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Introduction.

Let M be an n-dimensional Kidhler manifold with C* Kihler metric G, let
D be an open subset of M, and let d;p be the boundary distance function of D
induced by the metric G.

When D is pseudoconvex (in the usual sense) in M, the plurisubharmonicity
of the function —log d;p is closely related to the holomorphic bisectional curvature
of M. Takeuchi first showed that, if D is a pseudoconvex open subset
of the complex projective space P™(C) and if d;, is the boundary distance
function of D with respect to the Fubini-Study metric on P*(C), the function
—log d;p is strongly plurisubharmonic on D. After the works of Takeuchi [27],
Elencwajg [6], Suzuki and others, Greene-Wu differential-geometrically
gave an estimate from below for ‘the modulus of plurisubharmonicity’ of the
function —log d;p, and showed that a relatively compact, pseudoconvex open
subset D of M is l-complete (and hence Stein) if M has positive holomorphic
bisectional curvature.

In this paper, we shall extend the result to the case where D is pseudoconvex
of order n—¢ in M and show that D is g-convex or g-complete (with corners)
in several cases.

An open subset D of M is said to be pseudoconvex of order n—gq, 1<¢=n,
in M if, roughly speaking, the complement M\D has the same continuity as an
analytic set of pure dimension n—gq. Pseudoconvex open subsets in the usual
sense are pseudoconvex of order n—1. If DCM is weakly g¢-convex, then D is
pseudoconvex of order n—q in M. However, when 2<¢<n—1, the converse is
not valid even if DCC™ (see Diederich-Fornaess and Matsumoto [13]). By
Fujita [8], an open subset D of C™ is pseudoconvex of order n—gq in C™, if and
only if D has an exhaustion function which is pseudoconvex of order n—g on
D. Therefore, by the approximation theorem of Bungart [3], an open subset D
of M is pseudoconvex of order n—q in M, if and only if D is locally g-complete
with corners in M in the sense of Peternell (for the precise, see §§ 1 and 2).
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The main results of this paper are as follows.

At first, let M be an n-dimensional Kédhler manifold with positive holomorphic
bisectional curvature and let D be a relatively compact, pseudoconvex open subset
of order n—¢q in M. Then the function —log dsp is strongly pseudoconvex of
order n—¢q whole on D and particularly g-convex on the open subset of D (if it
exists) where d;p is of class C? (see [Corollary 6.5). Therefore, by the approxi-
mation theorems of Bungart and Diederich-Fornaess, the set D is g¢-complete
with corners and hence g-complete, where §=n—[n/g]+1 and [ ] denotes the
Gauss symbol (see [Theorem 6.6). Moreover, if the boundary 0D is also a real
submanifold of class C? in M, then D is ¢g-convex (see [Theorem 6.2).

Secondly, let M be an n-dimensional Stein manifold and let D be a pseudo-
convex open subset of order n—¢q in M. Let dsp be a boundary distance function
of D induced by a complete Kédhler metric on M. Then there exists a 1-convex
function 2 on M such that the function —log dsp+h is strongly pseudoconvex
of order n—¢q on D (see Proposition 7.2). Therefore, the set D is g-complete
with corners and hence j-complete (see [Theorem 7.3). Moreover, if the boundary
dD is also a real submanifold of class C® in M, then D is ¢-complete (see
[T heorem 7.6).

The above results are extensions (and different proofs) of that of Barth [2]
and that of Suria (or Eastwood-Suria [5]), respectively.

ACKNOWLEDGEMENT. The author would like to express her sincere tha-ks
to Prof. O. Fujita and Prof. A. Takeuchi for their valuable advice, guidance
and encouragement.

1. Pseudoconvex functions of general order and ¢-convex functions
with corners.

Throughout this paper, let D be a paracompact complex manifold of pure
dimension n and ¢ an integer with 1<¢=<n. After §4 we consider only the
case where D is an open subset of another connected Kidhler manifold M, but
we do not require D to be Kdihlerian in the first three sections.

A function ¢: D—R is said to be g-convex (resp. weakly g-convex), if ¢ is of
class C* on D and if its Levi form dd¢p has at least n—g+1 positive (resp. non-
negative) eigenvalues on the holomorphic tangent space 7 (D) for each PeD
(see Andreotti-Grauert [1]). As extensions of the notion of weakly g-convex
functions or (upper semi-continuous) plurisubharmonic functions, Hunt-Murray
[12] and Fujita introduced that of (g—1)-plurisubharmonic functions and that
of pseudoconvex functions of order n—g, respectively. Further, Fujita [9]
proved that they are equivalent. For the original definitions and fundamental
properties of them, see Fujita [8], Hunt-Murray and Slodkowski [21], [22].
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In this paper we shall give the definition as follows.

DEFINITION 1.1. An upper semi-continuous function ¢: D—R\ {—co} is said
to be pseudoconvex of order n—q at P=D if, for each weakly (n—¢+1)-convex
function f defined near P, one can find a neighborhood U(f) of P, so that

(p+/)P) = max{(p+/)Q): Q a4}

for every domain 4 with P=4 and 4&U(f). A function ¢: D—R\U{—x} is
said to be pseudoconvex of order n—q on D, if ¢ is upper semi-continuous on
D and if ¢ is pseudoconvex of order n—gq at each PeD.

Using the criterion of (¢g—1)-plurisubharmonicity due to Slodkowski ([21],
Proposition 1.1, (iii)), we can immediately prove that ¢ is pseudoconvex of
order n—q on D in the sense of Definition 1.1, if and only if ¢ is (¢—1)-pluri-
subharmonic on D in the sense of Hunt-Murray [12]. Therefore, ¢ is pseudo-
convex of order n—g on D in the sense of Definition 1.1, if and only if so is
¢ in the sense of Fujita [8].

Plurisubharmonic functions in the usual sense are pseudoconvex functions of
order n—1.

If f is weakly (n—q+1)-convex and if A4 is weakly l-convex, then f-+#h is
weakly (n—g+1)-convex. Using this fact, we can easily verify that if ¢ is
pseudoconvex of order n—q at P and if & is weakly l-convex near P, then
¢+h is pseudoconvex of order n—g at F.

LEMMA 1.2.  An upper semi-continuous function ¢:D—R\U{—oo} is pseudo-
convex of order n—q at PeD, if there exists an (n—q+1)-dimensional complex
submanifold L defined near P and containing P such that the restriction ol s
pseudoconvex of order n—q at PeL (and particularly plurisubharmonic near
Pel).

PrROOF. Let f be a weakly (n—g¢g+1)-convex function defined near PeD.
Then f|. is also weakly (n—g+1)-convex near P L. If ¢|. is pseudoconvex
of order n—¢g at PeL, we can by definition find a neighborhood U’'=U'(f|.)
(cL) of P€L, so that

(ple+/f1)(P) = max{(p|+f:)(Q): Q € 04}

for every domain 4’ with P4’ and 4’&U’. Choose a neighborhood U=U(f)
(D) of PeD so that UNLcU’. Let 4 be a domain with P=4 and 4d&U,
and denote by 4’ the connected component of 4N\ L containing P. Then P=4’
and 4/€U’. Moreover, we have

(+/)(P) < max{(e|+flNQ): Q E}M’}
= max{(p+/)Q): Q = ad}.
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This implies that ¢ is pseudoconvex of order n—g¢ at PD. O

A C? function ¢ is pseudoconvex of order n—g on D, if and only if ¢ is
weakly g¢-convex on D (see Fujita [8], Proposition 8). It is well-known that
every (upper semi-continuous) plurisubharmonic function defined on an open
subset of C” can be approximated by l-convex functions. However, pseudo-
convex functions of order n—gq cannot be approximated by g-convex functions
in general. We shall next recall the approximation theorems of Diederich-
Fornaess and Bungart.

DEFINITION 1.3 (Diederich-Fornaess [4]). A function ¢: D—R is said to be
g-convex with corners on D if, for each P=D, there exist a neighborhood U of
P and (strongly) g-convex functions ¢i, ¢., ***, ¢ On U such that ¢|y=
max{., ¢z, =+, Qup}-

DEFINITION 1.4 (cf. Bungart [3]). A function ¢:D—R\U{—oo} is said to
be sirongly pseudoconvex of order n—q on D (or strictly (¢—1)-plurisubharmonic
on D in the sense of Bungart [3]) if, for each P=D, there exist a neighborhood
U of P and a (strongly) l-convex function 2 on U such that ¢—h is pseudo-
convex of order n—q on U.

It is clear that every g¢-convex function with corners is strongly pseudo-
convex of order n—gq. Conversely, if ¢ is strongly pseudoconvex of order
n—gq and if ¢ is piecewise C? that is, ¢ is locally a maximum of a finite
number of C* functions, then ¢ is g-convex with corners (see Matsumoto [13],
p. 73).

Diederich-Fornaess showed the following approximation theorem.

THEOREM 1.5 ([4], Theorem 1). Let D be an n-dimensional paracompact
complex manifold and ¢ a g-convex function with corners on D. Then, for any
continuous function ¢>0 on D, there exists a G-convex function ¢ on D such that
lo—¢| <e on D, where j=n—[n/ql+1 and [ ] denotes the Gauss symbol.

Diederich-Fornaess ([4], Theorem 2) further showed that the number § in
is best possible for any pair (n, q). Note that §>¢ when 2<g<n—1.
On the other hand, Bungart showed the following approximation theorem.

THEOREM 1.6 ([3], Theorem 5.3). Let D be an n-dimensional paracompact
complex manifold and ¢ a continuous strongly pseudoconvex function of order
n—qon D. Then, for any continuous function €>0 on D, there exists a q-convex
function ¢ with corners on D such that |¢—¢|<e on D.

REMARK 1.7. Bungart asserted [Theorem 1.6 only when DCC™ In
view of his proof, the theorem remains valid when D is a paracompact complex
manifold.
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REMARK 1.8. By the definition in this paper, a g¢-convex function with
corners is piecewise CZ2 Since every C? function can be locally approximated by
C= functions with respect to (Whitney) C? topology, every g-convex function
with corners defined on a paracompact complex manifold can be globally approx-
imated by such piecewise C= functions. Therefore, we can choose the ¢-convex
function ¢ with corners in so that it is also piecewise C™.

2. Pseudoconvex domains of general order and g-convex domains
with corners.

Let D be a complex manifold and ¢ : D—R\{—co} an upper semi-continuous
function. Then ¢ is said to be an exhaustion function of D if {PeD: (P)<A}&ED
for every A<R.

A complex manifold D is said to be g-convex (resp. g-convex with corners) if
D has a continuous exhaustion function which is g-convex (resp. ¢-convex with
corners) outside some compact subset of . Further, D is said to be g-complete
(resp. g-complete with corners) if D has an exhaustion function which is g-convex
(resp. g-convex with corners) whole on D (see Andreotti-Grauert [1] and
Diederich-Fornaess [4)).

It is clear that D is g-convex (resp. g-complete) with corners if D is g-convex
(resp. g-complete). When 2<¢<n—1, the converse is not valid even if DCC™"
(see Diederich-Fornaess [4] and Matsumoto [13]). By the Diederich-Fornaess
approximation theorem (Theorem 1.5)), an n-dimensional complex manifold D is
g-convex (resp. g-complete) if D is g-convex (resp. ¢g-complete) with corners,
where G=n—[n/q]+1. Moreover, by the Bungart approximation theorem
(Theorem 1.6), D is g-complete with corners, if and only if D has an exhaustion
function which is strongly pseudoconvex of order n—¢q on D.

In what follows, let M be a connected, paracompact complex manifold of
dimension n.

An open subset D of M is said to be pseudoconvex of order n—q in M, if
the complement M\D satisfies ‘the Hartogs continuity principle of dimension
n—q’ (see Tadokoro [25] for the precise definition ; and see also Riemenschneider
and Fujita [8]).

The pseudoconvexity of order n—¢q of an open subset D in M is a local
property of the boundary dD (CM) of D. More precisely, D is pseudoconvex
of order n—gq in M if, for each Q=aD, there exists a neighborhood V (CM)
of @ such that DNV is pseudoconvex of order n—gq in V.

When M=C", Fujita showed the following.

THEOREM 2.1 ([8], Théoréme 2). For an open subset D of C", the follow-
ing conditions are equivalent :
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(a) D is pseudoconvex of order n—q in C™.

(b) D has an exhaustion function which is pseudoconvex of order n—q on D.

(¢) —log dsp(z) is pseudoconvex of order n—q on D, where dzp(z)=inf{||z—w| :
wedD} is the Euclidean boundary distance of D at z<D.

Using and the Bungart approximation theorem (Theorem 1.6),
we can easily prove the following.

PROPOSITION 2.2. An open subset D of C™ is pseudoconvex of order n—q in
C™, if and only if D is g-complete with corners. Therefore, an open subset D of
an n-dimensional complex manifold M is pseudoconvex of order n—q in M, if and
only if D is locally g-complete with corners in M in the sense of Peternell [16].

Now we shall give some examples of pseudoconvex open subsets of order
n—gq.

ExaMPLE 2.3. Let D be an open subset of an n-dimensional complex man-
ifold M and suppose that the boundary @D is a real hypersurface of class C?
in M, that is, there exist, for each Q<=dD, a neighborhood V of Q and a C*
function p:V—R such that dp(Q)#0 and DNV={PcV: p(P)<0}. Then D is
pseudoconvex of order n—q in M, if and only if the Levi form ddp has at least
n—q non-negative eigenvalues on T,(@D) for each Q=dD and for each defining
function p of D near Q, where T(0D) (CT¢@D)) is the holomorphic tangent
space of the real hypersurface 0D at Q. (Eastwood-Suria and Suria [23]
called such a subset D a (¢—1)-pseudoconvex open subset with C*® boundary.)

EXAMPLE 2.4. Let S be an analytic subset of an n-dimensional complex
manifold M and denote by £ the minimum of dimensions of irreducible com-
ponents of S. Then the complement M\S is pseudoconvex of order n—g in M
if and only if #=n—¢. Moreover, an open subset D of M is pseudoconvex of
order n—g in M if, for each Q=0dD, there exists a purely (n—g)-dimensional
analytic subset S defined near @ such that QS and SCM\D.

In this paper, we introduce the following condition (C,).

DEFINITION 2.5. We say that an open subset D of an n-dimensional complex
manifold M satisfies the condition (C,) in M, if

(Cp For each Qe0dD, there exists an (n—g)-dimensional complex subman-
ifold defined near Q such that Q&S and SCM\D.
For the sake of simplicity, we agree that M itself and the empty set satisfy the
condition (C,) in M.

Every open subset with the condition (C,) in M is pseudoconvex of order
n—qin M. If S is a complex submanifold of M and if each connected component
of S has at least dimension n—g¢, the complement M\S obviously satisfies the
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condition (C,) in M.

LEMMA 2.6. Let ¢ be a g-convex function with corners defined on a complex
manifold D and suppose that ¢ is also piecewise C*. Then there exists a subset
A of Lebesgue measure zero in R such that the set {P=D: @(P)<A} satisfies the
condition (Cq) in D for every A=R\A.

PrOOF. Let U be an open subset of D and ¢:U—R a g-convex function
of class C*. For each A=R, define the set Uy by U ={PeU: ¢(P)<A}. If
the value A of ¢ is not critical and if the boundary oU, (CU) of U, is not
empty, then dU, is a real hypersurface of class C* in U and so U, satisfies the
condition (C,) in U. On the other hand, the Sard theorem asserts that the set
of the critical values of ¢ is of Lebesgue measure zero in R, if ¢:U—R is of
class C~ (at least of class C?*). The lemma follows from the two facts. O

Using we can easily prove the following.

LEMMA 2.7. If a complex manifold D is q-convex with corners, there exists
a sequence {D,}.eny of open subsets with the condition (C,) in D such that
D.€D,..&D for each veN and \Jy, D,=D.

3. The definition and some properties of the operator W,.

Throughout § 3, let M be a connected, paracompact complex manifold of
dimension # and G a (fixed) Hermitian metric on M. Let D be an open subset
of M and ¢ an integer with 1<¢<n.

Given a continuous function ¢:D—R and a point P&D, the quantity
Wl¢](P) introduced by Takeuchi [26], is very useful to study plurisub-
harmonic functions defined on Kéhler manifolds (see also Elencwaijg [6], Suzuki
and Greene-Wu [11]). Roughly speaking, the quantity W[¢](P) means
‘the modulus of plurisubharmonicity’ of ¢ at P. In this section, we shall
introduce the quantity W,[¢](P) meaning ‘the modulus of pseudoconvexity of
order n—¢q’ of ¢ at P and give some properties of the operator W, (see
Remark 3.5 below for the relation between the operators W and W,).

DEFINITION 3.1. A local coordinate system (z,, -+, z,) around P€ M is said
to be normal at P (with respect to G), if
d 0 .
z,(P) =0, G(*a;;", 521‘_)(P) = 0y for 1 <4, 7 < 0.

Every point P of M has a normal coordinate system at P. If local coordi-

nate systems (z, -+, z,) and (w,, ---, w,) are both normal at P, the transfor-
mation matrix (0z;/0w,) is unitary at P. Therefore, if a function ¢ defined
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near P is of class C?, all the eigenvalues of the Hermitian matrix (0%p/0z,0Z,)(P)
coincide those of (0%p/0w;0w,;)(P). We shall only call them eigenvalues of the
Levi form dop at P.

DEFINITION 3.2. Let ¢: D—R\{—o} be upper semi-continuous and P D.
Let z=(z,, -+, z,) be a normal coordinate system at P. We define the quantity
W lel(P) as the supremum of a<R such that ¢—alz||® is pseudoconvex of
order n—q at P, where |[z|’=3%,|z;!®>. If no such a=R exists, we put
Wq[(P](P):‘OO-

The following lemma implies that the quantity W,[¢](P) is well-defined,
that is, it is independent of the choice of a normal coordinate system at P.

LEMMA 3.3. Let ¢: D—R\U{—oo} be upper semi-continuous and P€D. Sup-
pose that z=(zy, -+, zn) and w=(w,, -+, w,) are both normal coordinate systems
at P. If o—al|z||® is pseudoconvex of order n—gq at P, so is o—B|w|® for every
g<a.

Proor. We put h=alz|*~Bllwl|/*>. Then A is l-convex near P because all
the eigenvalues of ddh are equal to a—fB (>0) at P. Therefore, ¢—B|w|*=
¢—allz|*+h is pseudoconvex of order n—q at P if so is ¢—ajz|® N

In particular, implies that ¢ is pseudoconvex of order n—g at
P if W, [o](P)>0.
Using we can immediately prove the following.

LEMMA 3.4. Let ¢: D—R\U{—oo} be upper semi-continuous, P€D, and a=R.
Then the following conditions are equivalent :

(@) W lplP)za.

(b) There exists a normal coordinate system z=(z,, -+, z,) at P such that
o—Blizl|I* is pseudoconvex of order n—gq at P for every B<a.

(c) ¢o—pBlizll* is pseudoconvex of order n—q at P for every normal coordinate
system z=(zy, -+, za) at P and for every f<a.

Let ¢: D—R be of class C* and P€D. Denote all the eigenvalues of 9d¢p
at P by a;, a,, -+, a,, where a;=Za,=> - Za,. Then we have W [¢l(P)=a,_g;:.
Moreover, W [¢]: D—R is continuous if ¢ is of class C>. When ¢ is not of
class C? the function W,[¢] is not continuous in general.

REMARK 3.5. If W denotes the operator introduced by Takeuchi, then
Wle]l=4W,[¢] for every C* function ¢ (see Takeuchi [27], p. 335). The author
does not know whether the operators W and 4, exactly coincide or not.

A C? function ¢: D—R is g-convex (resp. weakly g-convex) on D if and
only if W,[¢]>0 (resp. W [¢]1=0) on D. Moreover, we obtain the following.
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PROPOSITION 3.6. Let ¢: D—R\J{—oco} be an upper semi-continuous function.
Then

(@) ¢ is pseudoconvex of order n—q on D if and only if W,[¢]1=0 on D.

(b) ¢ s strongly pseudoconvex of order n—q on D if and only if, for
each P=D, there exist a neighborhood U of P and a constant €>0 such that
Wolel=e on U.

PROOF. The proof of (b) is easy. The necessity of (a) is obvious. To prove
the sufficiency of (a), suppose that W,[¢]1=0 on D and (U, z), z=(z1, =, 2x), 18
any coordinate neighborhood of D. For each v N, define the function ¢, on
U by ¢.=¢+(1/v)llz|>. Then Wy l¢,]>0 on U. This implies that each ¢, is
pseudoconvex of order n—g at each point of U and hence on U. Therefore,
by Fujita ([8], Proposition 7), the limit ¢ of the decreasing sequence {¢.},en is
pseudoconvex of order n—g on U, which proves the sufficiency of (a). O

PROPOSITION 3.7. Let ¢,: D—R\U{—oo}, v&N, be upper semi-continuous and
let a:D—R be continuous. Suppose that Wl¢o,]=a on D for all veN. If the
sequence {Qy},en ¢S decreasing or uniformly convergent on D, then Wy [pl=a on
D, where ¢p=lim,_ . ¢,.

PROOF. Let P be a point of D and § a real number with S<a(P). Let
U, z), z=(zy, -, z»), be a normal coordinate neighborhood at P. Choose a
neighborhood V (CU) of P so that W,[8]z]|*]<a on V. Then, for each vEN,
we have W, [ep,—Bllzi*]>0 on V and so ¢,—jBllz|* is pseudoconvex of order
n—qg on V. Since the sequence {¢,—pflzl|’},ex is decreasing or uniformly
convergent on V, it follows by Fujita ([8], Proposition 7) that the limit ¢p— g z||?
is also pseudoconvex of order n—g on V. Therefore, we have W [ol(P)=a(P)
for every PeD. |

The following criterion will be used frequently in this paper.

LEMMA 3.8. Let ¢ and ¢ be upper semi-continuous functions from D to
RU{—co} and P a point of D. If ¢o(P)=¢(P) and ¢=¢ on D, then W [p](P)
=W [1(P).

PROOF. Let z=(z, --, z,) be a normal coordinate system at P and « a real
number with a<W,[¢](P). Then ¢—a|z|® is pseudoconvex of order n—gq at P.
Hence, for each weakly (n—g-+1)-convex function f defined near P, one can
find a neighborhood U(f) of P, so that

(¢—allzl*+ f)XP) = max{(¢—alzl*+)Q): Q € 04}

for every domain 4 with P4 and 4€U(f). If ¢(P)=¢(P) and ¢=¢ on D, the
above inequality replaced ¢ with ¢ remains valid. Therefore, ¢—a|z|? is also
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pseudoconvex of order n—g at P for every a<W,[¢](P) and hence we obtain
Wq[SD](P)EWq[‘p](P)- O

Next, let L be a t-dimensional complex submanifold of D (CM), 1=<t=n.
Then L has the C* Hermitian metric G|, induced by the metric G on M. In
exactly the same way as the definition of the operators W,, 1<¢<n, on M with
respect to the metric G on M, we can define the operators on L with respect
to the metric G|, on L. We shall denote them by WP, 1<¢<t. The results
about W,=W" are naturally valid for W{».

LEMMA 3.9. Let L be a t-dimensional complex submanifold of D. Let
¢: L—R\U{—oo} be upper semi-continuous, PE L, and acR. Then the following
conditions are equivalent:

(a) WPlol(P)za.

(b) There exists a normal coordinate system z=(z,, -, z,) at P€D such that
o—Blz®)| L is pseudoconvex of order t—q at PEL for every f<a.

(¢) ¢o—pB(lzlI®)| L is pseudoconvex of order t—q at P=L for every normal

coordinate system z=(zy, -+, z,) at PED and for every <a.
Proor. If w=(w,, ---, w,) is a normal coordinate system of D at PeD
with respect to the metric G on D and if L is written by w;,;=W;,o= - =W,

=0 near P, then w'=(w,, ---, w,) is a normal coordinate system of L at P=L
with respect to the metric G|, on L. Hence it follows from that
WP lel(P)za if and only if ¢—p(lwl®*)|r=¢—Bllw’|* is pseudoconvex of order
t—q at P€L for every 8<a. This implies that (c)=(a)=3(b).

To prove (b)=/(c), suppose that z=(zy, -+, z,) and w=(w,, -+, W,) are both
normal coordinate systems of D at P€D. Let 8 and y be real numbers with
B<y<a. Then the function h:=y|w|*—Blz||* is l-convex near P=D and so
the restriction h|; is also l-convex near P€L. Therefore, if p—y(lwl®)|. is
pseudoconvex of order t—q at P=L, so is ¢o—BzI):=o—r(lwl®|+h] .
This implies that (b)=(c). O

LEMMA 3.10. Let ¢: DR\ {—oo} be upper semi-continuous and P=D. Then
W lol(P)Za, if there exists an (n—q+1)-dimensional complex submanifold L
defined near P such that PeL and W{P[¢|.]J(P)2a.

PrROOF. Let z=(z, --, z,) be a normal coordinate system of D at P=D
and B a real number with B<a. Since W{P[¢p|,J(P)=ea, it follows from
that (p—Blzl»|.=¢l.—Biz]|®)|. is pseudoconvex of order n—g
(=(n—q¢+1)—1) at P L. Hence, by ¢—pBllz|l* is pseudoconvex of
order n—q at P€D for every f§<a. This means that W,[¢](P)=a. O

LEMMA 3.11. Let ¢: D—-R\U{—oo} be upper semi-continuous and P€D. Then
Wilel(P)za if, for every l-dimensional C-linear subspace Ep of Tp(D), there



Boundary distance functions and q-convexity 95

exists a l-dimensional complex submanifold E of D defined near P such that
PeE, Te(E)=Ep and W{F[p|g](P)=a.

PROOF. Let z=(z,, *-, z,) be a normal coordinate system of D at PeD
and 8 a real number with §<a. To prove the pseudoconvexity of order n—1
of ¢—pB|zlI* at P=D, let f be a weakly n-convex function defined near PeD
and y a real number with B<y<a. Since the function h:=f+4(y—pB)llz|* is
strongly n-convex near P<D, there exists a l-dimensional C-linear subspace
Ep of Tp(D) such that doh has a positive eigenvalue on Ep. By the assumption
of the lemma, choose a 1-dimensional complex submanifold £ of D defined near
P such that PeFE, Tp(E)=FEp and W{P[p|z](P)=a. Then h|g is l-convex
near P€E and ¢|z—7(lz|*)|r is pseudoconvex of order 0 (=1-1) at PEE.
Hence we can find a neighborhood U’'=U"'(hiz) (CE) of P€E, so that

(p—rlzl*+h)(P) = max{(p—riz|*+h)|=(Q): Q € 94"}

for every domain 4’ with P4’ and 4’&U’. Choose a neighborhood U=U(f)
(D) of P€D so that UNECU’. Let 4 be a domain with P=4 and 4&U,
and denote by 4’ the connected component of 4N E containing P. Then P4’
and 4’&U’. Moreover, we have

(p—Blzl*+ f)P) < max{lp—BlzI*+)x(Q): Q € 34’}
< max{(p—Blz|*+/)Q): Q € d4}.

Therefore, ¢—plz||* is pseudoconvex of order n—1 at PeD for every f<a
and hence W, [p](P)=a. 0

4. Distance functions to complex submanifolds.

After §4, let M be an n-dimensional connected Kédhler manifold with C*
Kéhler metric G. Then M can be also regarded as a 2n-dimensional Riemannian
manifold with the C* Hermitian metric g=Re G. We denote by J the complex
structure tensor field of M, and denote by V and R the covariant derivation and
the curvature tensor field (of covariant degree 4) with respect to the Riemannian
connection of M, respectively.

If ¢ and 7 are holomorphic planes, i.e., /-invariant planes in the (real)
tangent space Tp(M) at P=M, the holomorphic bisectional curvature H(e, )
of them is defined by

Hie, 7):= R(X, JX, Y, JY)
=RX,Y, X, V)+R(JX, Y, JX,Y),

where X and V" are unit vectors in ¢ and 7, respectively (see Goldberg-Kobayashi

L10]).
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For two points P and @ of M, denote by d(P, Q) the distance between P
and @ induced by the metric g (=Re G). Given a subset £ of M, we define
the distance function dz: M—R to E by

dg(P) = d(P, E)=inf{d(P, Q): Q € E} for Pe M.

When D is a pseudoconvex open subset (in the usual sense) in M, the
plurisubharmonicity of the function —log dy\p was differential-geometrically
studied by Takeuchi [27], Elencwajg [6], Suzuki and Greene-Wu [1I]. In
this section we shall prove the following fundamental lemma. The proof is
based on that of Greene-Wu ([11], Theorem 1).

LEMMA 4.1. Let M be an n-dimensional Kdhler manifold, D an open subset
of M, and P a point of D. Suppose that there exists (at least one) Q0D such
that

(i) dap(P)=d(P, Q),

(ii) The points P and Q can be joined by a geodesic & in M,

(iii) There exists an (n—q)-dimensional complex submanifold dejined near Q
such that QS and SCM\D.

Then we have the estimate

1 . (6
W.[—log das)(P) = min{—-, 6},

where O is the minimum of the holomorphic bisectional curvatures of M on the
geodesic & in (ii).

PrOOF. If S is an (n—g)-dimensional complex submanifold defined near
Qe=oD, and if QS and SCM\D, we have ds=dyp»=ds;p on D and hence
—log dsp=—logds on D. Moreover, since dg(P)=d(P, Q)=dsp(P), we have
—log dsp(P)=—log ds(P). Hence, by we first see

W,l—log dap](P) =z W[ —log ds](P).

Let &=&@), t<[0, /], be a geodesic in M from P=D to Q&dD, where
E0)=P, &)=Q, l=dsp(P)=d(P, @), and the parameter ¢ is canonical. Let N,
t<[0, [], be the unit tangent vector field of £&=§&(f). Then the vector N, is
orthogonal to the (real) tangent space To(S) at Q=&()=S. Let Fp be the
parallel translate of T(S) along & back to P=£&(0). Since T(S) is J-invariant
and of real dimension 2(n—ygq), so is Fp. Moreover, Fp is orthogonal to both
N, and JN,. We denote by Lp the J-invariant R-linear subspace of real
dimension 2(n—q¢+1) in Tp(M) which is generated by N,, /N, and the elements
of Fbp.

Since the metric G on the complex manifold M is now Kéihlerian, we can
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choose a local coordinate system (z,, -+, z,) around P, so that (z,, ---, z,) is
normal at P (in the sense of Definition 3.1) and moreover satisfies (0G;/0z,)(P)
=0 for 1=, j, k<n, where G;;=G(0/0z;, 0/0z;). Let L be the (n—g+1)-
dimensional complex submanifold defined near P such that P L, Tp(L)=Lp
and L is linear with respect to (z,, -, z,). Making a unitary transformation
of (z;, -+, z,) if necessary, we may assume that L is given DY 2, qi2=2n_gss
= .- =2,=0 near P.

We put a=min{@/3, ©}/4. To prove W,[—log dsl(P)=a, it is sufficient
by to show that W{®[(—log ds)|.](P)=a for the L chosen above.
Moreover, it is sufficient by to show that W{®[(—log ds)|z](P)=a
for every 1-dimensional complex submanifold £ of L defined near P such that

PeFE and E is linear with respect to (zy, -+, 2,).
Making a unitary transformation of (z,, ---, z,_4.1) if necessary, we may
without loss of generality assume that F is given by z,=z,= --- =z,=0 near P.

For the sake of simplicity, we write z instead of z;, and put z=x++/—1y,
x, yvER. Since the vector (0/0z)p is unit with respect to the metric G, the
vectors V,=(0/0x)p and JV,=(0/dy)r are unit with respect to the metric g
(=Re G). Since Tp(E) is a J-invariant R-linear subspace of Lp=Tp(L), we
can, by making a rotation of z-plane if necessary, write V,=aN,+8X, for
some a, 8 and X,, where X,cFp is unit and a’+p*=1.

Let X,, 1[0, [], be the parallel translate of X, along & to &({). Then the
unit vectors X;, JX:, N, and JN, are mutually orthogonal at &({) for each
te[0, /]. We now define the vector field V along & by

V, = (l»?t)aNg‘I‘ﬁXl for t & [O) l]’

and put U.={(x, y)EE: |x|<e, |v|<e} for ¢e>0. Then, for sufficiently small
¢>0, we can take a C* mapping % :[0, [JXU.—M such that

(1) k(t;0,0)=¢&®,

@) (), = VO, k*(f;)mw — V),

(ili) &O; x, y)=x+vV—1y€E, ki;x, )<,

for t<[0, /] and (x, y)eU., where S’ is some 1-dimensional complex submanifold
of S defined near @ and containing ¢, and k4 denotes the differential of the
mapping k.

For (x, y)eU,, we define the function s :U.—R by

L 0 0
b, 9= 85 1o )2

i.e., the length of the curve k¢, =k () :=k(; x, y)aM, te[0, []. Since
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h(P)=h(0, 0)=I[=ds(P), we have (—log h)(P)=(—log ds)|g(P). Moreover, it
follows from the condition (iii) of the mapping % that h=ds|z on U, and hence
—log h<(—log ds)|s on U.. Therefore, by we have

Wi [(—log ds)|gJ(P) = W{P[—log h](P).

Since the function —log & is of class C* on U. (CE) and the local coordi-
nate z=x++/—1y of E is normal at P E, we have

log h)(P)

3| = 7(e)e

2 2 0%h 0*h
*"@?{(*a;‘(” ) +(W<P V=it 555 (P}
We shall now apply to (1) the variation formulas in Riemannian geometry. The
first variation formula gives

(1) WPL—log h1(P) = aaa-<

oh t
*3;(P) = g(Vs, Ni) .

=1 oh t=1
L= g (P =gUVy N

=0,

and hence we first obtain

oh : s0h 2
(2) (7:) +(5,P) =
Next, the second variation formula gives
62h

t=1

(P) (Vv V)t;0,0, Nt) o

+S:[—R<Vt, N, Vi, N)+g(Tx V), <VNV>‘)—{?14?g(V" N‘)}z]dt’

TP) = 8] Vs N

t=1

+{ | =RU Ve Ny TV NO+2(@n TV, (T V>z>—{—;€'g<f Vi NofJat,

where we have put

p 0
Vityz,p = k*<§;)(t;z,y) v SVsap = k"‘(b‘?)(t;x,y) '

Now, by the condition (iii) of the mapping k&, the vector fields

P 0
Vi, = (—a?>(z,y>’ IVeien = (-a_;)w-y)

are restrictions to U, (CFE) of the coordinate vector fields with respect to the
normal coordinate system (z,, -+, z,) of M at P=M. Hence we have
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(VVV>(0; 0,0) — (VJV]V)(O; 0,00 — 0.

Moreover, since V; ., , and JVq, ., , are vector fields on the complex subman-
ifold S’, and since the vector N, is orthogonal to S’ (CS) at @, we have

(V)i 0,000 NO+8(VsvJV)as 0.0, N = g(JLJV, Viaio0, Ni) =0
(see Frankel [7], p. 171). Therefore, we have
0*h a*h a? (! )
(3) *a‘x*z(P)"l‘"a;{(P) = *Z“—‘SOR(V“ JVi Ni, JNdt,

exactly as in the proof of Greene-Wu ([11], pp. 177-178). Substituting (2) and
(3) for (1), we obtain

(4) W —log hj(P):Z}[SZRm, JV. Ni, JNOdL.

If 6 is the minimum of the holomorphic bisectional curvatures of M on the
geodesic £=&(1), t=[0, [], then

RV, JVi Ni, JN) = @{($)2a2+/32} for t < [0, 7.

Hence, by (4), we have

—_ @ a2 2
=7 (5+8).
Noting that a’+p°=1 and hence 1/3=(a?/3)+p*’<1, we finally obtain
Wl —10g dop)(P) = WiP[—log h1(P) = +-min{ 5, 6},

which completes the proof of the lemma. O

5. Boundary distance functions of pseudoconvex domains of
general order.

Let M be a Kidhler manifold and D an open subset of M. For PeM and
r>0, we use the notation

B(P,r)=1{Q e M: d(P, Q) <r}.

Then B(P, d;p(P))C D for every PeD. We further denote by @(P), PeD, the
infimum of the holomorphic bisectional curvatures on B(P, d,p(P)). It is easy
to see that the function ©@:D—R is continuous, if DNB(P, r) &M for every
PeD and for every »>0. Note that the condition is satisfied, either if M is
complete or if DEM.
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As an application of Lemma 4.1, we shall first prove the following local

result on boundary distance functions of pseudoconvex open subsets of general
order.

PROPOSITION 5.1. Let M be an n-dimensional Kdhler manifold and let D be

a pseudoconvex open subset of order n—q in M. Then there exists an open subset
4 of M such that dDC 4 and

1 . (6
W, [—log dap] = me{—g—, @} on DA,

where @=6O(P), P€D, is the infimum of the holomorphic bisectional curvatures
on B(P, d;p(P)).

PrOOF. We put a=min{@/3, ©}/4. To prove the proposition, it is suffi-
cient to show that each Q0D has a neighborhood V such that W, [—log dsp]
=a on DNV,

Let V* be a Stein neighborhood of Q<=dD which is relatively compact in
some coordinate neighborhood of M. Then the set D*:=DN\V* ig biholomorphic
to a pseudoconvex open subset of order n—g in C*. Hence, by [Proposition 2.2
and Lemma 2.7, we can take a sequence {D¥},.x of open subsets with the
condition (C,) in D* such that D}&D} ,&D* for each veN and Uy, D¥=D*.
Then, for each P=D¥, there exists (at least one) Q €0D¥ which satisfies the
conditions (i), (ii) and (iii) of Lemma 4.1. Hence, by [Lemma 4.1, we have

1 . (6%
W [—log dopt] = me{T, @*} on D¥

for each y& N, where @*=0*(P), P=D*, is the infimum of the holomorphic
bisectional curvatures on B(P, dsm(P)). Note here that, because D*&M, O*
and hence a*:=min{@*/3, O*}/4 are continuous functions from D* to R. On
the other hand, for each v=N, the sequence {—log dap’; } uz» decreases on D
and converges to —log dsp«. Therefore, it follows from [Proposition 3.7 that
Wol—log dsps}j=a* on D¥ for each veN and hence W, [—logdoml=a*=a
on D*,

Now choose >0 so that B(Q, 2r)&V*, and put V=B(Q, r). Then we
have dsp=dsp« on DNV (CD*), which implies that W,[—log dsp]=a on DNV
for this V. O

We shall later show that the estimate in [Proposition 5.1] holds not only near
0D but also whole on D in some cases (see [Proposition 6.4] and [Proposition 7.1).
In this section we give the following global estimate for W,[—log dsp] under
the assumption stated below.

LEMMA 5.2. Let M be an n-dimensional Kdhler manifold and let D be a
pseudoconvex open subset of order n—q in M such that DN\B(P, r)&EM for every
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PeD and for every r>0. Suppose that there exists an open subset 4 of M with
oDC 4, and that one can for each r>0 find a positive number C ™ and a q-convex
function ¢ with corners on D N4 satisfying | —log dap—¢ ™| < C™ on DN,
where D =DNB(0, r) and O<0dD is fixed. Then we have the estimate

1 . (06
Wi l—logdsp] = Zmln{?, @} whole on D,

where O@=0O(P), P D, is the infimum of the holomorphic bisectional curvatures
on B(P, dap(P)).

PrROOF. We may assume that each ¢ is piecewise C*. Then, by [Lemmal
2.6, there exists a subset A4¢ of Lebesgue measure zero in R such that the set
{PeDNA: ¢T(P)< A} satisfies the condition (C,) in D™N4 for every
AeR\/A. On the other hand, by assumption, D&M and hence DM\4d&D
for each »>0. We can thus choose A{" >0, so that

DNAdC {Pe D™ —log dop(P)+C T < A§7}.

For A>0 and »>0, we define the set DY by
D = (DO\DHU{Pe DTN ¢T(P) < A}.

Since ¢ >—log d;p—C™ on DN\4, we have D{’&D for every A>0.
Moreover, since ¢ <—logds;p+C ™ on DN, the set DY satisfies the
condition (Cp in D if A>A§™ and AR\ AT,

For each PeD{", let Q=0dD§™ be a point such that dap@n(P)=d(P, Q).
Then the point @ is necessarily an interior point of D®™ because dap@r(P)<
d(0, P)<r. Hence, if A>AL" and A=R\A®", the point ¢ belongs to
DeM N4 and satisfies ¢©@™(Q)=A, and fulfills the conditions (i), (ii) and (iii)
of with respect to the set DE™. Therefore, it follows from
4.1 that

1 . (6en
Wl —log d,;D;m] = me«{ 3

for every A with A>A$" and A€R\A®", where O™ =0 (P), P=D™,
is the infimum of the holomorphic bisectional curvatures on B(P, dyp¢r(P)).
Note here that @ :D™—-R is continuous because D &M. Furthermore,
—log dspg@r, where B>A, decreases on D¢ and converges to —log d;p as
B—oo. Therefore, using [Proposition 3.7, we can conclude that

L6l on Dy

W [—log dap] = %min{~§f—, @M} > —i—min{—%, @}

on D for every »>0, which proves the lemma. O
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6. Pseudoconvex domains of general order in Kihler manifolds of
positive holomorphic bisectional curvature.

In §6, we consider the case where a Kéhler manifold M has positive or
non-negative holomorphic bisectional curvature.
The following is the direct result of Proposition 5.1 and [Proposition 3.6,

COROLLARY 6.1. Let M be an n-dimensional Kdhler manifold with non-
negative (resp. positive) holomorphic bisectional curvature and let D be a pseudo-
convex open subset of order n—q in M. Then there exists an open subset 4 of
M such that dDC A4 and the function —log dsp is pseudoconvex (resp. strongly
pseudoconvex) of order n—q on DNA.

If the boundary 0D of an open subset D of M is a real submanifold of class
C? in M (whose irreducible components may have different dimensions from
each other), there exists an open subset [' of M such that dDC /" and the
boundary distance function d;p is of class C* on DI (see Matsumoto [14]).
Using this fact and Proposition 6.1, we first obtain the following result on the
g-convexity of domains.

THEOREM 6.2. Let M be an n-dimensional Kdahler manifold with non-negative
(resp. positive) holomorphic bisectional curvature and let D be a pseudoconvex
open subset of order n—q in M. Moreover, suppose that DEM and the boundary
0D is a real submanifold of class C? in M. Then D is weakly (vesp. strongly)
g-convex.

REMARK 6.3. The n-dimensional complex projective space P™(C) has posi-
tive holomorphic bisectional curvature with respect to the Fubini-Study metric
on P™(C). is an extension of the Barth theorem ([2], Satz 3)
asserting that the complement P*(C)\S is strongly g-convex, if S is a complex
submanifold (and hence an algebraic submanifold) of P*(C) and if each con-
nected component of S has at least dimension n—gq (cf. Example 2.4). When
M=P™(C), is the result of Schwarz ([20], Theorem 6.4) and
Matsumoto ([15], Corollary of Theorem 2). As another extension of the Barth
theorem, Schneider has also showed the g-convexity of M\S under the
assumption that M and S are compact and S has positive normal bundle in M.

In what follows, we consider only the case where M has positive holo-
morphic bisectional curvature. Then we can extend [Proposition 5.1 to the
following global result.

PROPOSITION 6.4. Let M be an n-dimensional Kdhler manifold with positive
holomorphic bisectional curvature and let D be a pseudoconvex open subset of
order n—q in M. Moreover, suppose either that M is complete or that DEM.
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Then we have the estimate

2

where O@=06(P), PED, is the infimum of the holomorphic bisectional curvatures
on B(P, dap(P)).

Proor. By [Corollary 6.1, there exists an open subset 4 of M such that
0D 4 and —log djp is strongly pseudoconvex of order n—qg on DN\4. Hence,
by the Bungart approximation theorem (Theorem 1.6), we can find a g-convex
function ¢ with corners on DN\4 such that |—log dsp—¢| <1 on DN4. The
proposition thus follows from O

W[ —log dsp] = i@—~ whole on D,

COROLLARY 6.5. Uuder the same assumption as in Proposition 6.4, the func-
tion —log dap is strongly pseudoconvex of order n—gq whole on D.

Using the approximation theorems of Bungart and Diederich-Fornaess, we

obtain from [Corollary 6.5 the following theorem and its corollary on the
g-completeness (with corners) of domains.

THEOREM 6.6. Let M be an n-dimensional Kdhler manifold with positive
holomorphic bisectional curvature and let D be a velatively compact, pseudoconvex
open subset of order n—q in M. Then D is g-complete with corners.

COROLLARY 6.7. Under the same assumption as in Theorem 6.6, D is
g-complete, where g=n—[n/q]l+1.

When M=P*C), is particularly stated as follows (see Prop-
osition 2.2).

COROLLARY 6.8. Let D be an open subset of P™(C). If D s locally
g-complete with corners in P"(C) (in the sense of Peternell [16]), then D is
globally g-complete with corners and hence globally {§-complete, where §=
n—[n/q]+1. In particular, if S is an algebraic subset of P™(C) and if each
irreducible component of S has at least dimension n—gq, then P*(C)\S is globally
g-complete with corners and hence globally §-complete.

REMARK 6.9. In Corollary 6.8, the case where S is non-singular has been
showed by Schwarz ([20], Theorem 6.5). When S is non-singular, the set
P*(C)\S is further min{2¢—1, §}-complete (see Peternell [17]).

7. Pseudoconvex domains of general order in Stein manifolds.

Finally in §7, we consider the case where a Kdhler manifold M admits a
(strongly) l-convex function. Then we can extend [Proposition 5.1 to the
following global result.
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PrROPOSITION 7.1. Let M be an n-dimensional Kdhler manifold and let D
be a pseudoconvex open subset of order n—q in M. Suppose that there exists
an open subset 4 of M such that 0DCA4 and 4 admits a 1-convex function.

Moreover, suppose either that M is complete or that DEM. Then we have the
estimate

1 . (6
W[ —log dap] = me{-é-, @} whole on D,

where @=0O(P), PED, is the infimum of the holomorphic bisectional curvatures
on B(P, dsp(P)).

PrOOF. Shrinking 4 if necessary, we may assume that there exists a
1-convex function . which is defined on an open subset including 4. Moreover,
we may by [Proposition 5.1 assume that the estimate in [Proposition 7.1 holds
on DN4.

Let O be a fixed point of éD and put D=DNB(0, r) for »r>0. Then,
by the assumption of the proposition, D&M for each »>0. We put

L 1.6 , .
2 = me{?(m, 6(P): P D¢ mA},
B = inf{W,[h](P): P& D N4}.

Then aeR and B>0. If we choose A™>0 so that a‘™+AMBM>1,
we have W, [—log dop+A™h]>1 on D N4. By [Proposition 3.6, the function
—log dap+ A h is strongly pseudoconvex of order n—gq on D N4. Hence,
by the Bungart approximation theorem (Theorem 1.6), we can find a g¢-convex
function ¢ with corners on D N4 such that

| —log dap+ATPh—g™| <1 on DA

If we choose C™ >0 so that C™>14+AM™ |h| on D N4, then | —log dap—¢ ™|
<C™ on D™NA4. The proposition thus follows from |

In what follows, let M be a Stein manifold. Then M admits a complete
Kéhler metric.

PROPOSITION 7.2. Let M be an n-dimensional Stein manifold and let D be
a pseudoconvex open subset of order n—q in M. Let dsp be a boundary distance
function of D induced by a complete Kihler metric on M. Then there exists
a l-convex function h on M such that the function —log dsp-+h s strongly
pseudoconvex of order n—q on D.

PROOF. Let f be a l-convex exhaustion function of M. For each veN,
define the set D, by D,={PeD: f(P)<y} and denote by a, the infimum of
the function {©/3, ©}/4 on D, where @=6O(P), P=D, is the infimum of the
holomorphic bisectional curvatures on B(P, dsp(P)). Then, by [Proposition 7.1
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we have W [—logdspl=a, on D,. Let B, be the infimum of the function
Wilf1 on D,. Then 8,>0 because D,EM.

Take a sequence {C,},ey such that 0<C,<C,,, and a,+C,8,>1 for veN.
Choose a C? function u:R—(1, +o0) such that #'>C>0, u”>0 and u'(v)=C,.,
for v&N, and put h=u-f. Then h is l-convex on M. On the other hand,
since W,[h]=C.8, on D\D,_,, we have W, [~—logdsp+h]>1 on D\D,_, for
each v N and hence on D. Therefore, —log d;p+h is strongly pseudoconvex
of order n—q on D. J

Using the approximation theorems of Bungart and Diederich-Fornaess, we
obtain from [Proposition 7.2 the following theorem and its corollary.

THEOREM 7.3. Let M be an n-dimensional Stein manifold and let D be a
pseudoconvex open subset of order n—q in M. Then D is g-complete with corners.

COROLLARY 7.4. Under the same assumption as in Theorem 7.3, D is §-
complete, where j=n—[n/ql+1.

REMARK 7.5. Using the Bungart approximation theorem, we can also obtain
directly from the result of Peternell ([16], Theorem 2) or that of
Matsumoto ([13], Theorem 1).

If the boundary 0D of an open subset D of M is a real submanifold of class
C* in M (whose irreducible components may have different dimensions from
each other), we further obtain the following.

THEOREM 7.6. Let M be an n-dimensional Stein manifold and let D be a
pseudoconvex open subset of order n—q in M. Moreover, suppose that the
boundary 0D is a real submanifold of class C* in M. Then D is g-complete.

PrOOF. By Proposition 7.2, we can find a l-convex function 2 on M such
that ¢=—log dsp+h is strongly pseudoconvex of order n—g on D, where d;p
is a boundary distance function of D induced by a complete Kédhler metric on
M. Let 4 be an open subset of M such that dDC4 and d;, is of class C? on
DN4. Then ¢ is (strongly) ¢g-convex on DN4.

Choose a 1-convex exhaustion function f of M so that f>¢ on D\4 and
put @=max{e, f} on D. Since @=f on D\4 and since ¢ is g-convex on
D4, we can, by the Diederich-Fornaess approximation theorem (cf. [4], §5),
find a g-convex function ¥ (without corners) on D such that |@—¥| <1 on D.
Then the function ¥ is further an exhaustion function of D, which proves the
theorem. 0

REMARK 7.7. When 0D is a real hypersurface of class C? in M,
7.6 has been showed by Suria [23] and Eastwood-Suria [5] (cf. Example 2.3).
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is an extension of the result. Schwarz ([20], Corollary 6.3) has

also proved in another way.
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