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1. Introduction and results.

We consider the nth order linear differential equation

$w^{(n)}+r_{n-2}(z)w^{(n-2)}+\cdots+r_{o}(z)w=0$ (1)

with rational coefficients. Unlike the case of polynomial coefficients, we know,
Eq. (1) may have some solutions multivalued in the complex plane. In this paper,
however, we always assume that each solution of Eq. (1) is single-valued,
meromorphic in the complex plane. Then it is clear to see that each solution
of Eq. (1) has only a finite number of poles, so that its Valiron deficient at $\infty$

is equal to 1.
NOW let us introduce some notations. For a system of rays

$D=Uj=1m\{z|\arg z=\theta_{j}\},$ $0\leqq\theta_{1}<\cdots<\theta_{m}<\theta_{m+1}=\theta_{1}+2\pi$ , (2)

we define

$\omega(D)=\max\{\frac{\pi}{\theta_{J+1}-\theta_{j}}|1$ $ $j$ $ $m\}$

and

$G(D, \epsilon)=C\backslash Uj=1\{z||\arg z-\theta_{j}|<\epsilon\}$ .

Let $f(z)$ be a function meromorphic in the complex plane. We shall say that
the zeros of $f(z)$ are attracted to $D$ , provided that for any $\epsilon>0$

$n(r,$ $G(D, \epsilon),$ $\frac{1}{f})=o(T(r, f))$ , (3)

as $rarrow+\infty$ , where $n(r, G(D, \epsilon), 1/f)$ is the number of zeros of $f(z)$ lying in
$G(D, \epsilon)\cap\{|z|<r\}$ . And we always denote the order and the lower order of
$f(z)$ by $\lambda(f)$ and $\rho(f)$ , respectively. We assume that the reader is familiar
with Nevanlinna theory of meromorphic functions and standard notations.

THEOREM 1. Assume that Eq. (1) is given with rational coefficients $r_{j}(z)$ .
Suppose that there exists a fundamental set $(FS)\{w_{1}, \cdots, w_{n}\}$ of Eq. (1) with the
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property that the zeros of each $w_{j}$ are attracted to the rays (2). Then either

$\lambda:=\max\{\lambda(w_{j})|1\leqq J\leqq n\}$ $ $\omega(D)$ , (4)

or else each $w_{j}$ has Borel Exceptional Value $(BEV)0$ of order $\lambda$ , namely, for
some $\epsilon>0,$ $n(r, 1/f)<r^{\lambda-\epsilon}$ .

A conclusion immediately follows from Theorem 1.

COROLLARY. Under the same assumption as in Theorem 1, in addition,
suppose that $\lambda$ is not an integer. Then (4) always holds.

Moreover, for special case when the system of rays (2) is formed by the
real axis, the following is also a further consequence of Theorem 1, which was
listed in Br\"uggemann [4], but as pointed out in Zheng [12], Br\"uggemann’s
proof is incomplete.

THEOREM 2. Let Eq. (1) with rational coefflcients $r_{j}(z)$ be given. Assume that
there exists a $FS\{w_{1}, \cdots , w_{n}\}$ such that each $w_{j}$ has the zeros to be attracted to
the real axis and at least one $w_{j}$ with maximal order $\lambda$ does not have $BEV0$ .
Then

$r_{j}(z)=a_{j}+o( \frac{1}{z})$ , $(|z|arrow+\infty, a_{j}\in C)$

and either there is at least one $j$ such that $a_{j}\neq 0$ or for each $j$ ,

$\lambda(w_{j})=\frac{1}{2}$ . (5)

REMARK. 1) Br\"uggemann [3] and Steinmetz [9] independently proved
Frank-Wittich conjecture that Eq. (1) with polynomial coefficients has no FS
each element of which has BEV $0$ , unless its coefficients are constants. However,
unfortunately, that is not the same story for the case of rational coefficients.
Let $H(z)$ be a rational function and of the form $P/Q$ where $P$ and $Q$ are poly-
nomials. Define

$di(H)=degree$ P–degree $Q$ .
By a theorem of Bank and Laine [1, Theorem $1(b)$], as Hellerstein and Rossi
[7] did, we can find a rational function $H(z)$ with $di(H)$ being a positive integer
such that

$w’+Hw=0$ (6)

has two linearly independent solutions $f_{1}$ and $f_{2}$ meromorphic in $C$ with only
finitely many real zeros. And $f_{1}f_{2}$ is rational. Therefore, the assumption that
at least one $w_{j}$ with maximal order $\lambda$ does not have BEV $0$ can not be removable,
but I guess it may be exactly modified. Now here is one question.
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Does that each of a FS $\{w_{1}, \cdots, w_{n}\}$ has BEV $0$ of order $\lambda$ imply that
$E=w_{1}\cdots w_{n}$ is rational ?

AS pointed out in the sequel, the question is positive for the second order
linear differential equation (6). This is because any meromorphic solution of
Eq. (6) with BEV $0$ must have $0$ as a Picard Exceptional Value (PEV $0$) providing
$di(H)\geqq 0$ .

2) A simple calculation shows that the second order linear differential
equation

$w’+ \frac{1}{z}w’+\frac{1}{4z^{2}}w=0$ (7)

possesses two linearly independent entire solutions $\cos\sqrt{z}$ and $\cos\sqrt{-z}$ , which,
respectively, only have positive real zeros and negative real zeros and are of
order 1/2. Obviously, we can not transform Eq. (7) into the form of Eq. (6)

witb $di(H)=0$ by a transformation similar to ones listed in Hellerstein-Rossi
conjecture (cf. [2], Problem 2.72). Hence the conjecture does not hold for the
case of rational coefficients. But I can do nothing for asserting whether or not
the conclusion (5) in Theorem 2 occurs. Entire functions $\cos\sqrt{z}$ and cosv‘$\overline{-z}$

solve the following equation

$w^{n}- \frac{1}{z^{2}}w’-\frac{3}{4z^{s}}w=0$ .

The present author conjectures that the case (5) in Theorem 2 does not occur.
And by applying Theorem 2, we easily get the following result which is

Theorem 1 of Hellerstein and Rossi [7].

THEOREM A. Let $H(z)$ be a rational function. If the linear differential
equation

$w’+Hw=0$ (6)

admits two linearly independent solutions $w_{1}$ and $w_{2}$ such that the zeros of $w_{1}$ and
$w_{2}$ are attracted to the real axis and $E=w_{1}w_{2}$ is transcendental, then $di(H)=0$ .

In fact, we consider Eq. (6), $di(H)\neq-1$ , otherwise Eq. (6) can not possess
two linearly independent solutions, which is found in Theorem 2 of [7]. And
$\lambda(w_{i})\neq 1/2,$ $i=1,2$ . If $di(H)\geqq 0$ , then it follows from Theorem 4 of [7] that
any meromorphic solution of Eq. (6) having BEV $0$ must have PEV $0$ . If $di(H)$

$\leqq-2$ , then Eq. (6) can not have any transcendental solutions.
In one word, if it has BEV $0$ , then any meromorphic solution of Eq. (6) has

PEV $0$ . And we can easily see that both $w_{1}$ and $w_{g}$ have PEV $0$ if and only if
$E=w_{1}w_{2}$ is rational. Thus Theorem A follows.

One question is immediately raised as follows.
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Must any meromorphic solution of Eq. (1) with $BEV0$ have $0$ as a $PEV$ provided
$di(r_{j})\geqq 0$ (l$j\leqq n $-2$) ?

In general, the question is negative, even if all the $r_{j}’ s$ are polynomials.
This can be described from the example that the entire function $(e^{z}-1)\exp z^{2}$

solves the equation

$w^{n}-(7+6z+12z^{2})w’+2z(1+2z)(1+4z)w=0$ .

However, the question is positive for some special cases such as

$w^{(n)}+Hw=0$ , (8)

where $n\geqq 2$ and $H$ is rational.
Therefore, we can make a generalization of Theorem A.

THEOREM 3. Let $H(z)$ of Eq. (8) be given. Assume that Eq. (8) has a $FS$

$\{w_{1}, \cdots , w_{n}\}$ each element of which has the zeros to be attracted to the real axis.
Then either $E=w_{1}w_{2}\cdots w_{n}$ is rational or else $di(H)=0$ .

In section 2, we exhibit some auxiliary results for the proof of our theorems.
In section 3, we state the proofs of our theorems.

2. Auxiliary results.

The following is well known and comes from the theory of asymptotic
integration, please refer to Br\"uggemann [4] and Zheng [12] as well:

Eq. (1) has $n$ linearly independent formal solutions

$w_{j}^{o}=\exp(P_{j}(z))z^{\rho_{j}}[\log z^{1/p}]^{m}!Q_{j}(z, \log z)$ , $1\leqq j\leqq n$ , (9)

where $P_{j}(z)$ is a polynomial in $z^{1/p},$ $m_{j}\in N_{o},$ $\rho_{j}\in C$ and $Q_{j}$ is a polynomial in
$\log z$ over the field of formal series $\Sigma_{s\in N_{O}}a_{s}z^{-s/p}$ , and $Q_{j}(z, \log z)=1+O(1/\log z)$ ,

as $|z|arrow+\infty$ .
Then given a ray $\arg z=\theta$ , there exists a sufficiently small $h>0$ (which

depends on $\theta$ ) such that $\{w_{j}^{o}|1\leqq j\leqq n\}$ represents a fundamental set of Eq. (1)

in the sector $S:|\arg z-\theta|<h$ .
Let $w(z)$ be a nontrivial solution of Eq. (1) (admitting multiplicited values).

Then in $S$

$w=c_{1}w_{i_{1}}^{0}+c_{2}w_{i_{2}}^{0}+\cdots+c_{m}w_{t_{m}}^{o}$ , $c_{j}\neq 0,1\leqq i_{1}<\ldots<i_{m}\leqq n$ . (10)

DEFINITION. A ray $\arg z=\theta\in R$ is called a Stokes ray of $w(z)$ , provided
that for some $\delta,$ $0<\delta<h$ , there exist $P_{i_{v}}(z)$ and $P_{\iota_{k}}(z)$ with $P_{t_{v}}(z)\neq P_{i_{k}}(z)$ such
that for $\theta<\varphi<\theta+\delta$ and every $P_{i_{S}}(z)\neq P_{t_{v}}(z)$ , we have

$Re(P_{i_{v}}(re^{i\varphi})-P_{i_{S}}(re^{i\varphi}))arrow+\infty$ ,
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as $rarrow\infty$ and $P_{t_{h}}(z)$ has the same property for $\theta-\delta<\varphi<\theta$ . And further if
$\lambda(w)=\deg(P_{\iota_{v}}-P_{i_{k}})$ , then $\arg z=\theta$ is called a Stokes ray of $w$ of order $\lambda(w)$ .

It follows from the proof of Lemma 1 in [4] that a ray $\arg z=\theta$ is a
Stokes ray of $w$ of order $\lambda(w)$ if and only if for some $c>0$ ,

$n(r, S, w)=cr^{\lambda_{(w)}}(1+0(1))$ ,

where $S$ is an arbitrary small sector containing the ray $\arg z=\theta$ . And Corollary
1 of Steinmetz [8] and Theorem 2 of Zheng [12] show that the zeros of any
nontrivial solution $w$ of Eq. (1) are attracted to a system of its finitely many
Stokes rays of order $\lambda(w)$ .

NOW we define the indicator function $h_{w}(\theta)$ of $w$ with $0<\lambda(w)<+\infty$ by

$h_{w}( \theta):=\lim_{rarrow}\sup_{\infty}\frac{\log|w(re^{i\theta})|}{r^{\lambda_{(}w)}}$ , $(\theta\in R)$ , (11)

and the formal indicator function by

$I_{j}( \theta):=\varliminf_{r}\frac{ReP_{j}(re^{\ell\theta})}{\gamma^{\lambda}J}$ , $(\theta\in R)$ ,

where $\lambda_{j}=\deg P_{j}(z)$ . Obviously, $h_{w}(\theta)$ is periodic with period $2\pi$ . The basic
relationship between the indicator and formal indicator functions are clearly
listed in Br\"uggeman [4].

3. Proofs of theorems.

Proof of Theorem 1. Set $E=w_{1}w_{2}\cdots w_{n}$ . If $\lambda(E)=0$, then a well-known
result of Wittich [11] concerning that $\lambda(w_{j})>0(1\leqq j\leqq n)$ or $w_{j}$ is rational
implies that each $w_{j}$ has BEV $0$ . Now we assume that $\lambda(E)>0$ . By Theorems
1 and 2 of Steinmetz [8], we have for some $d>0$,

$T(r, E)=dr^{\lambda_{(E)}}+o(r^{\lambda_{(}E)})$ , $rarrow+\infty$ .

Since each $w_{j}$ has only finitely many poles, Valiron deficient $\Delta(\infty, E)=1$ . Also

$m(r,$ $\frac{1}{E})=m(r,$ $\frac{W}{E})+O(1)=O(\log r)$ ,

where $W=W(w_{1}, \cdots, w_{n})$ is Wronskian of $w_{1},$ $w_{2},$
$\cdots$ , $w_{n}$ and therefore $\Delta(0, E)=0$ .

It is clear that the zeros of $E$ are attracted to the rays (2). Then from Theorem
1 of Gol’dberg [6], we conclude

$\lambda(E)\leqq\omega(D)$ .
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If $\lambda(E)=\lambda=\max\{\lambda(w_{j})|1\leqq j\leqq n\}$ , then the inequality (4) follows.
$lf\lambda(E)<\lambda$ , then each $w_{j}$ obviously has BEV $0$ of order $\lambda$ .

REMARK. The above proof is in essence due to Steinmetz [10] in which he
proved the Hellerstein-Rossi conjecture by an excellent method.

PROOF OF THEOREM 2. The application of Theorem 1 concludes that $\lambda(w_{j})$

$1, $1\leqq j\leqq n$ . Each $w_{j}$ of the FS has at most two Stokes rays of order $\lambda(w_{j})$

at $\arg z=0,$ $\pi$ . Thus from a result of Dietrich [5] (cf. Br\"uggemann [4, Theo-
rem $C$]), we need to treat two cases on the form of indicator function $h_{w_{j}}(\theta)$

of $w_{j}$ as follows:
1) When $w_{j}$ has exactly two Stokes rays of order $\lambda_{j}=\lambda(w_{j})$ at $\arg z=0$ and

$\pi,$ $h_{w_{j}}(\theta)$ has the form

$h_{w_{j}}(\theta)=\{$

$|b_{j}|\cos(\arg b_{j}+\lambda_{j}\theta)$ , $0\leqq\theta\leqq\pi$ ,

$|c_{j}|\cos(\arg c_{j}+\lambda_{j}\theta)$ , $\pi<\theta<2\pi$ ,
(12)

where $b_{j}$ and $c_{j}$ are constants and $b_{j}\neq c_{j}$ .
2) When $w_{j}$ has at most one Stokes ray of order $\lambda_{j}=\lambda(w_{j})$ at $\arg z=0$ or

$\pi$ , the form of $h_{w_{j}}(\theta)$ is

$h_{w_{j}}(\theta)=|d_{j}|\cos(\arg d_{j}+\lambda_{j}\theta)$ , $0\leqq\theta<2\pi$ or $-\pi\leqq\theta<\pi$ ,

where $d_{j}$ is a constant and $d_{j}\neq 0$ . Analysing the definition of the Stokes rays
of order $\lambda$ , we easily see that at the Stokes ray $\arg z=\varphi$ of order $\lambda$ ,

$Re(P_{i_{v}}(re^{i\varphi})-P_{i_{k}}(re^{i\varphi}))=o(r^{\lambda})$ ,

as $rarrow\infty$ , that is,
$I_{t_{v}}(\varphi)=I_{i_{k}}(\varphi)$ .

Therefore for Case 1), we have

$|b_{j}|\cos(\arg b_{j})=|c_{j}|\cos(\arg c_{j})$ ,
and

$|b_{j}|\cos(\arg b_{j}+\lambda_{j}\pi)=|c_{j}|\cos(\arg c_{j}+\lambda_{j}\pi)$ .
And a simple calculation concludes that $\lambda_{j}$ is an integer.

For Case 2), since $h_{w_{j}}(\theta+2\pi)=h_{w_{j}}(\theta)$ , we have

$|d_{j}|\cos(\arg d_{j})=|d_{j}|\cos(\arg d_{j}+2\lambda_{j}\pi)$ ,

or
$|d_{j}|\cos(\arg d_{j}-\lambda_{j}\pi)=|d_{j}|\cos(\arg d_{j}+\lambda_{j}\pi)$ .

And consequently, $\lambda_{j}$ is a half of an integer.
In one word, $\lambda(w_{j})=1$ or 1/2, $1\leqq j\leqq n$ .
The algebraic equation corresponding to Eq. (1)
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$H(z, y)=y^{n}+r_{n-2}(z)y^{n-2}+\cdots+r_{1}(z)y+r_{o}(z)=0$

has the solutions $y_{j}(1\leqq j\leqq n)$ with the form

$y_{j}=\alpha_{j}z^{\lambda_{j^{-1}+}}\ldots$ $1\leqq j\leqq n$ ,

near $z=\infty$ .
If $\lambda=\max\{\lambda_{j}|1\leqq j\leqq n\}=1$ , there exists at least one $j_{0}$ such that $\lambda_{j_{O}}=1$ and

$\alpha_{j_{0}}\neq 0$ . By the relation formula of the roots and coefficients of polynomials, we
have by a simple calculation

$r_{j}(z)=a_{j}+o( \frac{1}{z})$ ,

and at least one $a_{j}\neq 0$ .
If $\lambda=1/2$ , then $\lambda(w_{j})=1/2,1\leqq j\leqq n$ .
NOW Theorem 2 follows.

PROOF OF THEOREM 3. Set

$(|z|arrow\infty, a_{j}\in C)$ ,

$H=-\alpha z^{m}+\cdots$ near $z=\infty$ ,

where $\alpha\in C\backslash \{0\}$ and $m$ is an integer. Then the algebraic equation correspond-
ing to Eq. (8)

$F(z, y)=y^{n}+H=0$

has the solutions $y_{j}$ (l\leqq j$n) with the forms

$y_{j}=\omega^{j}\sqrt[n]{\alpha}z^{m/n}+\cdots$ , near $z=\infty$ ,

where $\omega$ is a non-real nth root of unity and $n\backslash /\overline{\alpha}$ is a defined complex number
with O$arg $\sqrt[n]{\alpha}<2\pi/n$

Then Eq. (8) has a formal FS with the forms like (9) in a sufficiently small
sector $S$ around a given ray $\arg z=\theta$ , where

$P_{j}(z)=d_{j}z^{(m+n)/n}+\cdots$ , near $z=\infty$ , (13)

where $d_{j}=\omega^{j}n\sqrt[n]{\alpha}/(m+n)$ . Obviously, $d_{f}\neq d_{j}(i\neq j)$ , so $P_{j}’ s$ have distinct leading
terms.

It is clear to see that when (m+n)/n;$O, $i.e.,$ $m\leqq-n$ , Eq. (8) has no
transcendental meromorphic solutions. Now we assume that $m>-n$ and set
$\lambda=(m+n)/n>0$ . Then any meromorphic solution of Eq. (8) is of order $\lambda$ .

Let $w$ be a meromorphic solution of Eq. (8) and have BEV $0$ . We can write

$w=ve^{u}$ , (14)

where $v$ is a meromorphic function with a finite number of poles and $\lambda(v)<\lambda$ ,

and $u$ is a polynomial with degree $\lambda$ and $u=d_{s}z^{\lambda}+\cdots$ for some $s$ . This is
because $d_{j}\neq d_{i}(i\neq j)$ in (13), and further there exists one and only one $j$ such
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that $c_{j}\neq 0$ in the formula (10). Then by the definition of the Stokes rays, we
know that $w$ has no Stokes rays. Corollary 1 of Steinmetz [8] asserts that

$n(r,$ $\frac{1}{w})=O(\log r)$ ,

that is, $\lambda(v)=0$ . Substitution of (14) into Eq. (8) concludes that $v$ solves an nth
order linear differential equation with rational coefficients. And hence either
$\lambda(v)>0$ or $v$ is rational. Thus $w$ has only finitely many zeros.

Suppose that each element of the FS $\{w_{1}, \cdots , w_{n}\}$ has BEV $0$, that is,
PEV $0$ . Then for O:$k;!!n--l and $1\leqq j\leqq n$ , we have $w_{J^{k)}}^{(}/w_{j}$ is rational so that

$\frac{c}{E}=\frac{W(w_{1},w_{-},\cdots,w_{n})}{E}$ , $(c\in C\backslash \{0\})$

is also rational, and $E$ is rational.
NOW, we can assume that at least one of the FS has no BEV $0$ . Applying

Theorem 2 to the FS, we can conclude that either

$di(H)=0$ , or $\lambda=1/2$ .

Below we prove that $\lambda\neq 1/2$ . Suppose that $\lambda=1/2$ . Then each $w_{j}(1\leqq j\leqq n)$

has and only has one Stokes ray of order 1/2 at $\arg z=0$ or $\pi$ . Since $d_{j}\neq d_{i}$

$(i\neq j)$ and $d_{j}$ is the leading term of $P_{j}(z)$ in the formal solution $w_{j}^{o}(z)$ of (9), we
have the following two cases.

Case 1). When $w_{j}$ has one Stokes ray of order 1/2 at $\arg z=0$ , then we
can write

$w_{j}=c_{j}w_{k_{j}}^{o}(z)(1+o(1))$ , $0\leqq\arg z<2\pi$ ,

near $z=\infty$ .
Case 2). When $w_{j}$ has one Stokes ray of order 1/2 at $\arg z=\pi$ , then we

have

$w_{j}=\{$

$c_{j}w_{j}^{o}(z)(1+o(1))$ , $0\leqq\arg z\leqq\pi$ ,

$c_{j}’w_{k_{j}’}^{o}(z)(1+o(1))$ , $\pi\leqq\arg z<2\pi$ ,

near $z=\infty$ , where $c_{j},$
$c_{j}’\in C\backslash \{0\}$ and $1\leqq k_{j},$ $k_{j}’\leqq n,$ $k_{j}\neq k_{j}’$ , and when $i\neq j,$ $k_{j}\neq k_{i}$

and $k_{j}’\neq k_{i}’$ .
Thus near $z=\infty$ ,

$n$

$E= \prod_{j\approx 1}^{n}w_{j}=\{$

$\prod_{j=1}c_{j}w_{k}^{o_{J}}(1+o(1))$ , $0\leqq\arg z\leqq\pi$ ,

$\prod’c_{j}w_{k_{j}}^{o}\prod^{\chi}c_{j}’w_{k_{j}’}^{o}(1+o(1))$ , $\pi\leqq\arg z<2\pi$ ,

where II’ is a product taking over $j$ such that $w_{j}$ has the Stokes ray of order
1/2 at $\arg z=0$ and so is $\Pi’’$ at $\arg z=\pi$ .
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Since $\Sigma_{j=1}^{n}d_{j}=0$ ,

$M(r, E)= \max\{|E(re^{t\theta})||0\leqq\theta<2\pi\}<\exp(dr^{\lambda-\text{\’{e}}})$ ,

for sufficiently large $r$ , some $d>0$ and $\epsilon>0$ . And

$T(r, E)<\log M(r, E)+O(\log r)\leqq(d+o(1))r^{\lambda-\epsilon}$ ,

that is, $\lambda(E)<\lambda=1/2$ . It follows immediately that each $w_{j}$ has BEV $0$ . This
is a contradiction.

Thus Theorem 3 follows.

The following is an immediate conclusion from the proof of Theorem 3.

THEOREM 4. Let Eq. (8) be given with rational coefficient $H(z)=\alpha z^{m}+\cdots$ ,

near $z=\infty$ . Then any nontrivial solution of Eq. (8) has only the Stokes rays of
order $\lambda$ with the formula

$\arg z-\frac{1}{m+n}[t\pi-\arg\alpha]$ ,

where $0\leqq t\leqq 2(m+n)-1$ .
In addition, suppose that $\arg z=0$ or $\pi$ is a Stokes ray of order $\lambda$ , then $\alpha$ is

a real number.

In fact, for $z=re^{i\theta}$ and $j>i$ ,

$\arg(d_{j}z^{\lambda}-d_{i}z^{\lambda})=\lambda\theta+\arg\frac{1}{\lambda}\alpha(\omega^{j}-\omega^{i})$

$= \lambda\theta+\frac{1}{n}(\arg\alpha+\pi)+\arg(\omega^{j}-\omega^{t})$

$= \lambda\theta+\frac{\arg\alpha+\pi}{n}+\frac{\pi}{2}+\frac{(i+j)\pi}{n}$ .

If $\arg z=\theta_{o}$ is a Stokes ray of order $\lambda$ , then for some $1\leqq i,$ $j\leqq n$ ,

$\lambda\theta_{o}+\frac{\arg\alpha+\pi}{n}+\frac{\pi}{2}+\frac{(i+j)\pi}{n}=\frac{\pi}{2}+k\pi$ ,

where $k$ is a positive integer,

$\theta_{o}=\frac{(nk-i-j-1)\pi-\arg\alpha}{n+m}$ . (15)

Set $t=nk-i-j-1,0\leqq t<2(m+n)-1$ .
If $\arg z=0$ or $\pi$ is a Stokes ray of order $\lambda$ , then it follows from (15) that

$\arg\alpha=s\pi,$ $s$ is an integer, and $\alpha$ is a real number.
Theorem 4 follows.
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