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1. Introduction.

It is known that two Riemann surfaces are conformally equivalent if and
only if meromorphic function fields on them are $C$-isomorphic. In this paper,
we consider not $C$-isomorphisms but field isomorphisms. A C-isomorphism
means that the restriction of the isomorphism to $C$ is the identity mapping.
We always assume that a field isomorphism maps the imaginary unit $\sqrt{}\overline{-1}$ to
itself. If two Riemann surfaces are conformally equivalent, then their mero-
morphic function fields are obviously field isomorphic. The converse was studied
by Nakai-Sario [7]. Their main theorem is that if meromorphic function fields
on two Riemann surfaces are field isomorPhic, then the two Riemann surfaces
are homeomorphic. As a consequence, if meromorphic function fields on two
Riemann surfaces are field isomorphic, then the Riemann surfaces are simul-
taneously compact or noncompact. If the Riemann surfaces are noncompact,
then their meromorphic function fields are $C$ -isomorphic, see Iss’sa [2] and
Nakai-Sario [7]. Thus they are conformally equivalent. In contrast with non-
compact case, if the Riemann surfaces are compact, then they do not need to
be conformally equivalent. A counter example was shown by Heins [1]. Ac-
cordingly we shall be concerned with compact case.

For a Riemann surface $R$ , let $M(R)$ denote the meromorphic function fields
on $R$ . We introduce an equivalence relation in the set of all Riemann surfaces.
Let $R$ and $S$ be Riemann surfaces. We say that $R$ and $S$ are equivalent if and
only if $M(R)$ is field isomorphic to $M(S)$ . It is clear that this is an equivalence
relation. Each equivalence class consists of all field isomorphic Riemann surfaces.
For noncompact Riemann surfaces, each equivalence class consists of only one
Riemann surface. We note that two conformally equivalent Riemann surfaces
are regarded as the same surface. Let $I$ be the set of compact Riemann surfaces
$R$ such that the equivalence class containing $R$ consists of only $R$ itself. Then
$R\in I$ if $M(S)$ is field isomorphic to $M(R)$ implies that $S$ is conformally equivalent
to $R$ . Let $I_{g}$ be the set of all elements of $I$ of genus $g$ .
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Next we explain our results in this paper. We shall first construct a com-
pact Riemann surface $R^{\sigma}$ by a compact Riemann surface $R$ and a field isomor-
phism $\sigma$ of $C$ onto itself and show an alternative proof of compact case of
Nakai-Sario’s theorem in Section 2. In Section 3, we define an equivalence
relation in algebraic function ’fields. We say that two algebraic function fields
are equivalent if and only if the two fields are field isomorphic. We show that
the set of all equivalence classes is countably infinite (Theorem 4). As a
corollary, we see that the set $I$ is countably infinite. This is an affirmative
answer to the problem posed by Kato [5]. In the final section, we deal with
a compact Riemann surface which is defined by $y^{n}=P(x)$ , where $P$ denotes a
polynomial in $x$ . We define branch divisors for such compact Riemann surfaces
and discuss whether two meromorphic function fields are field isomorphic or
not. More exactly, for Riemann surface defined by $y^{n}=x(x-1)(x-a)$ , we can
count how many equivalent Riemann surfaces are there, where $\alpha\in C\backslash \{0,1\}$

and $n$ denotes a natural number such that $n\geqq 2$ and $n\not\equiv O(mod 3)$ . For compact
Riemann surfaces of this type, we show that if $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is algebraic
over $Q(\sqrt{-1})$ , then the number of equivalent Riemann surfaces is equal to the
degree of $(a^{2}-a+1)^{3}/a^{2}(a-1)^{2}$ over $Q(\nwarrow\overline{-}1)$ and if $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is
transcendental over $Q(\sqrt{-1})$ , then the number of equivalent Riemann surfaces
is uncountable.

2. Construction of $R^{\sigma}$ .
It is well-known that the meromorphic function field on a compact Riemann

surface is an algebraic function field of one variable and vice versa. Let
$R$ be a compact Riemann surface and let $M(R)$ be the meromorphic func-
tion field on $R$ . There are $x,$ $y\in M(R)$ such that $M(R)=C(x, y)$ , where $x$ is
transcendental over $C$ and $y$ is algebraic over $C(x)$ . Let $X,$ $Y$ be indeterminate
elements. There is an irreducible polynomial $F(X, Y)$ of $Y$ in $C(X)[Y]$ such
that $F(x(p), y(p))=0$ for all $p\in R$ and $C(x, y)$ is $C$-isomorphic to $C(X)[l^{7}]/$

$\{F(X, Y)\}$ , where $\{F(X, Y)\}$ denotes a principal ideal $F(X, Y)C(X)[Y]=\{F(X$ ,
$Y)H(X, Y)|H(X, Y)\in C(X)[Y]\}$ . The functions $x$ and $y$ correspond to $X+$

$\{F(X, Y)\}$ and $Y+\{F(X, Y)\}$ , respectively. Conversely, an arbitrary irreducible
polynomial defines an algebraic function field. To be concrete, for an irreducible
polynomial $F(X, Y),$ $C(X)[Y]/\{F(X, Y)\}$ is an algebraic function field. There
exists a compact Riemann surface $R$ such that $C(X)[Y]/\{F(X, Y)\}$ is C-isomor-
phic to $M(R)$ . Let $x$ and $y$ be functions in $M(R)$ which correspond to $X+$

$\{F(X, Y)\}$ and $Y+\{F(X, Y)\}$ , respectively. Tben $F(x(P), y(p))=0$ for all $p\in R$

and $M(R)=C(x, y)$ . In what follows, we identify $\Lambda I(R)$ and $C(X)[Y]/\{F(X, Y)\}$

and say that $R$ is a Riemann surface defined by $F(x, y)=0$ or $F(X, Y)$ . We
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always assume $F(X, Y)$ is an irreducible polynomial in $C[X, Y]$ .
Let $R$ be a compact Riemann surface and let $\sigma$ be an automorphism of $C$ ,

that is, $\sigma$ is a field isomorphism of $C$ onto itself and maps $\sqrt{-1}$ onto itself.
Suppose $R$ is defined by $F(X, Y)$ . First of all we construct a new compact

Riemann surface $R^{\sigma}$ . Let $F(X, Y)=\Sigma_{i.j}c_{i.j}X^{i}Y^{j}$ and set $F^{\sigma}(Z, W)=$

$\Sigma_{i.j}\sigma(c_{i.j})Z^{i}W^{j}$ , where $Z$ and $W$ are indeterminate elements. Then $F^{\sigma}(Z, W)$

is also an irreducible polynomial in $C[Z, W]$ . Let $R^{\sigma}$ be a compact Riemann
surface defined by $F^{\sigma}(Z, W)$ . We define a mapping $\tau$ from $C(X)[Y]$ onto
$C(Z)[W]$ by putting $\tau(X)=Z,$ $\tau(Y)=W$ and $\tau|C=\sigma$ , where $\tau|C$ means the res-
triction of $\tau$ to $C$ . The mapping $\tau$ induces a field isomorphism of $C(X)[Y]/$

$\{F(X, Y)\}$ onto $C(Z)[W]/\{F^{\sigma}(Z, \iota\eta\}$ , we denote it again by $\tau$ . The meromor-
pbic function field $M(R)$ (resp. $M(R^{\sigma})$ ) is identified with the algebraic function
field $C(X)[Y]/\{F(X, Y)\}$ (resp. $C(Z)[W]/\{F^{\sigma}(Z,$ $W)\}$ ). Thus we have a field
isomorphism $\tau:M(R)arrow M(R^{\sigma})$ . The Riemann surface $R^{\sigma}$ does not depend on
the choice of the defining polynomial $F$. Suppose $R$ is defined by $G(X, Y)$ .
Define $R^{\sigma’}$ and a field isomorphism $\tau’$ by replacing $F(X, Y)$ with $G(X, Y)$ . The
composite mapping $\tau’$ . $\tau^{-1}$ is a field isomorphism of $M(R^{\sigma})$ onto $M(R^{\sigma’})$ and
$(\tau’\circ\tau^{-})$ $|C$ is the identity mapping. Thus $\tau’\circ\tau^{-1}$ is a $C$-isomorphism. Hence
$R^{\sigma}$ and $R^{\sigma\prime}$ are conformally equivalent.

LEMMA 1. Let $R$ be a compact Riemann surface defined by $F(X, Y)=$

$\Sigma_{t.J^{*}}c_{i.j}X^{i}Y^{j}$ and let $S$ be a Riemann surface which is equivalent to R. If $\sigma$ :
$M(R)arrow M(S)$ is a field isomorphism, lhen $R^{\sigma|C}$ and $S$ are conformally equivalent.

PROOF. We note that $\sigma(C)=C$ . For a proof of this fact, see [7]. Since
$\sigma|C_{A}is$ an automorphism of $C$ , we have a compact Riemann surface $R^{\sigma|C}$ and
$a:field:isomorphism\tau$ of
composite mapping $\sigma\circ\tau^{-1}$ is a field isomorphism of $M(R^{\sigma|C})$ onto $M(S)$ and the
restriction of $\sigma\circ\tau^{-1}$ to $C$ is the identity mapping. Thus $\sigma\circ\tau^{-1}$ is a C-isomor-
phism of $M(R^{\sigma|C})$ onto $M(S)$ . Hence $R^{\sigma|C}$ and $S$ are conformally equivalent.

$\square$

Applying Lemma 1, we obtain a direct proof of the theorem of Nakai-Sario
for compact case.

THEOREM 2 (Nakai-Sario [7]). Let $R$ and $S$ be equivalent Riemann surfaces.
Then $R$ and $S$ are simultaneously compact or noncompact. If they are noncom-
pact, then they are conformally equivalent. If they are compact, then they are
homeomorphic.

PROOF. Let $\sigma$ be a field isomorphism of $M(R)$ onto $M(S)$ . If $R$ is compact,
by Lemma 1, $R^{\sigma|C}$ is conformally equivalent to $S$ . Since $R^{\sigma|C}$ is compact, $S$

is compact. Conversely, if $S$ is compact, since $S^{\sigma^{-1}\}C}$ is conformally equivalent
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to $R$ , then $R$ is compact. Thus $R$ and $S$ are simultaneously compact or non-
compact.

If two Riemann surfaces are noncompact, by Nakai-Sario [7] (section 6),
$\sigma$ is $C$-isomorphic, and so they are conformally equivalent.

NOW suppose $R$ and $S$ are compact. We shall show that $R$ and $S$ are
homeomorphic. To prove this, it is enough to show that $R$ and $R^{\sigma|C}$ are
homeomorphic, because $R^{\sigma\rceil C}$ and $S$ are conformally equivalent by Lemma 1.
We shall show that the Euler characteristic of $R$ is equal to that of $R^{\sigma\rceil C}$ .
The following paragraph is well-known facts in the algebraic function theory.
(tee [3] Chapter4.)

Let $R$ be a Riemann surface defined by $F(x, y)=0$ and let $R^{\sigma|C}$ be a
Riemann surface defined by $F^{\sigma|C}(z, w)=0$ . We regard $R$ and $R^{\sigma|C}$ as covering
surfaces of $P^{1}$ and $x$ and $z$ as covering mappings. The degree of ramification
at each branch point of $R$ (resp. $R^{\sigma|C}$ ) is determined by the algebraic structure
of $M(R)$ (resp. $M(R^{\sigma|C})$). That is, the order of $f\in M(R)$ at $p\in R$ determines
a normalized valuation $v$ of $M(R)$ and every normalized valuation of $M(R)$ can
be expressed as the order of $f\in M(R)$ at some $p\in R$ . The value group of $v$

is equal to $Z$ and the value group of the restriction of $v$ to $C(x)$ is an additive
subgroup of $Z$ . Hence there is a natural number $e$ such that the additive
subgroup can be expressed as $eZ$ . This number $e$ is called the ramification
index at $P$ and $e-1$ is called the degree of ramification at $p$ . Each normalized
valuation $v$ of $M(R)$ determines a valuation ring $\{f\in M(R)|v(f)\geqq 0\}$ . Conversely,
for every valuation ring $V$ of $M(R)$ , we say $V$ is a valuation ring of $M(R)$ if
$f\in V$ or $1/f\in V$ holds for every $f\in M(R),$ $V$ contains $C$ and $V$ is contained in
$M(R)$ properly, there is a normalized valuation $v$ such that $V=\{f\in M(R)|v(f)$

$\geqq 0\}$ . Thus there is a one-to-one correspondence between the set of valuation
rings of $M(R)$ and the set of points of $R$ . We denote by $V_{p}$ the valuation
ring of $M(R)$ which corresponds to $p\in R$ .

Let $\tau$ be the field isomorphism of $M(R)$ onto $M(R^{\sigma_{1}}c)$ . Then $\tau(V_{p})$ is a
valuation ring of $M(R^{\sigma|C})$ and there is a point $q\in R^{\sigma|C}$ such that $\tau(V_{p})=V_{q}$ ,

where $V_{q}$ is a valuation ring of $M(R^{\sigma|C})$ corresponding to $q$ . Since $M(R)$ and
$M(R^{\sigma|C})$ are field isomorphic and $vo\tau^{-1}$ is the normalized valuation of $M(R^{\sigma|C})$

associated with the valuation ring $V_{q}$ , the degree of ramification at each point
$p$ of $R$ is equal to that at the corresponding point $q$ of $R^{\sigma|C}$ . The Riemann-
Hurwitz formula asserts that

$\chi(R)=n\chi(P^{1})-N(R)$ ,

where $\chi(R)$ denotes tbe Euler characteristic of $R$ , $n$ denotes the number of
sheets of $R$ as a covering surface and $N(R)$ denotes the sum of the degrees of
ramification. Since $N(R)=N(R^{\sigma|C})$ and the number of sheets of $R$ is equal to



IsomorPhism of meromorphic function fields 551

that of $R^{\sigma|C}$ from their definitions, $\chi(R)=x(R^{\sigma|C})$ . Thus $R$ and $S$ are homeo-
morphic. $\square$

3. Countability of $I$.
Let $H_{g}$ be the set of all hyperelliptic Riemann surfaces of genus $g$ . Every

hyperelliptic compact Riemann surface of genus $g$ can be expressed as $y^{2}=$

$x(x-1)(x-\alpha_{1})$ ... $(x-\alpha_{2g-1})$ , namely, a tuple $(\alpha_{1}$ , $\cdot$ .. , $\alpha_{2g-1})$ of distinct $2g-1$

complex numbers defines a hyperelliptic Riemann surface, where $\alpha_{j}\in C\backslash \{0,1\}$ .
We denote by $\pi((\alpha_{1}, \cdots , \alpha_{2g-1}))$ the Riemann surface. Then the set $\pi^{-1}(H_{g}\cap I_{g})$

is of Lebesgue measure zero in $C^{2g-1}$ . Moreover, for the case of $g=1,$ $H_{1}\cap I_{1}$

is equal to $I_{1}$ and $I_{1}$ is a countably infinite set. These facts were shown by

Kato [5]. In this section, we shall show that $I$ is a countably infinite set.
We shall construct a subset $G$ of $C$ . At first, we inductively construct a

sequence $\{\epsilon_{j}\}_{j=1}^{\infty}$ . Let $\epsilon_{1}\in C$ be a transcendental element over $Q(\sqrt{-1})$ . For
$j\geqq 2$ , we choose an $\epsilon_{j}$ so that $\epsilon_{j}\in C$ is transcendental over $Q(\sqrt{-1}, \epsilon_{1}, \cdots , \epsilon_{j-1})$ .
Let $G_{j}$ be the set of all algebraic elements of $C$ over $Q$ ( $\sqrt{-1},$

$\epsilon_{1}$ , , Sj-l).

Since the set of all algebraic elements over a countable field are countable,

every $G.(n=1, 2, )$ is a countable set. We note that a finite number of ele-
ments of $\{\epsilon_{j}\}_{j=1}^{\infty}$ are algebraically independent over $Q(\sqrt{-1})$ . Put $G= \bigcup_{n=1}^{\infty}G_{n}$

and $G^{n}=\{(a_{1}, \cdot.. , a_{n})|a_{j}\in G, j=1, , n\}$ . Then $G^{n}$ is countable for any natural
number $n$ . Next theorem is important to prove Lemma 3.

THEOREM OF KESTELMAN [6]. We Can eXtend an automorphiSm of an arbi-
trary subfield of the complex number field $C$ to an automorphism of $C$ , i.e. for
any subfield $K$ of $C$ and its automorPhesm a, there exists an automorPhism a of
$C$ such that $\text{\^{a}}|K=\sigma$ .

LEMMA 3. For any element $(a_{1}, \cdots , a_{n})\in C^{n}$ , there is an automorPhism a
of $C$ such that $(a(a_{1}), \cdots , a(a_{n}))\in G^{n}$ .

PROOF. Let $(a_{1}, , a_{n})$ be an arbitrary element of $C^{n}$ . Let $m$ be a trans-
cendental degree of $Q(\sqrt{-1}, a_{1}, , a_{n})$ over $Q(\sqrt{-1})$ and let $b_{1}$ , $\cdot$ .. , $b_{m}$ be
elements of $C$ such that $a_{1},$ $\cdots,$ $a_{n}$ are algebraic over $Q(\sqrt{-1}, b_{1}, \cdots , b_{m})$ . Choose
$\epsilon_{j_{1}},$

$\cdots$ , $\epsilon_{J_{m}}(1\leqq j_{1}<\cdots<j_{m})$ from $\{\epsilon_{j}\}_{j=1}^{\infty}$ so that $b_{1},$ $\cdots$ , $b_{m},$
$\epsilon_{j_{1}},$

$\cdots$ , $\epsilon_{j_{m}}$ are alge-
braically independent over $Q(v’\overline{-1})$ . We define an automorphism $\sigma$ of $Q(\sqrt{-1}$ ,
$b_{1},$ $\cdots$ $b_{m},$

$\epsilon_{j_{1}},$ $\cdots,$
$\epsilon_{j_{m}})$ by $a|Q(\sqrt{-1})=id.,$ $\sigma(b_{k})=\epsilon_{j_{k}}$ and $\sigma(\epsilon_{j_{k}})=b_{k}(k=1, \cdots , m)$ .

By Theorem of Kestelman, we can extend $a$ to an automorphism of $C$ , and it
maps every algebraic element of $C$ over $Q(\sqrt{-1}, b_{1}, \cdots , b_{m})$ to algebraic one
over $Q(\sqrt{-1}, \epsilon_{j_{1}}, \cdots , \epsilon_{j_{m}})$ . Thus $\sigma(a_{j})\in G$ for every $j$ , and so $(a(a_{1}), \cdot.. , a(a_{n}))$

$\in G^{n}$ . $\square$
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We shall define an equivalence relation in the set of all of algebraic func-
tion fields. Two algebraic function fields are equivalent if and only if the two
fields are field isomorphic. We have the following theorem:

THEOREM 4. $T/?e$ set of all equivalence classes of algebraic function fields
$fs$ countably infinite.

PROOF. It is well-known that every algebraic function field of n-variables
is defined by an irreducible polynomial of $Y$ in $C(X_{1}, \cdots, X_{n})[Y]$ . We may
assume that the polynomial is contained in $C[X_{1}, \cdots, X_{n}, Y]$ and is denoted by
$F(X_{1}, \cdot.. , X_{n}, Y)=\Sigma c_{j_{1}\ldots..j_{n+1}}X_{1}^{j_{1}}$ ... $X_{n}^{J_{n}}Y^{j_{n+1}}$ , where $c_{j_{1}\ldots..j_{n+1}}\in C$ . Since coef-
ficients $c_{j_{1}\ldots..j_{n+1}}$ are finite, by Lemma 3, there exists an automorphism $\sigma$ of $C$

such that $\sigma(c_{j_{1},\cdots.j_{n+1}})\in G$ . Since $F^{\sigma}(Z_{1}, \cdots Z_{n}, W)=\Sigma\sigma(c_{j_{1}\ldots..j_{n+1}})Z_{1^{1}}\cdots Zt^{n}W^{J_{\mathcal{R}+1}}$

is irreducible in $C(Z_{1}, \cdots Z_{n})[W]$ , it defines an algebraic function field of n-
variables. By setting $\sigma(X_{j})=Z_{j}(J^{=1} , n)$ and $\sigma(Y)=W$ , we can extend the
automorphism $a$ to the field isomorphism of the algebraic function field defined
by $F(X_{1}, , X_{n}, Y)$ onto the algebraic function field defined by $F^{\sigma}(Z_{1}$ , . $Z_{n}$ ,
$W)$ . Thus every algebraic function field of $n$ -variables is isomorphic to the
algebraic function field defined by an irreducible polynomial of $G[Z_{1}, \cdots, Z_{n}, W]$ .
Because all polynomials of $G[Z_{1}, , Z_{n}, W]$ is countable, the set of all equi-
valence classes is at most countable. The restriction of an automorphism of
$C$ to $Q(\sqrt{-1})$ is identity, and it is known that the set of all equivalence classes
defined by an irreducible polynomial of $Q(\sqrt{-1})[Z_{1}, \cdots , Z_{n}, W]$ is countably
infinite. Thus the set of all equivalence classes is countably infinite. $\square$

Next corollary is an immediate consequence of Theorem 4.

COROLLARY. I is a countably infinite set.

4. Conditions for field isomorphism.

For some type compact Riemann surfaces considered as covering surfaces
of the Riemann sphere $P^{1}$ , we shall determine whether they are contained in $I$ or
not. Let $R$ be a compact Riemann surface defined by $y^{n}=\Pi_{j=1}^{m}(x-a_{j})^{k_{j}}$ , where
$n,$ $m$ and $k_{f}$ are natural numbers, $\alpha_{j}\in C$ $(]=1, , m)$ and $a_{j}\neq\alpha_{l}(]\neq l)$ . Define
a branch divisor $D_{R}$ of $R$ by $D_{R}=k_{1}(\alpha_{1})+\cdots+k_{m}(\alpha_{m})$ , where $(\alpha_{j})$ is a prime
divisor on $P^{1}$ . Let $S$ be a Riemann surface defined by $w^{n}=\Pi_{j=1}^{m}(z-\beta_{j})^{\iota_{j}}$ , where
$\{l_{j}\}$ are natural numbers and $\{\beta_{j}\}$ are distinct complex numbers. Let $D_{S}$ be
the branch divisor of $S$ . Let us write $D_{R}\sim D_{S}$ if and only if there are a linear
transformation $T$ and an integral number $N$ (coprime to $n$ ) such that $T(\{a_{1},$ $\cdots$ ,
$\alpha_{m}\})=\{\beta_{1}, , \beta_{m}\}$ and $Nk_{j}\equiv l_{i}(mod n)$ , where $T(\alpha_{j})=\beta_{i}$ . It is clear that this
is an equivalence relation. For any automorphism $\sigma$ of $C$ and any branch
divisor $D_{R}=k_{1}(\alpha_{1})+\cdots+k_{m}(a_{m})$ , we put $D_{R}^{\sigma}=k_{1}(\sigma(a_{1}))+\cdots+k_{m}(a(\alpha_{m}))$ .



Isomorphism of meromorphic function fields 553

Under some additional conditions on $n,$ $m,$ $\{l_{j}\}$ and $\{k_{j}\}$ , we see that $R$ and
$S$ are conformally equivalent if and only if $D_{R}\sim D_{S}$ . For instance, $R$ and $S$

are conformally equivalent if and only if $D_{R}\sim D_{S}$ , under the following conditions:
(i) $\Sigma_{j=1}^{m}k_{j}\equiv\Sigma_{J}^{m}l\equiv 0(mod n),$ $n$ is prime and $m\geqq 2n+1$ .
(ii) $k_{j}=l_{j}=1(]=1, \cdots m),$ $m$ is prime, $n\geqq 2m+1$ and $n\not\equiv O(mod m)$ .
(iii) $k_{j}=l_{j}=1(J^{=1}, \cdots m),$ $n=m$ .
(iv) $\Sigma_{j=1}^{m}k_{j}\equiv\Sigma_{j=1}^{m}l_{j}\equiv 0(mod n),$ $n$ is odd prime, $m\geqq 2n$ or $n\geqq 11$ .

Conditions (i) to (iii) are due to Namba [8] and (iv) is due to Kato [4].

THEOREM 5. Let $R$ and $S$ be compact Riemann surfaces $satisfy\iota ng$ one of
(i) to (iv) simultaneously. Then $M(R)$ and $M(S)$ are field isomorphic if and only

if there is an automorphism $a$ of $C$ such that $D_{R}^{\sigma}\sim D_{S}$ . Moreover, $R$ is contained
$in]I$ if and only if $D_{R}^{\sigma}\sim D_{R}$ for any automorphism $\sigma$ of $C$ .

PROOF. If there is an automorphism $\sigma$ of $C$ such that $D_{R}^{\sigma}\sim D_{S}$ , then the
branch divisor $D_{R^{\sigma}}$ of $R^{\sigma}$ is equal to $D_{R}^{\sigma}$ from their definitions. Thus $M(R^{\sigma})$

and $M(S)$ are $C$ -isomorphic, because $D_{R^{\sigma}}\sim D_{S}$ . Since $M(R)$ and $M(R^{\sigma})$ are field
isomorphic, $M(R)$ and $M(S)$ are field isomorphic.

If $M(R)$ and $M(S)$ are field isomorphic by $\hat{\sigma}$ , by Lemma 1, $M(R^{\hat{\sigma}\rceil C})$ is C-
isomorphic to $M(S)$ . Thus $D_{S}\sim D_{R^{\sigma 1C}}^{\wedge}$ . On the other hand, $D_{R^{\sigma^{\wedge}1C=}}D_{R}^{\hat{\sigma}1C}$ . Hence
$D_{R^{\wedge}}^{\sigma IC}\sim D_{S}$ .

Next, if $R\in I$, then $l\mathcal{V}I(R^{\sigma})$ is field isomorphic to $M(R)$ for any automorphism
$\sigma$ of $C$ . Since $M(R)$ and $M(R^{\sigma})$ are $C$-isomorphic from assumption, we have
$D_{R}\sim D_{R}^{\sigma}(=D_{R^{\sigma}})$ .

If $D_{R}^{\sigma}\sim D_{R}$ for any automorphism $a$ of $C$ , then for an arbitrary compact

Riemann surface $S$ whose meromorphic function field is isomorphic to $M(R)$ by
$\tau$ , since $S$ is denoted by $w^{n}=\Pi_{j=1}^{m}(z-\tau(\alpha_{j}))^{k_{j}}$ , we have $D_{R}^{\tau|C}\sim D_{S}$ by the fact
mentioned above. Thus $D_{R}\sim D_{S}$ . Since $R$ and $S$ are conformally equivalent,
we see $R\in I$ . $\square$

Finally we shall show the next theorem. Any compact Riemann surface
of genus 1 can be expressed as $y^{2}=x(x-1)(x-\alpha)$ . Thus the result contains
the case of $I_{1}$ .

THEOREM 6. Let $R$ be a compact Riemann surface defined by $y^{n}=x(x-1)$

$(x-\alpha)$ , where $a\in C^{\backslash }\{0,1\}$ and $n$ denotes a natural number such that $n\geqq 2$ and
$n\not\equiv O(mod 3)$ . Then we can determine the number of compact Riemann surfaces
which are equivalent to $R$ : if $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is algebraic over $Q(\sqrt{-1})$ ,

then the number is equal to the degree of $(\alpha^{2}-a+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ over $Q(\sqrt{-1})$ , if
$(a^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is transcendental over $Q(\sqrt{-1})$ , then the number is uncoun-
tably infinite.

PROOF. Let $S$ be a compact Riemann surface defined by $w^{n}=z(z-1)(z-\beta)$
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$(\beta\in C\backslash \{0,1\})$ . At first, we shall show that $R$ and $S$ are conformally equlvalent
if and only if

$\frac{(\alpha^{2}-\alpha+1)^{3}}{\alpha^{2}(\alpha-1)^{2}}=\frac{(\beta^{2}-\beta+1)^{3}}{\beta^{2}(\beta-1)^{2}}$ . (1)

It is known that $R$ and $S$ are conformally equivalent if and only if

$\beta\in\{\alpha,$ $\frac{1}{\alpha}1-\alpha,$ $\frac{1}{1-\alpha}$ $\frac{\alpha}{\alpha-1}\frac{\alpha-1}{\alpha}\}$ .

The case of $n=2$ is well-known. The general case was shown by Namba [8].

Since $\{\alpha, 1/\alpha, 1-\alpha, 1/(1-\alpha), \alpha/(a-1), (\alpha-1)/\alpha\}$ becomes a group if we regard
its elements as mappings and if we take the composition of mappings as the
product, $R$ and $S$ are conformally equivalent if and only if

$\{\alpha,$ $\frac{1}{\alpha}1-\alpha,$ $\frac{1}{1-\alpha}$ $\frac{\alpha}{\alpha-1}\frac{\alpha-1}{\alpha}\}=\{\beta,$ $\frac{1}{\beta}1-\beta,$ $\frac{1}{1-\beta}\frac{\beta}{\beta-1}\frac{\beta-1}{\beta}\}\cdot(2)$

The equation (2) holds if and only if each elementary symmetric polynomial of
$\alpha$ is equal to that of $\beta$ with the same order. Simple calculation shows that
the last statement holds if and only if (1) holds. Thus the Riemann surface $R$

is equivalent to the Riemann surface $S$ if and only if there is an automorphism
$\sigma$ of $C$ such that

$\sigma(\frac{(\alpha^{2}-\alpha+1)^{3}}{\alpha^{2}(\alpha-1)^{2}})=\frac{(\beta^{2}-\beta+1)^{3}}{\beta^{2}(\beta-1)^{2}}$ .

We say that two complex numbers $a,$
$b$ are equivalent if there is an automor-

phism $\sigma$ of $C$ such that $\sigma(a)=b$ . The number of complex numbers which are
equivalent to $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is equal to the degree of $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$

over $Q(\sqrt{-1})$ if $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is algebraic over $Q(\sqrt{-1})$ and uncountably
infinite if $(\alpha^{2}-\alpha+1)^{3}/\alpha^{2}(\alpha-1)^{2}$ is transcendental over $Q(\sqrt{-1})$ . This completes
the proof. $\square$

REMARK. If we substitute $\lambda$ for $\alpha$ in the function $(\alpha^{2}-a+1)^{3}/\alpha^{2}(\alpha-1)^{2}$

and multiply 4/27, then we get the J-function

$J(z)= \frac{4}{27}\frac{(\lambda^{2}-\lambda+1)^{3}}{\lambda^{2}(\lambda-1)^{2}}$ ,

where $\lambda$ is the $\lambda$-function of $z$ .
COROLLARY. Let $R$ be a compact Riemann surface as in Theorem 6. Then

$R\in I$ if and only if
$\frac{(\alpha^{2}-\alpha+1)^{3}}{\alpha^{2}(\alpha-1)^{2}}\in Q(\sqrt{-1})$ .
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