2}-a_{1.1}^{2})a_{0.2}^{2}+4a_{0.2}a_{1.1}^{2}(c_{2}-b_{2})-(c_{2}^{2}-a_{1,1}^{2})a_{1.1}^{2}=0$ .

This equality splits into two irreducible factors:

(3.16.8) $2(b_{2}+a_{1,1})a_{0,2}-a_{1.1}(a_{1.1}+c_{2})=0$

(3.16.9) $2(b_{2}-a_{1,1})a_{0.2}-a_{1.1}(a_{1.1}-c_{2})=0$

Thus the variety su is the union of two rational surfaces:

(3.16.10) $\Re_{1}=\{(a_{2.0}, a_{1.1}, a_{0,2}, a_{2.2}, b_{2}, c_{2})\in P^{5} ; (3.16.5)\sim(3.16.8)\}$

(3.16.11) $\Re_{2}-\{(a_{2.0}, a_{1.1}, a_{0,2}, a_{2,8}, b_{2}, c_{2})\in P^{5} ; (3.16.5)\sim(3.16.7), (3.16.9)\}$

TO see their rationalities, we use the affine coordinates: $U=\{a_{1.1}\neq 0\}$ and $\chi=$

$b_{2}/a_{1,1},$ $y=c_{2}/a_{1.1},$ $z=a_{0.2}/a_{1.1},$ $v=a_{2,0}/a_{1.1},$ $w=a_{2,2}/a_{1,1}$ . Then we have

$\Re_{1}\cap U=\{(s, t, z, v, w);2(s+1)z-(1+t)=0,4zv=1,4v(z-2-t-w)=s^{2}\}$

$\cong\{(s, t, z)\in C^{3} ; 2(s+1)z-(1+t)=0, z\neq 0\}$

$\Re_{2}\cap U-\{(s, t, z, v, w);2(s-1)z-(1-t)=0,4zv=1,4v(z-2-t-w)=s^{2}\}$

$\cong\{(s, t, z)\in C^{3} ; 2(s+1)z-(1+t)=0, z\neq 0\}$

This expression implies the irreducibility and ratlonality of $\Re_{1}$ and $\Re_{2}$ res-
pectively. To complete the proof, we have to prove the following.

SUBLEMMA (3.17). (1) $\Re_{1}$ is the variety of the square of the polynomials of
degree 2 which pass through $O,$ $E_{1},$ $E_{2}$ .

(2) The closure $of\mathscr{M}(O, E_{1}, E_{2})$ is $\Re_{2}$ .

PROOF. The curves of degree 2 which pass through $0,$ $E_{1},$ $E_{2}$ are given
by $k(x, y)=ax(x-1)+by(y-1)+cxy$ . Let $f(x, y)=k(x, y)^{2}$ . It is a direct cal-
culation to see that $f\in\Re_{1}$ . The dimension of this non-reduced polynomial is
also 2. Thus $\Re_{1}$ consists of these polynomials. To prove the second assertion,
we notice that the symmetric curve defined by $\tilde{A}=\{p^{*}h(u, \sqrt{g})=0\}$ where
$h(u, g)$ is defined by (3.7), (3.9), (3.10) has three cusps at $O,$ $E_{1},$ $E_{2}$ . Therefore
we have that $p^{*}h\in\Re_{2}$ . As the example (3.11) gives a smooth point of $\Re_{2}$ , the
assertion (2) follows.

APPENDIX (3.B). We give an example of the strange monodromy relation.
Let us consider a non-singular affine plane curve $C=\{(x, y)\in C^{2} ; y(xy-1)=0\}$ .
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$C$ has two non-singular components which are tangent at infinity. Now we claim
that $\pi_{1}(C^{2}-C)\cong Z\cross Z$ . In fact, the pencil $\{x=a\}$ has only one critical value
$a=0$ which comes from infinity. We have the same strange monodromy rela-
tion. Let $X=C^{2}-C$ . As a subvariety of $C\cross c*,$ $X$ can be described by $X=$

$\{(x, t)\in C^{2} ; x-t\neq 0, t\neq 0\}=C^{2}-\{t(x-t)=0\}$ where $t=y^{-1}$ . This last expression
explains well why $\pi_{1}(X)$ is abelian.

APPENDIX (3.C). In this appendix, we give a rough sketch of the proof of
the irreducibility of the moduli space of the symmetric curve of order 5 with
4 cusps. As we only consider the symmetric curve, we consider the moduli space

$\mathscr{M}’=$ { $(C,$ $P,$ $Q);\deg C=4,$ $P,$ $Q$ : cusps}

of the curves $C=\{h(u, g)=0\}$ in the base space with two cusps $P,$ $Q$ . It is
easy to see that $P,$ $Q$ are not on a vertical line $\{u=c\}$ . Let $\mathscr{M}(P, Q)$ be the
moduli space of curves of degree 4 with two cusps at $P,$ $Q$ being fixed. There
is a unique linear change of coordinates $\Phi:U=au+b,$ $G=cg+du+e$ with $a$ ,
$c\neq 0$ so that $\Phi(P)=(-1,1)$ and $\Phi(Q)=(1,1)$ . Thus $\mathscr{M}’$ is a product of $\mathscr{M}((-1$ ,

1), $(1, 1))$ and $C^{2}\cross C^{2}-\Delta$ where $\Delta$ is the subset of two points of $C^{2}\cross C^{2}$ which
are on a vertical line. By an easy calculation, we can show that $\mathscr{M}((-1,1)$ ,
$(1, 1))$ is isomorphic to the irreducible rational 3-variety:

$\{(s_{1}, S_{2}, s_{3}, s_{4}, S_{5}, s_{6})\in C^{6} ; 4s_{1}s_{2}=s_{3}^{2},4s_{4}s_{5}=s_{6}^{2}\}$

AS the calculation is completely parallel to that of Appendlx (3.A), we omit
the detail.

\S 4. Cuspidal curves of degree 6.

In this section, we consider the curve of degree six. By (3.4), we can have
at most 6 independent cusps for a symmetric curve $\tilde{C}$ of degree 6. Assume
that $\tilde{C}$ has six cusps. As a curve $C$ in the base space, there are obviously
two possible cases by Corollary (2.11).

Type I. $C$ has three cusps $(s=3)$ .
Type II. $C$ has two cusps and two D-flex of order 1 $(s=2, t_{3}=2)$ .
First note that any symmetric curve $k(x, y)=0$ of degree 2 is a lifting of

a curve of symmetric degree 2 in the base space. A curve of symmetric degree
2 in the base space is a parabola with vertical axis: $E=\{k(u, g)=au^{2}+bu+cg+$

$d=0\}$ . This containts two parallel vertical lines $(u-a)(u-\beta)=0$ or a horizontal
line $g-\gamma=0$ as special cases. Hereafter we call a curve of symmetric degree

2 a symmetric conic. For any given three points $P,$ $Q,$ $R\in C^{2}$ , we can find a
symmetric conic $E$ which contains $P,$ $Q,$ $R$ . Thus the six cusps of $\tilde{C}$ of Type
I lies on the conic $p^{-1}(E)$ . This is the class which was studied by Zariski in
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[Z1]. See also [02]. Assume that $C$ is of Type II and let $Q_{1},$ $Q_{2}$ be two D-flex
points of order 1 and let $P_{1},$ $P_{2}$ be the cusps of $C$ . There are two different
families depending on whether these four points are on a symmetric conic or
not. These two families have in fact completely different natures.

TyPe (II.1). The four points $P_{1},$ $P_{2},$ $Q_{1},$ $Q_{2}$ are on a symmetric conic.
Type (II.2). The four points $P_{1},$ $P_{2},$ $Q_{1},$ $Q_{2}$ are not on a symmetric conic.

Note that the case (II.2) occurs for a generic choice of $P_{1},$ $P_{2}$ and $Q_{1},$ $Q_{2}$ . Thus
Type (II.2) corresponds to the case of non-conical six cusps in [Z1]. The Join
tyPe construction is very useful to give nice examples in the cases of Type I
or TyPe (II.1).

CASE I. Conical 6 cuspidal curves of degree 6.
We consider the symmetric curves of degree 6 with three cusps. First we

observe that for given three points, the moduli of curves with three cusps at
prescribed points has dimension 3. (There exists no curve of degree 6 with
two cusps in a vertical line.) Thus the dimension of the moduli space is $3+2\cross$

$3=9$ and the moduli space is described by

(4.1) $h_{2}(u, g)^{3}+h_{3}(u, g)^{2}=0$

where
$h_{2}(u, g)=t_{0}g^{2}+t_{1}u^{2}+t_{2}u+t_{3}$

$h_{3}(u, g)=(t_{4}u+t_{5})g+t_{6}u^{3}+t_{7}u^{2}+t_{8}u+t_{9}$

First we propose to study a subfamily $C_{I}$ of Type I which is defined by a Join
type polynomial:

(4.2) $C_{I}$ : $h(u, g)=(g-\gamma)^{3}-\delta(u-a_{1})^{2}(u-\alpha_{2})^{2}(u-\alpha_{3})^{2}$

where 7, $\delta\in C^{*}$ and $\alpha_{1},$ $a_{2},$ $\alpha_{3}$ are mutually distinct. $C_{I}$ has three cusp singu-
larities: $(\alpha_{1}, \gamma),$ $(\alpha_{2}, \gamma),$ $(\alpha_{3}, \gamma)$ . Now we consider the possible D-flex. Let
$\phi(u)=\delta(u-\alpha_{1})^{2}(u-\alpha_{2})^{2}(u-\alpha_{3})^{2}$ . If $C_{I}$ is tangent to $D$ at $(\beta, 0)$ , then $\beta$ must
satisfy:

(4.3) $\{$

$\frac{d\phi}{du}(\beta)=\delta\Pi_{t=1}^{3}(\beta-\alpha_{i})(3\beta^{2}-2(\alpha_{1}+\alpha_{2}+\alpha_{3})\beta+\alpha_{1}\alpha_{2}+a_{2}\alpha_{3}+\alpha_{3}\alpha_{1})$

$\phi(\beta)=-\gamma^{3}$

Let $\beta_{1}$ and $\beta_{2}$ be the roots of the first equation:

(4.4) $3u^{2}-2(\alpha_{1}+\alpha_{2}+\alpha_{3})u+\alpha_{1}a_{2}+a_{2}\alpha_{3}+a_{3}a_{1}=0$

There are four possible subcases which give non-isotopic $\tilde{C}_{I}$ of type I.
(I.1) $\phi(\beta_{j})\neq-\gamma^{3}$ for $j=1,2$ . In this case, $D$ is transverse to $C_{I}$ . $\tilde{C}_{I}$ has

only six cusps.
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(I.2) $\beta_{1}\neq\beta_{2}$ and $\phi(\beta_{1})=-\gamma^{3}$ and $\phi(\beta_{2})\neq-\gamma^{3}$ . In this case, we have a
tangent $(0, \beta_{1})$ to the discriminant curve. Thus $s=3,$ $t_{2}=1$ . The lifted curve
$\tilde{C}_{I}$ has six cusps and one node.

(I.3) $\beta_{1}\neq\beta_{2}$ and $\phi(\beta_{1})=\phi(\beta_{2})=-\gamma^{3}$ . In this case, $\tilde{C}_{I}$ gets two nodes besides
6 cusps.

(I.4) $\beta_{1}=\beta_{2}$ and $\phi(\beta_{1})=-\gamma^{3}$ . In this case, $\tilde{C}_{I}$ has 7 cusps.
There exist curves of Type (I.i) for $i=1,$ $\cdots$ , 4 and a curve of type $(I.(i+1))$

can be a degeneration of a family of curves of the preceding type (I.i) for $i=$

1, 3.

THEOREM (4.5). Let $C_{I}$ be a curve defined by (4.2). Then $\pi_{1}(C^{2}-C_{I})\cong$

$\pi_{1}(C^{2}-\tilde{C}_{I})$ and they are isomorphic to the braid group $B_{3}$ . The fundamental
group $\pi_{1}(P^{2}-\tilde{C}_{I})$ is isomorphic to $Z_{2}*Z_{3}$ .

PROOF. The last statement is proved by Zariski [Z1]. To give a clear
geometric image, we first study a curve of type (I.3), though it is enough to
consider the case of (I.4) for the proof of the assertion. Let us consider the
following simple curve:

(4.6) $C_{I}$ : $h(u, g)=(g+1)^{3}- \frac{27}{4}u^{2}(u^{2}-1)^{2}$ .

Figure (4.J)

$C_{I}$ has also two D-flexes of order $0:(\pm 1/\sqrt{3},0)$ . Figure (4.J) is the real graph
of $C_{I}$ . We consider the pencil $\{q^{-1}(c)=\{u=c\}\}$ for $c\in C$ . We first consider
$\pi_{1}(C^{2}-C_{I})$ . It has three critical fibers $u=\pm 1$ and $u=0$ . We take a system

of generators $\rho_{1},$ $\rho_{2},$ $p_{3}$ in the fiber $q^{-1}(1+\epsilon)$ ( $\epsilon$ : small enough) as in Figure
(4.K). The monodromy relation at $u=1$ is given by

$(R_{1})$
$\rho_{1}=\rho_{3}$ , $\rho_{1}\rho_{2}\rho_{1}=\rho_{2}\rho_{1}\rho_{2}$

We move the fiber along the real axis. It is easy to see that the other mono-
dromy relations at $u=0$ and $u=1$ are the same with $(R_{1})$ . Thus we have that

(4.7) $\pi_{1}(C^{2}-C_{I})=\langle\rho_{1}, \rho_{2} ; \rho_{1}\rho_{2}\rho_{1}=\rho_{2}\rho_{1}\rho_{2}\rangle$

This is the standard representation of the Braid group of three strings $B_{3}([A])$ .
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Figure (4.K) $(u=1+\epsilon)$ Figure (4.L) $(u=1+\epsilon)$

NOW we consider the fundamental group $\pi_{1}(C^{2}-C_{I}\cup D)$ . As generators, we
have to add one more loop $\rho_{0}$ in the same fiber $q^{-1}(1+\epsilon)$ as in Figure (4.L).

We have to consider also monodromy relations around $u=\pm 2/\sqrt{}\overline{3}$ where $C_{I}$

intersects transversally with $D=\{g=0\}$ and the monodromy relation around
$u=\pm 1/\sqrt{3}$ where our curve is simply tangent with $D$ . The monodromy rela-
tion at $u=2/\sqrt{3}$ is:

$(R_{2})$ $\rho_{0}\rho_{2}=\rho_{2}\rho_{0}$

The monodromy relation at $u=1$ is the same with the above $(R_{1})$ . Now to
consider the monodromy relation around $u=1/\sqrt{3}$ and $u=0$ , we deform our
generators along the real axis from $u=1-\epsilon$ to $u=\epsilon$ . At the critical fiber, we
take upper half semi-circle. First we get the following relation at $u=1/\sqrt{3}$ :
$\rho_{1}=\tau^{2}\rho_{1}\tau^{-2}$ where $\tau=\rho_{1}\rho_{0}$ . Namely

$(R_{3})$
$\rho_{1}\rho_{0}\rho_{1}\rho_{0}=\rho_{0}\rho_{1}\rho_{0}\rho_{1}$ .

Our generators are deformed in the fiber $q^{-1}(\epsilon)$ as in Figure (4.M). To see the
monodromy relation at $u=0$ , we consider the loop $\rho_{1}’=\rho_{0}^{-1}\rho_{1}\rho_{0}$ instead of $\rho_{1}$ .
See Figure (4.M). Then monodromy relation at $u=0$ gives

$(R_{4})$ $\rho_{1}’=\rho_{3}$ , $\rho_{2}\rho_{3}\rho_{2}=\rho_{3}\rho_{2}\rho_{3}$

By virtue of $(R_{1})$ , this relation implies the commutation relation:

$(R_{5})$ $\rho_{0}\rho_{1}=\rho_{1}\rho_{0}$ .

Thus combining $(R_{5})$ with $(R_{2})$ , we conclude that $\rho_{0}$ is in the center of
$\pi_{1}(C^{2}-C_{I}\cup D)$ . It is obvious that $\rho_{0}$ is the generator of the infinite cyclic
group $\pi_{1}(C^{2}-D)$ . Therefore we have the isomorphism:

$\phi:\pi_{1}(C^{2}-C_{I}\cup D)\cong\pi_{1}(C^{2}-C_{I})\cross\pi_{1}(C^{2}-D)$

NOW by Theorem (2.3), we get the isomorphism:

$p_{\#}$ : $\pi_{1}(C^{2}-\tilde{C}_{I})arrow\pi_{1}(C^{2}-C_{I})$

which proves the first assertion.
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Figure (4.M)

For the fundamental group $\pi_{1}(P^{2}-\tilde{C}_{I})$ in the projective space, we need
one more relation:

$(R_{5})$ $\rho_{3}\rho_{2}\rho_{1}\rho_{3}\rho_{2}\rho_{1}=e$

which corresponds to the vanishing of a big circle in $\tilde{q}(1+\epsilon)$ . Replacing $\rho_{3}$ by
$\rho_{1}$ , we get

(4.8) $\pi_{1}(P^{2}-\tilde{C}_{I})=\langle p_{1}, \rho_{2} ; \rho_{1}\rho_{2}\rho_{1}=\rho_{2}\rho_{1}\rho_{2}, (\rho_{1}\rho_{2})^{3}=e\rangle$

We consider the element $\omega=\rho_{1}\rho_{2}\rho_{1},$
$\zeta=\rho_{1}^{-1}\omega$ for the determination of the group

structure. Then we have the isomorphisms:

$\pi_{1}(P^{2}-\tilde{C}_{I})=\langle\rho_{1}, \rho_{2} ; \rho_{1}\rho_{2}\rho_{1}=\rho_{2}\rho_{1}\rho_{2}, (\rho_{2}\rho_{1})^{3}=e\rangle$

$=\langle\rho_{1}, p_{2}, \omega;\omega=\rho_{1}\rho_{2}\rho_{1}, \omega^{2}=(\rho_{1}^{-1}\omega)^{3}=e\rangle$

$=\langle\rho_{1}, \rho_{2}, \omega, \zeta;\omega^{2}=\zeta^{3}=e, \omega=\rho_{1}\rho_{2}\rho_{1}, \zeta=\rho_{1}^{-1}\omega\rangle$

$=\langle p_{1}, \rho_{2}, \omega, \zeta;\omega^{2}=\zeta^{3}=e, \rho_{1}=\omega\zeta^{-1}, \rho_{2}=\zeta^{2}\omega^{-1}\rangle$

$=\langle\omega, \zeta;\omega^{2}=\zeta^{3}=e\rangle$

$=Z_{2}*Z_{3}$ .

This completes the proof of Theorem (4.5) except for TyPe (I.4).

NOW we consider the curve of type (I.4) by the following example:

(4.9) $C_{I}’=\{(u, g);h(u, g)=(g+4)^{3}-(u^{2}+3)^{2}(u-3)^{2}\}$ .
Figure (4.N) is the real graph of $C_{I}’$ . As two cusps $(\pm\sqrt{3}i, -4)$ are not visible
in the real section, we have to pay more attention to the calculation of the
fundamental group $\pi_{1}(C^{2}-- C_{I}’\cup D)$ . Singular fibers are $u=\pm\sqrt{3}i,$ $3,$ $u=1$ and
$u=\alpha_{1},$ $\alpha_{2},\overline{\alpha}_{2}$ where $\alpha_{1}=1+\sqrt[3]{16}$ and $a_{2}=1+\sqrt[a]{16}\exp(2\pi i/3)$ . The last three
fibers pass each of the three transverse intersections with $D$ . We take a system
of generators $\rho_{0},$ $\rho_{1},$ $\rho_{2},$ $\rho_{3}$ of $\pi_{1}(C^{2}-- C_{I}’\cup D)$ in the fiber $q^{-1}(3+\epsilon)$ as in Figure
(4.0).
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Figure (4.N) Figure (4.0) $(u=3+\epsilon)$

We study the monodromy relations around $u=3,1+a,$ $1$ and $\sqrt{3}i$ . The other
monodromy relations are not necessary for our purpose. First the monodromy
relation at $u=a_{1}$ is:

$(R_{1})$
$\rho_{0}\rho_{1}=\rho_{1}\rho_{0}$ .

The monodromy relation at $u=3$ is the cusp relation:

$(R_{2})$ $p_{1}=\rho_{3}$ , $\rho_{1}\rho_{2}\rho_{1}=\rho_{2}\rho_{1}\rho_{2}$

TO see the monodromy at $u=1$ , we first deform our generators along the real
axis to the fiber $q^{-1}(1+\epsilon)$ . See figure (4.P). At $u=3$ we take the upper semi-
circle. We introduce a loop $\rho_{3}’$ in the fiber $q^{-1}(1+\epsilon)$ by

$(R_{3})$ $\rho_{3}’=(\rho_{8}\rho_{2}\rho_{1})^{-1}p_{1}(\rho_{3}\rho_{2}\rho_{1})$

By $(R_{2})$ , we have that

$(R_{3}’)$ $\rho_{3}’=\rho_{2}$

The monodromy relation around $u^{-1}$ is:

$(R_{4})$ $\rho_{3}’=\tau^{3}\rho_{3}’\tau^{-3}$ , $\tau=\rho_{3}’\rho_{0}$

Using $(R_{3}’)$ , we can reduce the relation $(R_{4})$ to

$(R_{4}’)$ $(p_{2}\rho_{0})^{3}=(\rho_{0}\rho_{2})^{3}$

Compare this relation with $(R_{3})$ in $\pi_{1}(C^{2}-C_{I})$ .

Figure (4.P) $(u=1+\epsilon)$ Figure (4.Q) $(u=0)$
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NOW we study the monodromy relation at $u=\sqrt{3}i$ . First in the fiber $q^{-1}(0)$ ,
our generators are deformed as in Figure (4.Q). Now we move $u$ along the
imaginary axis to $u=\sqrt{3}i$ . The motion of three intersections $C_{I}’\cap q^{-1}(u)$ is a
bit complicated. Let $\phi(u)=(u^{2}+3)^{2}(u-3)^{2}$ . Consider the path $u(t)=ti,$ $0\leqq t\leqq$

$(\sqrt{3}-\epsilon)$ . Then we can see easily that (1) $|\phi(u(t))|$ is monotone decreasing and
(2) $\arg(\phi(u(t)))$ decreases monotonically from $0$ to $\arg(4-2\sqrt{3}i)$ . From this
information, we can see that the three intersection points move as the arrows
in Figure (4.R). We use the loops $\rho_{3}’’$ and $\rho_{0}’’$ instead of $p_{3}’$ and $\rho_{0}$ where

$(R_{5})$ $\{\begin{array}{l}\rho_{3}’=\tau^{2}\rho_{3}’’\tau^{-2}\rho_{0}=\tau\rho_{o’}\tau^{-1}\end{array}$

and $\tau=\rho_{3}’\rho_{0}=\rho_{0}’’\rho_{3}’’=\rho_{2}\rho_{0}$ . The cusp relation at $u=\sqrt{3}i$ gives: $p_{0}’’\rho_{3}’’\rho_{0}^{\prime\prime-1}=\rho_{2}$ .
Rewriting this in the original generators, we get

$(R_{6})$ $p_{0}p_{2}=\rho_{2}\rho_{0}$

Figure (4.R)

By $(R_{1}),$ $(R_{2})$ and $(R_{6}),$
$\rho_{0}$ is in the center. Therefore by Theorem (2.3), we

have the isomorphism: $\pi_{1}(C^{2}-\tilde{C}_{I}’)\cong\pi_{1}(C^{2}-C_{I}’)$ . Obviously the isotopy type of
the complement $C^{2}-C_{I}’$ does not depend on Types (I. $1$ ) $\sim(I.4)$ . Thus $\pi_{1}(C^{2}-\tilde{C}_{I}’)$

$\cong\pi_{1}(C^{2}-C_{l}’)\cong Z$ . Q. E. D.

The importance of the curve $\tilde{C}_{I}’$ is that $\tilde{C}_{I}’$ is also a degeneration of non-
conical 6 cuspidal curves which will be studied in the next section. In fact,
any five cusps among the 6 cusps which go down to one of the three cusps
and the cusp which project to the D-flex $(1, 0)$ is not conical. We can deform
the curve $\tilde{C}_{l}’$ keeping these singularities and push out the last cusp to get non-
conical 6 cuspidal curves.

Further degeneration.
We consider the further degeneration of $C_{I}$ . Taking the result of Zariski

$([Z2])$ for the fundamental group of the complement of rational curves into
account, we can see that $C_{I}$ can not be degenerated into a rational curve.
Therefore $C_{I}$ can get at most 3 nodes or cusps. In fact, these degenerations
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are all possible. For instance, let

(4.10) $C_{I}(t):w^{3}+ \{\frac{8}{27(3t-1)}u(u^{2}-\frac{3}{2}(1+t)u+3t)+w\}^{2}$

where $w=g-1$ . The following is the graph of $C_{I}(1):w^{3}+\{(4/27)u(u^{2}-3u-3)$

$+w\}^{2}=0$ and $C_{I}(3/2):w^{3}+\{(16/189)u(u^{2}-(15/4)u+(9/2)+w\}^{2}=0$ . It is easy to
see that $C_{I}(t)$ has 3 cusps at $(0,1),$ $(a(t), 1),$ $(\beta(t), 1)$ and a node for $t\neq 1,1/3,3$

(respectively a cusp for $t=1$ ) at (1, 5/9) where $\alpha(t)$ and $\beta(t)$ are roots of $u^{2}-$

$3/2(1+t)u+3t=0$ . Taking an admissible quadratic change of coordinates, we
can also put a D-flex of order $0$ or 1 as we like. For example, the horizontal
line $g-8/9=0$ is tangent to $C_{I}(1)$ with intersection multiplicity 3. So we
can simply take the linear change of coordinates: $U=u,$ $G=g-8/9$ to put one
more cusp in $C_{J}(1)\sim$ . It is easy to see that $\pi_{1}(C^{2}-C_{I}\overline{(3/}2))\cong\pi_{1}(C^{2}-C_{I}(3/2))\cong B_{3}$

using the pencils $\{u=\theta\}$ . On the other hand, the fundamental group $\pi_{1}(P^{2}-$

$C_{I}(1))\sim$ seems much bigger than $Z_{2}*Z_{3}$ . See Appendix (4.A).

$C_{1}(1)$ $C_{l}(3/2)$

Figure (4.S)

CASE (II.1). We consider the curve $C_{II}$ with two cusps and two D-flexes
of Type (II.1). The generic curve in this class is described by the polynomial

(4.11) $C_{II}$ : $gh_{2}(u, g)^{2}+j_{2}(u, g)^{3}=0$

where $h_{2}(u, g)=a_{0}g+a_{1}u^{2}+a_{2}u+a_{8}$ and $j_{2}(u, g)=b_{0}g+b_{1}u^{2}+b_{2}u+b_{3}$ . $C_{II}$ has
two cusps at $h_{2}=j_{2}=0$ and two D-flexes at $j_{2}(u, O)=g=0$ . It has seven free
parameters. We give an easy example below and leave the detail to the reader.

$C_{II}=\{(u, g)\in C^{2} ; h(u, g)=g(g-1)^{2}+b(u^{2}-1)^{3}=0\}$

Figure (4.T) is the real graph of $C_{ll}$ . A curve $\tilde{C}_{I}$ of type I and a curve $C_{lI}\sim$

of type (II.1) can be joined by a family of curves with conical six cusps in the
source space breaking the symmetricity. Thus the fundamental group is same
as in Case I. This can be also checked directly. Note that $\pi_{1}(C^{2}-C_{II})\cong Z$ .
Tbis can be checked easily by the pencils $\{g=c\}$ . Thus $C_{ll}$ gives an example
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of symmetric a curve $C$ for which

$p_{\#}$ : $\pi_{1}(C^{2}-\tilde{C})arrow\pi_{1}(C^{2}-C)\cong Z$

is not bijective.

$0<b<4/27$ $b=4/27$

Figure (4.T)

We close this section by a conjecture.

CONJECTURE. The fundamental group of the complement of a curve does
not change by a degeneraiion which pufs only nodes.

APPENDIX (4.A). We consider the fundamental group of the complement of

$C_{I}(1): \sim w^{3}+\{\frac{4}{27}u(u^{2}-3u+3)+w\}^{2}=0$ , $w=g-1$

through the pencils $\{\sqrt{g}=c\}$ . We can rewrite the equation as $w^{3}+\{4/27(u-1)^{3}$

$+w+(4/27)\}^{2}=0$ . Thus it is easy to see that we have the following singular
fibers: $\sqrt{g}=\pm 1,$ $\pm 2\sqrt{2}/3,$ $\pm\sqrt{5}/3$ . The pencil $\sqrt{g}=\pm 1$ passes three cusps
and $\{\sqrt{g}=\pm\sqrt{}\overline{5}/3\}$ passes the seventh and the eighth cusps $(1, \pm\sqrt{5}/3)$

respectively. The line $\{\sqrt{g}=\pm 2\sqrt{2}/3\}$ is tangent to $C_{I}(1)\sim$ at $(1, \pm 2\sqrt{2}/3)$ .
We take generators $\rho_{1},$

$\cdots$ , $\rho_{6}$ in the pencil $\sqrt{g}=2\sqrt{2}/3+\epsilon$ as in Figure (4.U).

We get following relations.

$(R_{0})$ $\rho_{4}\rho_{1}\rho_{2}\rho_{3}\rho_{5}\rho_{6}=e$

$(R_{1})$ $\rho_{1}=\rho_{2}=p_{3}$ at $\sqrt{g}=\pm 2\sqrt{2}/3$

$(R_{2})$ $\{\rho_{1}, \rho_{4}\}=\{\rho_{2}, \rho_{5}\}=\{\rho_{5}^{-1}p_{3}p_{5}, p_{6}\}=e$ at $\sqrt{g}=\pm 1$

$(R_{3})$ $\rho_{2}^{-1}\rho_{4}\rho_{2}=(\rho_{5}^{-1}\rho_{3}\rho_{5})\rho_{6}(p_{\overline{o}}^{-1}p_{3}\rho_{5})^{-1},$ $\{\rho_{2}^{-1}p_{4}\rho_{2}, \rho_{6}\}=e$ at $\sqrt{g}=\pm\sqrt{5}/3$

where we use the notation $\{a, b\}=abab^{-1}a^{-1}b^{-1}$ for the cusp relation.
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Figure (4.U) $(\sqrt{g}=2\sqrt{2}/3+\epsilon)$

The equality $g\{a, b\}g^{-1}=$ { $gag^{-1},$ gbg } is often useful. We introduce the new
elements $\xi_{1}=\rho_{5}^{-1}\rho_{1}\rho_{5},$ $\xi_{2}=\rho_{5}$ and $\xi_{3}=\xi_{1}\rho_{6}\xi_{1}^{-1}$ . Then we can write the old genera-
tors as

$\rho_{1}=\rho_{2}=\rho_{s}=\xi_{2}\xi_{1}\xi_{2}^{-1}$ , $\rho_{4}=(\xi_{2}\xi_{1}\xi_{2}^{-1})\xi_{3}(\xi_{2}\xi_{1}\xi_{2}^{-1})^{-1}$ , $\rho_{6}=\xi_{1}^{-1}\xi_{3}\xi_{1}$

and the generating relations in the new generators are:

$(R_{0}’)$ $(\xi_{2}\xi_{1}\xi_{3})^{2}=e$ from $(R_{0})$

$(R_{4})$ $\{\xi_{1}, \xi_{2}^{-1}\xi_{3}\xi_{2}\}=e$ from $t\rho_{1},$
$\rho_{4}$ } $=e$

$(R_{5})$ $\{\xi_{1}, \xi_{2}\}=\{\xi_{1}, \xi_{3}\}=\{\xi_{3}, \xi_{2}\}=e$ from $(R_{2}),$ $(R_{3})$

NOW $(R_{4})$ follows from other relations. In fact, using $(R_{0}’)+(R_{5})$

$\xi_{1}(\xi_{2}^{-1}\xi_{3}\xi_{2})\xi_{1}=\xi_{1}\xi_{2}^{-1}\xi_{1}^{-1}\xi_{2}^{-1}\xi_{3}^{-1}=\xi_{2}^{-1}\xi_{1}^{-1}\xi_{3}^{-1}$

$(\xi_{2}^{-1}\xi_{3}\xi_{2})\xi_{1}(\xi_{2}^{-1}\xi_{3}\xi_{2})=\xi_{2}^{-1}\xi_{1}^{-1}\xi_{2}^{-1}\xi_{3}^{-1}\xi_{2}^{-1}\xi_{3}\xi_{2}=\xi_{2}^{-1}\xi_{1}^{-1}\xi_{3}^{-1}$

AS $(R_{0}’)$ is equivalent to $(\xi_{3}\xi_{2}\xi_{1})^{2}=e$ , we have proved that

(4.12) $\pi_{1}(P^{2}-C_{I}(1))=\langle\xi_{1}, \xi_{2}, \xi_{3} ;\sim \{\xi_{1}, \xi_{2}\}=\{\xi_{2}, \xi_{3}\}=\{\xi_{1}, \xi_{3}\}=(\xi_{3}\xi_{2}\xi_{1})^{2}=e\rangle$

Using the representation (4.8), we get a canonical surjective homomorphism

$\phi:\pi_{1}(P^{2}-C_{1}(1))\simarrow Z_{2}*Z_{3}=\langle\eta, \zeta;\{\eta, \zeta\}=e, (\eta\zeta)^{3}=e\rangle$

by $\phi(\xi_{1})=\phi(\xi_{3})=\eta$ and $\phi(\xi_{2})=\zeta$ . We assert

PROPOSITION (4.11). $\emptyset$ : $\pi_{1}(P^{2}-C_{I}(1))arrow Z_{2}*Z_{3}\sim$ is surjective but not $in_{J}$ ective.

PROOF. The surjectivity ls obvious. We will show that $\xi_{1}\xi_{3}^{-1}\in Ker(\phi)$ is a
non-trivial element of the kernel of $\phi$ . To show this, we consider the quotient
group $G’$ of $\pi_{1}(P^{2}-C_{I}(1))\sim$ by putting another relation $\xi_{2}=\xi_{3}$ . Then by easy
calculation, we can see that
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$G’=\langle\overline{\xi}_{1},\overline{\xi}_{2} ; \{\overline{\xi}_{1},\overline{\xi}_{2}\}=(\overline{\xi}_{1}\overline{\xi}_{2^{2}})^{2}=e\rangle$

$=\langle a, b,\overline{\xi}_{1},\overline{\xi}_{2} ; a^{2}=b^{3}=e,\overline{\xi}_{1}=a(ba^{-1})^{2},\overline{\xi}_{2}=ab^{-1}\rangle$

$=Z_{2^{*}}Z_{3}$

Thus the image of $\xi_{1}\xi S^{1}$ in $G’$ is equal to $a(ba^{-1})^{3}\neq e$ . This completes the proof.
Q. E. D.

\S 5. Non-conical six cuspidal curves.

In this section, we consider the curve of Type (II.2) in \S 4. The description
of the moduli space seems to be complicated. The main reason is the fact that
such a curve does not have a good symmetry. For a technical reason, we con-
sider one-parameter family of curves $F_{t}$ of degree 6 with two cusps $P_{1},$ $P_{2}$ and
two D-flexes $Q_{1,t},$ $Q_{2}t$ of order 1 where $P_{1}=(0,1),$ $P_{2}=(1,1)$ and $Q_{1.t}=(-t, 0)$ ,
$Q_{2.t}=(t, 0)$ for $t\in C$ . We have chosen four points $P_{1},$ $P_{2},$ $Q_{1.t},$ $Q_{2.t}$ so that they
are not on a conic. As $F_{t}$ has singularities at $P_{1}$ and $P_{2}$ , we can write

$h_{t}(u, g)=u^{2}(u-1)^{2}(u^{2}+bu+c)+u(u-1)(du^{2}+eu+f)(g-1)$

(5.1)
$+(\alpha u^{2}+\beta u+\gamma)(g-1)^{2}+\delta(g-1)^{3}$

We normalize the coefficient of $u^{6}$ by the homogenuity. The cusp conditions
at $P_{1}$ and $P_{2}$ are:

(5.2) $4c\gamma-f^{2}=0$ , $4(1+b+c)(\alpha+\beta+\gamma)-(d+e+f)^{2}=0$

The condition for $Q_{1.t}$ and $Q_{2.t}$ to be D-flexes of order 1 is:

(5.3) $h_{t}(u, 0)=(u^{2}-t^{2})^{3}$ .

Therefore the coefficients must satisfy the equalities:

(5.4) $b=2,$ $c-d=3(1-t^{2}),$ $e=2-c-3(1-t^{2})$ ,

$f=-\beta,$ $\alpha=1-\beta-3t^{2}+3t^{4},$ $\gamma=\delta-t^{6}$

AS the moduli ls one dimensional, we may assume that $\alpha+\beta+\gamma=0$ . This
assumption implies by (5.2) that

(5.5) $\alpha+\beta+\gamma=0$ , $d+e+f=0$ .

This assumption is equivalent to the constancy of the tangential $con_{\vee}^{2}$ of the
cusp at $P_{2}$ . Thus solving these equalities, we get

$\gamma=-1+3t^{2}-3t^{4}$ , $\delta=(t^{2}-1)^{3}$ , $\beta=-f=-4+6t^{2}$
(5.6)

$\alpha=5-9t^{2}+3t^{4}$ , $c=f^{2}/4\gamma$ , $d=c-3+3t^{2}$ , $e=-1-c+3t^{2}$

The diffeomorphism type of $c_{-}^{2}F_{t}$ does not depend on the choice of a generic



Symmetric plane curves with nodes and cusPs 405

$t$ but for the sake of the calculation of the fundamental group $\pi_{1}(C^{2}-\tilde{F}_{t})$ , we
choose $t=t_{0}=\sqrt{2}/3$ for which the calculation seems to be simpler. Thus we
study the curve $F_{t_{0}}$ . The curve $F_{t_{0}}$ is defined by

(5.7) $u^{2}(u-1)^{2}(u^{2}+2u)-u^{2}(u-1)^{2}(g-1)+ \frac{1}{3}(u^{2}-1)(g-1)^{2}-\frac{1}{27}(g-1)^{3}=0$ .

Figure (5.V)

Figure (5.V) shows the graph of the real section of $F_{t_{0}}$ . We believe that $F_{t_{0}}$

is non-singular outside of two cusps $P_{1},$ $P_{2}$ , but to prove the smoothness, we
have to take care of the discriminant polynomial of $h_{t_{0}}$ as a polynomial of $g$

which is a polynomial of degree 12 in the variable $u$ . Instead of proving it,
we will be satisfied by showing that $F_{t}$ is smooth outside its two cusps $P_{1},$ $P_{2}$

except for a finite number of $t’ s$ . We will give a proof of this assertion in
Appendix(5.A). We assert

THEOREM (5.8). $\pi_{1}(P^{2}-F_{t_{0}})\cong Z_{6}$ and $\pi_{1}(C^{2}-F_{t_{0}})\cong Z$ . Thus the same asser-
tion is true for generic $F_{t}$ .

PROOF. The commutativity of $\pi_{1}(C^{2}-F_{t_{0}})$ follows immediately from the
commutativity of $\pi_{1}(P^{2}-\beta_{t_{0}})$ as the affine fundamental group $\pi_{1}(C^{2}-\hat{F}_{t_{0}})$ is
abelian if and only if $\pi_{1}(P^{2}-\tilde{F}_{t_{0}})$ is abelian by [O1]. As $F_{t_{0}}\cap D$ has only
two D-flexes of order 1, the calculation of $\pi_{1}(C^{2}-F_{t_{0}}\cup D)$ seems more difficult.
Thus we consider the fundamental group $\pi_{1}(P^{2}-F_{t_{0}})$ directly through the
horizontal line sections $F_{t_{0^{\cap}}}\{\sqrt{g}=s\},$ $s\in C$. Note that the pair of spaces
$(C^{2},\tilde{F}_{t_{0}})\cap\{\sqrt{g}=s\}$ is identical with $(C^{2}, F_{t_{0}})\cap\{g=s^{2}\}$ . In this sense, we only
consider the real line sections of $F_{t_{0}}$ with $g=s^{2},$ $s^{2}\geqq 0$ . First we take our
generators $\rho_{1}$ , , $\rho_{6}$ in the line $t^{\prime_{g=1+\epsilon}}$ as in Figure $(5.WI)$ . ( $\epsilon$ is a positive
number whicb is small enough.)
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Figure $(5.WI)(\sqrt{g}=1+\epsilon)$ Figure $(5.WII)(\sqrt{g}=\epsilon)$

AS the global vanisbing relation we have:

$(R_{0})$ $\rho_{1}\rho_{2}\rho_{3}\rho_{4}\rho_{5}\rho_{6}=e$

The monodromy relation around $\sqrt{g}=1$ is a pair of cusp relations:

$(R_{1})$ $\rho_{2}=\rho_{4}$ , $\rho_{2}\rho_{3}\rho_{2}=\rho_{3}\rho_{2}\rho_{3}$ , $\rho_{5}\rho_{6}\rho_{5}=\rho_{6}\rho_{5}\rho_{6}$

Let $a>1$ be the real number for which the horizontal line $g=a$ is simply tangent

to $F_{t_{0}}$ as in Figure (5.V). The monodromy relation at $\sqrt{g}=\sqrt{a}$ is:

$(R_{2})$ $\rho_{4}=p_{5}$ .
NOW we move the line $\sqrt{g}=s$ from $s=1+\epsilon$ to $s=0$ . From $s=1+\epsilon$ to $s=1-\epsilon$ ,

we go clockwise around the small circle $|s-1|=\epsilon$ . We assert

ASSERTION. At the level of $\sqrt{g}=\epsilon$ , our generators are deformed as in
Figure $(5.WII)$ .

This assertion is not obvious and we give a proof in the Appendix (5.B).

Recall that $Q_{1.t_{0}},$ $Q_{2.t_{0}}$ are cusps for $F_{t_{0}}$ . The monodromy relation around
$\sqrt{g}=0$ is:

$(R_{3})$ $\{\begin{array}{l}\rho_{1}=\rho_{3}\rho_{4}\rho_{3}^{-1},\rho_{3}=\rho_{6}, \rho_{5}\rho_{3}\rho_{5}=\rho_{3}\rho_{5}\rho_{3}\end{array}$

$\rho_{2}\rho_{1}\rho_{2}=\rho_{1}\rho_{2}\rho_{1}$

NOW we have enough relations to prove the commutativity. We can take $\rho_{2}$

and $\rho_{3}$ as generators. Then we eliminate the generators $p_{1},$ $p_{4},$ $\rho_{5},$ $\rho_{6}$ using
$(R_{1})\sim(R_{3})$ and we get:

$e=\rho_{1}\rho_{2}\rho_{3}\rho_{4}\rho_{5}p_{6}$ by $(R_{0})$

$=(\rho_{3}\rho_{2}\rho_{3}^{-1})\rho_{2}\rho_{3}\rho_{2}\rho_{2}\rho_{3}$ by $(R_{1})\sim(R_{3})$

$=\rho_{3}\rho_{2}\rho_{3}^{-1}(\rho_{3}\rho_{2}\rho_{3})\rho_{2}\rho_{3}$ by $(R_{1})$

$=\rho_{3}\rho_{2}(\rho_{3}\rho_{2}\rho_{3})\rho_{3}$ by $(R_{1})$

$=\rho_{3}^{2}\rho_{2}\rho_{3}^{3}$ by $(R_{1})$ .

Thus we get the relation: $\rho_{2}=\rho_{3}^{-5}$ . Putting this in the cusp relation $(R_{1})$ :
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$\rho_{2}\rho_{3}\rho_{2}=\rho_{3}\rho_{2}\rho_{3}$ , we get $\rho_{3}^{6}=e$ . This implies that $\pi_{1}(P^{2}-F_{t_{0}})\cong Z_{6}$ as $H_{1}(P^{2}-F_{t_{0}})$

$=Z_{6}$ . This completes the proof. Q. E. D.

Among the curves of the family $\{F_{t}\}$ , there are several interesting de-
generations.

(I) For $t=1,$ $F_{1}$ is degenerated into double of line $u=1$ and a curve $A$ of
degree 4:

$A:h(u, g)=(g-1)^{2}+u(u-2)(g-1)-u^{2}(u^{2}+2u-1)$

which has one cusP $P_{1}=(0,1)$ and one D-flex of order 1 at $Q_{1.1}$ . $A$ is a curve
considered in (B), \S 3.

(II) Let $t=0$ . Then $F_{0}$ is defined by

$u^{2}(u-1)^{2}(u^{2}+2u-4)+u(u-1)(-7u^{2}+3u+4)(g-1)$

$+(5u^{2}-4u-1)(g-1)^{2}-(g-1)^{3}=0$

The cusp $P_{1}$ is degenerated in a union of two parabolas (but we can only see
an isolated point in the real graph as the local equation is equivalent $-(g-1+$

$2u)^{2}-7u^{4}=0$ . TWO D-flexes are degenerated in one D-flex of order 4 at $0=$

$(0,0)$ . Its real graph is as Figure (5.X).

Figure (5.X)

(III) Comparing the graph of $F_{0}$ and $F_{t_{0}}$ , we can see that there is $0<\theta<t_{0}$

so that D-flex $Q_{2.\theta}$ is degenerated into a cusp which is locally equivalent to
$(u-i)^{3}-g^{2}=0$ . Thus $F_{\theta}$ has three cusps $P_{1},$ $P_{2},$ $Q_{2.\theta}$ and one D-flex $Q_{1.\theta}$ . (The
cusp $Q_{2.\theta}$ is on the discriminant line $D.$ ) The lifting has 5 cusps and a cusp
of general type which is locally isomorphic to $\{(u-t)^{3}-\sqrt{}\overline{g}^{4}=0\}$ . Considering
the one parameter change of coordinates $\Psi_{s}=(U_{s}, G_{s})U_{s}=u,$ $G_{s}=g-s$ , we can
also consider $F_{\theta}$ as a degeneration of 3 cuspidal curves $\Psi_{s}(F_{t_{0}}),$ $s\in C$ of Type I.

APPENDIX (5.A). We prove that $F_{t}$ has only two singularities $P_{1},$ $P_{2}$ except
for a finite number of $t’ s$ . Let $\mathscr{F}=\{(u, g, t)\in C^{2}\cross C;h(u, g, t)=0\}$ . First we
show that the singurarity of $\mathscr{F}$ on $\mathscr{F}\cap\{t=\sqrt{2/3}\}$ is only $P_{1}$ and $P_{2}$ : Assume
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that $(u, g, \sqrt{2}/3)$ be a singular point of $\mathscr{F}$ . Then we have

(5.9) $h(u, g, \sqrt{2/3})=\frac{\partial h}{\partial u}(u, g, \sqrt{2/3})=\frac{\partial h}{\partial g}(u, g, \sqrt{2/3})=\frac{\partial h}{\partial t}(u, g, \sqrt{2/3})=0$ .

By (5.6), the last equality gives:

(5.10) $\frac{1}{3}(g-1)^{3}+(-5u^{2}+6u-1)(g-1)^{2}+u(u-1)(3u^{2}+3u-6)=0$ .

Assume that $u(u-1)(g-1)=0$ . We can see easily that there is no singularity
other than $P_{1},$ $P_{2}$ . Thus we assume that $u(u-1)(g-1)\neq 0$ . By (5.10) and
$\partial h/\partial g(u, g, \sqrt{2}/3)=0$ , we get $g-1=2u$ . Substituting this in (5.9) and (5.10),

we conclude that there exists no common solution.
Assume that $F_{t}$ has a singularity which is different from $P_{1}$ and $P_{2}$ for any

$t\in C$ . Then using Curve Selection Lemma $([M], [H])$ , we can take an analytic
family of singularities $R_{t}$ of $F_{t}$ for $t_{0}-\epsilon\leqq t\leqq t_{0}+\epsilon$ . Taking the differential of
$h(R_{t}, t)\equiv 0$ , we see that $(R_{t}, t)$ is a singular point of $\mathscr{F}$ . Assume that $\lim_{tarrow t_{0}}$

$||R_{t}||$ is finite. By the above consideration, we must have $\lim_{tarrow t_{0}}R_{t}=P_{1}$ or $P_{2}$ .
However by the constancy of the local sum of the Milnor numbers, this is
impossible. Thus $R_{t}$ must disappear at infinity when $t$ goes to $t_{0}$ . However
this is also impossible because the family $\{\tilde{F}_{t} ; t_{0}-\epsilon\leqq t\leqq t_{0}+\epsilon\}$ is regular at
infinity for a sufficiently small $\epsilon$ . As the closure of the set $\{t\in C\}$ such that
$F_{t}$ has a singularity which is different from $P_{1},$ $P_{2}$ is algebraic, this completes
the proof of the assertion. Q. E. D.

APPENDIX (5.B). We study how the six intersection points $F_{t_{0}}\cap\{\sqrt{g}=s\}$

move when $s$ moves on the real interval $[0,1]$ from $s=1$ to $0$ . Let $u_{1}(s)$ , $\cdot$ .. ,
$u_{6}(s)$ be the intersection $\tilde{F}_{t_{0}}\cap\{\sqrt{g}=s\}$ . We parametrize $u_{1}(s),$ $\cdots$ $u_{6}(s)$ so that
they are continuous for OS $s\leqq 1$ and $u_{1}(1)<0,$ $u_{2}(1)=u_{3}(1)=u_{4}(1)=0$ and $u_{5}(1)=$

$u_{6}(1)=1,$ $u_{1}(s),$ $u_{4}(s)$ are real and $u_{2}(s)=\overline{u_{3}(s)}$ and $u_{5}(s)=\overline{u_{6}(s)}$ . Our assertion on
Figure (5.W) is immediate from the following proposition.

PROPOSITION (5.11). $u_{1}(s),$
$\cdots,$ $u_{6}(s)$ do not cut the imaginary axis for $0<s$

$<1$ . In particular, $\Re(u_{2}(s)),$ $\Re(u_{3}(s))<0$ and $\Re(u_{5}(s)),$ $\Re(u_{6}(s))>0$ for $0<s<1$ .
PROOF. First rewrite (5.7) as

$u^{6}-u^{4}(3+g-1)+u^{3}( \frac{2}{27}+2(g-1))+$

(5.7)
$u^{2}( \frac{1}{3}(g-1)^{2}-(g-1))+(-\frac{1}{27}(g-1)^{3}+\frac{1}{3}(g-1)^{2})=0$

Assume that $(u, s^{2})$ satisfies (5.7) for some $0<s<1$ and some $u$ which is a pure
imaginary comPlex number. Taking the imaginary Part of (5.7), we get $g-1$
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$=-1/27$ . Substituting this in (5.7), we get

$u^{6}- \frac{80}{27}u^{4}+\frac{82}{3^{7}}u^{2}-\frac{1}{27^{3}}(\frac{1}{27}+9)=0$

However if $u$ is a pure imaginary complex number, every term in the left side
is negative which contradicts the equality. Q. E. D.

\S 6. Further remark $s$ .
In this section, we consider the bounds for $d(C)$ or $s(C)$ for a curve $C$

defined by a join type polynomial equation $C:f(x)-g(y)=0$ where $\deg f=$

$\deg g=n$ . Let $\Sigma_{f}$ and $\Sigma_{g}$ be the critical points of the respective polynomial
mappings $f$ : $Carrow C$ and $g:Carrow C$ and let $\Delta_{f}=f(\Sigma_{f})$ and $\Delta_{g}=g(\Sigma_{g})$ . The singu-
larity of $C$ consists of those points $(\alpha, \beta)$ where $a\in\Sigma_{f}$ and $\beta\in\Sigma_{g}$ with $f(\alpha)-$

$g(\beta)$ . In [O3], we have studied the case that $\Delta_{f}\cap\Delta_{g}$ consists of a single point.
For the generic case, the curve $C$ need not be irreducible. Let $\Delta=\Delta_{1}\cup\Delta_{g}$ and
$c$ be a fixed point such that $c\in C-\Delta$ . Then $\pi_{1}(C-\Delta, c)$ acts on $f^{-1}(c)$ and $g^{-1}(c)$

by the respective monodromies of the covering $f$ : $C-f^{-1}(\Delta)arrow C-\Delta$ and $g:C-$
$g^{-1}(\Delta)arrow C-\Delta$ . Thus it also acts on the product $f^{-1}(c)\cross g^{-1}(c)$ . As $C$ is irredu-
cible if and only if the complement of any finite points is path-connected, the
following is obvious.

PROPOSITION (6.1). $C$ is irreducible if and only if the action of $\pi_{1}(C-\Delta)$

on $f^{-1}(c)\cross g^{-1}(c)$ is transitive.

Let $X$ be a finite set and let $S(X)$ be the symmetric group of $X$. The above
actions of $\pi_{1}(C-\Delta)$ on $f^{-1}(c)$ and on $g^{-1}(c)$ are induced by the canonical homo-
morphisms

(6.2) $\phi_{f}$ : $\pi_{1}(C-\Delta)arrow S(f^{-1}(c))$

(6.3) $\phi_{g}$ : $\pi_{1}(C-\Delta)arrow S(g^{-1}(c))$

For a permutation $\sigma\in S(X)$ , let a $|=\{x\in X;\sigma(x)\neq x\}$ . For given $k$ elements
$x_{1},$ $\cdots$ , $x_{k}\in X$, we denote the cyclic permutation $\sigma$ of order $k$ which is defined
by $\sigma(x_{i})=x_{i+1}(i=1, \cdots , k, x_{k+1}=x_{1})$ and $\sigma(x)=x$ for $x\neq x_{1},$ $\cdots$ , $x_{k}$ by $(x_{1},$ $\chi_{2},$

$\cdots$ ,
$x_{k})$ . We use the following simple lemma which is essentially the same as
Lemma (1) in [T].

LEMMA (6.4). Let $\sigma$ and $\tau$ be cyclic permutations of order $s$ and $t$ and
assume that $\sigma\cap\tau$ consists of a single element. Then $\sigma\tau$ is a cyclic permutation

of order $s+t-1$ with $|\sigma\tau|=|\sigma|\cap|\tau|$ .
Let $\Delta_{f}=\{\alpha_{1}, \cdots , \alpha_{k}\}$ and let $f^{-1}(a_{i})\cap\Sigma_{f}=\{x_{i,1}, \cdots , x_{i.p_{i}}\}$ . Let $m_{i.j}$ be the
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multiplicity of the solution $x=x_{i.j}$ of the equation $df/dx(x)=0$ . Of course, we
must have the equality:

(6.5) $\sum_{i=1}^{k}\sum_{j=1}^{pi}m_{i.j}=n-1$

Let $\rho_{1},$
$\cdots$ , $\rho_{k}$ be a system of generators of $\pi_{1}(C-\Delta_{f})$ where $\rho_{i}$ is represented

by a small loop which goes around $\alpha_{i},$ $i=1$ , , $k$ . Then the image $\phi_{f}(\rho_{i})$ can
be expressed as $\phi_{f}(\rho_{i})=\sigma_{i.1}\cdots\sigma_{i.p_{i}}$ for mutually commuting cyclic permutations
$\sigma_{i,j}$ of order $m_{i.f}+1$ . The commutativity is the result of the disjointness
$|\sigma_{i,j}|\cap|\sigma_{i,j’}|=\emptyset$ for $j\neq j’$ . Let $X_{f^{S}}$ be the orbit space of $f^{-1}(c)$ by the action
of the subgrouP generated by $\{\sigma_{i.j} ; 1\leqq j\leqq p_{i}, 1\leqq i\leqq s\}$ . Let $|X_{f^{S}}|$ be the car-
dinality of $X_{f}^{s}$ . As $f$ is a polynomial of degree $n$ , the product $\rho_{1}\cdots\rho_{k}$ induces
a cyclic permutation of order $n$ . Thus $|X_{f}^{k}|=1$ . On the other hand, the cyclic
permutation $\sigma_{i.j}$ has a unique non-trivial orbit which contains $m_{i.j}+1$ points.
Thus we have $|X_{f}^{s}|\geqq n-\Sigma_{i=1}^{s}\Sigma_{j=1}^{pt}m_{i.j}$ . Taking the fact that $f$ has $n-1$ critical
points counting the multiplicity, we can easily see that

(6.6) $|X_{f}^{s}|=n- \sum_{i=1}^{*}\sum_{j=1}^{p\iota}m_{i.j}$ , $s=1,$ $\cdots$ , $k$ .

In particular, $|\sigma_{t.j}|\cap|\sigma_{k.l}|$ contains at most a point for $(i, j)\neq(k, l)$ . Now we
consider the explicit construction using the result of Thom [T].

(A) Maximal nodal curve.
We first consider a curve $C$ which has the maximum number of nodes $i$ . $e.$ ,

$d(C)=(n-1)(n-2)/2$ . Recall that the Chebycheff polynomial $T_{n}(x)$ of degree $n$

is defined by $T_{n}(x)=\cos n\arccos x$ . See for instance [Kr]. It has two critical
values $-1,1$ and $T_{n}^{-1}(-1)\cap\Sigma_{T_{n}}$ (respectively $T_{n}^{-1}(1)\cap\Sigma_{\tau_{n}}$ ) consists of $[n/2]$

(resp. $n-[n/2]-1$ ) simple critical points. We start from the curve $C’$ : $T_{n}(x)$

$-T_{n}(-y)=0$ . It has $2[n/2](n-[n/2]-1)$ nodes. Note that $2[n/2](n-[n/2]-1)$

$>(n-1)(n-2)/2$ . This has too many nodes! The reason is, of course, that
$C’$ is not irreducible. We take $g(y)=T_{n}(-y)$ . As $f(x)$ , we perturb $T_{n}(x)$ a
little so that it has three critical values $\{-1,1, a\}$ where each fiber $f^{-1}(-1)$ ,
$f^{-1}(a)$ and $f^{-1}(1)$ has $[n/2]-1,1$ and $n-[n/2]-1$ simple critical points respec-
tively. The existence of such a polynomial is due to Thom [T]. Let $C:f(x)$

$-g(y)=0$ .

PROPOSITION (6.7). $C$ is an irreducible curve with $d(C)=(n-1)(n-2)/2$ .
PROOF. We take the generators $p_{1},$ $\rho_{2},$ $\rho_{3}$ of the fundamental group

$\pi_{1}(C-\Delta)$ as in Figure (6.Y). $p_{1},$ $p_{2}$ and $\rho_{3}$ correspond to the critical values
$-1,1$ and $a$ respectively. Under a suitable numbering of the respective fibers
$f^{-1}(c)=\{x_{1}$ , $\cdot$ .. , $x_{n}\}$ and $g^{-1}(c)=\{y_{1}$ , $\cdot$ .. , $y_{n}\}$ , we can assume that
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$\phi_{f}(\rho_{1})=\sigma_{1}\cdots\sigma_{[n/2]-1}$ , $\phi_{f}(\rho_{2})=\tau_{1}\cdots\tau_{n-[n/2]- 1}$ , $\phi_{f}(\rho_{3})=\sigma_{[n/2]}$

$\phi_{g}(\rho_{1})=\tau_{1}’\cdots\tau_{n-[n/2]-1}’$ , $\phi_{g}(\rho_{2})=\sigma_{1}’\cdots\sigma_{[n/2]}’$ , $\phi_{g}(\rho_{3})=e$

where $\sigma_{\ell}=(x_{2i-1}, x_{2i}),$ $\tau_{j}’=(y_{2f}, y_{2j+1}),$ $\tau_{j}=(x_{2j}, x_{2j+1})$ and $\sigma_{i}’=(y_{2i-1}, y_{2i})$ for $1\leqq$

$i\leqq[n/2]$ and $1\leqq_{J}\leqq n-[n/2]-1$ .

Figure (6. Y)

First assume that $n=2m$ . $C$ has $(m-1)^{2}+(m-1)m=(n-1)(n-2)/2$ nodes. By
Lemma (6.4), the product $\rho_{1}\rho_{2}$ acts on $f^{-1}(c)$ as a cyclic permutation of { $x_{1},$

$\cdots$

$x_{2m-1}\}$ (not in this order) and it acts as a cyclic permutation of order $n$ on $g^{-1}(c)$ .
Thus $(\rho_{1}\rho_{2})^{n}$ acts as a cyclic Permutation of order $n-1$ on $f^{-1}(c)$ and it acts
trivially on $g^{-1}(c)$ . Take an arbitrary point $(x_{i}, y_{j})\in f^{-1}(c)\cross g^{-1}(c)$ . We will
prove that the orbit of this point contains $(x_{1}, y_{1})$ . First by the action of $(\rho_{1}\rho_{2})^{t}$

for some $t$ , we can send this point to $(x_{k}, y_{1})$ for some $k$ . Secondly using the
action of $\rho_{3}$ is $k=n$ , we may assume that $k\leqq 2m-1$ . Now again by the action
of $(\rho_{1}p_{2})^{nl}$ for some $l$ , we can send this point $(x_{k}, y_{1})$ to $(x_{1}, y_{1})$ . Next assume
that $n=2m+1$ . $C$ has $(m-1)m+m^{2}=(n-1)(n-2)/2$ nodes. Then $\rho_{1}\rho_{2}$ acts on
$f^{-1}(c)$ as $\xi\tau_{m}$ where $\xi$ is a cyclic permutation of $2m-1$ elements $\{x_{1}$ , $\cdot$ .. , $x_{2m-1}\}$

and $\tau_{m}=(x_{2m}, x_{2m+1})$ . Its action on $g^{-1}(c)$ is the same as above. Figure (6.Z)

shows the corresponding braids of the covering map $f$ : $C-f^{-1}(\Delta_{f})arrow C-\Delta_{f}$ .

$\rho*$

$\rho_{1}$

$\rho_{t}$

$n=2m$ $n=2m+1$

Figure (6.Z)

For a given point $(x_{i}, y_{j})$ , we can first send it to $(x_{k}, y_{1})$ as in the case
$n=2m$ using a power of $\rho_{1}\rho_{2}$ . If $k=2m$ , we take the action of $\rho_{3}$ on this point.
If $k=2m+1$ , we take the action of $\rho_{2}\rho_{3}\rho_{2}$ on this point which sends this point
to $(x_{2m-1}, y_{1})$ . In any case, we can assume that $k\leqq 2m-1$ . As $2m+1$ and $2m-1$
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are coprime, the action of the powers of $(\rho_{1}\rho_{2})^{2m+1}$ is transitive on { $(x_{1}, y_{1}),$ $\cdots$ ,
$(x_{2m-1}, y_{1})\}$ . Therefore the orbit of $(x_{i}, y_{j})$ contains $(x_{1}, y_{1})$ which completes
the proof. Q. E. D.

The fundamental group of the complement of a nodal curve is abelian by
[F] and [D].

(B) Cuspidal curves.
NOW we consider the cuspidal curves. Let $g(y)$ be a polynomial of degree $n$

with $\Delta_{g}=\{-1,1\}$ where $g^{-1}(-1)\cap\Sigma_{g}$ consists of $[n/3]$ critical points $\{\eta_{1},$ $\cdots$ ,
$\eta_{[n/3]}\}$ of multiplicity 2 and $g^{-1}(1)\cap\Sigma_{g}$ consists of $n-2[n/3]-1$ simple critical
points $\{\eta_{[n/3]+1}, \cdots , \eta_{n-[n/3]-1}\}$ . Let $s=[(n-1-[n/2])/2]$ and $t=n-1-[n/2]-2s$ .
Let $f(x)$ be a polynomial of degree $n$ with $\Delta_{f}=\{-1,1\}$ or $\{-1,1, a\}$ according
to $t=0$ or $t=1$ respectively. We assume that $f^{-1}(-1)\cap\Sigma_{f}$ consists of $[n/2]$ simple
critical points $\{\xi_{1}, \cdots , \xi_{[n/2]}\}$ and $f^{-1}(1)\cap\Sigma_{f}$ consists of $s$ critical points
$\{\xi_{[n/2]1}+’\ldots , \xi_{[n/2]+S}\}$ of multiplicity 2. In the case of $r=1,$ $f^{-1}(a)\cap\Sigma_{f}$ consists
of a single simple critical point. Now we consider the curve $C:f(x)-g(y)=0$ .
By the construction, $C$ has $[n/3][n/2]+(n-[n/3]-1)s$ cusps $(\xi_{i}, \eta_{j})$ with $1\leqq$

$i\leqq[n/2],$ $1\leqq_{J}\leqq[n/3]$ or $[n/2]+1\leqq i\leqq[n/2]+s,$ $[n/3]+1\leqq_{J}\leqq n-[n/3]-1$ . We
assert

PROPOSITION (6.8). $C$ is irreducible and $C$ has asymptotically $n^{2}/4$ cusps.

PROOF. The second assertion follows from the observation that $[n/3]$

$[n/2]+(n-2[n/3]-1)s=n^{2}/6+(n/3)(n/4)=n^{2}/4$ . NOW we show the irreduci-
bility. We take the generators $\rho_{1},$ $\rho_{2}$ (and $\rho_{3}$ if $t\neq 0$) of $\pi_{1}(C-\Delta)$ . Here $\rho_{1},$ $\rho_{2}$

correspond to the critical value $-1,1$ respectively and $\rho_{3}$ corresponds to the
critical value $a$ . See Figure (6.Y). By (6.6), we can write

$\phi_{f}(\rho_{1})=\sigma_{1}\cdots\sigma_{[n/2]}$ , $\phi_{f}(\rho_{2})=\tau_{1}\cdots\tau_{s}$

$\phi_{g}(\rho_{1})=\eta_{1}\cdots\eta_{[n/3]}$ , $\phi_{g}(\rho_{2})=\lambda_{1}\cdots\lambda_{n-2[n/3]-1}$

$\phi_{f}(\rho_{3})=\xi,$ $\varphi_{g}’(\rho_{3})=e$ if $t=1$

Here $\sigma_{1},$
$\cdots$ , $\sigma_{[n/2]},$

$\lambda_{1},$ $\cdots$ , $\lambda_{n-2[n/3]-1}$ and $\xi$ are cyclic permutations of order 2
and $\eta_{1},$

$\cdots$ , $\eta_{[n/3]}$ and $\tau_{1},$
$\cdots$ , $\tau_{s}$ are cyclic permutations of order 3 which satisfy

$|\sigma_{i}|\cap|\tau_{j}|\neq\emptyset$ if and only if 2]–1;$ $i\leqq 2j+1$

$|\eta_{i}|\cap|\lambda_{j}|\neq\emptyset$ if and only if ] $\leqq i\leqq j+1$

$|\tau_{j}|\cap|\xi|=\emptyset$ , $|\sigma_{t}|\cap|\xi|\mp\emptyset$ if and only if $i=[n/2]$

Under a suitable numbering of the fibers $f^{-1}(c)=\{x_{1}, \cdots , x_{n}\}$ and $g^{-1}(c)=$

$\{y_{1}$ , $\cdot$ .. , $y_{n}\}$ , we can assume for example that
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$\sigma_{i}=(x_{2i- 1}, x_{2i})(i\leqq[\frac{n}{2}])$ , $\tau_{f}=(x_{4j-2}, \chi_{4j-1}, x_{4j+1})C\leqq s)$

$\eta_{k}=(y_{3k-2}, y_{3k-1}, y_{3k})(k\leqq[\frac{n}{3}])$ , $\lambda_{l}=(y_{3l}, y_{3t+1})(l\leqq n-2[\frac{n}{3}]-2)$

$\lambda_{n- 2[n/3]- 1}=\{(y_{n-1},y_{n})(y_{3(n-2[n/3]-1)}, y_{3(n-2[n/3]- 1)+1})$
for $n\equiv 0,1$ modulo 3
for $n\equiv 2$ modulo 3

$\xi=\{(x_{n-2}(x_{n-1}’ x_{n- 1})x_{n}) for n\equiv 0 modulo 4$

for $n\equiv 3$ modulo 4

Assume first that $t=0$ . Then $n=4m+2$ or $n=4m+1$ for some integer $m$ . Using
Lemma (6.4) and the following expression

$\phi_{f}(\rho_{1}\rho_{2})=\sigma_{1}\cdots\sigma_{[n/2]}\tau_{1}\cdots\tau_{s}$

$=\{(\cdot((\sigma_{1}\sigma_{2}\sigma_{3}\tau_{1})\sigma_{4}\sigma_{5}\tau_{2}))\sigma_{2m}\tau_{m}(\cdot((\sigma_{1}\sigma_{2}\sigma_{3}\tau_{1})\sigma_{4}\sigma_{5}\tau_{2})\cdot)\sigma_{2m}\sigma_{2m+1}\tau_{m}$

$n=4m+2$

$n=4m+1$

we can easily see that $\phi_{f}(\rho_{1}p_{2})$ is a cyclic permutation of order $n$ . Assume
that $t=1$ . Then we have $n=4m+3$ or $4m$ . By the same argument, we can
see that $\phi_{f}(\rho_{1}\rho_{2}\rho_{3})$ is a cyclic permutation of order $n$ . On the other hand,
$\phi_{g}(\rho_{1}\rho_{2})=\phi_{g}(\rho_{1}\rho_{2}\rho_{3})$ is always a cyclic permutation of order $n$ in the both
cases. Note that $\phi_{f}(\rho_{1}^{3}\rho_{2}^{2})$ or $\phi_{f}(\rho_{1}^{3}\rho_{2}^{2}\rho_{3})$ also acts as a permutation of order $n$

on $f^{-1}(c)$ but their actions on $g^{-1}(c)$ are trivial. Now we are ready to prove
the transitivity of the action. Take an arbitrary point $(x_{i}, y_{j})\in f^{-1}(c)\cross g^{-1}(c)$ .
By the action of a suitable power of $\rho_{1}\rho_{2}$ or $\rho_{1}\rho_{2}\rho_{3}$ , we can first send this
point to $(x_{k}, y_{1})$ for some $k$ . Then using the action of a power of $\phi_{f}(\rho_{1}^{3}\rho_{2}^{2})$ or
$\phi_{f}(\rho_{1}^{3}\rho_{2}^{2}\rho_{3})$ , we can send this point to $(x_{1}, y_{1})$ . This completes the proof.

Q. E. D.
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