Unicity theorems for the Gauss maps of complete minimal surfaces

Dedicated to Professor Shoshichi Kobayashi on his 60th birthday

By Hirotaka Fujimoto

(Received June 19, 1992)

§ 1. Introduction.

Let M be a minimal surface in \boldsymbol{R}^{3}, or more precisely, a connected oriented minimal surface immersed in \boldsymbol{R}^{3}. By definition, the Gauss map G of M is the map which maps each point $p \in M$ to the unit normal vector $G(p) \in S^{2}$ of M at p. Instead of G, we study the map $g:=\pi \cdot G: M \rightarrow \overline{\boldsymbol{C}}:=\boldsymbol{C} \cup\{\infty\}$ for the stereographic projection π of S^{2} onto $\overline{\boldsymbol{C}}$. The surface M is canonically considered as an open Riemann surface with a conformal metric and g is a meromorphic function on M. For a complete minimal surface in $\boldsymbol{R}^{3} g$ has many properties which have similarities to results in value distribution theory of meromorphic functions on \boldsymbol{C}. The author obtained some of them in the previous papers [5], [6] and [7]. The purpose of this paper is to give some unicity theorems for the Gauss map of minimal surfaces in \boldsymbol{R}^{3} which are similar to the following theorem for meromorphic functions given by R. Nevanlinna ([9]):

Theorem. If two nonconstant meromorphic functions g and \tilde{g} on \boldsymbol{C} have the same inverse images for five distinct values, then $g \equiv \tilde{g}$.

Let M and \tilde{M} be two nonflat minimal surfaces in \boldsymbol{R}^{3} and assume that there is a conformal diffeomorphism Φ of M onto \tilde{M}. Consider the maps $g:=\pi \cdot G$ and $\tilde{g}:=\pi \cdot \tilde{G} \cdot \Phi$, where G and \tilde{G} are the Gauss maps of M and \tilde{M} respectively. Suppose that there are q distinct points $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{q}$ such that $g^{-1}\left(\alpha_{j}\right)=\tilde{g}^{-1}\left(\alpha_{j}\right)$ $(1 \leqq j \leqq q)$. The main result in this paper is stated as follows:

Theorem I. If $q \geqq 7$ and either M or \tilde{M} is complete, then $g \equiv \tilde{g}$.
For a particular case, we can show the following:
Theorem II. If $q \geqq 6$ and both of M and \tilde{M} are complete and have finite total curvature, then $g \equiv \tilde{g}$.

In Theorem I, the number seven is the best-possible. In fact, we can construct two mutually isometric complete minimal surfaces whose Gauss maps are dis-

[^0]tinct and have the same inverse images for six distinct values. It is an interesting open problem to ask whether the number six in Theorem II is the best-possible or not.

§2. A pseudo-metric with strictly negative curvature.

As in the previous paper [8], for each $\alpha, \beta \in \overline{\boldsymbol{C}}$ we define

$$
|\alpha, \beta|:=\frac{|\alpha-\beta|}{\sqrt{1+|\alpha|^{2}} \sqrt{1+|\beta|^{2}}}
$$

if $\alpha \neq \infty$ and $\beta \neq \infty$, and $|\alpha, \beta|=|\beta, \alpha|:=1 / \sqrt{1+|\alpha|^{2}}$ if $\beta=\infty$.
For later use, we give the following:
Proposition 2.1. Let g and \tilde{g} be mutually distinct nonconstant meromorphic functions on a Riemann surface M such that, for q distinct numbers α_{1}, α_{2}, $\cdots, \alpha_{q}, g^{-1}\left(\alpha_{j}\right)=\tilde{g}^{-1}\left(\alpha_{j}\right)(1 \leqq j \leqq q)$, where we assume $q>4$. For $a_{0}>0$ and ε with $q-4>q \varepsilon>0$ set

$$
\lambda:=\left(\prod_{j=1}^{q}\left|g, \alpha_{j}\right| \log \left(\frac{a_{0}}{\left|g, \alpha_{j}\right|^{2}}\right)\right)^{-1+\varepsilon}, \quad \tilde{\lambda}:=\left(\prod_{j=1}^{q}\left|\tilde{g}, \alpha_{j}\right| \log \left(\frac{a_{0}}{\left|\tilde{g}, \alpha_{j}\right|^{2}}\right)\right)^{-1+\varepsilon},
$$

and define

$$
\begin{equation*}
d \tau^{2}:=|g, \tilde{g}|^{2} \lambda \tilde{\lambda} \frac{\left|g^{\prime}\right|}{1+|g|^{2}} \frac{\left|\tilde{g}^{\prime}\right|}{1+|\tilde{g}|^{2}}|d z|^{2} \tag{2.2}
\end{equation*}
$$

outside the set $E:=\bigcup_{j=1}^{q} g^{-1}\left(\alpha_{j}\right)$ and $d \tau^{2}:=0$ on E. Then, for a suitably chosen $a_{0}, d \tau^{2}$ is continuous on M and has strictly negative curvature on the set $\left\{d \tau^{2} \neq 0\right\}$.

For the proof, we use the following result in the previous paper ([8, Proposition 2]).

Proposition 2.3. Let g be a nonconstant meromorphic function on $\Delta_{R}:=$ $\{z ;|z|<R\}$. Take q distinct values $\alpha_{1}, \cdots, \alpha_{q}$, where $q>1$. Then, for each $\rho>0$ and ε with $q-1>q \varepsilon>0$, there exists some positive constants a_{0} and C such that

$$
\begin{aligned}
& \Delta \log \frac{\left(1+|g|^{2}\right)^{\rho}}{\Pi_{j=1}^{q} \log \left(a_{0} /\left|g, \alpha_{j}\right|^{2}\right)} \\
& \quad \geqq C \frac{\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}} \prod_{j=1}^{q}\left(\left|g, \alpha_{j}\right|^{2} \log ^{2} \frac{a_{0}}{\left|g, \alpha_{j}\right|^{2}}\right)^{-1+\varepsilon}
\end{aligned}
$$

Proof of Proposition 2.1. Take an arbitrary point $z_{0} \in M$. The pseudometric $d \tau^{2}$ remains unaltered by Möbius transformations of $\overline{\boldsymbol{C}}$ corresponding to rotations of S^{2}. To see the continuity of $d \tau^{2}$ at z_{0}, we may assume that $g\left(z_{0}\right)$ $\neq \infty$ and $\tilde{g}\left(z_{0}\right) \neq \infty$. If $z_{0} \notin E$, then $d \tau^{2}$ is obviously continuous at z_{0}. Assume that $z_{0} \in E$, so that $g\left(z_{0}\right)=\alpha_{j}$ for some j. Then, $g^{\prime} /\left(g-\alpha_{j}\right)$ and $\tilde{g}^{\prime} /\left(\tilde{g}-\alpha_{j}\right)$ have poles of order one and $g-\tilde{g}\left(=\left(g-\alpha_{j}\right)-\left(\tilde{g}-\alpha_{j}\right)\right)$ has a zero at z_{0}, whence $d \tau^{2}$ is continuous at z_{0}.

Now, taking an arbitrary holomorphic local coordinate z on an open subset of $\left\{d \tau^{2} \neq 0\right\}$, consider the nonnegative function μ with $d \tau^{2}=\mu^{2}|d z|^{2}$. We can write

$$
\mu^{2}=u\left(1+|g|^{2}\right)^{\rho}\left(1+|\tilde{g}|^{2}\right)^{\rho} / \Pi_{j=1}^{q}\left(\log \frac{a_{0}}{\left|g, \alpha_{j}\right|^{2}} \log \frac{a_{0}}{\left|\tilde{g}, \alpha_{j}\right|^{2}}\right)^{1-\varepsilon}
$$

on $\left\{d \tau^{2} \neq 0\right\}$, where u is a positive function with $\Delta \log u=0$ and $\rho:=q(1-\varepsilon) / 2-2$ (>0). By the use of Proposition 2.3 we have

$$
\begin{aligned}
\Delta \log \mu^{2} & =\Delta \log \frac{\left(1+|g|^{2}\right)^{\rho}}{\Pi_{j=1}^{\sigma} \log ^{1-\varepsilon}\left(a_{0} /\left|g, \alpha_{j}\right|^{2}\right)}+\Delta \log \frac{\left(1+|\tilde{g}|^{2}\right)^{\rho}}{\prod_{j=1}^{q} \log ^{1-\varepsilon}\left(a_{0} /\left|\tilde{g}, \alpha_{j}\right|^{2}\right)} \\
& \geqq C_{1} \frac{\lambda^{2}\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}}+C_{2} \frac{\tilde{\lambda}^{2}\left|\tilde{g}^{\prime}\right|^{2}}{\left(1+|\tilde{g}|^{2}\right)^{2}} \\
& \geqq C_{3} \frac{\lambda \tilde{\lambda}\left|g^{\prime}\right|\left|\tilde{g}^{\prime}\right|}{\left(1+|g|^{2}\right)\left(1+|\tilde{g}|^{2}\right)}
\end{aligned}
$$

for some positive constants C_{j} 's. Since $|g, \tilde{g}| \leqq 1$, we obtain the inequality

$$
\Delta \log \mu^{2} \geqq C_{3} \mu^{2} .
$$

This shows that $d \tau^{2}$ has strictly negative curvature. The proof of Proposition 2.1 is completed.

Corollary 2.4. Let g and \tilde{g} be meromorphic functions on Δ_{R} satisfying the same assumption as in Proposition 2.1. Then, for the metric $d \tau^{2}$ defined by (2.2), there is a constant $C>0$ such that

$$
d \tau^{2} \leqq C \frac{4 R^{2}}{\left(R^{2}-|z|^{2}\right)^{2}}|d z|^{2} .
$$

Proof. This is an immediate consequence of Proposition 2.1 and the generalized Schwarz lemma given by L. V. Ahlfors in [1].

§ 3. The proof of Theorem I.

As is stated in $\S 1$, we consider two nonflat minimal surfaces $x:=\left(x_{1}, x_{2}, x_{3}\right)$: $M \rightarrow \boldsymbol{R}^{3}$ and $\tilde{x}:=\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right): \tilde{M} \rightarrow \boldsymbol{R}^{3}$ such that there is a conformal diffeomorphism Φ of M onto \tilde{M}, and assume that there are q distinct values $\alpha_{1}, \cdots, \alpha_{q}$ such that $g^{-1}\left(\alpha_{j}\right)=\tilde{g}^{-1}\left(\alpha_{j}\right)$ for the meromorphic functions $g:=\pi \cdot G, \tilde{g}:=\pi \cdot \tilde{G} \cdot \Phi$, where π is the stereographic projection and G and \tilde{G} are the Gauss maps of M and \tilde{M} respectively. Here, there is no harm in assuming that $\alpha_{q}:=\infty$. As in Theorem I, we assume that $q>6$ and either M or \tilde{M}, say M, is complete and, furthermore, $g \not \equiv \tilde{g}$. We may consider M and \tilde{M} as open Riemann surfaces with conformal metrics $d s^{2}$ and $d \tilde{s}^{2}$ respectively. Then the given map Φ gives
a biholomorphic isomorphism between M and \tilde{M}. As is well-known (e. g., [11]), setting

$$
\omega:=\partial x_{1}-\sqrt{-1} \hat{\partial} x_{2}, \quad \tilde{\omega}:=\partial \tilde{x}_{1}-\sqrt{-1} \partial \tilde{x}_{2}
$$

we can write

$$
d s^{2}=\left(1+|g|^{2}\right)^{2}|\omega|^{2}, \quad d \tilde{s}^{2}=\left(1+|\tilde{g}|^{2}\right)^{2}|\tilde{\omega}|^{2}
$$

Therefore, for each holomorphic local coordinate z defined on a simply connected open set U we can find a nowhere zero holomorphic function h_{z} such that

$$
\begin{equation*}
d s^{2}=\left|h_{z}\right|^{2}\left(1+|g|^{2}\right)\left(1+|\tilde{g}|^{2}\right)|d z|^{2} . \tag{3.1}
\end{equation*}
$$

Taking some η with $q-6>q \eta>0$, we set

$$
\begin{equation*}
\tau:=\frac{2}{q-4-q \eta} \quad(<1) \tag{3.2}
\end{equation*}
$$

and define the pseudo-metric $d \sigma^{2}$ by

$$
\begin{equation*}
d \sigma^{2}:=\left|h_{z}\right|^{2 /(1-\tau)}\left(\frac{\Pi_{j=1}^{q-1}\left(\left|g-\alpha_{j}\right|\left|\tilde{g}-\alpha_{j}\right|\right)^{1-\eta}}{|g-\tilde{g}|^{2}\left|g^{\prime}\right|\left|\tilde{g}^{\prime}\right| \prod_{j=1}^{q-1}\left(1+\left|\alpha_{j}\right|^{2}\right)^{1-r}}\right)^{\tau /(1-z)}|d z|^{2}, \tag{3.3}
\end{equation*}
$$

which does not depend on a choice of holomorphic local coordinate z and so well-defined on $M^{\prime}:=M-E^{\prime}$, where

$$
E^{\prime}:=\left\{z \in M ; g^{\prime}(z)=0, \tilde{g}^{\prime}(z)=0 \text { or } g(z)(=\tilde{g}(z))=\alpha_{j} \text { for some } j\right\}
$$

On the other hand, setting $\varepsilon:=\eta / 2$, we can define another pseudo-metric $d \tau^{2}$ on M by (2.2), which has strictly negative curvature on M^{\prime}.

Take an arbitrary point z in M^{\prime}. Using the fact that $d \sigma^{2}$ is flat on M^{\prime}, we take the largest $R(\leqq+\infty)$ such that there is a holomorphic map $\Psi: \Delta_{R} \rightarrow M^{\prime}$ with $\Psi(0)=z$ which is a local isometry with respect to the standard metric on Δ_{R} and the metric $d \sigma^{2}$ on M^{\prime}. Observe the pseudo-metric $\Psi^{*} d \tau^{2}$ on Δ_{R}, which has strictly negative curvature. Since there is no metric with strictly negative curvature on \boldsymbol{C}, we have necessarily $R<+\infty$. Moreover, by the same arguments as in the previous papers [5] and [8], we can choose a point w_{0} with $\left|w_{0}\right|=R$ such that, for the line segment

$$
\Gamma: w=t w_{0} \quad(0 \leqq t<1),
$$

the image $\gamma:=\Psi(\Gamma)$ tends to the boundary of M^{\prime} as t tends to 1 . Here, if we suitably choose the constant η in the definition (3.2) of τ, γ tends to the boundary of M.

Since Ψ is a local isometry, we may take the coordinate w as a holomorphic local coordinate on M^{\prime} and we may write $d \sigma^{2}=|d w|^{2}$. By (3.3) we obtain

$$
\left|h_{w}\right|^{2}=\left(\frac{\left|g-\tilde{g}^{2}\right| g^{\prime}| | \tilde{g}^{\prime} \mid \prod_{j=1}^{g=1}\left(1+\left|\alpha_{j}\right|^{2}\right)^{1-\eta}}{\prod_{j=1}^{\sigma-1}\left(\left|g-\alpha_{j}\right|\left|\tilde{g}-\alpha_{j}\right|\right)^{1-\eta}}\right)^{\tau} .
$$

According to (3.1), we have

$$
\begin{aligned}
d s^{2} & =\left|h_{w}\right|^{2}\left(1+|g|^{2}\right)\left(1+|\tilde{g}|^{2}\right)|d w|^{2} . \\
& =\left(\frac{|g-\tilde{g}|^{2}\left|g^{\prime}\right|\left|\tilde{g}^{\prime}\right|\left(1+|g|^{2}\right)^{1 / \tau}\left(1+|\tilde{g}|^{2}\right)^{1 / \tau} \prod_{j=1}^{q-1}\left(1+\left|\alpha_{j}\right|^{2}\right)^{1-\eta}}{\Pi_{j=1}^{q-1}\left(\left|g-\alpha_{j}\right|\left|\tilde{g}-\alpha_{j}\right|\right)^{1-\eta}}\right)^{\tau}|d w|^{2} \\
& =\left(\mu^{2} \prod_{j=1}^{q}\left(\left|g, \alpha_{j}\right|\left|\tilde{g}, \alpha_{j}\right|\right)^{\varepsilon}\left(\log \frac{a_{0}}{\left|g, \alpha_{j}\right|^{2}} \log \frac{a_{0}}{\left|\tilde{g}, \alpha_{j}\right|^{2}}\right)^{1-\varepsilon}\right)^{\tau}|d w|^{2},
\end{aligned}
$$

where μ is the function with $d \tau^{2}=\mu^{2}|d w|^{2}$. On the other hand, since the function $x^{\varepsilon} \log ^{1-8}\left(a_{0} / x^{2}\right)(0<x \leqq 1)$ is bounded, we have

$$
d s^{2} \leqq C\left(\frac{|g, \tilde{g}|^{2}\left|g^{\prime}\right|\left|\tilde{g}^{\prime}\right| \lambda \tilde{\lambda}}{\left(1+|g|^{2}\right)\left(1+|\tilde{g}|^{2}\right)}\right)^{\tau}|d w|^{2}
$$

for some $C>0$. Therefore, by the use of Corollary 2.4 we have

$$
d s \leqq C^{\prime}\left(\frac{2 R}{R^{2}-|w|^{2}}\right)^{\tau}|d w|
$$

for some C^{\prime}. This yields that

$$
\int_{r} d s \leqq C^{\prime} \int_{\Gamma}\left(\frac{2 R}{R^{2}-|w|^{2}}\right)^{\tau}|d w|<+\infty
$$

which contradicts the assumption of completeness of M. We have necessarily $g \equiv \tilde{g}$. The proof of Theorem I is completed.

§4. The proof of Theorem II.

To prove of Theorem II is given by reduction to absurdity. Under the assumption of Theorem II suppose that $g \not \equiv \tilde{g}$. According to Chern-Osserman's theorem ([2, Theorem 1]), M may be identified with $\bar{M}-\left\{a_{1}, \cdots, a_{k}\right\}$ for a compact Riemann surface \bar{M}. Moreover, the maps g, \tilde{g} and the metric $d s^{2}$, $\Phi^{*} d \tilde{S}^{2}$ may be considered as meromorphic functions and pseudo-metrics on \bar{M} with singularities like poles at a_{1}, \cdots, a_{k} respectively. By the assumption, $g^{-1}\left(\alpha_{j}\right) \cap M=\tilde{g}^{-1}\left(\alpha_{j}\right) \cap M(1 \leqq j \leqq q)$. We denote by d_{g} and $d_{\tilde{g}}$ the degrees of g and \tilde{g} respectively and by v_{g} and $v_{\tilde{g}}$ the total branching orders of g and \tilde{g} on \bar{M} respectively. Set

$$
n_{j}:=\#\left(g^{-1}\left(\alpha_{j}\right) \cap M\right)=\#\left(\tilde{g}^{-1}\left(\alpha_{j}\right) \cap M\right) \quad(1 \leqq j \leqq q) .
$$

We see easily

$$
q d_{g} \leqq k+\sum_{j=1}^{q} n_{j}+v_{g}
$$

On the other hand, we have

$$
2 \gamma-2=v_{g}-2 d_{g}
$$

by Riemann-Hurwitz formula (e. g., [3, p. 140]) and

$$
\frac{1}{2 \pi} C(M)=-2 d_{g} \leqq \chi(M)-k=2-2 \gamma-2 k
$$

by Chern-Osserman's theorem ([11, Theorem 9.3]), where $\gamma, C(M)$ and $\chi(M)$ denote the genus of M, the total curvature of M and the Euler characteristic of M respectively. These imply that

$$
(q-4) d_{g} \leqq \sum_{j=1}^{q} n_{j}-k
$$

Similarly,

$$
(q-4) d_{\tilde{g}} \leqq \sum_{j=1}^{q} n_{j}-k
$$

Consider the function

$$
\varphi:=\frac{1}{g-\tilde{g}} .
$$

By the assumption, we have

$$
\sum_{j=1}^{q} n_{j} \leqq \text { the number of poles of } \varphi \leqq d_{g}+d_{\tilde{g}} .
$$

Therefore, we conclude

$$
(q-4)\left(d_{g}+d_{\tilde{\mathfrak{g}}}\right) \leqq 2\left(d_{g}+d_{\tilde{\mathfrak{g}}}\right)-2 k
$$

and so

$$
2 k \leqq(6-q)\left(d_{g}+d_{\tilde{g}}\right) .
$$

Since $k>0$, we have necessarily $q \leqq 5$. This contradicts the assumption. The proof of Theorem II is completed.

§ 5. An example.

In this section, we shall give an example which shows that the number seven in Theorem I is the best-possible. To this end, taking a number α with $\alpha \neq 0, \pm 1$, we consider the meromorphic functions

$$
h(z):=\frac{1}{z(z-\alpha)(\alpha z-1)}, \quad g(z)=z
$$

and the universal covering surface M of $C-\{0, \alpha, 1 / \alpha\}$. The functions h and g may be considered as holomorphic functions on M. As is well-known, by setting

$$
x_{1}:=\operatorname{Re} \int_{0}^{z} h\left(1-g^{2}\right) d z, \quad x_{2}:=\operatorname{Re} \int_{0}^{z} \sqrt{-1} h\left(1+g^{2}\right) d z, \quad x_{3}:=2 \operatorname{Re} \int_{0}^{z} h g d z
$$

we can construct a minimal surface $x=\left(x_{1}, x_{2}, x_{3}\right): M \rightarrow \boldsymbol{R}^{3}$ in \boldsymbol{R}^{3} whose Gauss map is essentially the same as g. It is easily seen that M is complete. On the other hand, if we construct another minimal surface $\tilde{x}:=\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right): \tilde{M} \rightarrow \boldsymbol{R}^{3}$ in the similar manner by the use of the meromorphic functions

$$
h(z):=\frac{1}{z(z-\alpha)(\alpha z-1)}, \quad \tilde{g}(z)=\frac{1}{z}
$$

we can easily check that \tilde{M} is isometric with M, so that the identity map $\Phi: z \in M_{\mapsto} \rightarrow z \in \tilde{M}$ is a conformal diffeomorphism. For the maps g and \tilde{g} we have $g \not \equiv \tilde{g}$ and $g^{-1}\left(\alpha_{j}\right)=\tilde{g}^{-1}\left(\alpha_{j}\right)$ for six values

$$
\alpha_{1}:=0, \quad \alpha_{2}:=\infty, \quad \alpha_{3}:=\alpha, \quad \alpha_{4}:=\frac{1}{\alpha}, \quad \alpha_{4}:=1, \quad \alpha_{5}:=-1
$$

These show that the number seven in Theorem I cannot be replaced by six.

References

[1] L.V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
[2] S.S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math., 19 (1967), 15-34.
[3] O. Forster, Lectures on Riemann surfaces, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
[4] H. Fujimoto, A unicity theorem for meromorphic maps of a complete Kähler manifold into $P^{N}(\boldsymbol{C})$, Tôhoku Math. J., 38 (1986), 327-341.
[5] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan, 40 (1988), 235-247.
[6] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, J. Differential Geom., 29 (1989), 245-262.
[7] H. Fujimoto, Modified defect relations for the Gauss map of minimal surfaces, II, J. Differential Geom., 31 (1990), 365-385.
[8] H. Fujimoto, On the Gauss curvature of minimal surfaces, J. Math. Soc. Japan., 44 (1992), 427-439.
[9] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[10] R. Osserman, Global properties of minimal surfaces in E^{3} and E^{n}, Ann. of Math., 80 (1964), 340-364.
[11] R. Osserman, A survey of minimal surfaces, 2nd ed., Dover Publ. Inc., New York, 1986.

Hirotaka Fujimoto

Department of Mathematics
Faculty of Science
Kanazawa University
Kakuma-Machi
Kanazawa 920-11
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 04640141), Ministry of Education, Science and Culture.

