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§1. Introduction.

Let G be a finite group, and let X be a character of G of degree n. Let L
be the set of values of X on the nonidentity elements of G. We call L the
type of the pair (G, X). Put fr(x)=Ileer(x—a). It is known that fi(n) is a
rational integer and |G| is a divisor of f(n) (see [3], [4]). The pair (G, X) is
said to be sharp if fr(n)=|G].

The notion of sharpness was first introduced for permutation characters by
Ito and Kiyota in [5] as a generalization of sharply t-transitive permutation
representations. Indeed, if G is a sharply ¢-transitive permutation group and X
is the associated permutation character, then (G, X) is sharp of type {0, 1, ---,
t—1}. In [4], Cameron and Kiyota extended the definition of sharp pair to
that given above and posed the problem of classifying, for a given set L of
algebraic integers, the sharp pairs (G, X) of type L.

The pair (G, X) is said to be normalized if X does not contain the principal
character of G as a constituent. If X does contain the principal character 1; as
a constituent with multiplicity m, and if we put X’=X—m-1s, L'={a—m|acsL},
then (G, X) is sharp of type L if and only if (G, X’) is sharp of type L’. Thus
it is no loss of generality to consider only normalized pairs (G, X) when classi-
fying sharp pairs.

In this paper we give a complete classification of sharp pairs of type L
when L contains an irrational number. Several special cases have appeared in
the literature. For example, we have the following results. (See also [1], [9],

(61, [73. [31)

THEOREM 1.1 (Cameron-Kiyota, [4]). Suppose (G, X) is sharp and normalized
of type L, where L consists of a single algebraic conjugacy class of irvational
values. Then G is cyclic of odd prime order, and X is either linear or the sum
of two complex conjugate linear characters of G.

THEOREM 1.2 (Alvis-Kiyota-Lenstra-Nozawa, [2]). Suppose (G, X) is sharp
and normalized of type L, where LNZ=@. Then G is a cyclic group of odd
order, and X is either a linear character or the sum of two complex conjugate
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linear characters of G.
Our main result is the following.

THEOREM 1.3. Suppose (G, X) is sharp and normalized and X assumes an
irrational value. Then one of the following holds.

(i) G is cyclic of order m, and either m=3 and X is linear, or else m=5
and X is the sum of two complex conjugate linear characters of G.

(ii) G 1s dihedral of order 2m, where m=5 is odd, and X is irreducible of
degree 2.

(ili) G is dihedral or generalized quaternion of order 2m, where m=8 is
even, and X=¢ or X=d¢-+e¢, where ¢ is irreducible of degree 2 and ¢
is linear with cyclic kernel of order m.

(iv) G is isomorphic to the binary octahedral group and X is irreducible of
degree 2.

(v) G is tsomorphic to SL(2,5) and X is irreducible of degree 2.

(vi) G 1is isomorphic to As and X is irreducible of degree 3.

§2. The proof of Theorem 1.3.

We require the following two results, the second of which is proved in the
next section.

THEOREM 2.1 (Blichfeldt [3], Cameron-Kiyota [4]). Let G be a finite group,
and let X be a character of G. Let L be the set of values of X on G\N{1}. Then
fi(n) is a rational integer, and |G| divides fp(n).

THEOREM 2.2. Suppose (G, X) is sharp and normalized, g=G, and X(g) is
irrational. Let p be a representation of G affording X, and let L(g) be the set
of values of X on {g>~{l}. Then the following hold.

(i) Celg) is cyclic, and X assumes irrational values on the generators of Cy(g).

(ii) Any nonidentity eigenvalue of p(g) occurs with multiplicity 1. Moreover,

if w and o' are distinct nonidentity eigenvalues of p(g), then w'=a.

(iii) If XX or o(g) is odd, then fr»h(n)=o0(g). If X=X and o(g) is even,

then fr.y(n)=20(g).

PrOOF OF THEOREM 1.3. Throughout this proof we suppose (G, X) is sharp
and normalized of type L, where L contains an irrational number. Also, we
denote by p a representation of G affording X. By there is some
g<=G such that X(g) is irrational and Cs(g9)=<g>. We fix such an element g for
the remainder of this proof. Put H=Cs(g), N=Ng(H).

STEP 1. If X1, then G is cyclic and X is linear.
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ProoF. Suppose X#Z1. Then p(g) has a single nonidentity eigenvalue
with multiplicity 1 by Thus N=Cs(g)=H. Also, Cs(h)=H for
heH~{1}, so and *HNH={1} for x&G~H. Thus G is a Frobenius group
with Frobenius complement /. Let K be the Frobenius kernel, so G\K is the
disjoint union of the sets “H\{l} as x ranges over K. Since (G, X) is normal-
ized, we have

0=|G:K|-&, )¢ =& Dx+|H|-&X, Dr—n,

so (X, Dxg=1—(|H|—1)(n—1)=0, and hence n=1 since |H|=3. Therefore X
is linear, and so G is abelian since X is faithful. Thus G=Cq(g)=<g) as
required. [

We suppose for the rest of this proof that X=%. Let ® be a nonidentity
eigenvalue of p(g), and let 1 be the linear character of H such that A(g)=w.
Let ¢ be the unique irreducible character of G such that ¢ is a constituent of
both X and the induced character A°. Put m=|H| and d=¢(1). Since p(g) has
only two nonidentity eigenvalues by IN: H|<2. Also, Co(h)=H
for any heH such that h®*#1.

STEP 2. Suppose ¢+¢. Then G is cyclic and X is the sum of two complex
conjugate linear characters.

PrROOF. In this case g is not conjugate to g~!, so N=H. Let K=
ker(—¢—¢). Then K contains H, and hence |K|>|G: H|-(|H|-2)>|G|/2
since |H|=5. Therefore K=G and X=¢+¢ since (G, X) is normalized. It
follows that ¢ is faithful.

Note ¢p=(d—1)-1z+4. Since (¢, ¢)¢=1, we have

IG:Hl 3 |d=14+ix)]*<|G].
rcH, z2+#1
If m is even, then m((d—1)2+1)—d*—(d—2)*<m, so d=1 since m=8. If m is
odd, then m((d—1)*+1)—d?®<m, so d=1 since m=5. In either case ¢ is linear,
so G is abelian since ¢ is faithful. Therefore G=Cs(g9)=<g>, as required. O

For the remainder of this proof we suppose ¢=¢, so d=2 and G is non-
abelian. Put K=ker(X—¢), so HSK. If m is even, then |K|>|G:N|-(|H|—2)
>|G|/3 since m=8. If m is odd, then |K|>|G:N|-(|JH|—1)>|G|/3 since
m=5. In either case we have |G: K|<2. Observe that X=(n—d)e+¢, where
¢ is the linear character of G with kernel K. (If K=G, then n=d and X=¢.)

If m is divisible by an odd prime p and P is the Sylow p-subgroup of H,
then Cg(P)=H, so Ng(P)=N, and thus P=Syl,(G) since |N: H|<2.

Suppose m is a power of 2. If xeN\H, then p(x) exchanges the non-
identity eigenspaces of p(g), so p(x) has a pair of eigenvalues {, —{, and thus
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X(x) is rational by [Theorem 2.2. In particular, if X is the conjugacy class of
¢ in G, then NNXE {g, g7*'}. Therefore N&Syl,(G) since Ns(N)=N.

STEP 3. Suppose H is normal in K. If m is odd, then G is dihedral of
order 2m and X=¢ is irreducible of degree 2. If m is even, then G is either
dihedral or genmeralized quaternion of order 2m, and X=¢ or X=¢-+¢ where ¢
is irreducible of degree 2.

PROOF. Suppose that m is divisible by an odd prime p. Let P be the
Sylow p-subgroup of H. Then P is the unique Sylow p-subgroup of G since
H is normal in K, and thus H=Cg(P) is normal in G. Now suppose m is a
power of 2, so N=Syly,(G). Then H is normal in G since G=N-K.

Therefore H is normal in G in either case, so G=N and |G: H|=2, Thus
G is dihedral if m is odd, G is dihedral or generalized quaternion if m is even,
and d=2 in either case. Note that if x&G\H, then X(x)=—(n—2). Let L(g)
be as in If m is odd, then fi(n)=m=|G|/2, and hence
—(n—2)=n—2 since (G, X) is sharp, so n=2 and X=¢. If m is even, then
frpm)=2m=|G|, so —n—-2)eXH\Z<{n—4, n—3, n—2, n—1, n} since
(G, X) is sharp, so n=2 or n=3, and therefore X=¢ or X=¢+e. O

For the remainder of this proof we suppose H is not normal in K. Let M=
OKNALY), My=MNZ, M*=M~Z. Note ¢ is faithful on K since X is faithful,
so d#&M,. Since p(x) cannot have —1 as an eigenvalue if X(x) is irrational by

X assumes only rational values on G\K.
STEP 4. M*S¢(H).

PROOF. Suppose not, so there is some x&K such that ¢(x) is irrational
and ¢(x)&¢(H). By [Theorem 2.2 we have Cq(x)=<g’), where X(g’) is irrational
and Cg(g)=<g">. Put H'={g'>, N=N¢H'), m'=|H'|. Let @ be a nonidentity
eigenvalue of p(g’), and let A’ be the linear character of H’ defined by 2'(¢')=w'.
Note ¢y =(d—2)-14:+2"+2'. Also, if z€G, 2°#1, and z is contained in a
conjugate of H and a conjugate of H’, then both H and H’ are conjugate to
Cs(2), which is impossible since ¢(x)&¢(H). Therefore we have

L > Id—Z—H(xH—WC—)IZ—i—_L Zﬂld——2+l’(y)+27(}~)]2<l.

|N | zeH z2#1 [N’ |yer"Ty2
If m and m’ are both odd, then
__l__ 2 2 1 l4
o Im((d—2*+2)—d ]+%—,[m (d—2:+2)—d*] < 1,

which is impossible since d=2 and m, m’=5. If m is even and m’ is odd, then
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1 ’ __0O\2 g2
5o Im(d—2P42)—d*] < 1,

¥,,],-__ _ 2 A2 . 2

5, [m(d—2P+2)—d*—(d—4"]+
which is a contradiction since d=2, m=8 and m’=5. A similar contradiction
occurs of m is odd and m’ is even. Finally, if m and m’ are both even, then

1
2m’

5 Im(d— 22— dt—(d— 47T 4 5 D (=274 2)— d—(d—47] < 1,

which is impossible since d=2 and m, m’=8. Therefore M*S¢(H). O
It follows from Step 4 that all irrational values of X occur on conjugates of H.

STEP 5. Suppose d=2. Then G is isomorphic to the binary octahedral group
or SL(2,5), and X=¢ is irreducible of degree 2.

ProOOF. We have M,E{—2, —1, 0, 1} since ¢ is faithful on K. Moreover,
—2€M, if and only if —2&¢(H) since Z(K)SH. Thus M¢(H)S{—1, 0, 1}.

Case 1. Suppose gcd(6, m)=1. Then | K| divides 6/, \ia)(n)=6m by Theo-
rem 2.1 and part (iii) of Let p be a prime divisor of m, and let
P be the Sylow p-subgroup of H. Since Cg(P)=H and H is not normal in K,
we must have p=5, H=P, and |K|=6m. The action of K on Syl;(G) induces
a homomorphism K— S, whose kernel is a 2-subgroup of Nx(H), so m=>5 and
[K|=30. This is impossible since Cq(H)=H.

Case 2. Suppose ged(6, m)=2. Then M \@P(H)ES{—1,0, 1}, and M,\¢(H)
< {—1, 1} if m/2 is even. Therefore |K| divides 12m if m/2 is odd, and |K|
divides 6m if m/2 is even. Also,

L 2m=4) _\N.H|
m

77’}’TzeH.2z2¢1|l(x>+2(x)lz -
and therefore |N: H|=2 since m=8.

Suppose m has an odd prime divisor p. Let P be the Sylow p-subgroup of
H, so P=Syl,(G). Then p=5 or p=11 since |G : N| divides 12 and N+#G.

Suppose p=5. Then |G:N|=6, and |G|=12m. The action of G on Syl;(G)
induces a homomorphism ¢ : G—S; whose kernel is a 2-subgroup of N. Thus
|P|=5. Let @ be the Sylow 2-subgroup of H. Then @ Zker{(c) since S; has
no elements of order 10. If m/2 is even, then C4(Q)=H, so ) is not charac-
teristic in Kker(¢) since H is not normal in G, and thus |H|=20 and ker(o) is
isomorphic to the quaternion group. Then the image of ¢ has order 30, which
is impossible. Thus m/2 is odd, so |H|=10 and |{G|=120. Note ker(o)={z),
where z is a central involution in G, and ¢(G)=A;. Also, G# A; X Z, since
d=2. It follows that G is isomorphic to the double cover of A;, that is,
SL(2, 5), and X=¢ is irreducible of degree 2.
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Now suppose p=11. Then |G:N|=12, so |G|=24m, |K|=12m, and hence
KNN=H. Note m/2 is a power of 11. The action of K on Syl,,(G) induces a
homomorphism ¢ : K—S,, whose kernel is a 2-subgroup of H. Therefore |P|
=11, |H|=22 and |K|=264. Moreover, ker(¢)=<z) for some involution z& Z(K)
since S,, contains no elements of order 22. Then H=H/{z) is a Tl-set in K=
K/{z), so K has a normal subgroup of order 12, and hence K has a normal
subgroup K, of order 24. However, P must act on K, \{z) without fixed points,
so we have a contradiction.

Finally, assume m is a power of 2, say m=2¢, Then NeSyl,(G), and thus
|G |=6m=3-2!"!, The action of G on Syl,(G) induces a homomorphism ¢ : G —
S; whose kernel contains Hy,=<g?>. If >3, then H, is characteristic in ker(o),
so H, is normal in G, and hence H=Cgs(H,) is normal in G, a contradiction.
Therefore t=3 and |G|—=48. Let xe<ker(e¢)\H. Since x&N and x*’cH, we
have o(x)=2 or o{x)=4. 'If o(x)=2, then ker(c¢) is dihedral of order 8, so H,
is characteristic in ker(¢) and we have a contradiction. Therefore o(x)=4. It
follows that G is isomorphic to the binary octahedral group and X=¢ is
irreducible of degree 2.

Case 3. Suppose gcd(6, m)=3. Then M ¢(H)S {0, 1}, so |K| divides 2m
and H is normal in K, a contradiction.

Case 4. Suppose gcd(6, m)=6. If m/2 is even, then M,S¢(H), and there-
fore | K| divides 2m and H is normal in K, a contradiction. Therefore m/2 is
odd, so M\¢(H)<S {0}, and thus | K| divides 4m. Let P be the Sylow 3-subgroup
of H. Then P&Syly(G) and Ng(P)=N, so |G:N|=4, |G|=8m and m/2 is a
power of 3. The action of G on Syly(G) induces a homomorphism G — S, whose
kernel is a 2-subgroup of N. Therefore | P|=3 and |H| =6, which is impossible
since X assumes irrational values on H. [

STEP 6. Suppose d=3. Then G is isomorphic to As, and X is irreducible of
degree 3.

PRrROOF. Since (¢, ¢)s=1, we have

IG:N| >
e

H.,x?

L a2+ 20+ < |G

Suppose m is even. Then m((d—2)*+2)—d*—(d—4)*<|N|, and it follows
that d=3, m=38, and |N: H|=2. Note —3¢M, since Z(K)SH and ¢ does not
assume the value —3 on H. Also, —2&M, since d=3<¢(5) and ¢(K)SQ(w).
Therefore M,S{—1, 0, 1, 2}, so |K| divides 24-16 by [Theorem 21 and part (iii)
of Since N&Syly(G), we must have |G|=48 and |Syl,(G)|=3.
Arguing as in Case 2, we see G is isomorphic to the binary octahedral group.
Then G has no irreducible characters of degree 3 with irrational values, so a
contradiction is reached.
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Therefore m is odd, and hence m((d—2)*+2)—d*<|N]|, so d=3, me {5, 7}
and |N:H|=2. We have —3¢&M, since Z(K)SH and —3&¢(H). Suppose
m=7. Then —2&M, since d=3<¢(’) and ¢(K)SQ(w). Therefore M,S
{—1,0, 1, 2}, so |K| divides 24.7. Since H&Syl,(G), it follows that |Syl.(G)|
=8, which is impossible since |N: H|=2. Therefore p=5. Put L,=LNZ,
L*=IL~\Z. Since He&Syl(G), we have |G|s=5, and hence gcd(5, f. (n))=1
since fr«(n)=5. Thus —2&M, since otherwise n—5&L,. Therefore M,S
{—1,0, 1, 2}, and hence |K| divides 24-5=120. Since |N: H|=2, we must
have |G|=60, so G has 6 Sylow 5-subgroups. Therefore G is isomorphic to
As, K=G, and ¥=¢ is irreducible of degree 3. I

We have shown that will follow once is estab-
lished.

§3. The proof of Theorem 2.2.

In this section we shall prove thus completing the proof of
We require several lemmas. We suppose that (G, X) is sharp
and normalized of type L. Let n=X(l), and let p be a representation of G
affording X.

Let £ be a primitive complex k-th root of unity. We extend the defini-
tions of the Euler function ¢ and Mobius function g to complex roots of unity
by setting o(Q)=¢(k) and p(l)=pu(k).

LEMMA 3.1 (Alvis [1]). Suppose g=G and X(g) s irrational. Let L’ be the
Galois orbit containing X(g). Let v({) denote the multiplicity of { as an eigenvalue
of p(g9), and put c=y(1), t=|L"|. Then

fL,(n> > (li)t I N(l_c)zw(:)/(n—c)g(;),
2 o
where N(a) denotes the product of the distinct algebraic conjugates of a. In

particular,
n—c

fuln) 2 (5 5) peret
if g has prime power order p'. Moreover, if equality holds in either case, then
L'CR and t<¢(o(g)).

LeMMA 3.2. Suppose g=G, X(g) is irrational, and X(g)=X(h) for all elements
h of G of prime power order. Let L’ be the Galois orbit of X(g), and let ¢ be
the multiplicity of 1 as an eigenvalue of p(g). Then fr.(n)=1 and n—c=<2.
Moreover, if n—c=2 then X(g) is real.
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PROOF. Let P=Syl,(G), where p is a prime divisor of |G|. Since (P, Xp)
has type contained in L\L’ by assumption, |P| divides f.(n)/f..(n) by [Theoreml
2.1. In particular, |G| divides fr(n)/fr(n), and therefore f,.(n)=1 since (G, X)
is sharp of type L. Also, it follows from that

n—c

(P55) = futm =1

where t=|L’], and thus we have n—c=1 or n—c=2. If n—c=2, then equality
holds in the first inequality of [Lemma 3.1, and therefore X(g) is real. [

LEMMA 3.3. Suppose g=G, X(g) is irrational, and g is a p-element of G for
some prime p. Let L’ be the Galois orbit of X(g). Then fr.(n) is a power of p,
and le(n)>1.

PROOF. Let w be a primitive o(g)-th root of unity. Since L'SQ(w)\Q, p
is a unique prime such that L’'SQ(w). Thus if Q&Syl,(G) for some prime g,
g#p, then (Q, X,) has type contained in L\L’, so |Q| divides fr(n)/fr(n). In
particular, the p’-part of |G| divides fr(n)/fr(n), and thus f;.(n) is a power
of p since (G, X) is sharp of type L. Also since g is a p-element of G, we
have n—X(g)e(l—w)Z[w], and it follows that p divides fp.(n). O

LEMMA 3.4 (Alvis-Kiyota-Lenstra-Nozawa [2]). Assume X(g) is irrational,
where g G has order p* for some prime p. Let L’ be the Galois orbit of X(g),
and assume fr.(n) is a power of p. Then there is a primitive complex p'-th root
® of unity and a nonnegative integer s such that the eigenvalues of p(g) are 1
and w (with multiplicities n— p* and p*, respectively) or 1, w and @ (with multi-
plicities n—2p°, p* and p*, respectively).

We say an element g of G is X-singular if X(g) is irrational and the product
of the algebraic conjugates of n—X(g) is equal to 1. If ¢ is X-singular, then
X(g)#X(h) for any p-element h of G whenever p is prime by Lemma 3.3.

LEMMA 3.5. Suppose g=G. Then one of the following holds.

(i) X(g) is rational.

(ii) g is X-singular. Moreover, if & is a nonidentity eigenvalue of p(g), then
the eigenvalues of p(g) are either 1 and &, with multiplicities n—1 and
1, respectively, or else 1, & and &, with multiplicities n—2, 1 and 1,
respectively.

(iii) X(g) is irrational and X(g)=X(y) for some p-element y of G, where p is
prime. Moreover, if o(g)#o(y), then o(y)=3 if X(g9) is not real, and
o(y)=b if X(g) is real.

PROOF. Assume X(g) is irrational and X(g)#2X(y) for all elements y of G
of prime power order. Let ¢ be the multiplicity of 1 as an eigenvalue of p(g).
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Then g is X-singular and n—c<2, and X(g) is real if n—c=2, by
Therefore (ii) holds.

Suppose now that X(g) is irrational and X(g)=2X(y) for some p-element y of
G. Let p'=o(y), and let @ be a nonidentity eigenvalue of p(y). By
we have X(y)=n—p'+p'w or X(y)=n—2p°+p'w+p'w for some nonnegative
integer s.

Let £ be a primitive |G|-th root of unity, and let {,, {,- be the p-part and
p’-part of , respectively. For £=<{), denote by u(§) the multiplicity of & as
an eigenvalue of p(g). Let Tr: Q) —Q(Z,) be the trace mapping. Recall that
we have extended the Euler function ¢ and the Mobius function g to complex
roots of unity. Define

X'={efmud) =1, X ={clllué=—1}.
Put
v(a) =é€2x+ vEa)/e(&), vi(a) :ég_ v(€a)/p(§),

and define yy(a)=v*(a)—v (a). Then we have

Tre) = 3 (2 veaTr®)a

ae py Nelpn

= 5 (2 seau®el)/o®)a

ael p> e

=) 2 vla)a. @.1)

ae pd

Let 0, be a primitive complex p-th root of unity.
Case 1. Suppose X(g) is not real. We have

Tr(X(9)) = ¢ Nn—p")+¢Cp)p'o. 3.2)

We claim that either o(g)=o(v)=p" or else p'=3. First suppose [=1. Com-
paring and [3.2), we see

n—p° = v(1)—w(0), Pp° = vo(@)—o(0)
for any 0=<{0,>\ {1, w}. Therefore
n < v ()4 (w)+2v7(9) gég (u(E>+v(5w))+2£E§_ v(§0).

Since n=73l¢cw,v(§), We have

(=23 3 uled < (r-D(n— 3 6E+E0) <23 3 1(¢d),

n —
tex

where ¢ in the sums ranges over <d,>\{l, @}. Suppose »>3. Then v(£§)=0
for =X and 0=,>\ {1, w}. Therefore
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eeEX+ WE+vw) = n < 5§’+ W& +v(Ew)/ (&),

and hence n=y(1)+v(w) and v(§)=0 for &€& {1, w}. Thus o(g)=o0(y)=p, and the
claim holds.

Now suppose />1. Then
, n—p* = v(1)—1y(0), P° = vo(®)—vs(0w)
for any 0=<d,>\{1}. Therefore
n < v (D+v*(w)+v7(0)+v (dw) éé §+ (V(E)+v(5w))+$§_ (¥(§0)+v(&dw)),
and summing over d=<{d,>\{l} gives
(=D B ED)+uEd0) < (p—D(n— T @E+v(Ew))
§ feXx- fex+
=2 2 Wéo)+viw)).
3 ¢ex-
If p>2, then v(§0)=1(édw)=0 for §X~ and d=<d,>\ {1}, so
n < v (D)+v'(w) §£§Y+(v($)+v(5w))/¢(§)- 3.3)

On the other hand, if p=2 then

n = yo(1)—vo(—1)+vo(@)—vo(—w)
v (H)+v'(@+yv (—D+v (—w)
< 3 W@ +véw)+ 2 ((—E+u(—bw))/2
fex+ tex-
since ¢(&)=2 for é=X~. Therefore yv(—§&)=y(—éw)=0 for £=X~ since n=
Seeryv(€), and hence also holds if p=2. Thus n=yp(1)+v(w) and v(&)=0

for £¢& {1, @}, so o(g)=o0(y)=p" as claimed.
Case 2. Suppose X(g) is real. Note

TrX(9)) = ¢Qp N n—=20")+¢p )P0+ (L) p°w . 3.4

We claim o(g)=o0(y)=p" or else p'=5. To see this, first suppose [=1. By [3.1)
and we have

n—2p° = vo(1)—=v4(0), P° = vo(@)—v(0) = vo(@)— (D)
for any 0{0,>\{1, w, @}. Therefore
1 = vo(1)+vo(@) + (@) —3v,(6)
< v (D+vH (@) +vH(@)+3v7(0)
= Egﬂ (v($)+v($w)+v<$5))+35§_ v(£9).
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Summing over d, we obtain
(h=3)2 3 ued) < (p—3)(n— T WO+vEw)+v(ED))
0 feXx- fex+
<3 26] > v(é0).

tex—
If p>5, then v(£0)=0 for =<0, > {1, w, @} and £=<{,>, so
E§+(u(é)+u(§w)+v(&3)) =n §e§+ (W(&)+v(éw)+uéw))/¢(§),

and hence n=y(1)4+v(w)+v(@) and v(&)=0 for &< {1, w, w}. We conclude o(g)=
o(y)=p if p>5, as claimed.
Now suppose />1. Then
n—2p° = vo(1)—v4(0), P° = vo(@)—v4(0®) = vo(@)—v,(6D)
for any 0=<d,>\{1}. Thus
1 = vo(1)+ve(@) +vo(@) —v4(0) — vo(0@) — v(0®)
= v (H)+v (@) +v (@)+v (0)+v (dw)+v (0w)
= e§+ (W) +v(éw)+v(ém))+ Eg_(v(55)+v(55w)+u(é5a7)) .

Summing over ¢ gives

(p—1D ? 52 (1(§0)+v(60w)+1(£00))

< (p=1)(n— 3 0O +vEe) +u(a)
S 3,3 6(ED)Fu(Edo)+1(07)).

va
If2p>2, then ¥(§0)=1(60w)=1(£0w)=0 for d={d,>\ {1} and X", so

n < v (D+v () +v* (@) = e§r+(”(5)+”($w)+y(6@>/99(5)' (3.5)
Suppose p=2. Then

1 = vo(1)Fvo(@) + (@) —vo(— 1) —vo(— @) —vo(—@)
<y D)+ vH@)+vt @)ty (—D+yv (—o)+y (—d)
< v+(1)+v+(w)+v+(55)+egzx_(v(—E)—ﬁ—v(—Ew)"l-v(—E@))/z

since ¢(§)=2 for £eX". It follows that u(—-&)=y(—E€w)=y(—E&w)=0 for £=X",
SO also holds if p=2. Therefore n=v(1)+v{w)+v(@) and v(&)=0 for
&£ (L, w, @}, so o(g)=o0(y)=7p', as required. This completes the proof of the
lemma. O :
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LEMMA 3.6. Suppose g is a X-singular element of G and {g)=<{x) whenever
x 1s X-singular and {g>S<{x)>. If h&Celg) is a p-element for some prime p and
h&<g>, then gh is not X-singular.

PROOF. Suppose not, so gh is X-singular. Let g, be the p-part of g. Let
o be a nonidentity eigenvalue of p(g), and let 1 be the eigenvalue of p(h) on
the w-eigenspace of p(g).

Suppose X(g)=n—1+w. Since all nonidentity eigenvalues of p(gh) have the
same order, the only nonidentity eigenvalue of p(gh) is Aw, and the only non-
identity eigenvalue of p(h) is A. If o(h)<o(g,), then he<{g,>, a contradiction.
On the other hand, if o(h)>o0(g,), then g,=<h), so {g>C<{gh), another con-
tradiction.

Suppose X(g)=n—2+w+@. Let A’ be the eigenvalue of p(h) on the
w-eigenspace of p(g). Then Aw and A’@ are the only nonidentity eigenvalues of
p(gh), and therefore Aw=21'®, so A’=2. As above, we have he{g,> if o(h)<o(g,),
and <g>C<gh) if o(h)>o0(g,), both of which are contradictions. This completes
the proof of the lemma. [

LEMMA 3.7. Suppose g is X-singular. If heCelg) is a p-element for some
prime p, then X(gh) is not equal to X(y) for any p-element y of G.

PROOF. Suppose to the contrary that X(gh)=X(y) for some p-element y of
G. Let w be a primitive |G |-th root of unity, and let w, be the p-part of w.
Then n—X(g)=X1)—X(y)+A(gh)—X(¢))=e(1—w,)Z[w], and hence p divides the
product of the algebraic conjugates of n—X(g), a contradiction. [

Suppose now that « and B are complex roots of unity whose orders are
relatively prime. Assume SE&<a) and T S{B) are Q-bases for Q(a) and Q(p),
respectively, and 1eSNT. Then ST={or|o&S, r=T} is a Q-basis for Q(ap),
and it follows that no nonzero linear combination of elements of ST~(SUT) is
an element of the Q-subspace Q(a)+Q(B) of Q(aB). This observation is used
in the proofs of the following two results.

LEMMA 3.8. Suppose a and B are complex roots of unity whose orders are
relatively prime. Assume a,=<{ay, BB, and a,Bo=Q(a)+Q(B). Then a,=
{1, =1} or Boc{l, —1}.

ProoF. If a,# +1 and B,# +1, then there are @-bases S and T for Q(a)
and Q(B), respectively, such that {1, ay} ES and {1, 8} ET. Then a,f,=
ST~(SUT), and a contradiction is reached. [

LEMMA 3.9. Suppose a and B are complex roots of unity whose orders are
relatively prime. Assume a,, a,={a), Bo, f1ELBD, and apfBi+a.piEQ(a)+Q(B).
Suppose further that 1, B,, B are distinct and {1, Bo, Bi} is linearly independent
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over Q. Then {a,, a;} S {1, —1}.

PRrROOF. First suppose {a,, a:;} {1, —1}=@. Let T be a Q-basis for Q(B3)
such that {1, 8o, 8} ET. Assume {l, a,, a;} is linearly independent over Q.
Then there is a Q-basis S for Q(a) such that {1, ay, @} ©S. Then @B, a:f:
eST(SUT) and aofo+a;8:=Q(a)+Q(B), and a contradiction is reached. Next,
suppose {1, a,, a;} is linearly dependent over @. Renumbering if necessary, we
may suppose a,=da,+a;a, with a,, a,=Q. Let S be a Q-basis for Q(a) such
that {1, a;} £S. Then a,B,, @B=STN(SUT), and afo+a,a8;=a,Bota:fi—
a,B,=Q(a)+Q(B), and another contradiction is reached.

Therefore {a,, a,} N {1, =1} #@. If a,==+1, then a,8,€Q(a)+Q(B), so
{ay, a;} S {1, —1} by since B,# +1. Similarly, {a,, a} S{1, —1} if
a=+1. O

For £ a positive integer, w, will denote a primitive complex k-th root of
unity.

LEMMA 3.10. Suppose g is X-singular and h+1 is a p-element in Cs(g) for
some prime p. Assume g'h is not X-singular, where g’ is the p’-part of g. Then
X(g’h) is rational.

PROOF. Suppose to the contrary that X(¢’h) is irrational. By
X g’ 'h)=X(v) for some element y of G of order ¢, where ¢=3 or ¢=5. lLemma
3.7 applies to show ¢g=#p. Thus ¢ divides the order of g'.

Let @ be a nonidentity eigenvalue of p(g), and let A be the eigenvalue of
o(h) on the w-eigenspace of p(g). Let @’ be the p’-part of w, so @'+ +1.

Case 1. Suppose X(g) is not real. In this case X(g'h)=X(h)—A+i0 =X(y),
S0 20’ €EQ(Woin))+ (W) EQ(@Wo(ny)+Q(@’). Thus A=+1 by so w'e
(Q(Won))+ Q) NQ(w')=Q(w,), and hence we may choose w, so that o'=+w,.
Then X h)EQ(won)) \Qw,)=Q. Thus X(g’h)¢£ R, and hence ¢g=3.

Now, X(h)—A+Aw,=X(g'h)=Xy)=n—3*+3%w] for some s and ; by
3.4. Comparing imaginary parts, we find 3*=1. Then X(h)=n—1+A+wl—iw’
e{n—1, n—2, n—3} since X is faithful. Since n—X(h) must be divisible by p,
we have p=2 and XU h)=n—2, so A=—1 and @' =—wi, and hence p divides
o(g"), a contradiction.

Case 2. Suppose X(g) is real. Let A’ be the eigenvalue of p(h) on the
@-eigenspace of p(g). In this case X(g'h)=Xh)—A—A'+iw +1® =X(y), SO
A0+ A0 EQ(Won))+Q(W) SQ(Won))+Q(w’), and hence {4, A’} S {1, —1} or else
{1, ', @'} is linearly dependent over @ by Lemma 39.

Suppose {4, A} £ {1, —1}, so {1, w’, @’} is linearly dependent over @. Then
g=3 and w,; can be chosen so that w'=+w,. Note that if A=+1, then @,
Q(@on))+Q(ws), so A’==x1 by a contradiction. Thus A+ -+1, and
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similarly A’#+1. Also, (A—A)ws=Aw;+A'@;—A' EQ(wo(ry)+Q(w;). Therefore
A—2'€Q. Since p+#3 and {A, '}N{l, -1} =@, we must have A=4". Then
Aw;+A'wy=—21, so X(g'h)=X(v)EQ(won)) \Q(w,)=Q, a contradiction.

Therefore {2, 7’} S {1, —1}. Since @ +o'E(Q(wWon))+Q(w)NQ(w")=Q(w,)
and ¢ divides the order of g’, it follows that w, can be chosen so that o'=+aw,.
Thus X(h)EQ(won)) N Q(w)=Q.

If =2/, then X(y) is real, so ¢g=5. Then X(h)—22+ Aw;+m;)=X(g"h)=X(y)
=n—2-5+5wl+5w! for some s=0 and some ; by Lemma 3.4. Since X(h) is
rational, we must have 5*=1. Then X(h)=n—2+24+wl+d!— (@' +@’), and thus
Ih)ye {n—1, n—4, n—>5} since X is faithful. Since p must divide n—2X(h), we
have p=2 and X(h)=n—4, so i=—1 and @' =—w! or o' =—a!, which is impos-
sible since o(g’) is odd.

Thus A+#2’, so X(y) is not real, and hence ¢=3. Then X(h)=*(w;—d;)=
Xg'h)=X(y)=n—3°+3*w} for some ;. Comparing imaginary parts, we see
/3 =3%+/3/2, which is impossible. This completes the proof of the lemma. [

LEMMA 3.11. Suppose g is a X-singular element of G and {g)=<h) whenever
h is X-singular and {g><S<h>. Then Cglg)=<g>.

PROOF. Suppose not. Let 7 be a p-element of Cq(g) for some prime p
such that h¢{g>. Then gh is not X-singular by Let g, be the
p-part of g. Then g,h#1, so applies to show X(gh) is rational.
Similarly, X(g~'h) is rational.

Let w be a nonidentity eigenvalue of p(g), and let 4 denote the eigenvalue
of p(h) on the w-eigenspace of p(g).

Case 1. Suppose X(g) is not real. Then X(gh)—X(g 'h)=Aw—»)=Q, and
hence o(w)=12 and A*=—1. This is impossible since X(gh)=X(h)—i+iw<Q.

Case 2. Suppose X(g) is real. Let A’ be the eigenvalue of p(h) on the
w-eigenspace of p(g). Then X(gh)—X(g *h)=(A—A)w—b)EQ, so =i or A'=2.

Suppose p does not divide o(g). Since lo+A@=X(gh)—X(h)+ A+ < Q(wowny)
and {1, w, @} is linearly independent over @, applies to show {4, 1’}
< {1, —1}, and hence A=A’==+1 by the above. Then w+ovEQ(w,n,) N Q(w)=Q,
so X(g) is rational, a contradiction.

Therefore p divides o(g). Next assume o(h)=p. Replacing 2 by an
appropriate element of (g,, i) {(g,> if necessary, we may suppose A=A1'=1.
Then X(h)=Xgh)—w—w-+2 is irrational and real, and hence p>3. We may
suppose ®, is an eigenvalue of p(h). Then the nonidentity eigenvalues of p(h)
are w, and @, with multiplicity p* for some s=0 by Cemma 3.4. There is
some /7 such that o’=w,. Then the nonidentity eigenvalues of po(g’h) are w,
and @,, both with multiplicity p°+1, contradicting Lemma 3.4.

Now we return to the general case. By the above, {g¢,, A1) has a unique
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subgroup of order p, so {g,, h)> is cyclic. Therefore o(h)>o0(g,) and g,=<h>
since hE{g>. We may as well suppose h?=g,. Then 4 and A’ are the only
eigenvalues of p(h) of order greater than p.

Suppose X(h) is irrational. Then A4 and A’ are the only nonidentity eigen-
values of p(h) by If A’=12, then gh is X-singular and <{g>C<{gh),
so we have a contradiction. Therefore p=2 and A’=4 by Lemma 3.4. Since
h®*=g,, we have (1)?=1% and therefore 2*>=—1. Then X(gh)=n—2+iw+oR,
which is a contradiction.

Therefore Z(h) is rational. Then p=2 and ’=—21. Note A'=1, so A*=—1
and o(h)=4. Also, (A—2A)w—o)=2Aw—x)=Q, and therefore o(g)=12. This is
a contradiction since o(h)>o0(g,). This completes the proof of the lemma. [J

LEMMA 3.12. Suppose g is an element of G of prime power order p' such
that X(g) s irrational. Assume that Cg(g) contains no X-singular elements. Then
Ce(g) is a p-group.

PROOF. Suppose not. Let 24 be an element of Cg(g) of prime order g,
g#=p. Let V. denote the &-eigenspace of p(g), and let #; be the character of
Ce(g) acting on V.. Let @ be a nonidentity eigenvalue of p(g). Note that
dim(V,)=p* for some nonnegative integer s by Put a=60,(h),
B=0;(h), so a, B&Q(w,). We claim that it suffices to prove that «=0. Indeed,
if a=0, then 6,(h")=0 for 1<7<¢g—1 since p+#¢q, and hence V, affords a
multiple of the regular character of <A>. Thus ¢ divides dim(V,)=p% a con-
tradiction.

Suppose X(gh) is rational. Then X(g’h) is rational whenever p does not
divide j. In particular X(gh)—X(g7'h)=(a—B)o—o)EQ, so a—BcQ(w)NQ(w,)
=@, and thus a=f. Thus a(w+®)=2Xgh)—60.,(h)cQ(w,). If a+0, then w+w<=q,
and hence p'=3 or p'=4. In either case @ is not an eigenvalue of p(g), so
B=0, and thus @=0, a contradiction. Hence a=0 and we are done.

For the remainder of the proof we suppose X(gh) is irrational. By our
assumptions, gh is not X-singular. Therefore gives X(gh)=X(y) for
some element y of order », with »=3 if X(gh)& R and r=5 if X(gh)eR. Note
that »=p or r=q. We have X(gh)eQ(w,), and also X(g 'h)=Q(w,) since p+q.
Then

X(gh)—Xg™'h) = (a—B)w—b) € Qo,) S Qw)+Q(w,)

since r<{p, q}. Since {1, w—m} extends to a Q-basis for Q(w), it follows that
a—pB<Q. Then alw+d)=Xgh)—0,(h)+(a—B)w<Q(w)+Q(w,). Therefore either
o+o=Q or else acQ. If w+ws@Q, then p'=3 or p'=4 and @ is not an
eigenvalue of p(g), so =0 and a=@Q. Thus a=@Q in all cases, and hence we
also have Q.

Case 1. Suppose r=¢. Then aw+pw=X(gh)—0,(h)eQ()NQw)=Q. If
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{1, o, w} is linear dependent over @, then p'=3 or p'=4 and B=0 since A(g)
is irrational, and hence a=0. On the other hand, if {1, w, @} is linearly inde-
pendent over @, then a=f8=0. Thus a=0 in either case, and we are done.

Case 2. Suppose r=p. In this case 8,(h)=X(gh)—aw— o< Q(w)N\Q(w)=Q.
Thus aw+Bo=Xy)—0,(h)=Q(w,). We may suppose /=1, for otherwise a=8=0
and the proof is complete.

If r=p=3, then 8,(h)+aw,=X(gh)=X(y)=n—3'+3'w] for some ¢ and j by
and thus a=+3* since #,(h) is rational. If a=3¢, then 6,(h)=n—3"
and h=1 since X is faithful, a contradiction. Thus a=-—3¢, 8,(h)=n—2-3"* and
so n—X(gh)=3""'+3'w,. The product of the algebraic conjugates of n—X(gh) is
divisible by (3-+ws)(3+@s)=7. However, if M is the set of values of X on P\ ({1},
where PeSyl(G), then X(gh)&M and fy(n) is divisible by | P| by [Theorem 2.1,
so fr(n) is divisible by 7|P|, which is impossible since (G, X) is sharp of type L.

Suppose r=p=>5. Note a=f since X(gh) is real. Then 6,(h)+a(ws+@s)=
n—2-5'+54wl+@i) for some j and ¢ by Lemma 3.4 Thus a==+5" since 6,(h)
is rational. If a=5% then @,(h)=n—2-5%, so h=1, a contradiction. On the
other hand, if a=-—5' then #,(h)=n—3-5% so ¢ divides n—2-5'—§,(h)="5¢, a
contradiction. This completes the proof of the lemma. O

LEMMA 3.13. Let p be prime. Suppose g and h are commuting p-elements
of G of different orders such that X(g) and X(h) are irrational. Then {g, h) is
cycelic.

PrROOF. We suppose o(g)<o(h). Let @ be a nonidentity eigenvalue of p(g),
and let & be a nonidentity eigenvalue of p(h). Let V; and W, denote the
J-eigenspaces of p(g) and p(h), respectively.

First suppose X(gh) and X(gh™') are rational. Let a; be the trace of p(g) on
W,, and let a be the trace of p(g) on W.PW; Note a(é—&)=X(gh)—X(gh™)=q.
If a0, then £&-£<=Q(EP), so £2=1 and X(h) is rational, a contradiction. Thus
a=0. Then 2a,=X(gh)+X(gh™*)=Q, and therefore X(g)=a,=@Q, a contradiction.

Replacing A by hA~' if necessary, we may suppose X(gh) is irrational. Then
all nonidentity eigenvalues of p(gh) have order o(h) by so V.,pV;
CW.PW; Since wé and wé cannot both be eigenvalues of p(gh) by Lemma 34,
we have V,EW,: or V,EW; We may suppose & has been chosen so that
V,SW, Since wé and @& cannot both be eigenvalues of p(gh), we have
VaSWs Suppose VW= {0}. Then £ is an eigenvalue of p(gh), and hence
£=wé by Lemma 3.4, so p=2, &=a, and X(g) and X(h) are real. Note o(h)>
0(g)=8. Thus X(g~'h) is irrational and p(¢g~'h) has nonidentity eigenvalues &,
Z, & and &, contradicting Therefore V,n\W,={0}, so V,=W,. A
similar argument shows V ,N\Wz=1{0} if V3 1{0}. If V,NWz+ {0} and V= {0},
then p=2 and WSV, and the only nonidentity eigenvalues of o(g°9’/*h) are
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—& and £. Hence §=—§, so &=—1 and A(g) is rational, a contradiction.
Therefore V.N\Wz= {0}, so Vz=W; Thus g=<h), as required. T[]

LEMMA 3.14. Let p be prime. Suppose g is a p-element of G such that X(g)
is irrational and Cg(g) is a p-group. Assume heCelg), o(h)=o0(g) and X(h) is
irrational. Then {g>=<_h).

PROOF. Let w be a nonidentity eigenvalue of p(g). Replacing 2 by a
power if necessary, we may suppose ® is an eigenvalue of p(h). Denote by V,
and W, the &-eigenspaces of p(g) and p(h), respectively. Let p*=dim(V,),
pt=dim(W,). Put X={xeG|X(x)=X(g)}.

Case 1. Suppose o(g)é {3, 4, 5, 8. In this case the eigenvalues of p(gh)
are elements of the set {l, o, w, w?, ®@*}, which is linearly independent over Q.

We claim that X(gh) or X(¢gh™') is rational. Suppose to the contrary that
both X(gh) and X(gh~') are irrational. Assume (V,PBVz W, {0}. Then p(gh)
has an eigenvalue @ or @, and therefore p(gh) has no eigenvalue ®® or @*® by
Lemma 3.4 Thus V,W,=Vs \Wz={0}. The same argument applied to gh™
shows V,"Wz=V;"\W,={0}. Thus V,PVzSW, and W,PWz;<V,. Then
o(gh*) has both @ and ®* as eigenvalues, which is impossible.

Therefore (V,PVz)\W,={0}. Similarly, V"W ,®W;={0}. Hence V,=W,
and V,BVz;=W ,PWz. 1If X(g) and X(h) are not real, then V,=W,, so g=h
and we are done. If only one of X(g) and X(h) is real, then p=2 and W,=
Vo®Vs or V,=W,PW,;. Then the nonidentity eigenvalues of p(g®h) or p(gh?)
are w and ®*, contradicting Hence we may suppose X(g) and X(h)
are both real, so s=f¢.

Let d=dim(V,"W,). The multiplicity of »* as an eigenvalue of p(gh) is
equal to d, while the multiplicity of ®® as an eigenvalue of p(gh™') is equal to
p*—d. These multiplicities are equal to 0 or a power of p by
Hence d=p%, d=0, or else p=2 and d=2*"'. However, if p=2 and d=2°"1,
then p(g*h) has nonidentity eigenvalues w, @°, @ and @° so X(g") is irrational
since 0(g)>8, and we have a contradiction to Hence d=p* or
d=0, so g=h or g=h"! and we are done.

Therefore %(gh) or X(gh™') is rational, and thus g=h"" or g=h, so {g>=<h).

Case 2. Suppose o(g)=5 or o(g)=8 and X(g) is not real. In this case the
eigenvalues of p(gh) are elements of the set {l, w, 0? @}, which is linearly
independent over @. The argument given in Case 1 shows that X(gh) or X(gh™)
is rational. Hence g=h"! or g=h, so {g>=<h).

Case 3. Suppose o(g)=3. In this case w is the only nonidentity eigenvalue
of p(g) and p(h). We suppose {g>#<h) and arrive at a contradiction.

CLAIM 1. We have s=t=1. Moreover, dim(V "W )=dim(V ,W)=3*"! and
dim(V  ,NW,)=2-3"1,
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PrOOF OF CLAIM 1. Let a=dim(V ,"W,), b=dim(V "W ,), c=dim(V ,~W ),
so a-+c=dim(V,)=3% and b+c=dim(W,)=3: If a=0 or b=0, then ¢=3*=3¢,
so g=h, a contradiction. Suppose a>0 and b>0. Then p(gh™') has both @ and
@ as eigenvalues, so X(gh™!) is rational by [Lemma 34, and thus ¢=b and s=t.
Also, p(gh) has @ as an eigenvalue with multiplicity 2a, so X(gh) is rational by
Lemma 34. Therefore a=b=3*"! and ¢=2.3*"!, [

CLAIM 2. XNCe(Kg, h>) & <g, h>.

PROOF OF CLAIM 2. Suppose not. Let xeXNCqs(g, h))N<g, h>. Let U,
be the &-eigenspace of p(x). Put d=dim(V, "W ,NU,). Applying Claim 1 to
the pairs {g, A}, {g, x} and {h, x}, we see

dim(V,) = dim(W,) = dim(U,) = 3%,
dim(vlﬂWIHUw) - dim(VlmmeUl) = dim(V,,,f\Wlf\Ul) == d,
dim(V,"\W ,NU,) = dim(V ,~"W,NU,) = dim(V , W ,NU,) = 3*'—d,

and
dim(V . NW,NU,) = 357 14+-d.

Therefore the multiplicities of w and @ as eigenvalues of p(ghx™) are 3*7'4-3d
and 3*7, respectively. Hence d=0 by Lemma 3.4. Thus p(x) acts as @ on
VinW, and V,"\W,, and the remaining 3*"! nonidentity eigenvalues of p(x)
occur on V ,NW,.

Suppose yeXNCs({g, h, x>)\{g, h>. Then p(x) and p(y) agree on V,+W,
by the above. Let a be the multiplicity of @ as an eigenvalue of p(y) on
Vo Wo,NU,. Then p(xy) has w as an eigenvalue with multiplicity 2(3°"'—a)
and @ with multiplicity 2-3°"*+a. It follows that a=0 or a=3*" by
3.4. If a=0 then y=(ghx)"!, while if a=3*"! then y=x.

Put X,={g, A, x, (ghx)™'}. Let H=Cs(g, h, x)), so H is a 3-group. We
have shown XN\H=X,. Let N=Ng(H), and let N,&Syly(N). If z&N;\H, then
p(z) has an orbit of size 3 on the eigenspaces of p(H), so p(z) has eigenvalues
& wfé and @& for some &, and thus X(z) is rational by Therefore
NN X=X, so Neg(N;)EN, and thus N,=Syls(G). Note |N;: H|<3.

We next show X assumes only rational values on H~\{g, h, x>. Suppose to
the contrary that ze H\{g, h, x> and X(z) is irrational. If o(z)>3, then {g)=
(h>S<z> by Lemma 3.13, a contradiction. Then o0(z)=3 and z€X or z !X by
Claim 1. Hence z&X, or z7'X,, so z=<{g, h, x>, a contradiction.

Now let 8 be the character of H afforded by V. \W,NU,. Then 8 vanishes
on H~{g, h, x>, and hence |H| divides |H|-(, 0)z=3%3°"")*=3**'. Also,
we have A(gh)=n—2-3%, X(gh™")=n—3°, and therefore |G|, is divisible by
3(1—w)3*(1—w)3*=3**! since (G, X) is sharp. Therefore 3***'<3%*?, which is
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impossible since s=1. This contradiction completes the proof of Claim 2. [

Now put H=Cs(g, h>), so H is a 3-group. Also, HNX=1{g, h}, and
therefore He<=Syly(G). As in the proof of Claim 2, X assumes only rational
values on A~{g, h)>. Let @ be the character of H afforded by V,W,. Then
0 vanishes on H~{g, h)>. Therefore |H| divides |H| (8, 0)p=3%2-3°"1)2=4.3%,
As in the proof of Claim 2, |H|=|G]|, is divisible by 3*(1—w®)3*(1—@)3%*=3%+!
since (G, X) is sharp. Therefore 3**1<3*, and we have a contradiction since
s=1. Hence <{g>=<h)>, as required.

Case 4. Suppose o(g)=4. In this case w is the only nonidentity eigenvalue
of o(g) and p(h). Let d=dim(V,"\W,). If d=0, then X(g®h) is irrational and
p(gh) has an eigenvalue —1, contradicting Lemma 3.4 Therefore d>0 and
p(gh) has an eigenvalue —1. Then X(gh) is rational, so V,=W, and g=h.

Case 5. Suppose o(g)=>5. The strategy used in this case is similar to that
used in Case 3. By Case 2 we may suppose X assumes only real values on
<g, hy. Thus dim(V "W )=dim(V;\W;) for any & 4. We suppose <{g)+#<h)
and obtain a contradiction.

CraiM 1. We have s=t=1. Moreover, dim(V,N\W ) =dim(V ,\W)=5*"! and
Aim(V , AW o) =dim(V o "W 5) =25,

PrOOF OF CLAIM 1. Let a=dim(V ,"\W,), b=dim(V ,\W3).

Suppose both X(gh) and X(gh™!) are irrational. Then by Lemma 34, p(gh)
has no eigenvalue ® since g=+h, and p(gh™') has no eigenvalue @® since g+h™".
Therefore V,PVzSW, and W,PWz;SV,. Hence X(gh) is irrational and p(gh)
has ®w as an eigenvalue with multiplicity 5°+5‘, contradicting Lemma 3.4.
Therefore X(gh) or X(gh™?) is rational.

Suppose X(gh) is rational and X(gh™') is irrational. We have b=0 since
g#h'. Then the multiplicity of @ and ® as eigenvalues of p(gh) are 5°+5'—2a
and a, respectively, so 5°+5'=3a. However, a<dim(V,)=5% and ¢ <dim(W,)=5¢,
so we have a contradiction. Similarly, a contradiction is obtained if X(gh) is
irrational and X(gh™!) is rational.

Therefore X(gh) and X(gh™') are both rational. Comparing multiplicities of
o and @® as eigenvalues of p(gh) and p(gh™'), we see 5°+5'—2(a+b)=a=b, and
hence s=t and a=b=2-5""'. It follows that dim(V,"\W,)=dimV ,W,)=5"1,
and the claim is proved. [

Note <g, hyN\X={g*, h*'} by Claim 1. Suppose now that x=Cs(g, h))
and X(x) is irrational. If o(x)>5, then {g>=<h>S<x> by Lemma 313, a con-
tradiction. If o(x)=b5 and X(x) is not real, then <{g>=<x>=<h> by Case 2,
another contradiction. Therefore X(x) is real, and hence X(x) is an algebraic
conjugate of X(g).
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CLAIM 2. XN\CeKg, h)) S <g, h>.

PROOF OF CLAIM 2. Suppose to the contrary that x&XN\Cgs(Kg, h>) and
x&<{g, h). Let U, be the &-eigenspace of p(x), and put d,, g ,=dim(V ., W gNU,).
Then d,, 5 ,=da 5 7 since X assumes only real values on Ca({g, h>). Applying
Claim 1 to the pairs {g, h}, {g, x} and {h, x}, we find

? da ge= ? daes= % de o s =571 if {a, B} = {1, &} or {1, @}, (3.6)
and

251 da.p.e = % dag.p= ? de.a g =2-5""" if {a, B} = {0}, @}, or {0, &}, (3.7

where & in the sums ranges over {1, w, @}. It follows that d,; .=d; .1 Since
ditotdivotdise=0de1+d10etdiee=>" and d, s .=d e Similarly,
dl,l,w:dw,l,ln

Suppose that X(ghx) is irrational. If @ is an eigenvalue of p(ghx), then
do1o=0o v =0 by Lemma 3.4, 0 dy o 5=2-5" by (3.7). Similarly do s .=
ds.0.a6=2-5"" Then di o s5+deostds .s=4-5"1 contradicting (3.7). On the
other hand, if @® is an eigenvalue of p(ghx), then d, ., =2-5"' since d,, s+
o.wat+ds0:=25" and du ws=ds06=0. However, di v 1+d1 v 0td1 o s=
557! so we have a contradiction.

Therefore X(ghx) is rational, so

Sdl.1,w+dw,m,a')+dm,(ﬂ,(u+da'),w‘w = dl.w.m+dw.1,m+dw,m.1+da7,a'),(z')-

From this together with (3.6) and (3.7) it follows that d,, , ,=0.

Now suppose X(ghx?) is irrational. If p(ghx®) has an eigenvalue w, then a
contradiction arises. Therefore @® is an eigenvalue of p(ghx?®). It follows that
da g.r=0 or dg 5 ,=5"" for all a, 8, y. Moreover, if I is the set of all triples
(a, B, 7) for which d. 5.,=5"", then

I= {1, 0, o), (@1, o), (0 oe,l), (0o o), (oo, v, (0 o, o),
(l} (‘-U-) a_))) (‘7).} ]’) a_j)’ (a’ 5’ 1)) (5’ 6, w)’ (a_).’ w} a)l (El—)’ w’ w)}’
Using an argument similar to that used in the proof of Claim 2 of Case 3, it
can be shown that if yeXNCs(g, h, x>)\{g, h) and X(ghy?) is irrational, then
either y=x or y=g%h®x*.
Now assume X(ghx®) is rational. Then d, g,,=0 or dq.5.,=5'" for all a, B, 7.
Moreover, if I is defined as above, then one of the following holds.

I = {(1) w) &)-)’ (w, 17 w)’ (w’ wl w)’ (w’ w’ 6)’ (w, CD-’ 1)) (a)’ 5’ a)!

1,0 0, 1,0), @6, 0), 06,0, @ o0, 1), @, o, o) 3.8)
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I= {1, 0, ), (0 1,), (o), (0, , (o6, (o, o),
1, o, w), @, 1, w), @, o, 1), @, 0, @), (@ 0, d), (@, 0, w)} (3.9)
I=1{1, 0 o), (ol o), (o0, o o), aol),(aow,

(17 6, a)’ (6! 1) w)) (6} 5’ 6)7 ((l_), a—)) w)l (67)'7 a)} 1)) (6’ w, a)} . (3°10)

Define x,=g%h*x?® if holds, x,=x7! if holds, and x,=g3h*x?* if (3.10)
holds. Then x,=Cqs(<g, AD)NX\{g, h) and X(ghx}) is irrational.

Replacing x by x, if necessary, we may suppose X(ghx?®) is irrational. Let
H=Cs(yg, h, x>), and put X,=XNH. Then

XO — {gil, hil’ xil’ (g4h2x2)il, (g2h4x2)i1’ (g2h2x4)tl}.

Let N=Ng(H), and let N; be a Sylow 5-subgroup of N. If y=N;\H, then ¥
commutes with an even number of elements of X;, and thus y commutes with
exactly 2 elements of X,. Therefore |N;: H|<5. Arguing as in the proof of
Claim 2 of Case 3, we see Ny X=X,, so N;&Syl;(G) and |G |;=|Ns|<5]|H]|.
Also, |H| divides 5%*! since X assumes only rational values on H\{g, h, x).
Since (G, X) is sharp and X assumes the values X(gh)=n—2-5%, X(gh®)=n-—3-5°,
X(g)=n—2-5°+5%w+m), and X(g%)=n—2-5'+5w*+@?), |G|;s is divisible by 541,
Therefore 4s+1<2s+2, which is impossible since s=1. This completes the
proof of Claim 2. O

Put H=Cs(g, h>), Xo=HNX. By Claim 2 we have X,={g*!, h*'}. Thus
HeSyl(G). Arguing as in Case 3, we see |H|<5% since X assumes rational
values on H\{g, h>. As in the proof of Claim 2, we have |G|;=5**!. There-
fore 4s+1<2s, a contradiction. Thus {g>=<h)>, as claimed.

Case 6. Suppose 0(g)=8. The strategy used in this case is similar to that
used in Case 3 and Case 5. We suppose h=Cgz(g)\<{g)> and arrive at a contra-
diction. By Case 2 we may assume X assumes only real values on {g, 2>. We
may also assume ® has been chosen so that w+@=~/2.

CLAIM 1. We have s=t=1 and dim(V W ,)=dim(V W ,)=dim(V , W 3)
=dim(V ;W g)=2%"1,

Proor ofF CrLAiM 1. Put a=dim(V,~W,), b=dim(V,"\Wj3). If a=b=0,
then X(gh*) is irrational and p(gh*) has an eigenvalue —1, contradicting Lemmal
3.4, Thus a>0 or 6>0. If a>0, then p(gh®) has —1 as an eigenvalue, so
Xgh¥)=n—28*1—2t+14-2h4(2°—25)+/ 2 is rational, and hence s=¢. Similarly, s=t¢
if b>0. Therefore s=t in both cases. In particular, A(g)=X(h)=n—2*'425v/2.

Now, if a>0, then p(gh) has @® and —w?* as eigenvalues, so

Xgh) = n—2"2+2(a +b)+2(2°— a—b)v 2 +a(w*+&*)+2b
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is rational, and hence a+b=2% Similarly, a+b=2° if b>0. Then
X(g*h) = n—2"'+(b—a)V 2.

If X(g%h) is irrational, then b—a=2° or b—a=-—2% so h=g"' or h=g, contrary
to our assumptions. Therefore X(g®h) is rational, so a=b=2°"'. [

Suppose now that x=Cs({g, h)) and X(x) is irrational. If o(x)<o(g), then
xe{g> by and we have a contradiction since X is rational on
Lg>Ng®. If o{x)>>0(g), then {(g>=<h>S<x) by Lemma 313 and we are done.
Finally, if o(x)=0(g)=8, then X(x) is an algebraic conjugate of X(g) by Claim 1.
Hence X has only one algebraic conjugacy class of irrational values on Cs(<g, h)).

CLAIM 2. Cg(Kg, hH)NX S <g, h).

ProOF OF CLAIM 2. Suppose to the contrary that x& Cs(Kg, A))NX g, h).
By Claim 1, the eigenvalues of p(ghx) are elements of {1, «° o, @, ®%}. Let d
be the multiplicity of @* as an eigenvalue of p(ghx). Applying Claim 1 to all
pairs in {g, h, x}, we see that the multiplicities of w, @, and @* as eigenvalues
of p(ghx) are 3(2°"'—d), 3d, and 2°7'—d, respectively. Hence X(ghx)=n—2°""'4
2dw+2(2: '—d)w. 1t follows that s=2 and d=2°"* since X(ghx)e R. Therefore
X(ghx)=n—2°"14-2"'v/2, which is impossible since X has a single algebraic
conjugacy class of irrational values on Cg(<g, h)). O

Now, it follows easily from Claim 1 that {g>N\<h>=<g*> and <g, k> has
order 32. Put K=Cs(Kg, h)), so KNXE<{g, hy by Claim 2. Considering eigen-
values, we see that KNX={g, g7% h, h™*}. Let N=NgK). Then N acts on
KNX by conjugation, and N/K is isomorphic to a 2-subgroup of S,. Hence
IN| divides 8| K|. Now, let 8 be the character of K afforded by V,, let W,
be the w-eigenspace of p(h), and let ¢ be the character of K afforded by
VoNW,. Suppose x<K~\{g, h>. Then X assumes only rational values on
x{g, hy by Claim 2, so 8,(x)=0 and 6,(ghx)=0. Thus

0 = 0u(ghx) = P(x)0*+ (0o (x)—(x))-1 = P(x)(@*—1),
and therefore ¢(x)=0. Since ¢ vanishes on K\{g, h)>, we have
|K (), P)x = 32(2°71)2 = 2773,

and therefore | K| is a divisor of 2***, Hence |N| is a divisor of 8.228+8=22s+¢,
If xeN\K, then p(x) has a nontrivial orbit on the set of eigenspaces of <{g, h)>
on V, so p(x) has at least one pair of eigenvalues {, —, and thus X(x) is
rational by Hence NNX=KNX, so Ne(N)=N and N&Syl,(G).
Now, X assumes the values X(g*)=n—2°*% X(¢g*)=n—2"", Ug)=n—28"14
222, XgH)=n—281—2°/2, X(gh)=n—2° and X(g°h)=n—3-2° on K. Since
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(G, %) is sharp and NeSyl,(G), |N] is divisible by 2%**, Therefore 6s+4<25+6,
and hence s=0, contradicting Claim 1. Therefore {g>=<h)>, and the proof of
the lemma is complete. [J

LEMMA 3.15. Let p be prime. Assume g is a p-element of G, X(g) is irra-
tional, and Cs(g) is a p-group. Suppose further that {g>=<h) whenever {g)<=<h)
and X(h) is irrational. Then Cg(g)=<g>. Moreover, any nonidentity eigenvalue
of p(g) occurs with multiplicity 1.

PROOF. Put H=C4(g), N=NgxH), X={x<=G|Xx)=X(¢g)}. If X(g) is not
real, then HNX={g} by [Lemma 314, and hence N=H&Syl,(G). On the other
hand, if X(g) is real, then HNXZS {g, g7}, so |[N: H| <2, and thus N&Syl,(G)
if p=2 and HeSyl,(G) if p>2. Let w be a nonidentity eigenvalue of p(g), and
let p* be the multiplicity of w. Put p‘=o(g).

Suppose h<H and X(h) is irrational. If o(h)>2(g), then {g>C<h> by Lemmal
3.13, and we have a contradiction. Therefore o(h)<o(g), and so h&<{g> by
Lemmas and Hence X assumes rational values on H\{(g)>. Let 6 be
the character of H afforded by the w-eigenspace of p(g). Then 6 vanishes on
H~{g>, so |H| divides |H|-(8, 8)y=p**'. Therefore if s=0, then H=<{g)> and
we are done,

Let M be the set of values of X on {g>\{1}.

Case 1. Suppose X(g) is not real. In this case we have
fu(n) = IZI P”“’"""“ = ps(pl—l)u-
J=1

Since (G, X) is sharp, |H|=|G|, is divisible by fx(n), and therefore s(p'—1)+
[<2s+1. Thus either s=0 and we are done, or else p'=3. Suppose s>0 and
pt=3. If H+~<g), then X assumes a rational value on H-{g), and therefore
|G |5 is divisible by 3fy(n), a contradiction. Therefore H=<g). But then |G|;=
3, and hence s=0.

Case 2. Suppose X(g) is real. If p=2, then

fM(n) — 28+2,9Qs+1, ]._l,[ 23¢(2])/2+1 — 22l—ls+l+1.
j=3
Since |G|, is divisible by fx(n) and |G|,<2|H|, we have 2! 's+[+1=2s+1+1,
so s=0 since /=3 and we are done. Suppose p>2. Then

l
fu(n) =TI pw(pJ)/zH — ps(pl—l)/2+l.

j=1

Since |G| ,=|H|, we have s(p'—1)/2+[<2s+!, so either s=0 and we are done,
or else p'=>5. Suppose s>>0 and p'=b. If H+#<¢>, then X assumes a rational
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value on H\{g), so |G|s=5fx(n), and we have a contradiction. Thus H={g),
so s=0. This completes the proof of the lemma. O

LEMMA 3.16. Suppose X(x) is irrational and either x is X-singular or else x
has prime power order. If ge<{x)\{l} and either X(x) is not real or o(g)>2,
then Cg(g)=Cga(x).

Proor. It suffices to show that the eigenspaces of p(x) and p(g) coincide.
If X(x) is not real, then p(x) has only one nonidentity eigenvalue, and hence we
are done. If X(x) is real, then p(x) has two complex conjugate nonidentity
eigenvalues, so p(g) has two distinct nonidentity eigenvalues since o(g)>2, as
required. O

PROOF OF THEOREM 2.2. Assume g&G and X(g) is irrational. We claim
that it suffices to prove g=Cq(x)={x> for some x such that X(x) is irrational
and either x is X-singular or x has prime power order. Indeed, if this is the
case then Cg(g)=Cgs(x)=<{x)> by so (i) holds. Also, (ii) holds by
Lemma 35 if x is X-singular, and (ii) holds by Lemma 3.15 if x has prime
power order. Since (iii) is a consequence of (ii), the proof is complete.

Now, suppose ¢ commutes with some X-singular element x,. Let {x) be
maximal such that x is X-singular and <{x,>S<x>. Then Cg(x)=<{x)> by
3.11. Since x,=<x)> and x, is X-singular, we have g=Cg(x)=Cqs(x)=<{x)> by
and we are done by the claim.

Next, suppose Cg(g) contains no X-singular element of G. Suppose ¢ is a
p-element of G, where p is prime. Then Cg(g) is a p-group by Lemma 3.12.
Let (x> be maximal such that Z(x) is irrational and <{¢g>&<x>. Then x is a
p-element, and geCg(x)=<x)> by [Lemma 315, so again we are done by the
claim.

Finally, suppose Cg(g) contains no X-singular element of G and g does not
have prime power order. Then X(g)=X(y) for some element y of G of order g¢,
where ¢=3 if X(g) is not real and ¢=5 if A(g) is real by Lemma 3.5. Since y
has prime order, we may apply the argument above to conclude y& Cg(x)=<xD,
where X(x) is irrational and either x is X-singular or else x has prime power
order. If X is the conjugacy class of x in G, then X"\<{x>& {x, x~*}. There-
fore <{x)> contains a Sylow g¢-subgroup of G, so we can assume the g-part g, of
g is an element of <{x). Note ye{g, since o(y)=¢q, and hence g=Cs(g,)E
Ce(y)=<{x> by and the proof of [Theorem 212 is complete. [J
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