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Introduction.

By a $\log$ variety we mean a pair (V, $B$ ) consisting of a normal variety $V$

and a $Q$ -Weil divisor $B= \sum b_{i}B_{i}$ such that $0\leqq b_{i}\leqq 1$ for each $i$ . If it has only
$1og$ terminal singularities (see (1.6) for the precise definition), the $(\log)$ canonical
$Q$ -bundle $K(V, B)=K_{V}+B$ of (V, $B$ ) is well-defined. Given further a big
$Q$ -bundle $L$ on $V$ , the $(\log)$ Kodaira energy of (V, $B,$ $L$ ) is defined by

$\kappa\epsilon(V, B, L)=-Inf\{t\in Q|\kappa(K(V, B)+tL)\geqq 0\}$ .

In this paper we are mainly interested in the case $\kappa\epsilon<0$ , or equivalently,
$K(V, B)$ is not pseudo-effective.

According to the classification philosophy, at least when $B=0,$ $V$ should
admit a Fano fibration structure in such cases. In \S 2, by using ${\rm Log}$ Minimal
Model Program which is available in dimension $3 at present (cf. [Sho], [Ko]),

we establish the existence of such a fibration in the polarized situation. Namely,
under some reasonable assumptions, some birational transform (V’, $B’,$ $L’$ )

of (V, $B,$ $L$ ) admits a fibration $\Phi$ : $V’arrow W$ onto a normal variety $W$ with
$\dim W<\dim V$ such that $K(V’, B’)-\kappa\epsilon(V, B, L)L’=\Phi^{*}A$ for some ample
$Q$-bundle $A$ on $W$ . Such a fibration is unique up to some birational equivalence
and every general fiber of $\Phi$ is Fano. In particular we have $\kappa\epsilon(V, B, L)\in Q$ ,

generalizing a result in [B].

In \S 3, we study the set of posslble values of Kodaira energies for any fixed
$n=\dim V$ , called the spectrum set. If we consider the case $B=0$ only and $V$ is
allowed to have only terminal singularities, the spectrum set seems to have no
negative limit point (cf. (3.2)). Using Kawamata’s result on the boundedness of
$Q$ -Fano 3-folds, we prove the above spectrum conjecture for $n\leqq 3$ under the
additional assumption that $V$ is $Q$ -factorial. On the other hand, if $B\neq 0$ or $V$

is allowed to have $\log$ terminal singularities, the spectrum set becomes more
complicated and has many negative limit points, even when $n=2$ . We just
provide a few examples of this sort and present a conjecture.
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Of course, Mori-Kawamata theory is of fundamental importance in our
method. In fact we need a slightly improved version than usual, so \S 1 is
devoted to this purpose. The key is the notion of $log$ ample Q-bundle.

Our results in this paper form a philosophical background of the classification
theory of polarized $(\log)$ varieties by Kodaira energy. See [BS], [F2], [F3] for
precise classification results.

\S 1. Preliminaries.

Here we review some results from Mori-Kawamata-Shokurov theory and fix
notation and terminology. Basically we follow the notation in [F2] and [KMM].

(1.1) By a variety we mean an irreducible reduced comPlete algebraic space
of finite type over the complex number field $C$ . It is assumed to be projective
almost always in this paper. The group of invertible sheaves (resp. Cartier
divisors) on a variety $V$ is denoted by Pic(V) (resp. $Div(V)$ ). A $Q$ -bundle (resp.
$Q$ -divisor) is an element of $Pic(V)\otimes Q$ (resp. $Div(V)\otimes Q$ ). For a $Q$ -divisor $D$ ,

the $Q$ -bundle determined by $D$ is denoted by $[D]$ , or simply by $D$ when
confusion is impossible or harmless.

A $Q$ -Weil divisor on a normal variety $V$ is a $Q$ -linear combination of prime
Weil divisors. It is said to be $Q$ -Cartier if some positive multiple of it is a
Cartier divisor. The integral part of a Weil divisor $D$ will be denoted by Int$(D)$ .

The set WPic(V) of reflexive sheaves on $V$ of rank one forms a group, where
the sum of $\mathscr{F},$ $\mathcal{G}\in WPic(V)$ is defined to be the double dual of $\mathscr{F}\otimes \mathcal{G}$ . We have
$O(D)\in WPic(V)$ for any Weil divisor $D$ on $V$ , and $\omega_{V}\in WPic(V)$ for the canonical
sheaf $\omega_{V}$ of $V$ . An element of WPic $(V)\otimes Q$ is called a $Q$ -Weil sheaf, or simply
a $Q$ -sheaf. It is said to be $Q$-invertible if it belongs to the subgroup $Pic(V)\otimes Q$ .
We say that $V$ is $Q$-factorial if every $Q$-sheaf is $Q$-invertible, or equivalently,
every Weil divisor is $Q$ -Cartier. In such a case we sometimes say “globally Q-
factorial”, since $V$ may have non-Q-factorial singularities.

(1.2) For any invertible sheaf $X$ and any positive integer $m$ , the Iitaka
dimension $\kappa(X^{\otimes m})$ is equal to $\kappa(\mathcal{L})$ . Hence $\kappa(L)$ is well-defined in a natural way
for any $Q$ -bundle L. $L$ is said to be big if $\kappa(L)=\dim V$ . Similarly, the
ampleness, nefness, etc. of a $Q$ -bundle are well-defined.

If $L$ is nef, it is big if and only if $L^{\dim V}>0$ , but this is not a good definition
of bigness in general.

Given a surjective morphism $f:Varrow S$ , we define the notion of $f$-bigness,
$f$-ampleness and $f$-nefness in a natural way. In particular, if $S$ is Projective,
a $Q$ -bundle $L$ on $V$ is $f$-big (resp. $f$-ample, $f$-nef) if and only if $L+f^{*}H$ is
big (resp. ample, nef) on $V$ for some $H\in Pic(S)$ . In such a case we also say
that $L$ is relatively big (resp. ample, nef) over $S$ .
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(1.3) KODAIRA’S LEMMA. Let $f$ : $Varrow S$ and $L$ be as above and suPPose that
$f$ is projective. Then $L$ is $f$-big if and only if $L-E$ is f-ample for some
effective $Q$ -dimsor $E$ .

The proof is easy and well-known. From this we obtain the following

(1.4) COROLLARY. Let $\Phi$ : $Varrow W$ be a surjective morPhism of varieties. Let
$L$ be a $\Phi$ -big $Q$-bundle on V. Then the restriction of $L$ to any general fiber of
$\Phi$ is big.

(1.5) For a variety $V$ , let 9 be the set of pairs $(M, D)$ consisting of a
normal birational model $M$ of $V$ and a prime Weil divisor $D$ on $M$. Two such
pairs $(M_{1}, D_{1})$ and $(M_{2}, D_{2})$ correspond to the same discrete valuation of the
function field of $V$ if and only if there is another pair $(M’, D’)$ with birational
morphisms $\pi_{j}$ : $M’arrow M_{j}$ such that $\pi_{j}(D’)=D_{j}$ . This is an equivalence relation in
$\varphi$ , and the equivalence class will be called a place of $V$ .

If a place $P$ is represented by $(M, D)$ with $\pi:Marrow V$ , the subvariety $Y=\pi(D)$

of $V$ is independent of the choice of the representative pair, and will be called
the locus of $P$ on $V$ . In such a case we say that $P$ lies over $Y$ .

For any subvariety $X$ not contained in Sing(V), let $\nu:V’arrow V$ be the normal-
ization of the blow-up of $V$ along $X$ , and let $E’$ be the proper transform on $V’$

of the exceptional divisor over $X$ . The place represented by (V’, $E’$ ) will be
called the primary place over $X$ .

(1.6) A $log$ variety is a pair (V, $B$ ) consisting of a normal variety $V$ and
a $Q$ -Weil divisor $B= \sum b_{i}B_{i}$ on $V$ such that $0\leqq b_{i}\leqq 1$ , where $B_{i}’ s$ are the prime
components of $B$ (possibly $B=0$). If $b_{i}=1$ , $B_{i}$ is called an outer boundary

comPonent of (V, $B$ ). A subvariety $Y$ of $V$ of codimension $r$ is called an outer
boundary stratum if there are outer boundary components $D_{1},$

$\cdots,$
$D_{r}$ such that

$Y$ is an irreducible component of $D_{1}\cap\cdots\cap D_{r}$ .
(V, $B$ ) is said to be $log$ smooth at a point $p$ on $V$ if $V$ is smooth at $p$ and

the support of $B$ has only normal crossing singularity at $p$ . It is said to be
$\log$ smooth if it is so at every point on $V$ . Thus, a prime component of $B$

may have singularities. A $\log$ desingularization of (V, $B$ ) is a $\log$ smooth pair
$(M, D)$ together with a birational morphism $\pi:Marrow V$ sucb that $\pi_{*}D=B$ . Such
a $\log$ desingularization exists by virtue of Hironaka’s theory.

For a $\log$ variety (V, $B$ ), the $Q$ -sheaf $\omega_{V}+B$ is called the canonical Q-sheaf
of (V, $B$ ) and is denoted by $\omega(V, B)$ . It is called a canonical $Q$-bundle and is
denoted by $K(V, B)$ if it is $Q$-invertible. If so, a number $a_{P}=a_{P}(V, B)$ is
defined for any place $P$ of $V$ as follows: Take a representative pair $(M, D)$ of
$P$ with a birational morphism $\pi:Marrow V$ , such that $M$ is smooth. Let $B’$ be the
proper transform of $B$ on $M$. Then $K(M, B’)- \pi^{*}K(V, B)=\sum\mu_{i}E_{i}$ for some
$\pi$-exceptional prime divisors $E_{i}$ on $M$. We set $a_{P}=\mu_{i}$ if $D=E_{i}$ for some $i$ , or
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$a_{P}=0$ otherwise. Clearly this is independent of the choice of $(M, D)$ . In fact,
in order to define $a_{P}$ , it suffices to assume that $\omega(V, B)$ is $Q$ -invertible in a
neighborhood of a general point of the locus of $P$ on $V$ .

If $a_{P}\geqq-1$ at any place $P$, we say that (V, $B$ ) has only $log$ canonical
singularities. If furthermore the equality holds only for places lying over an
outer boundary stratum at any general point of which (V, $B$ ) is $\log$ smooth,
we say that (V, $B$ ) has only $log$ terminal singularities (or simply (V, $B$ ) is $\log$

terminal), and such a pair(V, $B$ ) will be called a $\log$ terminal variety.

REMARK. The terminology $\log$ terminal” is used in slightly different
senses in otber paPers, and there are several notions of “

$\log$ terminal” singu-
larities (see $e$ . $g$ . [Ko]). They are equivalent to each other when Int$(B)=0$ ,

but there are delicate differences when Int $(B)\neq 0$ . Our definition is perhaps the
weakest one among those preserving important properties, but details are
omitted here, since we do not need other definitions.

(1.7) Later we will use the following simple fact.

LEMMA. Let (V, $B$ ) be a $log$ terminal variety and let $E$ be an effective
$Q$ -divisor on V. SuPPose that there is no outer boundary stratum of (V, $B$ )

cmtained in the support of E. Then (V, $B+\delta E$ ) is $log$ terminal for any suffi-
ciently small $\delta>0$ .

The proof is easy and is left to the reader.

(1.8) FACT. Our $log$ terminal srngularities are rational.

We just sketch the idea of the proof, since we do not need this fact in
this paper. Suppose that (V, $B$ ) is $\log$ terminal at $p\in V$ . For the sake of
simplicity we assume that $V$ is affine. Then $\mathcal{O}_{V}$ is amPle and the Weil sheaf
$\mathcal{O}_{V}(Int(B))$ is spanned by global sections. So the Weil divisor Int $(B)$ is linearly
equivalent to an effective Weil divisor $D$ such that no outer boundary stratum
of (V, $B$ ) is contained in $D$ . Put $B’=B+\delta(D-Int(B))$ for some small enough
$\delta>0$ . Then $K(V, B’)=K(V, B)$ and Int$(B’)=0$ . It is enough to show that
(V, $B’$ ) is $\log$ terminal.

For a place $P$ with $a_{P}(V, B)>-1$ , we have $a_{P}(V, B’)>-1$ since $\delta$ is small.
On the other hand, if $a_{P}(V, B)=-1$ , the locus of $P$ on $V$ is an outer boundary
stratum, so not contained in $D$ , hence $a_{P}(V, B’)>a_{p}(V, B)$ . In either case we
have $a_{P}(V, B’)>-1$ , as desired.

(1.9) Let (V, $B$ ) be a $\log$ terminal variety and let $f:Varrow W$ be a surjective
morphism. A $Q$ -bundle $L$ on $V$ is said to be $log$ f-ample on (V, $B$ ) if there is
an effective $Q$ -divisor $E$ such that $L$ is $f$-nef, $L-E$ is $f$-ample and (V, $B+E$ )

is $\log$ terminal. If $W$ is a point, we just say $\log$ ample”.
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Any $\log$ ample $Q$-bundle is nef and big. The converse is true if Int$(B)=0$ ,

but not always true in general. Indeed, a $\log$ ample bundle must be nef and
big not only on $V$ but also on any outer boundary stratum; namely it is $\log$

big in the sense of Reid (cf. commentary 10.4 to [Sho]). Although ”
$\log$ big”

does not imply ”
$\log$ ample” in general, we have the following

(1.10) LEMMA. Let (V, $B$ ) be a $log$ terminal variety and let $f:Varrow W$ be
a surjective projective morphism. Let $\infty(f)$ be the unim of curves $C$ in $V$ with
$f(C)$ being a $p\alpha nt$ , and suppose that there is no outer boundary stratum contained
in $\infty(f)$ . Then $f^{*}A$ is $log$ ample on (V, $B$ ) for any ample $Q$ -bundle $A$ on $W$ .

PROOF. We may assume that $A$ is an ample line bundle. Take an ample
line bundle $H$ on $V$ . For any outer boundary stratum $Y,$ $lA_{V}-H$ is generated
by global sections at a general point $y$ of $Y$ for $1\gg 0$ , since $f$ is finite on a
neighborbood of $y$ . Therefore we have $E\in|lA_{V}-H|$ for some $l\gg O$ such that
there is no outer boundary stratum contained in the support of $E$ . By (1.7),

we see easily that $f^{*}A=A_{V}$ is $\log$ ample.

(1.11) VANISHING THEOREM. Let (V, $B$ ) be a $log$ terminal variety, let
$f:Varrow W$ be a surjective morphism and let $L$ be a line bundle on V. Suppose
that $L-K(V, B)$ is $log$ f-ample. Then $R^{j}f_{*}O(L)=0$ for any $j>0$ .

PROOF. For the sake of brevity, we just say “ample” in the sense
” relatively ample over $W$ ’ for the moment. Take an effective $Q$ -divisor $E$

such that $L-K(V, B)-E$ is ample and (V, $B+E$ ) is $\log$ terminal. Replacing
$B$ by $B+E$ , we may assume that $A=L-K(V, B)$ is ample. Then, for some
$a\gg O,$ $aA$ is very ample and the Weil sheaf $O_{V}(Int(B))\otimes O(aA)$ is spanned by
global sections. Hence, as in (1.8), we have an effective Cartier divisor $H$, a
small number $\delta>0$ and an effective Weil divisor $D$ such that Int$(B)+H$ is
linearly equivalent to $D$ , $A-\delta H$ is ample, and (V, $B’$ ) is $\log$ termlnal for
$B’=B+\delta(D-Int(B))$ . Then Int$(B’)=0$ and $L-K(V, B’)=A-\delta H$ is ample.
Applying [KMM; Th. 1-2-5] on (V, $B’$ ), we obtain the desired assertion.

This generalizes the famous result of Kawamata-Viehweg. Similarly we
can generalize many results in [KMM], replacing the ampleness assumption by
$\log$ ampleness. For example

(1.12) FIBRATION THEOREM (COmpare [KMM; 3-1-1&3-2-1]). Let (V, $B$ )

be a $log$ terminal variety and let $f:Varrow S$ be a surjective morphism. Let $L$ be
an f-nef line bundle such that $mL-K(V, B)$ is $log$ f-ample for some $m>0$ . Then
there is an S-morphism $\Phi$ : $Varrow W$ onto a normal variety $W$ with $g:Warrow S$ and a
g-ample line bundle $A$ on $W$ such that $L=\Phi^{*}A$ and $\Phi_{*}0_{V}=0_{W}$ .

PROOF. $mL-K(V, B)-E$ is $f$-ample and (V, $B+E$ ) is $\log$ terminal for
some $E$ . So we replace (V, $B$ ) by (V, $B+E$ ), and argue as usual.
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(1.13) RATIONALITY THEOREM (compare [KMM; 4-1-1]). Let (V, $B$ ),

$f:V-S$ be as above and let $H$ be a $log$ f-ample line bundle on V. Then
$\tau=Inf$ { $t\geqq 0|K(V,$ $B)+tH$ is $f- nef$ } $\in Q\cup t\infty\}$ .

PROOF. $H-E$ is $f$-ample and (V, $B+E$ ) is $\log$ terminal for some $E$ . We
may assume that $K(V, B)+aH$ is not $f$-nef for some small $a>0$ . Since
$K(V, B)+aH=K(V, B+aE)+a(H-E)$ , there are only finitely many extremal
rays $R_{j}$ such that $(K(V, B)+aH)R_{j}<0$ by the Cone Theorem [KMM; 4-2-1].

Then $K(V, B)+tH$ is $f$-nef if and only if $(K(V, B)+tH)R_{J}\geqq 0$ for each $f$ , hence
$\tau\in Q\cup\{\infty\}$ .

(1.14) In the sequel we shall freely use ${\rm Log}$ Minimal Model Program as in
[KMM], [KO]. Terminologies such as extremal ray, contraction of it, divisorial
contraction, $\log$ flip and so on are used in the usual way. Technical details are
not necessary here, so we omit it.

\S 2. Adjoint fibration.

(2.1) DEFINITION. Let $L$ be a big $Q$ -bundle on a $\log$ terminal variety
(V, $B$ ). The $log$ Kodaira energy of such a triple (V, $B,$ $L$ ) is defined as follows:

$\kappa\epsilon(V, B, L)=-Inf\{t\in Q|\kappa(K(V, B)+tL)=\dim V\}$ .

(2.2) The purpose of this section is to prove the following

THEOREM. Let (V, $B$ ) be a $log$ terminal variety. Suppose that $K(V, B)$ is
not $nef,$ $V$ is $Q$ -factorial and $n=\dim V=3$ . Let $L$ be a big $Q$ -bundle on $V$ such
that $K(V, B)+aL$ is $log$ ample on (V, $B$ ) for some $a>0$ . Then there is a
birational transform (V’, $B’$ ) of (V, $B$ ) together with a fibration $\Phi$ : $V’arrow W$ such
that

1) $W$ is a normal variety with $\dim W<n$ .
2) (V’, $B’$ ) is $log$ terminal and $K(V’, B’)-\kappa\epsilon(V, B, L)L’=\Phi^{*}H$ for some

ample $Q$ -bundle $H$ on $W$ , where $L’$ is the ProPer transform of $L$ on $V’$ as a
$Q$ -Weil sheaf (corresponding to the proper transform of Weil divisors).

In particular $\kappa\epsilon\subset-Q$ .

The proof consists of several steps.
(2.3) The transformation from $V$ to $V’$ is a sequence of elementary divisorial

contractions and $\log$ flips, as described below.
TO begin with, set $\tau=Inf$ { $t|K(V,$ $B)+tL$ is nef}. Take $a$ such that

$A=K(V, B)+aL$ is $\log$ ample. By (1.13), $s=Inf$ { $t|K(V,$ $B)+tA$ is $nef$ } $\in Q$ .
Hence $\tau=as/(1+s)\in Q$ .

Applying (1.12) we get a fibration $f$ : $Varrow X$ such that $K(V, B)+\tau L=f^{*}A$

for some ample $Q$ -bundle $A$ on $X$ .
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(2.4) NOW we let the ${\rm Log}$ Minimal Model Program run in this relative
situation over $X$ : If $K(V, B)$ is not $f$-nef, there is an extremal ray $R$ such that
$K(V, B)R<0$ and $f_{*}R=0$ . Let $\rho:V-V^{b}$ be the contraction morphism of $R$ ,
which is an $X$-morphism. If $\rho$ is of fibration type, then the Program ends. If
$\rho$ is a birational divisorial contraction, then (V $bB^{b}$ ) is $\log$ terminal, where
$B^{b}=\rho_{*}B$ . Moreover $V^{b}$ is $Q$ -factorial. If $K(V^{b}, B^{b})$ is nef over $X$ , the Program
ends. Otherwise, replacing (V, $B$ ) by (V $bB^{b}$ ), we repeat the same process. If
$\rho$ is a small contraction, then we take a $\log$ flip $V^{+}arrow V^{b}$ of $\rho$ (cf. [Ko], [Sho])

and let $B^{+}$ be the proper transform of $B$ . Tben $(V^{+}, B^{+})$ is $\log$ terminal and
$V^{+}$ is $Q$ -factorial. If $K(V^{+}, B^{+})$ is nef over $X$ , the Program ends. Otherwise
we repeat the same process replacing (V, $B$ ) by $(V^{+}, B^{+})$ .

AS usual, by the termination theorem of $\log$ flips and by the decreasing
property of the Picard number, the Program must end after finite steps. There
are two possibilities for the final state: Either we get a contraction $\rho$ of
fibration type, or we get a model $(V_{1}, B_{1})$ over $X$ such that $K(V_{1}, B_{1})$ is
relatively nef over $X$ .

(2.5) We will examine how the $Q$-sheaf $L$ (this may be viewed as if a
Weil divisor, if you like) during the above process (2.4).

Suppose that $\rho:Varrow V^{b}$ is a divisorial contraction. Let $E$ be the exceptional
divisor of $\rho$ . In this case $L^{b}=\rho_{*}L$ is a $Q$ -bundle on $V^{b}$ such that $\rho^{*}L^{b}=L+aE$

for some $a\in Q$ . We have $LR>0$ since $(K(V, B)+\tau L)R=0$ . Therefore $a>0$

since $ER<0$ . In particular $L^{b}$ is big as well as $L$ , and $K(V^{b}, B^{b})+\tau L^{b}$ is the
pull-back of $A$ . However, $L^{b}$ may not be nef even if $L$ is ample, and the
invertibility is not always preserved either.

Suppose that $\rho$ : $Varrow V^{b}$ is a small contraction. Let $L^{+}$ be the proper
transform of $L$ on $V^{+}$ . Then $K(V^{+}, B^{+})+\tau L^{+}$ is the proper transform of
$K(V, B)+\tau L=A_{V}$ , so it is the pull-back of $A$ on $V^{+}$ . We claim that $L^{+}$ is big
as well as $L$ .

Indeed, for any place $P$, we have $a_{P}(V, B)\leqq a_{P}(V^{+}, B^{+})$ (cf. [KMM; 5-1-11,
(3) $])$ , where $a_{P}$ is as in (1.6). Hence $v_{p}(L^{+}-L)=\tau^{-1}v_{P}(K(V, B)-K(V^{+}, B^{+}))\geqq 0$ ,

where $v_{P}$ is the discrete valuation at $P$. Thus $L^{+}-L$ is effective and $L^{+}$ is
big. Note that the strict inequality holds in the above situation if and only if
the locus of $P$ is contained in the exceptional set of $\rho$ (cf. [KMM; 5-1-11]).

Thus, in either birational contractions, the bigness of $L$ is preserved.
(2.6) The Kodaira energy does not vary during the above process.
TO see this, consider first the case of flip. Since $K(V, B)+\tau L$ is nef, we

have $\kappa\epsilon(V, B, L)\geqq-\tau$ . Similarly $\kappa\epsilon(V^{+}, B^{+}, L^{+})\geqq-\tau$ . On some model $M$ we
bave an effective $Q$ -divisor $E=L_{M}^{+}-L_{M}$ . For any $t\leqq\tau$ , we have $K(V, B)+tL$

$=K(V^{+}, B^{+})+tL^{+}+(\tau-t)E$ , so $\kappa(K(\mathfrak{j}’- B)+tL)=\kappa(K(V^{+}, B^{+})+tL^{+})$ since $E$ is
excePtional with resPect to $Marrow V^{+}$ . This implies $\kappa\epsilon(V^{+}, B^{+}, L^{+})=\kappa\epsilon(V, B, L)$ .
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When $\rho$ is divisorial, the argument is similar and simpler.
(2.7) NOW we consider the case in which we get a contraction $\rho:V’arrow V^{b}$

of fibration type by the process(2.4). Let $B’$ and $L’$ be the proper transforms
of $B$ and $L$ on $V’$ . Then $K(V’, B’)+\tau L’=A_{V’}$ , so $\kappa(K’+\tau L’)=\dim X\leqq\dim V^{b}<n$ .
Hence $\kappa\epsilon(V’, B’, L’)=-\tau$ .

By virtue of (2.6), the assertion of the Theorem (2.2) is satisfied for $W=X$ .
(2.8) Next we consider the case in which we get a model $(V_{1}, B_{1})$ such

that $K_{1}=K(V_{1}, B_{1})$ is nef over $X$ . First we claim $\dim X=n$ .
Indeed, otherwise, $L_{1}$ is big on any general fiber $F$ of $f_{1}$ : $V_{1}arrow X$ by (2.5)

and (1.4). Since $K_{1}$ is nef on $F,$ $(K_{1}+\tau L_{1})_{F}$ is big, but $K_{1}+\tau L_{1}=0$ on $F$. This
is impossible unless $\dim F=0,$ $i$ . $e.,$ $\dim X=n$ .

Next we claim that $K_{1}+\tau L_{1}=A_{V_{1}}$ is $\log$ ample on $(V_{1}, B_{1})$ . To show this,
we may assume that $L$ is $\log$ ample on (V, $B$ ), replacing $L$ by $K(V, B)+aL$ if
necessary. We will apply (1.10) for this purpose. Let $Y$ be an outer boundary
stratum of $(V_{1}, B_{1})$ . It suffices to derive a contradiction assuming $Y\subset\infty(f_{1})$ ,

where $\infty(f_{1})$ is the union of curves in $V_{1}$ which are contracted to points by
$f_{1}$ : $V_{1}arrow X$ .

Let $P$ be the primary place over $Y$ . If the locus $Y^{\#}$ of $P$ on $V$ is contained
in the exceptional set of the birational map $Varrow V_{1}$ , then $a_{p}(V_{1}, B_{1})>a_{p}(V, B)$

by the observation (2.5). But then (V, $B$ ) is not $\log$ canonical since $a_{p}(V_{1}, B_{1})$

$=-1$ , contradiction. Therefore $Y^{*}$ is not in the exceptional set, and $Varrow V_{1}$ is
an isomorphism at any general point of $Y^{*}$ . In particular $Y^{\#}$ itself is an outer
boundary stratum of (V, $B$ ). Recalling $Y\subset\infty(f_{1})$ , we take a curve $C$ passing a
general point of $Y$ such tbat $f_{1}(C)$ is a point. Let $c\#$ be the proper transform
of $C$ on $V$. Now, take an effective $Q$ -divisor $\Delta$ on $V$ such tbat $L-\Delta$ is ample
and (V, $B+\Delta$ ) is $\log$ terminal. Then $Y^{\#}\not\subset\Delta$ since otherwise (V, $B+\Delta$ ) would
not be $\log$ terminal. Hence $C^{*}\not\subset\Delta$ and $LC^{\#}>\Delta C^{*}\geqq 0$ . On the other hand, as
we saw in (2.5), $L_{1}-L=\tau^{-1}(K(V, B)-K(V_{1}, B_{1}))$ is an effective $Q$ -divisor on
some common model $V$ of $V$ and $V_{1}$ , whose locus on $V$ is contained in the
exceptional set of $Varrow V_{1}$ . Hence $(L_{1}-L)\tilde{C}\geqq 0$ for the common proper transform
$\tilde{C}$ of $C$ and $c\#$ on $\tilde{V}$ . Since $L_{1}\tilde{C}=L_{1}C$ and $LC=LC^{\#}$ , we obtain $L_{1}C>0$ .
But $f_{l}(C)$ is a point, so $K_{1}C\geqq 0$ and $(K_{1}+\tau L_{1})C=AC=0$ . Thus we get a
contradiction, as desired.

REMARK. $f^{*}A$ is not always $\log$ ample on (V, $B$ ).

(2.9) Since $A$ is ample on $X$ , $K_{1}+lA$ is nef on $V_{1}$ for $l\gg O$ . So
$\tau_{\underline{9}}=Inf$ { $t|K(V_{1},$ $B_{1})+tL_{1}$ is nef} $<\tau$ . Since $K_{1}+\tau L_{1}=f_{1}^{*}A$ is $\log$ ample, we have
$\tau_{2}\in Q$ and we get a fibration $f_{2}$ : $V_{1}arrow X_{2}$ such that $K_{1}+\tau_{2}L_{1}=f_{2}^{*}A_{2}$ for some
ample $Q$ -bundle $A_{2}$ on $X_{2}$ . Now the situation is as in (2.3), and we let run the
${\rm Log}$ Minimal Program run over $X_{2}$ as in (2.4).
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If $\dim X_{2}<n$ , we are done as in (2.7). If $\dim X_{2}=n$ , we get a model
$(V_{2}, B_{2}, L_{2})$ as before such that $K_{2}=K(V_{2}, B_{2})$ is nef over $X_{2}$ . $A_{2}$ is $\log$ ample
on $(V_{2}, B_{2})$ , so we can repeat again.

We repeat this process as long as possible. But the birational transformations
$Varrow V_{1}arrow V_{2}arrow\cdots$ consist of flips and divisorial contractions. By the termination
theorem of $\log$ flips and by the decreasing property of the Picard number, as
usual we infer that the whole process must terminate after finite steps. At the
end we get a model with the desired fibration structure.

(2.10) REMARK. The referee points out that our argument works in the
non-Q-factorial cases too, with a slight modification. The only necessary change
is that, when encountering a divisorial contraction, one has to make flips as a
preparatory step instead of simply contracting the divisor. Thereby $L$ remains
a $Q$ -bundle and tbe singularities are $\log$ terminal.

\S 3. Spectrum Conjecture.

(3.1) A polarized terminal variety is a pair (V, $L$ ) consisting of a variety
$V$ baving only terminal singularities and an almple line bundle $L$ on $V$ . Its
Kodaira energy is defined by

$\kappa\epsilon(V, L)=-Inf\{t\in Q|\kappa(K+tL)\geqq 0\}$

as in (2.1), where $K$ is the canonical $Q$ -bundle of $V$ . The spectrum set $S_{n}$ of
polarized terminal $n$ -folds is defined to be the set of all the possible values of
Kodaira energies of polarized terminal varieties of dimension $n$ . It is easy to
see $S_{1}=\{t\in Q|t\geqq 0\}\cup\{-2/d\}_{a\in Z^{+}}$ . Moreover, for any $n$ , every positive rational
number is contained in $S_{n}$ . As for the negative range, we have the following.

(3.2) SPECTRUM $coNJECTURE$ . For any $\epsilon>0$ , $\{t\in S_{n}|t<-\epsilon\}$ is a finite
subset of $Q$ .

This is closely related to the following conjecture on the boundedness of
terminal Fano n-folds.

(3.3) CONJECTURE. For any fixed $n\in Z^{+}$ , there exist positive integers $r$ and
$d$ with the following properties: $(-K_{V})^{n}<d$ and $rK_{V}$ is invertible for every Fano
$n$-fold $V$ which has only terminal singulanties and Picard number one.

This is proved for $n=3$ by Kawamata [Ka] under the additional assumption
that $V$ is $Q$ -factorial, and recently by Kollar-Mori-Miyaoka without this
assumption.

(3.4) We will prove the Spectrum Conjecture for $n\leqq 3$ using Kawamata’s
result, at least for a $Q$ -factorial variety $V$ . Let $S_{n}^{0}$ be the set of possible
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values of $\kappa\epsilon(V, L)$ , where $V$ is $Q$ -factorial and has only terminal singularities, the
Picard number of $V$ is one, and $L$ is a Weil sheaf which is ample as a Q-bundle.
Then

(3.4.1) $\{t\in S_{n}^{o}|t<-\epsilon\}$ is a finite subset of $Q$ .
TO see this, let $r$ and $d$ be as in (3.3). Then for any (V, $L$ ) as above,

we have $\kappa\epsilon(V, L)=-r^{n-1}(-K_{V})^{n}/L(-rK_{V})^{n-1}$ , wbile $r^{n-1}(-K_{V})^{n}<r^{n-1}d$ and

$\epsilon^{-1}r^{n-1}(-K_{V})^{n}<\epsilon^{-1}r^{n-1}dL(-rK_{V})^{n-1}$

so there are at most finitely many such numbers.
is a positive integer. In the range $\kappa\epsilon<-\epsilon$ , $L(-rK_{V})^{n-1}<$

(3.4.2) $\{t\in S_{n}|t<0\}\subset S_{n}^{o}\cup(\bigcup_{j<n}S_{f})$ , if the Minimal Model Program works
in dimension $n$ .

TO see this, we apply (2.2) to the triple (V, $0,$ $L$ ). Let $\Phi$ : $V’arrow W$ be the
fibration as there and let $L’$ be the proper transform of $L$ on $V’$ . As in (2.7),

we further let the Minimal Model Program run over $7V$ . Then we get a
contraction $\rho$ : $V^{\parallel}arrow V^{b}$ of an extremal ray $R$ of fibration type. Let $F$ be a
general fiber of $\rho$ and let $L’’$ be the proper transform of $L’$ on $V’$ . Then
$K_{F}=\kappa\epsilon(V, L)L_{F}’’$ . Moreover, $L_{F}’’$ is big by (1.4), so $L’’R>0$ , which implies that
$L_{F}’’$ is ample. Hence $\kappa\epsilon(V, L)=\kappa\epsilon(F, L_{F}’’)\in S_{j}$ for ] $=\dim F$ if $J<n$ .

If $j=n,$ $V^{b}$ is a point and $V’’=F$. Moreover the Picard number of $V’’$ is
one. Therefore $\kappa\epsilon(V, L)\in S_{n}^{o}$ in this case since $V^{\prime/}$ is still $Q$ -factorial and has
only terminal singularities by the minimal model theory. Thus we prove the
claim (3.4.2).

NOW, combining these observations (3.4.1) and (3.4.2), we obtain (3.2) by
induction on $n$ .

According to the remark (2.10) by the referee, this argument works for
$n=3$ without the $Q$ -factoriality assumption.

(3.5) REMARK. For $n>3$ , we can show that $\{t\in S_{n}^{s}|t<3-n\}$ is a finite
set, where $ssn$ is the set of all the possible values of Kodaira energies of
polarized $n$ -folds (V, $L$ ) such that $V$ is smooth (cf. [BS], [F2]).

(3.6) HOW about the spectrum set of polarized $\log$ varieties 7 The problem
seems to be very complicated even in the following simplest cases.

Let $S_{n^{S}}^{l}=\{\kappa\epsilon(V, B, L)|(V, B)$ is a $\log$ smooth $\log$ variety, $B=Int(B),$ $L$ is
an ample line bundle on $V$ }. For $n=1$ , this set is discrete in the negative
range, but this is no more true for $n\geqq 2$ .

TO see this, consider the case $V\cong\Sigma_{e}$ with $e>0$ , the e-th Hirzebruch surface,
$B$ is the negative section with $B^{2}=-e$ and $L=B+(e+1)F$, where $F$ is a
fiber of the $P^{1}$ -bundle map $\Sigma_{e}arrow P^{1}$ . Then the canonical bundle $K$ of $V$ is
$-2B-(e+2)F$, hence $K+B+(1+1/(e+1))L=(e+1)^{-1}B$ and $\kappa\epsilon(V, B, L)=$

$-(1+1/(e+1))$ . Thus $S_{2}^{\iota s}$ contains $\{-1-1/(e+1)\}$ , a sequence converging to
$-1$ from below. Moreover, we have $\kappa\epsilon(V, B, mL)=m^{-1}\kappa\epsilon(V, B, L)$ for any



Kodaira energy 11

positive integer $m$ , so $-1/m$ is also a limit point of $S_{2}^{ts}$ . Thus $S_{2}^{\iota s}$ has infinitely
many limit points in tbe negative range.

AS in (3.4.2), we can show that $S_{n}^{\iota s}$ is contained in the union of low
dimensional $\log$ Kodaira spectrum sets and the set of values of Kodaira energies
of (V, $B,$ $L$ ), where (V, $B$ ) is $\log$ terminal and Int$(B)=B,$ $V$ is $Q$ -factorial and
of Picard number one, and $L$ is a Weil sheaf which is ample as a Q-bundle.
However, unlike in (3.4), there is no counter part of (3.3), so the $\log$ spectrum
set has a complicated structure. Here we just present the following conjecture,
which was originally proposed by Shokurov in a slightly different form:

(3.7) LOG SPECTRUM CONJECTURE. Given a subset $X$ of $R$ , let Lim(X) be
the set of limit points of $X$ , and put Lim $k(X)=Lim(Lim^{h-1}(X))$ . Then $Lim^{k}(S_{n}^{ls})$

$\subset\{t\in R|t\geqq k-n\}$ for any Posrtive integer $k\leqq n$ .

In particular, $Lim(S_{n}^{ls})$ seems to resemble the set $S_{n-1}^{\iota s}$ . In fact, Shokurov
conjectures further that the limit point can be reached only from below.
Namely, for any $x<0$ , the set $\{t\in S_{n}^{ls}|x<t<x+\epsilon\}$ is finite for some small $\epsilon>0$ .
This property is related to the termination problem of flips.

Similar phenomenon occurs if we allow $V$ to have $\log$ terminal singularities
instead of boundaries. Moreover, the spectrum set of $\log$ terminal $n$ -folds with
$B=0$ seelns to resemble the above set $S_{n}^{lS}$ , and to be closely connected with the
set of possible indices of $\log$ terminal $Q$ -Fano $n$ -folds. See [A1], [A2] for
related topics.

(3.8) AS for the lowest possible value of $\kappa\epsilon$ , we have the following fact:
Let $L$ be an ample line bundle on a $log$ terminal $n$ -fold (V, $B$ ). Then $\kappa\epsilon(V, B, L)$

$\geqq-n$ unless $V\cong P^{n}$ .
In fact, we have $h^{0}(\omega_{v}(tL))>0$ for some integer $t$ with $0<t\leqq n$ for arbitrary

normal $n$ -fold $V$, unless $V\cong P^{n}$ .
Indeed, if not, we have $0=h^{0}(M, K_{M}+tL)=h^{n}(M, -tL_{M})$ for any smooth

model $Marrow V$, so [Fl; (2.21] applies.

REMARK. By the same result, we can prove $\kappa\epsilon(V, B, L)\geqq-n-1$ for
arbitrary nef big line bundle $L$ .

References

[A1] V. A. Alexeev, Fractional indlces of $\log$ del Pezzo surfaces, Math. USSR-Izv.,
33 (1989), 613-629.

[A2] V. A. Alexeev, Two two-dimensional terminations, Duke Math. J., 69 (1993),

527-545.
[B] V. V. Batyrev, The cone of effective divisors of threefolds, Contemp. Math.,

131-3 (1992), 337-352.
[BS] M. C. Beltrametti and A. J. Sommese, On the adjunction theoretic classification

of polarized varieties, J. Reine Angew. Math., 427 (1992), 157-192.



12 T. FUJITA

[FO] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc.
Lecture Note Ser., 155, Cambridge Univ. Press, 1990.

[F1] T. Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J., 115 (1989),

105-123.
[F2] T. Fujita, On Kodaira energy and adjoint reduction of polarized manifolds,

Manuscripta Math., 76 (1992), 59-84.
[F3] T. Fujita, Notes on Kodaira energies of polarized threefolds, preprint.
[Ka] Y. Kawamata, Boundedness of $Q$ -Fano threefolds, Contemp. Math., 131-3 (1992),

439-445.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model

problem, In Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10, 1987,
pp. 283-360.

[KO] J. Kollar et al., Flips and abundance for algebraic threefolds, Lectures in Utah
Summer Seminar 1991, Ast\’erisque, 211 (1992).

[M1] S. Mori, Threefolds whose canonical bundles are not numerically effective,
Ann. of Math., 116 (1982), 133-176.

[M2] S. Mori, Flip theorem and the existence of minimal models for 3-folds, Journal
of AMS, 1 (1988), 117-253.

[Sho] V. V. Shokurov, 3-fold $\log$ flips, Russian Acad. Sci. Izv. Math., 40 (1993), 95-202.

Takao FUJITA
Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo
152 Japan
( $e$ -mail: fujita\copyright math. titech. ac. jp)


	Introduction.
	\S 1. Preliminaries.
	(1.11) VANISHING ...
	(1.12) FIBRATION ...

	\S 2. Adjoint fibration.
	\S 3. Spectrum Conjecture.
	References

