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1. Introduction.

Let $A$ be a Noetherian local ring with maximal ideal $\mathfrak{m}$ . We assume that
$\dim A=d>0$ . The local cohomology functor $H_{\mathfrak{n}\iota}^{i}(-)$ was defined by Grothen-
dieck [11] and he showed that for any finitely generated $A$-module $M$, the i-th
local cohomology module $H_{\mathfrak{m}}^{i}(M)$ vanishes unless

depth $M\leqq i\leqq\dim_{A}M$

and that $H_{\mathfrak{m}}^{i}(M)\neq 0$ if $i=depthM$ or $i=\dim_{A}M$. We refer to the local co-
homology modules $H_{\mathfrak{m}}^{i}(M)$ for which depth $M<i<\dim_{A}M$ as the intermediate
local cohomology modules of $M$. Pathological behaviors of intermediate local
cohomology modules for general Noetherian local rings were reported by several
authors. Firstly Sharp [20] gave examples of Noetherian local rings whose
intermediate local cohomology modules either all vanish or are all non-zero.
Furthermore Evans and Griffith [7] gave a Noetherian local ring with pre-
scribed local cohomology modules, that is, let $d\geqq 2$ and $h_{1},$ $\cdots$ $h_{a-1}\geqq 0$ be
arbitrary integers. Then there is a Noetherian local domain $A$ of dimension $d$

such that
$l_{A}(H_{\mathfrak{n}}^{i}(A))=h_{i}$ for all $1\leqq i\leqq d-1$ .

By modifying their argument, Goto [8] obtained such a ring from among
Buchsbaum local rings. Here a finitely generated $A$-module $M$ is said to be
Buchsbaum if the difference $l_{A}(M/qM)-e_{q}(M)$ is an invariant of $M$ not depending
on the choice of the parameter ideal $q$ for $M$. Moreover a Noetherian local
ring $A$ is said to be Buchsbaum if it is a Buchsbaum module over itself.

In this paper we are interested in behaviors of local cohomology modules of
finitely generated indecomposable modules. Goto [9] gave a structure theorem
for maximal Buchsbaum modules over regular local rings, that is, if $A$ is a
regular local ring of dimension $d>0$ and $M$ is an indecomposable maximal
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Buchsbaum $A$-module of depth t $<d$ , then its intermediate local cohomology
modules all vanish and t-th local cohomology module $H_{\mathfrak{m}}^{t}(M)$ is isomorphic to
the residue class field, where an $A$-module is said to be maximal if its dimension
is equal to $d$ . The author [15] improved this structure theorem for maximal
surjective-Buchsbaum modules of finite injective dimension; see the next section
for details. Furthermore Amasaki [1], CiPu-Herzog-PoPescu [4], and Yoshino
[23] observed behaviors of local cohomology modules of maximal Buchsbaum
modules or of maximal quasi-Buchsbaum modules.

The aim of this paper is to give indecomposable maximal surjective-
Buchsbaum modules with prescribed local cohomology modules.

THEOREM 1.1. Let $A$ be a Gorenstein local ring of dimension $d>0$ . We
assume that its multiplicity is greater than 2. Let $h_{0},$ $\cdots$ , $h_{d-1}\geqq 0$ be ar&trary
integers. Then there exists an indecomposable maximal surjective-Buchsbaum
module $M$ such that

$l_{A}(H_{\mathfrak{m}}^{i}(M))=h_{i}$ for all $0\leqq i\leqq d-1$ .

A concept of minimal finite injective hull, which was introduced by
Auslander and Buchweitz [2], plays a key role in this Paper. In the preceding
studies on local cohomology modules of finitely generated modules, we assumed
that the modules have finite injective dimension implicitly or explicitly. We,
however, need to consider modules of infinite injective dimension for the
theorem. By the minimal finite injective hull, we are able to separate a
general finitely generated module into a pair of a maximal Cohen-Macaulay
module and a finitely generated module of finite injective dimension. We have
known the structure theorem for maximal surjective-Buchsbaum modules of
finite injective dimension and many authors studied indecomposable maximal
Cohen-Macaulay modules. We will combine them.

It should be noted here that the assumption of the theorem on multiplicity
is not $suPerfluous$ . In fact, Goto [10, Corollary 1.2] showed that there exist
only finitely many isomorphism classes of indecomposable maximal surjective-
Buchsbaum modules over a Gorenstein local ring of dimension 1 and of multi-
plicity 2.

2. Preliminaries.

Throughout this paper, $A$ denotes a Noetherian local ring with maximal
ideal $\mathfrak{m}$ and with residue class field $k$ . We assume that $d=\dim A>0$ . For
each $A$-module $M,$ $l_{A}(M)$ denotes the length of $M$.

Firstly we recall that the local cohomology functor $H_{\mathfrak{m}}^{i}(-)$ with respect to
$\mathfrak{m}$ is naturally equivalent to the functor $\lim_{n}arrow$ Extk$(A/m^{n}, -)$ . And so there
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exists a natural map
$\varphi_{M}^{i}$

’ : $Ext_{A}^{i}(k, M)arrow H_{\mathfrak{n}\iota}^{i}(M)$

for all $i$ .
DEFINITION 2.1 ([22], Definition 1.1). A finitely generated $A$-module $M$ is said

to be surjective-Buchsbaum if the natural map $\phi_{M}^{i}$ is surjective for all $i\neq\dim_{A}M$.
A surjective-Buchsbaum module $M$ is Buchsbaum [21, Theorem 1] and the

converse holds if $A$ is a regular local ring. Naturally, every Cohen-Macaulay
module is surjective-Buchsbaum because $H_{\mathfrak{m}}^{i}(M)=0$ for all $i\neq\dim_{A}M$.

We will state the structure theorem for maximal surjective-Buchsbaum
modules of finite injective dimension. From now on, we assume that $A$ is a
Gorenstein local ring, that is, $A$ has finite injective dimension over itself. Then
there exists a natural isomorphism

$H_{\mathfrak{n}^{i}\iota}(M)\cong Hom_{A}(Ext_{A}^{d-i}(M, A),$ $E)$

for any finitely generated $A$-module $M$, where $E$ denotes the injective envelope
of the residue field $k$ . Refer to [13, Vortrag 5] for details.

Let (F., $d.$ ) be the minimal free resolution of $k$ and $(--)*=Hom_{A}(-, A)$ . We
put

(2.2) $Y_{i}=Cokerd_{d-i}^{*}$

for all $0\leqq i\leqq d$ . In particular $Y_{a}=A$ . Then for all O$i;;ld, there exists an
exact sequence

(2.3) $0arrow(F_{0})^{*}arrow\ldotsarrow(F_{d-i})^{*}arrow Y_{i}arrow 0$

because $Ext_{A}^{j}(k, A)=0$ for all $j<d-i$ . Therefore $Y_{i}$ has finite injective dimen-
sion and

$H_{\mathfrak{m}}^{j}(Y_{i})=\{$

$k$ , $j=i$ ;

$0$ , $j\neq i,$ $d$

for all $0\leqq i\leqq d$ .
THEOREM 2.4 ([15], Theorem 3.1). Assume that $A$ is not regular. Then $Y_{i}$

is an indecomposable maximal surjective-Buchsbaum module for all $0\leqq i\leqq d$ . Fur-
thermore any maximal surjective-Buchsbaum module of finite injective dimension
is isomorphic to a unique direct sum of finite coPies of $Y_{0},$ $Y_{1},$ $\cdots$ , $Y_{d}$ .

In particular a maximal Cohen-Macaulay module of finite injective dimension
is a free module.

Next we state on the finite injective hull.

DEFINITION 2.5. Let $M$ be a finitely generated $A$-module. An exact
sequence of A-modules
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$\phi$

(2.6) $0arrow Marrow Yarrow Xarrow 0$

is said to be a finite injective hull of $M$ if $Y$ is of finite injective dimension
and $X$ is a maximal Cohen-Macaulay module or a zero module. A finite injec-
tive hull (2.6) is said to be minimal if $X$ and $Y$ have no common direct
summand under $\phi$ .

Auslander and Buchweitz [2] showed that, over a Cohen-Macaulay local
ring possessing the canonical module, there exists a minimal finite injective hull
of arbitrary finitely generated module $M$ and that it is determined by $M$ up to
isomorPhisms, that is, let $0arrow Marrow Yarrow Xarrow 0$ and $0arrow Marrow Y’arrow X’arrow 0$ be two
minimal finite injective hulls of $M$. Then there exists a commutative diagram

$0arrow Marrow Yarrow Xarrow 0$

$||$ $\downarrow l$ $\downarrow l$

$0arrow Marrow Y’arrow X’arrow 0$ .

For the sake of completeness, we give a brief proof of them.

THEOREM 2.7. There exists a unique minimal finite injective hull of $ar\ell ntrary$

finitely generated $A$-module $M$.
PROOF. We will use a dualizing complex; refer the reader to [18, Chapter

2] for a notation of complexes and for a dualizing complex. Let $D_{A}$ be a
dualizing complex of $A$ , which is the minimal injective resolution of $A$ . Let
$D(-)=Hom_{A}(-, D_{A})$ and (F., $d$ ) be the minimal free resolution of $D(M)$ . Since
there exist quisms

$Marrow DD(M)arrow D(F.)-F^{*}(-d)$ ,

the homology modules of F.* all vanish except -d-th one and $H_{-a}(F^{*})\cong M$.
Hence there are three exact sequences

(2.8) $0arrow Marrow Cokerd^{*}(\iotaarrow{\rm Im} d_{d+1}^{*}arrow 0$ ;

(2.9) $0arrow F_{0^{*}}arrow F_{1^{*}}arrow\ldotsarrow F_{a}^{*}arrow Cokerd_{d}^{*}arrow 0$ ;

(2.10) $0arrow{\rm Im} d_{a+1}^{*}arrow F_{a+1}^{*}arrow F_{a+2}^{*}arrow\ldots$

The exact sequence (2.9) implies that $Y=Cokerd_{d}^{*}$ is of finite injective dimen-
sion. If $M$ is not of finite injective dimension, then $F_{i}\neq 0$ for all $i>d$ because
the rank of $F_{i}$ is equal to the i-th Bass number of $M$. And so (2.10) implies
that $X={\rm Im} d_{d+1}^{*}$ is a maximal Cohen-Macaulay module or a zero module. There-
fore (2.8) is a finite injective hull of $M$. If $X$ and $Y$ have a common direct
summand $Z$ , then $Z$ is a free module. By taking $(-)^{*}$ of (2.10), we find that
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$Z$ is also a direct summand of $F_{a+1}^{*}$ . However there exists a commutative
diagram

Fff $Fff_{+1}$

$\underline{d_{a_{+}1}^{*}}$

$\downarrow$ $\uparrow$

$Y-X$
which contradicts the fact that ${\rm Im} d_{d+1}^{*}\subseteqq \mathfrak{m}F_{d+1}^{*}$ . Thus the finite injective hull
(2.8) is minimal.

Nextly we show that the uniqueness of minimal finite injective hull. Take
a minimal finite injective full of $M$ :

$\emptyset$

(2.11) $0arrow Marrow Yarrow Xarrow 0$ .
Let F. and G. be the minimal injective resolutions of $D(X)$ and $D(Y)$ , respec-
tively. Then

$F_{i}=0$ for all $i<d$

and
$G_{i}=0$ for all $i>d$ .

Furthermore $D(\emptyset)$ induces a homomorphism $\phi$ . : $F.arrow G$ . which makes the follow-
ing diagram

$D(X)\underline{D(\phi)}D(Y)$

$\uparrow$ $\uparrow$

F.
$\overline{\phi.}$

$G$ .

commutative uP to homotopy. We remark that the minimality of (2.11) implies
that $\phi_{d}\otimes k=0$ . Since there exist quisms

$Mc(\emptyset.)arrow Mc(D(\emptyset))arrow D(M)$ ,

where $Mc(-)$ denotes the mapplng cone, $Mc(\emptyset.)$ is the minimal free resolution
of $D(M)$ . The uniqueness of minimal free resolution implies the uniqueness of
minimal finite injective hull. $\square$

By the above proof, we find that the finite injective hull (2.6) is minimal
if and only if $X$ has no free summand. Furthermore the above proof gives an
effective construction of the minimal finite injective hull. In fact, let G. be
the minimal free resolution of a finitely generated $A$-module $M$ . Then there
exists the minimal free resolution F. of $G^{*}(d)$ because $H_{i}(G^{*})=Ext_{A}^{-i}(M, A)=0$

for all $i<-d$ . Since there are quisms

$D(M)arrow D(G.)arrow G^{*}(d)$ ,
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the free complex F. is also the minimal free resolution of $D(M)$ . Of course,
when $A$ is a Cohen-Macaulay local ring possessing the canonical module $K_{A}$ , we
can similarly prove the theorem by letting $(--)*=Hom_{A}(-, K_{A})$ .

Finally we state on matrix factorizations. A Noetherian local ring $A$ is
said to be hypersurface if the $\mathfrak{m}$ -adic completion of $A$ is a residue class ring of
a regular local ring with respect to a principal ideal. Matrix factorizations
describe maximal Cohen-Macaulay modules over a hypersurface.

Let $B$ be a regular local ring with maximal ideal $n$ and $0\neq f\in n^{2}$ .

DEFINITION 2.12. A matrix factorization of $f$ is a pair ( $\phi:Farrow F’,$ $\phi’$ :
$F’arrow F)$ of homomorphisms between two finitely generated free $B$ -modules such
that

$\phi\cdot\phi’=f\cdot id_{F’}$ and $\phi’\cdot\phi=f\cdot id_{F}$ .

When this is the case, the rank of $F’$ is equal to the one of $F$. A morphism
between two matrix factorizations $(\phi:Farrow F’,\dot{\varphi}’ : F’arrow F)$ and ($\psi:Garrow G’,$ $\psi’$ :
$G^{f}arrow G)$ is a pair $(\alpha:Farrow G, \alpha’ : F’arrow G’)$ of homomorphisms which makes the
following diagram

$F\underline{\phi}F’arrow\psi’F$

$\alpha\downarrow$ $\alpha’\downarrow$ $\alpha\downarrow$

$Garrow\psi G’\underline{\psi’}G$

commutative. A matrix factorization $(\varphi’, \phi’)$ is called reduced if ${\rm Im}\phi\subset \mathfrak{m}F’$

and ${\rm Im}\phi’\subset \mathfrak{m}F$. The matrix factorizations of $f$ form an additive category,
denoted by $MF_{B}(f)$ .

Let $(\emptyset, \phi’)$ be a matrix factorization of $f$. Then it is easy to check that
$Coker\phi$ is a maximal Cohen-Macaulay module over a hypersurface $A=B/fB$ .
Furthermore if $(\emptyset, \phi’)$ is reduced, then

$F’\otimes A\underline{\phi\otimes A}F\otimes A\underline{\phi’\otimes A}F’\otimes Aarrow\phi\otimes A$ ...

is the minimal free resolution of $Coker\phi$ as an $A$-module. This correspondence
is an additive functor from $MF_{B}(f)$ to the category of the maximal Cohen-
Macaulay $A$-modules. Eisenbud [6, Corollary 6.3] showed that the functor
induces a one-to-one correspondence between reduced matrix factorizations of
$f$ and maximal Cohen-Macaulay $A$-modules having no free summand. By the
correspomdence, we often identify them.
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3. Proof of Theorem 1.1.

We will prove Theorem 1.1 in this section. Let $A$ be a Gorenstein local
ring of dimension $d$ and of multiplicity $e.(A)>2$ . We divide the proof to two
parts.

CASE 1. When $A$ is a hypersurface of dimension 1.

In thls case, we will refine Nishida’s argument [16]. Let $B$ be a 2-dimen-
sional regular local ring with maximal ideal $\mathfrak{n}=(x, y)$ and $0\neq f\in \mathfrak{n}$ such that
$B/fB\cong\hat{A}$ , where $\hat{A}$ denotes the completion of $A$ . Since $e.(A)>2$ , there exist
elements $a,$ $b,$ $c\in n$ such that $f=ax^{2}+bxy+cy^{2}$ . Let $X$ be the second syzygy
of $k$ . Then $X$ is a maximal Cohen-Macaulay module and $X\otimes_{A}\hat{A}$ is associated
to the matrix factorization of $f$ :

$(\emptyset, \phi’)=((\begin{array}{ll}cy ax+byx -y\end{array}),$ $(\begin{array}{ll}y ax+byx -cy\end{array}))$ .

In the other word, there exists an exact sequence

$0-X\otimes_{A}\hat{A}arrow\hat{A}^{2}\hat{A}^{2}\hat{A}^{2}\underline{\psi\otimes_{A}A}\underline{\phi’\otimes_{A}\hat{A}}\Leftarrow\ldots$

Therefore $Ext_{A}^{1}(X, k)=Ext_{\hat{A}}^{1}(X\otimes_{A}\hat{A}, k)$ is a $k$ -vector space of dimension 2. The
endomorphism ring $End_{A}(X)$ of $X$ acts on $Ext_{A}^{1}(X, k)$ as $k$ . In fact, an endo-
morphism of $(\emptyset, \phi’)$ is a linear combination of following four morphisms:

$((\begin{array}{ll}1 0O l\end{array}),$ $(\begin{array}{ll}1 00 1\end{array}))$ , $((_{x}^{y}$

$((\begin{array}{ll}0 a-c -b\end{array}),$ $(\begin{array}{ll}-b -ac1 O\end{array}))$ ,

$00),$ $(\begin{array}{ll}y ax+byO 0\end{array}))$ ,

$((\begin{array}{ll}0 y0 x\end{array}),$ $(\begin{array}{ll}x -cy0 0\end{array}))$ .

The later three morphism act on $Ext_{\hat{A}}^{1}(X\otimes_{A}\hat{A}, k)$ as a zero map. In particular,
$X$ is indecomposable.

Let $\{e_{1}, e_{2}\}$ be a basis of $Ext_{A}^{1}(X, k)$ and $h>0$ an integer. Take an exten-
sion of $k^{\hslash}$ by $X^{h}$ :

$0arrow k^{h}arrow Marrow X^{h}arrow 0$

which corresponds to

$(\begin{array}{llll}e_{1} e_{2} 0 e_{1} e_{2} \ddots ||e_{2}0 e_{\iota}\end{array}\}\in Ext_{A}^{1}(X^{h}, k^{h})=Ext_{A}^{1}(X, k)^{\hslash^{2}}$ .
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Then $M$ is a maximal surjective-Buchsbaum module with $H_{t\mathfrak{n}}^{0}(M)=k^{h}$ by [21,

Corollary 4.1]. We will show that $M$ is indecomposable. We may assume that
$A$ is complete. If there were non-trivial decomposition $M=M’\oplus M’$ , then
$[M’/H_{\mathfrak{m}}^{0}(M’)]\oplus[M’/H_{\mathfrak{m}}^{0}(M’’)]=X^{h}$ . By the uniqueness of direct sum decom-
position, we obtain

$H_{\mathfrak{m}}^{0}(M’)=k^{h’}$ ; $M’/H_{\mathfrak{m}}^{0}(M’)=X^{m’}$ ;

$H_{\mathfrak{m}}^{0}(M’)=k^{h^{n}}$ ; $M’/H_{\mathfrak{n}\iota}^{0}(M^{ff})=X^{m^{n}}$ ;

and the following commutative diagram

$0arrow$ $k^{h}$ $arrow$ $M$ $arrow$ $X^{h}$ $arrow 0$

$||$ $||$ $||$

$0arrow k^{h’}\oplus k^{\hslash’’}arrow M’\oplus M’’$ . $--X^{m’}\oplus X^{m^{n}}arrow 0$ .
It means that there are invertible matrix $P$ and $Q$ with entries in $k$ such that

$P\{\begin{array}{llll}e_{1} e_{2} 0 e_{1} e_{2} \ddots 0 ||.e_{2}e_{1}\end{array}\}Q=(_{0}^{\Pi’}\Pi’’O)$ ,

where $\Pi^{f}$ (resp. $\Pi$“) is $h’\cross m’$ (resp. $h"\cross m’’$ ) matrix with entries in Extk(X, $k$ ).

It is impossible by [16, Lemma 2.2]. $\square$

CASE 2. When $A$ is not a hypersurface or $A$ is a hypersurface of dimension
$d\geqq 2$ .

We may assume that $(h_{0}, \cdots h_{a-1})\neq(1,0, \cdots, 0)$ . Let $Y_{t}$ be an indecom-
posable maximal surjective-Buchsbaum module of finite injective dimension
defined as (2.2).

When this is the case, there exists an indecomposable maximal Cohen-
Macaulay module $X$ such that

(3.1) $\beta_{d-i}(X)\geqq\sum_{j=0}^{i}\beta_{j}(k)h_{i-j}$ for all $0\leqq i$ $ $d-1$ ,

where $\beta_{i}^{A}(-)$ denotes the i-th Betti number. In fact, when $A$ is not a hyper-
surface, Herzog showed that for arbitrary integer $n>0$, there exists an inde-
composable maximal Cohen-Macaulay module $X$ such that $\beta_{0}^{A}(X)\geqq n$ , in the proof
of [12, Satz 1.2]. Furthermore Ramras [17, Corollary 4] gave an inequality
for any maximal Cohen-Macaulay module $X$ over arbitrary Cohen-Macaulay
ring $A$
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(3.2) $\beta_{n+1}(X)>\frac{r}{e_{ttt}(A)}\beta_{n}(X)$ for all $n>0$ ,

where $r$ is the Cohen-Macaulay type of $A$ . Now, since $A$ is Gorenstein, a
maximal Cohen-Macaulay module $X$ having no free summand is the first syzygy
of another maximal Cohen-Macaulay module. And so the inequality (3.2) holds
for $n=0$ if $X$ is maximal Cohen-Macaulay module having no free summand.
Therefore we can take an indecomposable maximal Cohen-Macaulay module $X$

which satisfies (3.1). When $A$ is a hypersurface, we leave to show tbat such
a module exists for the next section.

Let G. be the minimal free resolution of $X$ and $\epsilon$ : $G_{0}arrow X$ the canonical
ePimorphism. We will give a epimorphism from $Y=(\oplus_{i=0}^{d-1}Y_{i})\oplus G_{0}$ to $X$ . Let
$F^{i}$ be the minimal free resolution of $Y_{i}^{h_{i}}$ . Then $(F^{i})^{*}$ is a finite copy of a
part of the minimal free resolution of $k$ ; see (2.3). First we determine
$\phi^{i}$ : $F^{i}--$ G. for all $0\leqq i\leqq d-1$ . Assume that $h_{0}=...$ $=h_{t-1}=0$ and $h_{t}\neq 0$ . Then
let $\phi^{0},$ $\cdots$ , $\phi^{t-1}$ be zero maps and take a split monomorphism $\phi_{a_{-}\iota}^{t}$ : $F_{d-t}^{t}arrow G_{\dot{a}-t}$ .
It induces a commutative diagram

$0arrow Y_{t}^{h_{\delta}}-F_{0}^{t}-\cdots-F_{d-t-1}^{t}-F_{a-t}^{t}-$ $0$

(3.3) $H_{0}(\phi^{t})\downarrow$ $\phi_{0}^{t}\downarrow$ $\phi_{ti-t-1}^{t}\downarrow$ $\phi^{t}a_{-}t\downarrow$ $\downarrow$

$0-X-G_{0}-\cdots-G_{1-t-1}(-G_{a-\iota}-G_{a-t+1}arrow\ldots$

by considering $(F^{t})^{*}$ and $G^{*}$ . When $\phi^{0},$ $\cdots$ , $\phi^{i-1}$ are given, take a homomorphism

$\phi_{d-i}^{i}$ : $F_{d- i}^{t}arrow G_{(J- i}$

such that $\dim_{k}{\rm Im}\phi_{d-i}^{i}\otimes k=h_{i}$ and

(3.4) $l m\phi_{d-i}^{i}\otimes k\cap[\sum_{j=0}^{i-1}{\rm Im}\phi_{d-i}^{j}\otimes k]=0$

as a subspace of $G_{a-i}\otimes k$ ; we can take such a homomorphism by inequality
(3.1). In the same way as (3.3), we get $\phi^{i}$ and $H_{0}(\emptyset!)$ .

Let
$\phi=(\bigoplus_{i\approx 0}^{d-1}H_{0}(\phi^{i}))\oplus\epsilon$ : $Yarrow X$

and $M=Ker\phi$ . Then $\phi$ is epimorphism and $0arrow Marrow Yarrow Xarrow 0$ is the minimal
injective hull of $M$. We will show that $M$ is indecomposable except a maximal
Cohen-Macaulay module and that its non-Cohen-Macaulay component is the
required module. If there were an decomposition $M=M’\oplus M’’$ where neither
component is a maximal Cohen-Macaulay module. Take the minimal finite
injective hull of $M’$ and $M’’$ :
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$0arrow M’arrow Y’arrow X’arrow 0$ and $0arrow M^{ff}arrow Y’arrow X’’arrow 0$ .
Then there exists a commutative diagram with exact rows

$\phi$

$0arrow$ $M$ $arrow$ $Y$ $arrow$ $X$ $arrow 0$

(3.5) $||$ $l\uparrow\psi$ $l\uparrow$

$0arrow M’\oplus M^{ff}arrow Y’\oplus Y\prime 7arrow X’\oplus X^{f/}arrow 0$

because the lower row is the minimal finite injective hull of $M’\oplus M^{ff}$ . Without
loss of generality, we may assume that $X^{ff}=0$ because $X$ is indecomposable. Let

$Y’=( \bigoplus_{i=0}^{a-1}Y_{i}^{h_{i}’})\oplus G’$ and $Y^{ff}=( \bigoplus_{i=0}^{d-1}Y_{i}^{h_{i}^{l}})\oplus G$ “,

where $G’$ and $G^{ff}$ are free and $h_{i}=h_{i}’+h_{i}’’$ for all $0\leqq i\leqq d-1$ . Recall that $Y^{ff}$

is not Cohen-Macaulay, and so $h_{s}’’\neq 0$ for some $t\leqq s\leqq d-1$ . We regard $G_{0}$ as a
complex concentrated at degree $0$ . Then $G_{0}$ is the minimal free resolution of
itself. The automorphism $\psi$ of $Y$ induces an automorphism

$(\overline{\ddot{\psi}^{0}}\psi^{00}\ddot{\psi}^{1}\psi!^{0}\psi^{01}\psi^{i_{1}}\cdot..|_{\overline{\ddot{\dot{\psi}}}}^{\dot{\psi}^{0}}\dot{\psi}^{i})$

of $(\oplus_{i=0}^{d-1}F^{i})\oplus G_{0}$ , where $\psi^{ij}$ : $F^{j}arrow F^{i},\dot{\psi}^{i}$ : $G_{0}arrow F^{i},$ $\phi^{j}$ : $F^{j}arrow G_{0}$ and $\phi$ . : $G_{0}arrow G_{0}$ .
We find that $\psi_{k}^{ij}\otimes k=0$ if $i>j$ and $k>0$ by considering $(\psi^{ij})^{*}:$ $(F^{i})^{*}arrow(F^{j})^{*}$ .
And so $\psi_{(f-s}^{ii}$ must be $anarrow automorphism$ of $F_{d-S}^{i}$ for all $0\leqq i\leqq s$ . The commuta-
tive diagram (3.5) means that

$\dim_{k}\sum_{i-0}{\rm Im}(\phi_{d-s}^{i}\cdot\psi_{a-s}^{is})\otimes k\leqq h_{s}’<h_{s}$ ,

which contradicts to (3.4). Hence $M$ is indecomposable except for Cohen-Macaulay
summands.

Let $M=M’\oplus M’$ where $M’$ is indecomposable and $M^{ff}$ is a maximal Cohen-
Macaulay module or a zero module. If $\dim_{A}M’=d$ , then $M^{f}$ is surjective-
Buchsbaum by the commutative diagram

$Ext_{A}^{i}(k, M’)-Ext_{A}^{i}(k, Y)$

$\phi_{M’}^{i}\downarrow$ $\phi_{Y}^{i}\downarrow$ for all $i<d$ .
$H_{\mathfrak{m}}^{i}(M’)$ – $H_{\mathfrak{m}}^{i}(Y)=k^{h_{i}}$

Thus the proof of Case 2 is completed. We assume that $s=\dim_{A}M’<d$ . It is
easy to show that $H_{\mathfrak{m}}^{s}(M’)$ is not finitely generated if $s\neq 0$ . Therefore $s$ must
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be equal to $0$ and $h_{0}=\cdots=h_{tl-1}=0$ , however, $M’=H_{\mathfrak{m}}^{0}(M’)$ is a $k$ -vector space
of dimension $h_{0}>1$ , which is a contradiction. $\square$

4. Maximal Cohen-Macaulay module of high Betti numbers.

This section is devoted to the proof of the following theorem, by which we
can take an indecomposable maximal Cohen-Macaulay module satisfying (3.1) if
$d\geqq 2$ .

THEOREM 4.1. Let $A$ be a hypersurface with maximal ideal rn of dimension
$d$ . We assume that the multiplicrty $e$ is greater than 2. Then for any integer
$n>e$ , a maximal Cohen-Macaulay module $Syz_{a+1}^{A}A/\mathfrak{m}^{n}$ is indecomposable and

$\beta_{0}^{A}(Syz_{a_{+}1}^{A}A/\mathfrak{m}^{n})\geqq(\begin{array}{l}-d+n1d-1\end{array})$ .

Tbis theorem was firstly proved by Herzog and Sanders [14] in the graded
case. We will modify their proof to the local case.

We may assume that $A$ is complete without loss of generality. Hence there
exists a regular local ring $B$ with maximal ideal $\mathfrak{n}$ and $0\neq f\in n^{3}$ such that $A=$

$B/fB$ . First we construct the minimal free resolution of $A/\mathfrak{m}^{n}$ . There is an
exact sequence

$f$

$0-B/\mathfrak{n}^{n-e}arrow B/\mathfrak{n}^{n}arrow A/\mathfrak{m}^{n}arrow 0$ .

Let (F., $d.$) and $(F^{f}, d’)$ be the minimal free resolution of $B/n^{n-e}$ and of $B/\mathfrak{n}^{n}$

as a $B$ -module, respectively. Then F. is an Eagon-Northcott complex with
respect to an $(n-e)\cross(n-e+d)$ matrix

$(\begin{array}{llllllll}x_{0} x_{1} \cdots x a 0 x_{0} x d \ddots \ddots 0 x_{0} x_{1} \cdots x_{f}(\end{array})$

where $x_{0},$ $x_{1},$ $\cdots$ , $x_{d}$ is a minimal basis of $\mathfrak{n}$ , see [5] and [3, p. 15], and F.’ is
also an Eagon-Northcott complex. The bomomorphism $f$ : $B/\mathfrak{n}^{n-e}arrow B/\mathfrak{n}^{n}$ lift to
a homomorphism $\phi$ . : $F.arrow F’$ .

LEMMA 4.2. For all $i>0,$ $\phi_{i}$ is a split monomorphism.

Before the proof, we state a notation on graded rings. Since $B$ is regular,
the associated graded ring $gr_{\mathfrak{n}}(B)=\oplus_{i=0}^{\infty}\mathfrak{n}^{i}/n^{i+1}$ , denoted by $R$ , is isomorphic to
a polynomial ring. Let $\mathfrak{M}$ be the bomogeneous maximal ideal of $R$ and $f^{*}$ the
leading term of $f$ . For any $B$-module $M,$ $gr_{\mathfrak{n}}(M)=\oplus_{i=0}^{\infty}$ rt$iM/\mathfrak{n}^{i+1}M$ is a graded
$R$ -module. Let $\alpha:Marrow N$ be a $B$ -homomorphism such that ${\rm Im}\alpha\subset \mathfrak{n}^{n}N$ . Then
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it induces an $R$-homomorphism $gr_{\mathfrak{n}}^{n}(\alpha):gr_{\mathfrak{n}}(M)arrow gr_{\mathfrak{n}}(N)(n)$ in a natural way.
In this notation, the following diagram

$gr_{\mathfrak{n}}(F_{0})(-e)gr_{\mathfrak{n}}(F_{1})(-n)\underline{gr_{\mathfrak{n}}^{n-e}(d_{1})}\underline{gr_{\mathfrak{n}}^{1}(d}_{2})-gr_{\mathfrak{n}}(F_{2})(-n-1)\underline{gr_{\mathfrak{l}1}^{1}(d_{3})}$ ...

(4.3) $\downarrow f^{*}$ $gr_{\mathfrak{n}}^{0}(\phi_{1})\downarrow$ $gr_{\mathfrak{n}}^{0}(\phi_{2})\downarrow$

$gr_{\mathfrak{n}}(F_{0}’)$

$\overline{gr_{\mathfrak{n}}^{n}(d_{1})}gr_{\mathfrak{n}}^{1}(d_{2})\overline{gr_{\mathfrak{n}}^{1}(d_{3})}gr_{\mathfrak{n}}(F_{1}’)(-n)gr_{\mathfrak{n}}(F_{2}’)(-n-1)$

is commutative and each row is the minimal free resolution of $R/\mathfrak{M}^{n-e}$ and
$R/\mathfrak{M}^{n}$ , respectively, because it is an Eagon-Northcott complex.

PROOF OF LEMMA 4.2. We work by induction on $i$ . Firstly we take the
n-th homogeneous component of (4.3)

$\mathfrak{n}^{n-e}/n^{n- e+1}-F_{1}\otimes k-0$

$\mathfrak{n}^{n}/\mathfrak{n}^{n+1}f\downarrow$ $-F_{1}’\otimes karrow 0\downarrow\phi_{1}\otimes k$

which is a commutative diagram of $k$ -vector spaces with exact rows. Since
the composite homomorphism

$F_{1}\otimes karrow\uparrow t^{n-e}/n^{n-e+1}arrow \mathfrak{n}^{n}/\mathfrak{n}^{n+1}$

is a monomorphism, $\phi_{1}\otimes k$ is a split monomorphism. Therefore $\phi_{1}$ is also. If
$\phi_{i}$ is a split monomorphism, then we have a monomorphism

$F_{i+1}\otimes karrow gr_{\mathfrak{n}}(F_{i})_{1}\underline{gr_{\mathfrak{n}}^{0}(\psi_{t})}gr_{\mathfrak{n}}(F_{t}’)_{1}$

by taking the $(n-i)$-th homogeneous component of (4.3). And so $\phi_{i+1}$ is a split
monomorphism by the same way. $\square$

Therefore we can write $\phi$ . : $F.arrow F’$ as the following form

$F_{0}-$ $F_{1}$ – $F_{2}$ – $\cdots$

$f\downarrow$ $(_{0}^{id_{F_{1}}})\downarrow$ $(_{0}^{id_{F_{2}}})\downarrow$

$F_{0}\overline{(fd_{1}\alpha_{1})}F_{1}\oplus G_{1}\overline{(\begin{array}{ll}d_{2} \alpha_{2}0 g_{2}\end{array})}F_{2}\oplus G_{2}\overline{(\begin{array}{ll}d_{3} \alpha_{3}0 g_{3}\end{array})}$

...
’

where $\alpha_{i}$ is a homomorphism from $G_{i}$ to $F_{i-1}$ and $g_{i}$ is a homomorphism from
$G_{i}$ to $G_{i-1}$ . Taking the mapping cone of $\phi.$ , we have the minimal free
resolution of $A/\mathfrak{m}^{n}$ as a B-module
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$(f\alpha_{1})$

$(\begin{array}{l}d_{1}a_{2}g_{2}\end{array})$

$g_{3}$ $g_{4}$

$F_{0}-F_{0}\oplus G_{1}<-G_{2}-G_{3}arrow\cdots$

and denote it by (H., $\partial.$).

In the same way, we obtain the minimal free resolution of $R/(\mathfrak{M}^{n}+f^{*}R)$ as
an R-module

$(f^{*}gr_{\mathfrak{n}}^{n}(_{\alpha_{1}}))$

$(_{gr_{\mathfrak{n}}^{1}g_{2}}^{gr_{\mathfrak{n}}^{n-e+1}(d_{1}\alpha_{2}}))$

$gr_{\mathfrak{n}}(F_{0})$ – $gr_{\iota\iota}(F_{0})(-e)\oplus gr_{\mathfrak{n}}(G_{1})(-n)$ —-

$-gr_{\mathfrak{n}}(G_{2})(-n-1)gr_{\mathfrak{n}}(G_{3})(-n-2)\underline{gr_{\mathfrak{n}}^{1}(g_{3})}\underline{gr_{\mathfrak{n}}^{1}(g_{4})}$

and denote it by $(\underline{H}.,\underline{\partial}.)$ .
We will construct the minimal free resolution of $A/\mathfrak{m}^{n}$ as an A-module

after Shamash [19] and Eisenbud [6, Section 7].

LEMMA 4.4. There exists a family of homomorphisms

$\{s_{j}^{\ell} : H_{j}arrow H_{j+2i-1}|i, j\geqq 0\}$

such that

(1) $s_{j}^{0}=\partial_{j}$ for all $j$ ;
(2) for all $m,$ $\Sigma_{i+j=k}s_{m+2j- 1}^{i}s_{m}^{j}=\{_{0}^{f\cdot id_{H_{m}}}$ $k=1;k\geqq 2$

;
(3) $s_{0}^{1}=(_{0^{F_{0}}}^{id})$ and $s_{0}^{i}=0$ for $i\geqq 2$ ;

(4) $s_{1}^{i}(F_{0})=0$ for all $i>0$ ;
(5) $s_{j}^{i}\equiv 0$ modulo $\mathfrak{n}^{2}$ for all $i,$ $J\geqq 1$ .

A family satisfying (1) and (2) was given by Shamash [19]. But to show
(3) $-(5)$ , we review his argument.

PROOF OF LEMMA 4.4. We will construct the family by induction on $i$ .
Let $s_{j}^{0}=\partial_{j}$ for all $j$ and $s_{0}^{1}=(_{0^{F_{0}}}^{id})$ . Since H. is acyclic and $f\cdot id_{H_{1}}-s_{0}^{1}s_{1}^{0}$ is
concentrated in $G_{1}$ , there is a homomorphism $\tau:G_{1}arrow G_{2}$ such tbat

$f\cdot id_{H_{1}}-s_{0}^{1}s_{1}^{0}=(\begin{array}{l}d_{1}\alpha_{2}g_{2}\end{array})(0\tau)$ .

Consider the following commutative diagram with exact row
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Since ${\rm Im}\alpha_{1}\subset n^{e}F_{0}$ , the vertical homomorphism is a zero morphism. Therefore
${\rm Im}\tau$ is contained in $\mathfrak{n}G_{2}$ . Furthermore by the following commutative diagram
with exact row

$gr_{\mathfrak{n}}(G_{1})_{0}$

$(_{gr_{\mathfrak{n}}^{\epsilon}(f)^{(\alpha_{1})}}^{-gr_{\mathfrak{n}}^{n-\epsilon+a}})\downarrow$

$gr_{\mathfrak{n}}(F_{0}\rangle_{n-e+2}\oplus gr_{\mathfrak{n}}(G_{1})_{2}arrow gr_{\mathfrak{n}}(G_{2})_{1}arrow gr_{\mathfrak{n}}(G_{\theta})_{0}$ ,

we find a homomorphism $\tau’$ : $G_{1}arrow G_{3}$ such that ${\rm Im}(\tau+g_{3}\tau’)\subset \mathfrak{n}^{2}G_{2}$ . Let $s_{1}^{1}=$

$(0\tau+g_{s}\tau’)$ . Then $f\cdot id_{H_{1}}=s_{0}^{1}s_{1}^{0}+s_{2}^{0}s_{1}^{1}$ . In the same way, we obtain $\{s_{i}^{1}|i>1\}$

which satisfy (2), (3) and (5).

When the family $\{s_{k}^{j}|k\geqq 0,1\leqq j\leqq i\}$ is given, let

$\sigma_{k}=\sum_{j=1}^{i}s_{k+2j-1}^{i-j+1}s_{k}^{j}$ : $H_{k}arrow H_{k+2i}$ .

Then $\sigma$ . : $H.arrow H.(2i)$ is a chain homomorphism, which is homotopic to the zero
map. Furthermore $\sigma_{0}=0,$ $\sigma_{1}$ is concentrated in $G_{1}$ and $\sigma_{i}\equiv 0$ modulo $\mathfrak{n}^{3}$ for $i>1$

by the induction hypothesis. And so in the same way, we obtain $\{s_{j}^{i+1}|j\geqq 0\}$

satisfying (2) $-(5)$ . $\square$

Let $H_{i}’=(H_{i}\oplus H_{i-2}\oplus\cdots)\otimes_{B}A$ and

$\partial_{i}’=($
$0s_{i}^{0}$

$s_{i-2}^{1}s_{i-2}^{0}$

$|\begin{array}{l}.\cdot.\end{array}||)\otimes_{B}A$ .

Then (H.’, $\partial’$ ) is a free resolution of $A/\mathfrak{m}^{n}$ as an $A$-module and we obtain the
reduced matrix factorization of $f$ :

$(\phi:G_{1}\oplus G_{3}\cdotsarrow G_{2}\oplus G_{4}\cdots , \phi’ : G_{2}\oplus G_{4}\cdotsarrow G_{1}\oplus G_{3}\cdots)$

$=[[_{*}^{*}$
$g_{3}.....\cdot 0*.g_{\overline{0}}.*\cdot...|$ , ( $g_{4}.......0$ )$]$ ,

which corresponds to $Syz_{l+1}^{A}(A/\mathfrak{m}^{n}$ if $d$ is odd or to Syz2 $A/\mathfrak{m}^{n}$ if $d$ is even.
Here $(*)$ parts of $\phi$ and $\phi’$ are equal to zero modulo $lt^{2}$ . Since the rank of

$G_{d+1}$ is equal to $(\begin{array}{l}d+nd\end{array})-(\begin{array}{l}d+n-ed\end{array})$ , we obtain
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$\beta_{0}^{A}(Syz_{tl+1}^{A}A/\mathfrak{m}^{n})\geqq(\begin{array}{ll}d+n -1d -l\end{array})$ .

Finally we will prove that $Syz_{\dot{a}+1}^{A}A/\mathfrak{m}^{n}$ is indecomposable. Let

( $\alpha$ , $\alpha^{f}$ ) $=$ $($ ( $\alpha_{31}\alpha_{11}$ $\alpha_{33}\alpha_{13}$

.
$|$ ), $($

$\alpha_{42}\alpha_{22}$ $\alpha_{44}\alpha_{24}$

.
$|.))$

be an endomorphism of $(\emptyset, \phi’)$ , where $\alpha_{ij}$ is a homomorphism from $G_{j}$ to $G_{i}$ .
Then the diagram

$gr_{\mathfrak{n}}(G_{1})(-n)arrow gr_{\mathfrak{n}}(G_{2})(-n-1)$ $-gr_{\mathfrak{n}}(G_{3})(-n-2)$ – $\ldots$

(4.5) $\downarrow gr_{\mathfrak{n}}^{0}(_{\alpha_{i1}})$ $\downarrow gr_{\mathfrak{n}}^{0}(_{\alpha_{i+1,2}})$ $\downarrow gr_{1\downarrow}^{0}(_{\alpha_{i+2,3}})$

$gr_{\mathfrak{n}}(G_{i})(-n)arrow gr_{\mathfrak{n}}(G_{i+1})(-n-1)-gr_{\mathfrak{n}}(G_{\iota_{+}2})(-n-2)arrow\ldots$

is commutative for all $i\geqq 1$ . Since $Hom_{R}(\underline{H}., R)$ is acyclic, (4.5) induces a chain
homomorphism $\beta$ . : $H.arrow\underline{H}.(i-1)$ . If $i>1$ , then $\beta$ . is homotopic to zero. Hence
we have $\alpha_{jk}\equiv 0$ modulo $1t$ for $j>k$ . If $i=1$ , then $\beta$ . induces an endomorphism
of $H_{0}(\underline{H}.)=R/(\mathfrak{M}^{n}+f^{*}R)$ which is homotopic to the multiplication of a homo-
geneous element of $R$ . Therefore there is an element $c\in A$ such that

$\alpha_{it}\equiv(\begin{array}{lll}c 0 \ddots 0 c\end{array})$ $(mod \mathfrak{n})$ for all $i$

and

$(\alpha, \alpha’)\equiv((\begin{array}{lll}c * \ddots 0 c\end{array})$ , $(\begin{array}{lll}c * \ddots 0 c\end{array}))$ $(mod \mathfrak{n})$ .

Thus End $(Syz_{d+1}A/\mathfrak{m}^{n})$ is local, that is, a sum of non-units is not unit. There-
fore $Syz_{a_{+}1}A/\mathfrak{m}^{n}$ is indecomposable. The proof of Theorem 4.1 is completed. $\square$

References

[1] M. Amasaki, Free complexes defining maximal quasi-Buchsbaum graded modules
over polynomial rings, J. Math. Kyoto Univ., 33 (1993), 143-170.

[2] M. Auslander and R.-O. Buchweitz, The homological theory of maximal Cohen-
Macaulay approximations, Soc. Math. France Mem., 38 (1989), 5-37.

[3] W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math., 1327,
Springer-Verlag, Berlin, Heidelberg, New-York, Paris, Tokyo, 1988.

[4] M. Cipu, J. Herzog and D. Popescu, Indecomposable generalized Cohen-Macaulay
modules, Trans. Amer. Math. Soc., 342 (1994), 107-136.

[5] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex
associated with them, Proc. Roy. Soc. London Ser. A, 269 (1962), 188-204.



566 T. KAWASAKI

[6] D. Eisenbud, Homological algebra on a complete intersection, with an application
to group representations, Trans. Amer. Math. Soc., 260 (1980), 35-64.

[7] E. G. Evans jr. and P. A. Griffith, Local cohomology modules for normal domains,

J. London Math. Soc. (2), 19 (1979), 277-284.
[8] S. Goto, On Buchsbaum Rings, J. Algebra, 67 (1980), 272-279.
[9] S. Goto, Maximal Buchsbaum Modules over Regular Local Rings and a Structure

Theorem for Generalized Cohen-Macaulay Modules, Commutative Algebra and Com-
binatrics, (eds. M. Nagata and H. Matsumura), Adv. Stud. Pure Math., 11, Kino-
kuniya, Tokyo, 1987, pp. 39-64.

[10] S. Goto, Curve Singularities of Finite Buchsbaum Representation Type, J. Algebra,
163 (1994), 447-480.

[11] A. Grothendieck, Local Cohomology, Lecture Notes in Math., 41, Springer-Verlag,
Berlin, Heiderberg, New-York, 1967.

[12] J. Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzer-
legbaren Cohen-Macaulay-Moduln, Math. Ann., 233 (1978), 21-34.

[13] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture
Notes in Math., 238, Springer-Verlag, Berlin, Heiderberg, New-York, 1971.

[14] J. Herzog and H. Sanders, Indecomposable syzygy-modules of high rank over hy-
persurface rings, J. Pure Appl. Algebra, 51 (1988), 161-168.

[15] T. Kawasaki, Surjective-Buchsbaum modules over Cohen-Macaulay local rings,
Math. Z., 218 (1995), 195-205.

[16] K. Nishida, On a construction of indecomposable modules and applications, Tsukuba
J. Math., 13 (1989), 147-155.

[17] M. Ramras, Bounds on Betti numbers, Canad. J. Math., 34 (1982), 589-592.
[18] P. Roberts, Homological invariants of modules over commutative rings, S\’eminaire

de Math., 72, Les Presses de l’Universite de Montreal, 1980.
[19] J. Shamash, The Poincare Series of a Local Ring, J. Algebra, 12 (1969), 453-470.
[20] R. Y. Sharp, Some results on the vanishing of local cohomology modules, Proc.

London Math. Soc. (3), 30 (1975), 177-195.
[21] J. St\"uckrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J.

Math., 100 (1978), 727-746.
[22] K. Yamagishi, Bass number characterization of surjective-Buchsbaum modules,

Math. Proc. Cambridge Philos. Soc., 110 (1991), 261-279.
[23] Y. Yoshino, Maximal Buchsbaum Modules of Finite Projective Dimension, J.

Algebra, 159 (1993), 240-264.

TakeSi KAWASAKI
Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo 192-03
Japan
( $E$-mail: kawasaki@math.metro-u.ac.jp)


	1. Introduction.
	THEOREM 1.1. ...

	2. Preliminaries.
	THEOREM 2.4 ...
	THEOREM 2.7. ...

	3. Proof of Theorem 1.1.
	4. Maximal Cohen-Macaulay ...
	THEOREM 4.1. ...

	References

