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\S 1. Introduction.

Let $M$ be a minimal surface in $R^{3}$ , or more precisely, a connected oriented
minimal surface immersed in $R^{3}$ . By definition, the Gauss map $G$ of $M$ is the
map which maps each point $p\in M$ to the unit normal vector $G(p)\in S^{2}$ of $M$ at
$p$ . Instead of $G$ , we study the map $g:=\pi\cdot G:Marrow\overline{C}:=C\cup\{\infty\}$ for the stereo-
graphic projection $\pi$ of $S^{2}$ onto $\overline{C}$ . The surface $M$ is canonically considered
as an open Riemann surface with a conformal metric and $g$ is a meromorphic
function on $M$. For a complete minimal surface in $R^{3}g$ has many properties
which have similarities to results in value distribution theory of meromorphic
functions on $C$ . The author obtained some of them in the previous papers [5],
[6] and [7]. The purpose of this paper is to give some unicity theorems for
the Gauss map of minimal surfaces in $R^{3}$ which are similar to the following
theorem for meromorphic functions given by R. Nevanlinna ([9]):

THEOREM. If two nonconstant meromorphic functions $g$ and $\tilde{g}$ on $C$ have
the same inverse images for five distinct values, then $g\equiv\tilde{g}$ .

Let $M$ and $\tilde{M}$ be two nonflat minimal surfaces in $R^{3}$ and assume that there
is a conformal diffeomorphism $\Phi$ of $M$ onto $\tilde{M}$ . Consider the maps $g:=\pi\cdot G$

and $g:=\pi$ . G. $\Phi$ , where $G$ and $\tilde{G}$ are the Gauss maps of $M$ and $1\tilde{M}$ respectively.
Suppose that there are $q$ distinct points $\alpha_{1},$ $\alpha_{2}$ , $\cdot$ . , $\alpha_{q}$ such that $g^{-1}(\alpha_{j})=\tilde{g}^{-1}(\alpha_{j})$

(lSj$q). The main result in this paper is stated as follows:

THEOREM I. If $q\geqq 7$ and either $M$ or $\tilde{M}$ is complete, then $g\equiv\tilde{g}$ .
For a particular case, we can show the following:

THEOREM II. If $q\geqq 6$ and both of $M$ and $\tilde{M}$ are complete and have finite
total curvature, then $g\equiv\tilde{g}$ .

In Theorem I, the number seven is the best-possible. In fact, we can construct
two mutually isometric complete minimal surfaces whose Gauss maps are dis-
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tinct and have the same inverse images for six distinct values. It is an inter-
esting open problem to ask wbether the number six in Theorem II is the
best-possible or not.

\S 2. A pseudo-metric with strictly negative curvature.

AS in the previous paper [8], for each $\alpha,$
$\beta\in\overline{C}$ we define

$|\alpha,$ $\beta|:=\frac{|\alpha-\beta|}{\sqrt{1+|\alpha}1^{2}\sqrt{}\overline{1+|\beta|^{2}}}$

if $\alpha\neq\infty$ and $\beta\neq\infty$ , and a, $\beta|=|\beta,$ $\alpha|:=1/\sqrt{1+|\alpha|^{2}}$ if $\beta=\infty$ .
For later use, we give the following:

PROPOSITION 2.1. Let $g$ and $\tilde{g}$ be mutually distinct nonconstant meromorphic

functions on a Riemann surface $M$ such that, for $q$ distinct numbers $\alpha_{1},$ $\alpha_{2}$ ,
... , $\alpha_{q},$

$g^{-1}(\alpha_{j})=\tilde{g}^{-1}(\alpha_{j})(1\leqq j\leqq q)$ , where we assume $q>4$ . For $a_{0}>0$ and $\epsilon$ with
$q-4>q\epsilon>0$ set

$\lambda:=(\prod_{j\Rightarrow 1}^{q}|g,$ $\alpha_{j}|\log(\frac{a_{0}}{|g,\alpha_{j}|^{2}}))^{-1+6}$ $\tilde{\lambda}:=(\prod_{j=1}^{q}|\tilde{g},$ $\alpha_{j}|\log(\frac{a_{0}}{|\tilde{g},\alpha_{j}|^{2}}))^{-1+\epsilon}$

and define
(2.2) $d \tau^{2}:=|g,\tilde{g}|^{2}\lambda\tilde{\lambda}\frac{|g’|}{1+|g|^{2}}\frac{|\tilde{g}’|}{1+|\tilde{g}|^{2}}|dz|^{2}$

outside the set $E:=\cup\S_{=1}g^{-1}(\alpha_{j})$ and $d\tau^{2}:=0$ on E. Then, for a suitably chosen
$a_{0},$

$d\tau^{2}$ is continuous on $M$ and has strictly negative curvature on the set $\{d\tau^{2}\neq 0\}$ .

For the proof, we use the following result in the previous paper ([8, Pro-
position 2]).

PROPOSITION 2.3. Let $g$ be a nonconstant meromorPluc function on $\Delta_{R}$ $:=$

$\{z; z|<R\}$ . Take $q$ distinct values $\alpha_{1},$
$\cdots$ , $\alpha_{q}$ , where $q>1$ . Then, for each $\rho>0$

and $\epsilon$ with $q-l>q\epsilon>0$ , there exists some positive constants $a_{0}$ and $C$ such that

$\Delta\log\frac{(l+|g|^{2})^{\rho}}{\Pi_{j=1}^{q}\log(a_{0}/|g,\alpha_{j}|^{2})}$

$\geqq C\frac{|g’|^{2}}{(1+|g|^{2})^{2}}\prod_{j\Rightarrow 1}^{q}(|g,$ $\alpha_{j}|^{2}\log^{2}\frac{a_{0}}{|g,\alpha_{f}|^{2}})^{-1+\epsilon}$

PROOF OF PROPOSITION 2.1. Take an arbitrary point $z_{0}\in M$. The pseudo-
metric $d\tau^{2}$ remains unaltered by M\"obius transformations of $\overline{C}$ corresponding to
rotations of $S^{2}$ . To see the continuity of $d\tau^{2}$ at $z_{0}$ , we may assume that $g(z_{0})$

$\neq\infty$ and $\tilde{g}(z_{0})\neq$ oo. If $z_{0}\not\in E$ , then $d\tau^{2}$ is obviously continuous at $z_{0}$ . Assume
that $z_{0}\in E$ , so that $g(z_{0})=\alpha_{j}$ for some $j$ . Then, $g’/(g-\alpha_{j})$ and $\tilde{g}’/(\tilde{g}-\alpha_{j})$ have
poles of order one and $g-\tilde{g}(=(g-\alpha_{j})-(\tilde{g}-\alpha_{j}))$ has a zero at $Z_{0}$ , whence $d\tau^{2}$

is continuous at $z_{0}$ .
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NOW, taking an arbitrary holomorphic local coordinate $z$ on an open subset
of $\{d\tau^{2}\neq 0\}$ , consider the nonnegative function $\mu$ with $d\tau^{2}=\mu^{2}|dz|^{2}$ . We can
write

$\mu^{2}=u(1+|g|^{2})^{\rho}(1+|\tilde{g}|^{2})^{\rho}/\Pi_{j=1}^{q}(\log\frac{a_{0}}{|g,\alpha_{j}|^{2}}\log\frac{a_{0}}{|\tilde{g},\alpha_{j}|^{2}})^{1-\epsilon}$

on $\{d\tau^{2}\neq 0\}$ , where $u$ is a positive function with $\Delta\log u=0$ and $\rho:=q(1-\epsilon)/2-2$

$(>0)$ . By the use of Proposition 2.3 we have

$\Delta\log\mu^{2}=\Delta\log\frac{(1+|g|^{2})^{\rho}}{\Pi_{j=1}^{q}\log^{1-\epsilon}(a_{0}/|g,\alpha_{f}|^{2})}+\Delta\log\frac{(1+|\tilde{g}|^{2})^{\rho}}{\Pi_{j=1}^{q}\log^{1-\epsilon}(a_{0}/|\tilde{g},\alpha_{j}|^{2})}$

$\geqq C_{1}\frac{\lambda^{2}|g’|^{2}}{(1+|g|^{2}\grave{)}^{2}}+C_{2}\frac{\tilde{\lambda}^{2}|\tilde{g}’|^{2}}{(1+|\tilde{g}|^{2})^{2}}$

$\geqq C_{3}\frac{\lambda\tilde{\lambda}|g’||\tilde{g}’|}{(1+|g|^{2})(1+|\tilde{g}|^{2})}$

for some positive constants $C_{f}’ s$ . Since $|g,\tilde{g}|$ $1, we obtain the inequality

$\Delta\log\mu^{2}\geqq C_{3}\mu^{2}$

This shows that $d\tau^{2}$ has strictly negative curvature. The proof of Proposition
2.1 is completed.

COROLLARY 2.4. Let $g$ and $\tilde{g}$ be meromorPhic functions on $\Delta_{R}$ satisfying the
same assumption as in Proposition 2.1. Then, for the mefric $d\tau^{2}$ defined by (2.2),

there is a constant $C>0$ such that

$d \tau^{2}\leqq C\frac{4R^{2}}{(R^{2}-|z|^{2})^{2}}|dz|^{2}$ .

PROOF. This is an immediate consequence of Proposition 2.1 and the gen-
eralized Schwarz lemma given by L. V. Ahlfors in [1].

\S 3. The proof of Theorem I.

AS is stated in \S 1, we consider two nonflat minimal surfaces $x:=(x_{1}, x_{2}, x_{3})$ :
$Marrow R^{3}$ and $\tilde{x}:=(\tilde{x}_{1},\tilde{x}_{2},\tilde{x}_{3}):\tilde{M}arrow R^{3}$ such that there is a conformal diffeomorphism
$\Phi$ of $M$ onto $\tilde{M}$, and assume that there are $q$ distinct values $\alpha_{1}$ , , $\alpha_{Q}$ such
that $g^{-1}(\alpha_{j})=\tilde{g}^{-1}(\alpha_{j})$ for the meromorphic functions $g:=\pi\cdot G$ , $\tilde{g}:=\pi\cdot\tilde{G}\cdot\Phi$ ,
where $\pi$ is the stereographic projection and $G$ and $\tilde{G}$ are the Gauss maps of
$M$ and $\tilde{M}$ respectively. Here, there is no harm in assuming that $\alpha_{q}:=\infty$ . As
in Theorem I, we assume that $q>6$ and either $M$ or $\tilde{M}$ , say $M$, is complete
and, furthermore, $g\not\equiv\tilde{g}$ . We may consider $M$ and $\tilde{M}$ as open Riemann surfaces
with conformal metrics $ds^{2}$ and $ds^{2}\sim$ respectively. Then the given map $\Phi$ gives
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a biholomorphic isomorphism between $1ll$ and $\tilde{M}$ . As is well-known $(e. g., [11])$ ,

setting

$\omega:=\partial x_{1}-\sqrt{-1}\partial x_{2}$ , tu: $=\partial\tilde{\chi}_{1}-\sqrt{}\overline{-1}\partial\tilde{x}_{2}$ ,

we can write
$ds^{2}=(1+|g|^{2})^{2}|\omega|^{2}$ $ds^{2}=\sim(1+|\tilde{g}|^{2})^{2}|\tilde{\omega}|^{2}$

Therefore, for each holomorphic local coordinate $z$ defined on a simply connected
open set $U$ we can find a nowhere zero holomorphic function $h_{z}$ such that

(3.1) $ds^{2}=|h_{z}|^{2}(1+|g|^{2})(1+|\tilde{g}|^{2})|dz|^{2}$

Taking some $\eta$ with $q-6>q\eta>0$ , we set

(3.2) $\tau:=\frac{2}{q-4-q\eta}$ $(<1)$

and define the pseudo-metric $d\sigma^{2}$ by

(3.3) $d\sigma^{2}$ $:=|h_{z}|^{2/(1-\tau)(\frac{\Pi_{f=1}^{q-1}(|g-\alpha_{j}||\tilde{g}-\alpha_{f}|)^{1-\eta}}{|g-\tilde{g}|^{2}|g’||\tilde{g}’|\Pi_{f=1}^{Q-1}(1+|\alpha_{j}|^{2})^{1-\eta}})^{\tau/(1-\tau)}}|dz|^{2}$ ,

which does not depend on a choice of holomorphic local coordinate $z$ and so
well-defined on $M’:=M-E’$ , where

$E’:=$ {$z\in M;g’(z)=0,\tilde{g}’(z)=0$ or $g(z)(=\tilde{g}(z))=\alpha_{j}$ for some $j$ }.

On the other hand, setting $\epsilon:=\eta/2$ , we can define another pseudo-metric $d\tau^{2}$

on $M$ by (2.2), which has strictly negative curvature on $M’$ .
Take an arbitrary point $z$ in $M’$ . Using the fact that $d\sigma^{2}$ is flat on $M’$ ,

we take the largest $R(\leqq+\infty)$ such that there is a holomorphic map $\Psi:\Delta_{R}arrow M’$

with $\Psi(0)=z$ which is a local isometry with respect to the standard metric on
$\Delta_{R}$ and the metric $d\sigma^{2}$ on $M’$ . Observe the pseudo-metric $\Psi^{*}d\tau^{2}$ on $\Delta_{R}$ , which
has strictly negative curvature. Since there is no metric with strictly negative
curvature on $C$ , we have necessarily $R<+\infty$ . Moreover, by the same argu-
ments as in the previous papers [5] and [8], we can choose a point $w_{0}$ with
$|w_{0}|=R$ such that, for the line segment

$\Gamma:w=tw_{0}$ $(0\leqq t<1)$ ,

the image $\gamma:=\Psi(\Gamma)$ tends to the boundary of $M’$ as $t$ tends to 1. Here, if we
suitably choose the constant $\eta$ in the definition (3.2) of $\tau,$ $\gamma$ tends to the boun-
dary of $M$.

Since $\Psi$ is a local isometry, we may take tbe coordinate $w$ as a bolomorpbic
local coordinate on $\Lambda p$ and we may write $d\sigma^{2}=|dw|^{2}$ . By (3.3) we obtain
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$|h_{w}|^{2}=( \frac{|g-\tilde{g}|^{2}|g’||\tilde{g}’|\Pi 3^{-1}=1(1+|\alpha_{f}|^{2})^{1-\eta}}{\Pi_{j=1}^{q-1}(|g-\alpha_{j}||\tilde{g}-\alpha_{j}|)^{1-\eta}})^{\tau}$ .

According to (3.1), we have

$ds^{2}=|h_{w}|^{2}(1+|g|^{2})(1+|\tilde{g}|^{2})|dw|^{2}$ .

$=( \frac{|g-\tilde{g}|^{2}|g’||\tilde{g}’|(1+|g|^{2})^{1/\tau}(1+|\tilde{g}|^{2})^{1/\tau}\Pi t_{=1}^{-1}(1+|\alpha_{j}|^{2})^{1-\eta}}{\Pi_{j=1}^{q-1}(|g-\alpha_{j}||\tilde{g}-\alpha_{j}|)^{1-\eta}})^{r}|dw|^{2}$

$=( \mu^{2}\prod_{j=1}^{q}(|g, \alpha_{J}||\tilde{g}, \alpha_{j}|)^{\epsilon}(\log\frac{a_{0}}{|g,\alpha_{j}|^{2}}\log\frac{a_{0}}{|\tilde{g},\alpha_{j}|^{2}})^{1-\epsilon})^{\tau}|dw|^{2}$ ,

where $\mu$ is the function with $d\tau^{2}=\mu^{2}|dw|^{2}$ . On the other hand, since the
function $x^{\text{\’{e}}}\log^{1-\epsilon}(a_{0}/x^{2})$ (O<x$l) is bounded, we have

$ds^{2} \leqq C(\frac{|g,\tilde{g}|^{2}|g’||\tilde{g}’|\lambda\tilde{\lambda}}{(1+|g|^{2})(1+|\tilde{g}|^{2})})^{\tau}|dw|^{2}$

for some $C>0$ . Therefore, by the use of Corollary 2.4 we have

$ds \leqq C’(\frac{2R}{R^{2}-|w|^{2}})^{\tau}|dw|$

for some $C’$ . This yields that

$\int_{\gamma}ds\leqq C’\int_{\Gamma}(\frac{2R}{R^{2}-|w|^{2}})^{\tau}|dw|<+\infty$ ,

which contradicts the assumption of completeness of $M$. We have necessarily
$g\equiv\tilde{g}$ . The proof of Theorem I is completed.

\S 4. The proof of Theorem II.

TO prove of Theorem II is given by reduction to absurdity. Under the
assumption of Theorem II suppose that $g\not\equiv\tilde{g}$ . According to Chern-Osserman’s
theorem ([2, Theorem 1]), $M$ may be identified with $\overline{M}-\{a_{1}, , a_{k}\}$ for a
compact Riemann surface $\overline{M}$ . Moreover, the maps $g,\tilde{g}$ and the metric $ds^{2}$ ,
$\Phi^{*}d\zeta^{2}$ may be considered as meromorphic functions and pseudo-metrics on $\overline{M}$

with singularities like poles at $a_{1},$
$\cdots$ , $a_{k}$ respectively. By the assumption,

$g^{-1}(\alpha_{j})\cap M=\tilde{g}^{-1}(\alpha_{j})\cap M(1Sj\leqq q)$ . We denote by $d_{g}$ and $d_{g}^{\sim}$ the degrees of $g$

and $\tilde{g}$ respectively and by $v_{g}$ and $v_{\dot{g}}$ the total branching orders of $g$ and $\tilde{g}$ on
$\overline{M}$ respectively. Set

$n_{j}:=\#(g^{-1}(\alpha_{j})\cap M)=\#(\tilde{g}^{-1}(\alpha_{j})\cap M)$ $(1\leqq j\leqq q)$ .
We see easily

$qd_{g} \leqq k+\sum_{j=1}^{q}n_{j}+v_{g}$ .
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On the other band, we have
$2\gamma-2=v_{g}-2d_{g}$

by Riemann-Hurwitz formula ( $e$ . $g.,$ $[3$ , p. 140]) and

$\frac{1}{2\pi}C(M)=-2d_{g}\leqq\chi(M)-k=2-2\gamma-2k$

by Chern-Osserman’s theorem ([11, Theorem 9.3]), where $\gamma,$ $C(M)$ and $\chi(M)$

denote the genus of $M$, the total curvature of $M$ and the Euler characteristic
of $M$ respectively. These imply that

$(q-4)d_{g} \leqq\sum_{j\Leftarrow 1}^{q}n_{j}-k$ .

Simllarly,

$(q-4)d_{\tilde{g}} \leqq\sum_{j=1}^{q}n_{j}-k$ .

Consider the function

$\varphi:=\frac{1}{g-\tilde{g}}$ .

By the assumption, we have

$\sum_{j=1}^{q}n_{j}$ $ the number of poles of $\varphi$ $ $d_{g}+d_{g}$ .

Therefore, we conclude

$(q-4)(d_{g}+d_{\tilde{g}})\leqq 2(d_{g}+d_{g})-2k$

and so
$2k\leqq(6-q)(d_{g}+d_{\tilde{g}})$ .

Since $k>0$ , we have necessarily $q\leqq 5$ .
proof of Theorem II is completed.

\S 5. An example.

This contradicts the assumption. The

In this section, we shall give an example which shows that the number
seven in Theorem I is the best-possible. To this end, taking a number $\alpha$

with $\alpha\neq 0,$ $\pm 1$ , we consider the meromorphic functions

$h(z):= \frac{1}{z(z-\alpha)(\alpha z-1)}$ , $g(z)=z$

and the universal covering surface $M$ of $C-\{0, \alpha, 1/\alpha\}$ . The functions $h$ and
$g$ may be considered as holomorphic functions on $M$ . As is well-known, by
setting
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$x_{1}:={\rm Re} \int_{0}^{z}h(1-g^{2})dz$ , $x_{2}:={\rm Re} \int_{0}^{z}\sqrt{-1}h(1+g^{2})dz$ , $x_{3}:=2{\rm Re} \int_{0}^{z}hgdz$ ,

we can construct a minimal surface $x=(x_{1}, x_{2}, x_{3}):Marrow R^{3}$ in $R^{3}$ whose Gauss
map is essentially the same as $g$ . It is easily seen that $M$ is complete. On
the other hand, if we construct another minimal surface $\tilde{x}:=(\tilde{x}_{1},\tilde{x}_{2},\tilde{x}_{3}):\tilde{M}arrow R^{3}$

in the similar manner by the use of the meromorphic functions

$h(z):= \frac{1}{z(z-\alpha)(\alpha z-1)}$ $\tilde{g}(z)=\frac{1}{z}$ ,

we can easily check tbat $\tilde{M}$ is isometric with $M$, so that the identity map
$\Phi$ : $z\in M\mapsto z\in\tilde{M}$ is a conformal diffeomorphism. For the maps $g$ and $\tilde{g}$ we
have $g\not\equiv\tilde{g}$ and $g^{-1}(\alpha_{j})=\tilde{g}^{-1}(\alpha_{j})$ for six values

$\alpha_{1}:=0$ , $\alpha_{2}:=\infty$ , $\alpha_{3}$ $:=\alpha$ , $\alpha_{4}:=\frac{1}{\alpha}$ , $\alpha_{4}:=1$ , $\alpha_{5}:=-1$ .

These show that the number seven in Theorem I cannot be replaced by six.
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