
J. Math. Soc. Japan
Vol. 48, No. 3, 1996

Sector theory and automorphisms
for factor\cdot subfactor pairs

Dedicated to Professor Masamichi Takesaki on his sixtieth birthday

By Hideki KOSAKI

(Received May 20, 1994)
(Revised Aug. 29, 1994)

1. Introduction.

The index theory ([19]) for $II_{1}$-factors was initiated by Jones about ten
years ago. Since then tremendous progress has been made in the subject
matter. Especially, classification of subfactors with small indices in the AFD
$(II_{1})$ factors is of particular interest (see [41, 42, 45, 46] and also [18, 21]), and
this makes it possible to study automorphisms for factor-subfactor pairs in
details (see for example [22, 33, 47]).

On the other hand, the notion of an index has been generalized to wider
classes of operator algebras (for example [25, 37, 52]). In Longo’s approach on
index theory ([37, 38]) for factors of type III, the notion of a sector plays a
fundamental role. This notion originally occurred in Quantum Field Theory,
and it has been proved extremely useful by recent works of lzumi and Longo
([14, 15, 16, 39, 40]).

In our previous papers $[1, 28]$ , we saw that sectors are also useful to
analyze automorphisms for factor-subfactor pairs. Let $M\supseteqq N$ be a factor-
subfactor pair (with finite index), and $\theta\in Aut(M, N)$ be an automorphism for
the pair. Let $\{M_{k}\}_{k=0.1.2}\ldots$ . be the Jones tower, and we assume that $\theta$ is
already extended to the tower in the canonical way. Then, $\theta$ is called strongly
outer ([1]) if, for $x\in M_{k}$ , the commutation relation $yx=x\theta(y)$ for all $y\in N$

forces $x=0$, and in ([28]) we saw that the strong outerness is characterized by
making use of relevant sectors. Namely, $\theta$ is strongly outer if and only if it
does not appear (as an irreducible component) in $U_{k}(\rho\overline{\rho})^{k}$ , where $\rho$ is a sector
(or an endomorphism) satisfying $N=\rho(M)$ (see \S 3 for details). In terms of
bimodules naturally attached to the inclusion $M\supseteqq N$ in the Ocneanu approach
([41, 42]), this condition means that the $M-M$ bimodule canonically determined
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by $\theta$ does not appear in $U_{hM}L^{2}(M_{k})_{M}$ . Note that, wben $M=N$ , this notion
reduces to the usual outerness. This concept was independently considered by
Popa and played an important role in his analysis on group actions ([47]). It
should be also mentioned that this concept is closely related to Kawahigashi’s
work on $\chi(M, N)([22])$ .

The purpose of the present article is to obtain further applications of the
sector technique to the study of automorphisms for pairs. The first two sections
\S 2 and \S 3 are preliminaries on sectors and strongly outer automorphisms
resPectively. In \S 4 we will determine when extended modular automorphisms
in the sense of Connes-Takesaki ([2]) appear in $U_{k}(\rho\overline{\rho})^{k}$ . Note that for factors
of type $III_{\lambda}(\lambda\neq 0)$ an extended modular automorphism simply means a modular
automorphism and that the containment of such an automorphism in $U_{k}(\rho\overline{\rho})^{k}$

is very important for analysis on subfactors ([16]). In \S 5 we consider strongly
free automorphisms (for pairs) in the sense of $Winsl\emptyset w([54])$ . The strong
freeness means that a similar property to the strong outerness is required at
the level of the von Neumann algebras of tyPe $II_{\infty}$ (appearing in the structure
analysis for factors of type III). This algebraic property is important when
one deals with automorphisms for pairs in the type III setting. $ln$ fact, as
was shown in [54], this property corresponds to the non-central triviality ([24,

51]) or the non-pointwise innerness ([9, 10, 11]) in the analysis on automorphisms
on a single factor. We show that the strong freeness is stronger than the
above strong outerness. Therefore, it is plain to see that the composition of
an extended modular automorphism and a non-strongly outer automorphism is
non-strongly free. In \S 6 we prove the converse in type $III_{\lambda}$ $(\lambda\neq 0)$ case.
Therefore, in this case, an automorphism is non-strongly free exactly when it
is the composition of a modular automorphism and a non-strongly outer auto-
morphism. This result may be considered as a “subfactor version” of [10].

Basic facts on index theory can be found in [6, 19, 25, 37, 38, 43] while our
basic reference for the modular theory and structure analysis on factors of type
III is [50]. Results in the present article were announced in $[28, 29]$ .

ACKNOWLEDGEMENT. The author is grateful to M. Izumi and Y. Kawa-
higashi for communications on automorphisms and sectors at various stages of
the present research. He is also grateful to the referee for careful reading of
the manuscript.

2. Sectors.

In this section we briefly recall basic facts on sectors, and further details
can be found for example in [14, 15, 38, 40].

Throughout the article, let $M$ be a properly infinite factor with a subfactor
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$N$ , and $E:M-,$ $N$ be a normal conditional expectation with $IndE<\infty([25,37])$ .
In the rest of the article we will also assume that $M$ and $N$ are isomorphic
factors so that one can find an endomorphism $\rho(\in End(M)$ , the unital normal
$*$-endomorphisms of $M$ ) satisfying $N=\rho(M)$ . As was pointed out for example
in Remark (iii) after Theorem 3, [28], the assumption that $M\supseteqq N$ are isomorphic
properly infinite factors can be removed by standard tricks. Consequently, our
main results below of course remain valid without this assumption.

Let Sect$(M)=End(M)/Int(M)$ , the sectors, and we denote the class of $\rho\in$

$End(M)$ by $[\rho]$ . However, in most cases below, no confusion occurs and we
will simply write $\rho$ instead of $[\rho]$ . For a sector $\rho$ we define its statistical
dimension $d\rho$ by

$d\rho=\sqrt{}[\overline{M:\rho(M)]_{0}}$ ,

where $[\cdot$ : $]_{0}$ means the minimal index ([12, 13, 37]). Notice that $d\rho=1$ if and
only if $p$ is an automorphism of $M$. Throughout the article we will deal with
sectors with finite statistical dimension. In the usual way, one can define the
sum and the product of sectors:

$\rho_{1}\oplus\rho_{2}$ , $\rho_{1}\rho_{2}$ .

The latter is just (the class of) the composition of endomorphisms wbile the
former is the composition of

$x\in M-\succ(\begin{array}{ll}\rho_{1}(x) 00 \rho_{2}(x)\end{array})\in M\otimes M_{2}(C)$

followed by the usual isomorphism $M\otimes M_{2}(C)\cong M.$ (Notice that the class of the
composition does not depend upon the choice of isometries realizing the second
isomorphism.) The additivity of the square root ([37]) and the multiPlicativity
([30, 39]) of the minimal index mean:

$d(\rho_{1}\oplus\rho_{2})=d\rho_{1}+d\rho_{2}$ , $d(\rho_{1}\rho_{2})=d\rho_{1}d\rho_{2}$ .

When $M\cap\rho(M)’=C1$ , $\rho$ is called irreducible. If $\rho$ is not irreducible (but
$d\rho<\infty)$ , by using minimal projections in the finite dimensional algebra $M\cap\rho(M)’$ ,
the intertwiners, one can obtain the irreducible decomposition

$\rho=\rho_{1}\oplus\rho_{2}\oplus\cdots\oplus\rho_{n}$ .

This is completely analogous to the situation in the representation theory of
(finite) groups, and for example the Frobenius reciprocity remains valid for
sectors (see for example [3, 5, 8, 28, 40, 56, 57, 58]).

The conjugate sector $\overline{[\rho]}=[\overline{\rho}]$ is defined as

$\overline{\rho}=\rho^{-1}\circ\gamma$ ,
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where $r(=Ad(J_{N}J_{M}))$ is the Longo canonical endomorphism attached to $M\supseteqq N$

$([36])$ . In the bimodule (or equivalently, correspondence, see [44]) picture,
considering conjugate sectors corresponds to looking at contragredient bimodules
while the product of sectors corresponds to the relative tensor product ([48]) of
relevant bimodules. One of the reasons why the notion of a conjugate sector
is important is that this is related to the Jones tower of $M\supseteqq N=p(M)$ . Namely,

$M\supseteq\rho(M)(=N)\supseteqq p\overline{\rho}(M)(=\gamma(M))\supseteqq\rho\overline{\rho}p(M)\supseteqq\cdots$

is exactly a downward Jones tunnel. In particular, the irreducible components
in $U_{n}(\rho\overline{\rho})^{n},$ $u_{n}(p\overline{\rho})^{n}p,$ $u_{n}(\overline{\rho}p)^{n}$ , and $U_{n}(\overline{\rho}p)^{n}\overline{\rho}$ correspond to $M-M,$ $N-M$,
$N-N$, and $M-N$ bimodules respectively in the Ocneanu picture ([41, 42]).

3. Strongly outer automorphisms.

In this section we consider strongly outer automorphisms for pairs intro-
duced in [1], and results in this section were announced in [28].

Let $\theta\in Aut(M, N)=\{a\in Aut(M);\alpha(N)=N\}$ be an automorphism for the pair
$M\supseteqq N=p(M)$ , and $E:M->N$ be the minimal conditional expectation $((dp)^{2}=$

$IndE<\infty)$ . The uniqueness of a minimal conditional expectation guarantees
$\theta\circ E=E\circ\theta$ . Hence, $\theta$ can be uniquely (subject to the condition $\theta(e_{i})=e_{i}$ , where
$e_{i}$ are the Jones projections) extended to the Jones tower:

$N\subseteqq M=M_{0}\subseteqq M_{1}\subseteqq M_{2}\subseteqq M_{3}\subseteqq M_{4}\subseteqq\cdots$

DEFINITION 1 ([1]). An automorphism $\theta\in Aut(M, N)$ is called strongly outer
when the following condition is satisfied for each $i$ :

If $x\in M_{i}$ satisfies $nx=x\theta(n)$ for all $n\in N$, then we must have $x=0$ .

In [47] this proPerty is called the proper outerness and plays an important
role in Popa’s analysis on actions for inclusions. (See also [22] for related
topics.) In [23], a more “quantized” version than the notion of the above strong
outerness is considered by Kawahigashi to analyze “paragroup actions”.

We would like to have a handy criterion for the strong outerness, and for
this purpose automorphisms appearing in $U_{k}(\rho\overline{\rho})^{k}$ will play important roles.
Notice that, even if an irreducible sector $\theta$ with $d\theta=1(i.e.$ , an automorphism
of $M$) appears in $(p\overline{\rho})^{n+1}$ , we may not be able to find a unitary $u\in CU(M)$ such
that $Adu\circ\theta\in Aut(M, N)$ . As was remarked in [28], the Haagerup subfactor
with index $(5+\sqrt{13})/2$ is an example where this phenomenon occurs. It is also
possible to construct an abundance of such examples by looking at pairs $M^{H}\supseteqq M^{G}$

of fixed point algebras for suitable (finite) group-subgroup pairs $G\supseteqq H([32])$ .
The next result was proved in [28]. Since [28] may not be widely circulated,
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we repeat the proof here for the reader’s convenience.

PROPOSITION 2. An auiomorphism $\theta\in Aut(M)$ can be adjusted to an auto-
morphism in $Aut(M, N)$ as above if and only if there exists an automorphism
$\alpha\in Aut(M)$ sati fying $\theta\circ p=p\circ\alpha$ (as sectors). Furthermore, if $\theta\prec(p\overline{\rho})^{n}(n\geqq 1)$

and $M\supseteqq N$ is irreducible, then $\alpha\prec(\overline{\rho}\rho)^{n}$ .

PROOF. When $\theta$ belongs to $Aut(M, N)$ , we obviously have

$\theta\circ p(M)=\theta(N)=N$ .
Therefore, one can find an automorphism $\alpha\in Aut(M)$ satisfying $\theta\circ\rho=p\circ\alpha$ .
Conversely, when $\theta\circ p=po\alpha$ as sectors, one can find a unitary $u\in M$ satisfying
$Adu\circ\theta\circ p(m)=p\circ\alpha(m),$ $m\in M$. Hence, the adjusted $Adu\circ\theta$ obviously leaves $N$

invariant.
We now assume that $\rho$ satisfies $\theta\circ p=p\circ\alpha$ . The assumption $\theta\prec(\rho\overline{\rho})^{n}$

implies $id\prec(p\overline{\rho})^{n}\circ\overline{\theta}=((\rho\overline{\rho})^{n-1}p)\overline{(\theta\circ p)}$ . Notice that $\theta\circ\rho$ is irreducible because

$(\theta\circ\rho(M))’\cap M=\theta(p(M)’\cap M)$

is one dimensional. Therefore, the Frobenius reciprocity implies

$\theta\circ p\prec(p\overline{\rho})^{n-1}\rho$ .
We thus conclude

$\alpha\prec\overline{\rho}p\circ\alpha=\overline{\rho}\circ\theta\circ\rho\prec\overline{\rho}(\rho\overline{\rho})^{n-1}\rho=(\overline{\rho}\rho)^{n}$ . $\square$

In the second half of the above proof, the irreducibility of $\rho$ was essential.
But, without this assumption, $\theta\prec(p\overline{\rho})^{n}$ still implies $\alpha\prec(\overline{\rho}\rho)^{n+1}$ . In fact, we
have

$\alpha\prec\overline{\rho}\rho\circ\alpha=\overline{\rho}\circ\theta\circ\rho\prec\overline{\rho}(\rho\overline{\rho})^{n}\rho=(\overline{\rho}\rho)^{n+1}$ .

For two properly infinite factors $M,$ $N$ (no inclusion is assumed for a
moment), we can define the notion of an $M-N$ sector. Let End$(M, N)$ be the
unital normal $*$-endomorphisms from $M$ to $N$ , and we say that two endomor-
phisms are equivalent if they are related by a unitary in $N$ in the obvious way.
The quotient space is denoted by Sect$(M, N)(Sect(M, M)=Sect(M)$ in \S 2), and
each class in Sect$(M, N)$ is called an $M-N$ sector. This notion is sometimes
more convenient than that of an $(M-M)$ sector in \S 2 because one has to deal
with four kinds of bimodules in the index theory, and everything in \S 2 goes
through for $M-N$ sectors with suitable modifications ([15]). Actually, this
notion will be also used in the proof of the theorem below. For example, for
$\eta\in Sect(M, N)$ , its conjugate $\overline{\eta}\in Sect(N, M)$ is defined as

$\overline{\eta}=\eta^{-1}\circ\gamma$
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with the canonical endomorphism $\gamma$ attached to the inclusion $N\supseteqq\eta(M)$ , and for
$\eta_{1}\in Sect(M, N)$ and $\eta_{2}\in Sect(P, M)$ we have

$\overline{\eta_{1}\eta_{2}}=\overline{\eta}_{2}\overline{\eta}_{1}(\in Sect(N, P))$ .
This is seen via a bijective correspondence between $M-N$ sectors and $M-N$

bimodules ([15, 38]).

When $M\supseteqq N$ and $N=\rho(M)$ ( $\rho\in End(M)$ or Sect$(M)$ ) as usual, one can also
regard $p$ as a (trivial) $M-N$ sector. As an $M-N$ sector the conjugate of $\rho$ is
$p^{-1}\in Sect(N, M)$ , the canonical endomorphism attached to $N\supseteqq p(M)=N$ being
the identity. The conjugate of $p^{-1}\in Sect(N, M)$ is of course $\rho\in Sect(M, N)$ .

The next characterization for strongly outer automorphisms is useful.

THEOREM 3. For an automorphism $\theta$ in $Aut(M, N)$ , the following two state-
ments are equivalent:

(i) The strong outemess breaks at the n-th extenston $M_{n}(i.e.$ , some $x\neq 0\in M_{n}$

satisfies $nx=x\theta(n)$ for all $n\in N$).

(ii) The automorphism $\alpha$ in ProPosrtion 2 aPPears in $(\overline{\rho}p)^{n+1}$ .

Furthermore, when $M\supseteqq N$ is irreducible, the above two conditions are also equiv-
alent to

(iii) The automorphism $\theta$ appears in $(p\overline{\rho})^{n+1}$ .
Therefore, $\theta$ is strongly outer if and only if $\theta$ does not appear in $U_{k}(p\overline{\rho})^{k}$ (even

without the irreducibility $\cdots$ see the paragraph after the proof of Proposition2).

PROOF. (Equivalence between (i) and (ii)) Let $N_{-1}$ be a downward basic
extension of $M\supseteqq N$ . Notice that $M_{n}$ can be considered as the $(n+1)- st$ basic
extension of $N\supseteqq N_{-1}$ . Since $N_{-1}=\rho\overline{\rho}(M)$ , we have $N_{-1}=\rho\circ\overline{\rho}\circ p^{-1}(N)$ . Let us
consider the first $\rho$ (resp. the third $\rho^{-1}$ ) as an $M-N$ (resp. $N-M$) sector while
the middle $\overline{\rho}\in Sect(M)$ should be understood in the usual way. We set $\eta=$

$\rho\circ\overline{\rho}\circ p^{-1}(\in Sect(N))$ . Then, Proposition 4 below applied to $(N\supseteqq\eta(N)=N_{-1}, \theta|_{N})$

guarantees that (i) is equivalent to

$\theta|_{N}\prec(\eta\overline{\eta})^{n+1}$

as $N-N$ sectors. (As usual after an inner perturbation we may and do assume
that $\theta$ leaves $N_{-1}$ invariant.) Recall that the conjugate $(N-M)$ sector of
$p\in Sect(M, N)$ is simply $\rho^{-1}$ . Therefore, we compute

$\overline{\eta}=\overline{p^{-1}}\circ\rho\circ\overline{\rho}==p\circ p\circ p^{-1}$ ,

$\eta\overline{\eta}=\rho\circ(\overline{\rho}\rho)\circ\rho^{-1}$ ,

$(\eta\overline{\eta})^{n+1}=p\circ(\overline{\rho}\rho)^{n+1}\circ p^{-1}$ .
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For $p^{-1}\circ\theta|_{N}\circ\rho\in Sect(M, N)\cross Sect(N)\cross Sect(M, N)=Sect(M)$ , we compute

$\rho^{-1}\circ\theta|_{N}\circ p=\rho^{-1}\circ p\circ\alpha=\alpha$

(see Proposition 2). Therefore, the containment $\theta|_{N}\prec(\eta\overline{\eta})^{n+1}$ (as $N-N$ sectors)

is obviously equivalent (ii).

(Equivalence between (ii) and (iii)) Proposition 2 says that (ii) implies (iii).

Since $\overline{\alpha}\circ\overline{\rho}=\overline{\rho}\circ\overline{\theta}$ , the converse follows from Proposition 2 again where $\{\rho, \theta, \alpha\}$

is replaced by $\{\overline{\rho},\overline{\alpha},\overline{\theta}\}$ . $\square$

AS mentioned in [28] (without a proof) we also have:

PROPOSITION 4. Let $\theta\in Aut(M)$ (not necessarily in $Aut(M,$ $N)$ ) be an auto-
morphism of M. Then there exists a non-zero $\chi$ in the n-th extenston $M_{n}$ satis-
fying $mx=x\theta(m)$ for all $m\in M$ if and only if $\theta\prec(\rho\overline{\rho})^{n}$ .

PROOF. Let us assume that $n=2k$ and a non-zero $x\in M_{n}$ satisfies $mx=x\theta(m)$ .
By applying $\gamma^{k}$ to the both sides, we get

$(p\overline{\rho})^{k}(m)\gamma^{k}(x)=\gamma^{k}(x)(\rho\overline{\rho})^{k}\circ\theta(m)$ .
This means that the two sectors $(\rho\overline{\rho})^{k}$ and $(p\overline{\rho})^{k}\circ\theta$ admit a non-zero intertwiner
$\gamma^{k}(x)\in M$ and hence they are not disjoint ( $i.e.$ , they contain a common irreducible
component). We thus get

$id\prec\overline{(\rho\overline{\rho})^{k}}(\rho\overline{\rho})^{k}\circ\theta=(p\overline{\rho})^{2k}\circ\theta$ .
Hence, we conclude

$\overline{\theta}\prec(p\overline{\rho})^{n}$ and $\theta\prec(p\overline{\rho})^{n}$ .

On the other hand, when $n=2k+1$ , by applying $r^{k+1}$ we get

$(p\overline{\rho})^{k+1}(m)\gamma^{k+1}(x)=\gamma^{k+1}(x)(\rho\overline{\rho})^{k+1}\circ\theta(m)$ .

Notice that $r^{k+1}(x)$ is a non-zero
$-e_{1}1ement$

in $N$ . Therefore, by setting $\tilde{x}=\rho^{-1}\circ$

$\gamma^{k+1}(x)\neq 0\in M$ and by applying $\rho$ to the above both sides, we get

$(\overline{\rho}\rho)^{k}\overline{\rho}(m)\tilde{x}=\tilde{x}(\overline{\rho}\rho)^{k}\overline{\rho}\circ\theta(m)$ .

rFherefore, $(\overline{\rho}\rho)^{k}\overline{\rho}$ and $(\overline{\rho}\rho)^{k}\overline{\rho}\circ\theta$ are not disjoint and as above we get

$id\prec\overline{(\overline{\rho}p)^{k}\overline{\rho}}(\overline{\rho}\rho)^{k}\overline{\rho}\circ\theta=(p\overline{\rho})^{2k+1}\circ\theta$

and $\theta\prec(\rho\overline{\rho})^{n}$ .
When $\theta\prec(p\overline{\rho})^{n}$ , we can obviously reverse the arguments so far. $\square$

It is also possible to prove the results in this section by making use of
bimodules ([41, 42, 44, 48, 57]) instead of sectors (see [7]).
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4. Extended modular automorphisms.

From now on we will assume that $M\supseteqq N=p(M)$ are factors of type III and
that $M\supseteqq N$ is irreducible. The irreducibility assumption is actually superficial,
and all the results below remain valid (sometimes with trivial modifications).

We choose and fix a faithful normal semi-finite weight $\psi$ on $N$ and we set

$\tilde{M}=M\rangle\triangleleft\sigma\psi\circ ER\supseteqq\tilde{N}=N\rangle\triangleleft\sigma\psi R$ .

This is an inclusion of von Neumann algebras of type $II_{\infty}$ (which does not
depend upon the choice of $\psi$ thanks to Connes’ Radon-Nikodym theorem). The
algebras $\tilde{M}\supseteqq\tilde{N}$ may have different centers. However, as was clarified in [26],

analysis on inclusions of type III factors is more or less reduced to that in the
case that $\tilde{M}$ and $\tilde{N}$ have the identical center. Therefore, in the rest we will
further assume that $\mathcal{Z}(\tilde{M})=\mathcal{Z}(\tilde{N})$ . (Notice that this assumption is automatic in
the type $III_{1}$ case.)

AS was clarified in [16] modular automorphisms sometimes appear as irre-
ducible components in $U_{n}(p\overline{\rho})^{n}$ in the type $III_{\lambda},$ $\lambda\neq 0$ , case, and this information
is essential for analysis on inclusions of type III factors. In this section we
will determine when extended modular automorphisms ([2]) appear in $U_{n}(p\overline{\rho})^{n}$ .
Recall that in $[27, 31]$ typical inclusions of factors of type $III_{0}$ with this prop-
erty were constructed. Also our experience shows that (when one wants to
include the type $III_{0}$ case) an extended modular automorphism is a more natural
object to investigate. (See for example [10, 24, 51].) In the second half of the
section we will also show that certain inclusions with different type II and
type III graphs can be expressed as simultaneous crossed products (by $Z_{n^{-}}$ or
$T$-actions) of pairs with the same type II and type III graphs.

Let $\{\theta_{t}\}_{t\in R}$ be the dual action on $\tilde{M}\supseteqq\tilde{N}$ so tbat thanks to the Takesaki
duality the original inclusion $M\supseteqq N$ can be identified with

$\tilde{M}\rangle\triangleleft_{\theta}R\supseteqq\tilde{N}\aleph_{\theta}R$ .

Let $tr$ be the canonical trace on $\tilde{M}$ scaled in the usual way under the dual
action. ( $tr|_{\tilde{N}}$ is the canonical trace on $\tilde{N}.$ ) After the above identification we
may and do assume that the dual weights $tr\wedge$ and $(tr|_{\overline{N}})$ are $\psi\circ E$ and $\psi$ respec-
tively. The modular action $\sigma^{\psi_{t}\circ E}$ being dual to $\theta_{t}$ , we have $\tilde{M}=M_{\psi\circ E}$ , the
fixed-point algebra. (Similarly $\tilde{N}=N_{\psi}.$ ) Let $e=(c_{t}\}_{t\in R}$ be a $\theta$ -cocycle with values
in the unitary group of the center $c_{U(\mathcal{Z}(\tilde{M}))=^{C}U(\mathcal{Z}(\tilde{N}))}(i.e., c_{t}\theta_{t}(c_{s})=c_{t+S})$ and
$\sigma_{e}=\sigma_{e}^{\psi\circ E}$ be the associated extended modular automorphism (on $M$). From the
definition of $\sigma_{e}([2])$ , we have

$\sigma_{e}(\lambda(t))=c_{t}\lambda(t)$ , $\sigma_{e}|_{\tilde{M}}=id$ ,
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where $\lambda(t)$ is the usual generator in $M=\tilde{M}\cross_{\theta}R$ corresponding to R. (In partic-
ular, $\sigma_{e}\in Aut(M, N).)$ To determine if $\sigma_{e}$ appears in $U_{n}(p\overline{\rho})^{n}$ (see Theorem 3),

we set
$g(=$ { $x\in M_{n}$ ; $yx=x\sigma_{e}(y)$ for all $y\in N$}.

Let $M_{n}$ be the n-th extension of $\tilde{M}\underline{\supset-}\tilde{N}$ (and hence $M_{n}=\tilde{M}_{n}\rangle\triangleleft\theta R$). We have

$\{x\in\tilde{M}_{n}\cap\tilde{N}’ ; \theta_{t}(x)=c_{t}x\}\subseteqq \mathcal{H}$ .

In fact, let us assume that $x\in\tilde{M}_{n}\cap\tilde{N}’\subseteqq\tilde{M}_{n}\subseteqq M_{n}$ satisfies $\theta_{t}(x)=c_{t}x$ as above.
For $y\in\tilde{N}$ we have $\sigma_{e}(y)=y$ and $yx=x\sigma_{e}(y)$ since $x$ came from the relative
commutant $M_{n}\cap\tilde{N}’$ . On the other hand, for $y=\lambda(t)$ , we have

$\lambda(t)x=\theta_{t}(x)\lambda(t)=c_{t}x\lambda(t)=xc_{t}\lambda(t)=x\sigma_{e}(\lambda(t))$ ,

where the first equality is just the covariance. Since $\tilde{N}$ and $\lambda(R)$ generate $N$,
we conclude that $x$ is in $\mathcal{H}$ .

We now start proving the reverse inclusion. Notice that $\mathcal{H}$ is the space of
intertwiners between two (finite index) sectors. In particular, $\mathcal{H}$ is a finite
dimensional linear space. Notice also that the obvious commutativity $\sigma_{e}\circ\sigma^{\psi_{t}\circ E}$

$=\sigma^{\psi_{t}\circ E}\circ\sigma_{e}$ implies the invariance $\sigma^{\psi_{t}\circ E}(\mathcal{H})=\mathcal{H},$ $t\in R$ .

LEMMA 5. There exists a linear space basis $\{x_{j}\}_{j=1}2,$
$\cdots,$ $m$ for $\mathcal{H}$ such that

a $\psi_{t}\circ E(x_{j})=\exp(is_{j}t)x_{j}(t\in R)$ with some $s_{j}\in R$ .

PROOF. Let $m$ be a translation invariant mean on $R$ , and we set

$\langle x, y\rangle=\int_{-\infty}^{\infty}\omega(\sigma^{\psi_{t}\circ E}(y^{*}x))dm(t)=(m(\omega(\sigma^{\psi\circ E}(y^{*}x))))$

with a faithful normal state $\omega\in M_{*}^{+}$ . Obviously $\langle\cdot, \cdot\rangle$ defines an inner product
on the space $\mathcal{H}$ , and we have the invariance $\langle\sigma^{\psi_{t}\circ E}(x), \sigma^{\psi_{t}\circ E}(y)\rangle=\langle x, y\rangle$ from
the construction. Hence, $\{\sigma^{\psi_{t}\circ E}|_{\mathcal{H}}\}_{t\in R}$ gives rise to a one-parameter family of
unitaries (relative to the inner product $\langle\cdot,$ $\cdot\rangle$ ) on $\mathcal{H}$ . By diagonalizing the
unitaries, we get a basis with the desired property. $\square$

In the rest we will show that each eigenvalue $s_{j}$ is zero by looking at
type $III_{1}$ , $III_{0}$ , and $III_{\lambda}$ $(0<\lambda<1)$ cases separately. Since $\sigma_{\iota^{oE}}^{\psi}(\lambda(-s_{j}))=$

$\exp(-is_{j}t)\lambda(-s_{j}),$ $z_{j}=x_{j}\lambda(-s_{j})$ satisfies $\sigma^{\psi_{t}\circ E}(z_{j})=z_{j}$ and $z_{j}\in(M_{n})_{\psi\circ E}=\tilde{M}_{n}$ . Con-
sequently we have

$x_{j}=z_{j}\lambda(s_{j})$ with $z_{j}\in\tilde{M}_{n}$ .

Since $x_{j}\in \mathcal{H}$ , for $y\in\tilde{N}\subseteqq N$ we compute

$yz_{j}\lambda(s_{j})=z_{j}\lambda(s_{j})\sigma_{e}(y)=z_{j}\lambda(s_{j})y=z_{j}\theta_{s_{j}}(y)\lambda(s_{j})$

and hence
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(1) $yz_{j}=z_{j}\theta_{s_{j}}(y)$ , $y\in\tilde{N}$.

At first, when $M\supseteqq N$ are of type $III_{1},\tilde{M}\supseteqq\tilde{N}$ are factors of type $II_{\infty}$ . We
remark that the conditional expectation between these factors of type $II_{\infty}$

(arising from the unique trace) is minimal as was shown in [30]. If $s_{j}$ were
non-zero, $\theta_{s_{j}}\in Aut(\tilde{M},\tilde{N})$ would scale a unique (up to a scalar multiple) trace
by $\exp(-s_{j})\neq 1$ and hence we would conclude that $\theta_{s_{j}}$ is strongly outer (see

1.6 of [47] $)$ . Therefore, (1) would imply $z_{j}=0$ and $x_{J}=0$ , a contradiction.
Secondly, let us assume that $M\supseteqq N$ are of type $III_{0}$ and $s_{j}\neq 0$ . Let

$(\{F_{t}\}_{t\in R}, \Omega)$ be a point-map realization of the restriction of $\{\theta_{t}\}_{\iota\in R}$ to the center
(i.e., the flow of weights of $M$). We set

$\Omega_{0}=\{\omega\in\Omega;F_{s_{j}}(\omega)=\omega\}$ .

The set $\Omega_{0}$ is obviously invariant under $\{F_{t}\}_{c\in R}$ . Hence, the ergodicity of the
flow of weights shows that $\Omega_{0}$ must have measure zero. Therefore, we have
seen that $\theta_{s_{j}}$ is centrally free. Thus, we would conclude $z_{j}=0$ , a contradiction.
In fact, if $z_{j}\neq 0$ , then the central support $c(z_{j})$ majorizes a non-zero central
projection $P$ such that $p\perp\theta_{s_{j}}(p)$ . However, because of

$P=c(pz_{j})=c(z_{j}\theta_{s_{j}}(p))\leqq\theta_{s_{f}}(p)$ ,

$p\perp\theta_{s_{j}}(p)$ is impossible.
Finally, we deal with the type $III_{\lambda}(0<\lambda<1)$ case. In this case $\tilde{M}\supseteqq\tilde{N}$ can

be identified with $M_{0}\otimes L^{\infty}([0, -\log\lambda))\supseteqq N_{0}\otimes L^{\infty}([0, -\log\lambda))$ in a very explicit
way. Here, $M_{0}\supseteqq N_{0}$ are factors of type $II_{\infty}$ appearing in the discrete decom-
position picture. Basic facts on this identification are proved in [9], and for
the reader’s convenience we summarize them in Appendix.

LEMMA 6. If $M\supseteqq N$ are factors of type $III_{\lambda}$ , then $s_{j}=0$ .

PROOF. In this case the flow of weights is periodic with period $-\log\lambda$ .
Hence, if $s_{j}$ is not in $(-\log\lambda)Z$, then $\theta_{s_{j}}$ is centrally free, and the identical
argument as in the type $III_{0}$ case shows $z_{f}=0$ .

Therefore, let us assume $s_{j}=n\cross(-\log\lambda)(n\neq 0\in Z)$ (to show the result by
contradiction). Recall that $\sigma^{\psi_{t}\circ E}$ is periodic with the period $t_{0}=-2\pi/\log\lambda$ and
hence one can construct the natural isomorphism

$\Psi:\tilde{M}\mapsto(M\rangle\triangleleft\sigma\psi\circ E(R/t_{0}Z))\otimes L^{\infty}([0, -\log\lambda))$

(see Appendix). Everything here is compatible with the basic extension, etc.,

the isomorphism being constructed by just the Fourier analysis. Let $\theta_{0}$ be the
dual automorphism of the torus action $\{\sigma^{\psi_{t}\circ E}\}_{0\leq t<t_{0}}$ . The formula (8) in Appendix
shows that $\theta_{s_{j}}$ corresponds to $\theta_{0}^{n}\otimes id_{L^{\infty}(\zeta 0,-\log\lambda))}$ via $\Psi$ . Via this isomorphism,
$z_{j}$ corresponds to an $(M_{n} \rangle\triangleleft\sigma\phi\circ E(R/t_{0}Z))$ -valued function on $[0, -\log\lambda)$ , and the
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commutation relation (1) simply means
$y(\omega)z_{j}(\omega)=z_{j}(\omega)\theta_{0}^{n}(y(\omega))$ a.e. $\omega$

for each $y(\omega)\in N\rangle\triangleleft\sigma\emptyset(R/t_{0}Z)$ . Since $\theta_{0}^{n}$ is trace-scaling (by $\lambda^{n}$ ) and the relevant
conditional expectation between the factors of type $II_{\infty}$ is minimal (see Proposi-
tion 3.1, [33] $)$ , $\theta_{0}^{n}$ is strongly outer. Therefore, once again we conclude $z_{j}(\omega)=0$

a.e. $\omega$, and $z_{j}=0$ , a contradiction. $\square$

Summing up the arguments so far, we have seen $s_{j}=0$ (for each $]$ ) in all
the cases. Therefore, $x_{j}=z_{j}$ and $\mathcal{H}\subseteqq(M_{n})_{\psi\circ E}=\tilde{M}_{n}$ . Since $\sigma_{e}|_{\overline{N}}=id$ , we actually
have $\mathcal{H}\subseteqq\tilde{M}_{n}\cap\tilde{N}’$ . Since $x\in \mathcal{H}$ satisfies

$\theta_{t}(x)\lambda(t)=\lambda(t)x=x\sigma_{e}(\lambda(t))=c_{t}x\lambda(t)$ ,

we have

$\{x\in M_{n} ; yx=x\sigma_{e}(y), y\in N\}=\{x\in\tilde{M}_{n}\cap\tilde{N}’ ; \theta_{t}(x)=c_{t}x\}$ .
From this fact and Theorem 3 we obtain:

THEOREM 7. Assume that $M\subseteqq N=\rho(M)$ is an inclusion of type III factors
such that the associated inclusion $\tilde{M}\supseteqq\tilde{N}$ (with the dual action $\{\theta_{t}\}_{t\in R}$) of von
Neumann algebras of type $II_{\infty}$ has the identical center. Let $e=\{c_{t}\}_{i\in R}(\in Zb(R$ ,
$V(\mathcal{Z}(\tilde{M}))))$ be a cocycle. The corresponding extended modular automorphism $\sigma_{e}$

appears in $(\rho\overline{\rho})^{n+1}$ if and only if there exists a non-zero element $x$ in $\tilde{M}_{n}\cap\tilde{N}’$

satisfying $\theta_{t}(x)=c_{t}x,$ $t\in R$ .

REMARK 8. (i) When involved factors are of type $III_{\lambda}(\lambda\neq 0)$ , a cocycle
$e=\{c_{t}\}_{t\in R}$ is specified by just a real number $s$ (due to the transitivity of the
flow of weights): $c_{t}=\exp(ist)$ (a constant function) and $\sigma_{e}=\sigma^{\psi_{S}\circ E}$ in this case.
Therefore, the above condition reduces to the “eigenvalue condition” $\theta_{t}(x)=$

$\exp(ist)x,$ $t\in R$ . (See also the arguments in [16].)

(ii) The condition $\theta_{t}(x)=c_{t}x$ is stable under the multiplication by a co-
boundary $c_{t}’=u^{*}\theta_{t}(u)(u\in^{c}U(\mathcal{Z}(\tilde{M})))$ . In fact, one can replace $x$ by $ux\neq 0$ .

(iii) When $M=N,$ $\theta_{t}(x)=c_{t}x$ means that $e$ is a coboundary, and hence $\sigma_{e}$

is inner (as expected).

In fact, the above (iii) can be seen as follows: In this case we have
$\tilde{M}_{k}\cap\tilde{N}’=\mathcal{Z}(\tilde{M})$ . The condition $\theta_{t}(x)=c_{t}x$ implies $\theta_{t}(|x|)=|x|$ , and the central
ergodicity of $\theta_{t}$ shows that $|x|$ is a constant $(\neq 0)$ . By dividing the both sides
by this constant, we may and do assume that $x$ is a unitary in the center.
Therefore, we have the desired expression $c_{t}=x^{*}\theta_{t}(x)$ .

Let $M\supseteqq N$ be an inclusion of type $III_{\lambda}$ factors with finite-depth, and let

$M=A\rangle\triangleleft\theta_{0}Z\supseteqq N=B\rangle\triangleleft\theta_{0}Z$
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be the common discrete decomposition (see [33]). Here, $A\supseteqq B$ is an inclusion
of factors of type $II_{\infty}$ , and we will denote the corresponding Jones tower by
$\{A_{n}\}_{n=0.1.2},\cdots$ . We also assume that the graph of $M\supseteqq N$ (the type III graph)

and that of $A\supseteqq B$ (the type II graph) are different. (Cf. [16].) By repeating
almost the same arguments as in the first half of this section, we easily get

$\{x\in M_{k} ; yx=x\sigma^{\psi_{t}\circ E}(y), y\in N\}=\{x\in A_{k}\cap B’ ; \theta_{0}(x)=\exp(2\pi it/t_{0})x\}$

with $t_{0}=-2\pi/\log\lambda$ . In fact, $x_{j}$ in Lemma 5 satisfies $\sigma^{\psi_{t}\circ E}(x_{j})=\exp(is_{j}t)x_{j}$ as
before. Then, the periodicity shows $\sigma_{t_{0}}^{\psi\circ E}(x_{j})=\exp(is_{j}t_{0})x_{j}=x_{j}$ , and hence $s_{f}=$

$2\pi n/t_{0},$ $i.e.,$ $\sigma^{\psi_{t}\circ E}(x_{j})=\exp(2\pi int/t_{0})x_{j}$ . Therefore, we conclude $x_{j}=z_{j}l^{n}(z_{f}\in A_{k})$ ,
where $l$ is the generator in the crossed product $M_{k}=A_{k}\rangle\triangleleft\theta_{0}Z$ corresponding
to $Z$.

LEMMA 9. The following conditions are equivalent:
(i) The modular automorphisms in $U_{k}(\rho\overline{\rho})^{k}$ are $id,$ $\sigma_{t_{0}’ n}^{\psi\circ E},$ $\sigma_{2t_{0}/n}^{\phi\circ E},$ $\cdots$ , $\sigma_{(n-1)t_{0}/n}^{\psi\circ E}$ .
(ii) On the tower $U_{k}(A_{k}\cap B’)$ , we have $\theta_{0}^{n}=id$ and $\theta_{0}^{m}\neq id(m=1,2, \cdots , n-1)$ .

PROOF. Assume (i). Since $\sigma_{t_{0}’ n}^{\psi\circ E}$ appears in $(\rho\overline{\rho})^{k+1}$ , by the above and
Theorem 3 one can choose $x\neq 0\in A_{k}\cap B’$ satisfying $\theta_{0}(x)=\exp(2\pi i/n)x$ . There-
fore, $\theta_{0}^{m}\neq id(m<n)$ on the tower $\bigcup_{k}(A_{k}\cap B’)$ of relative commutants. Since
$M\supseteqq N$ has finite-depth, so does $A\supseteqq B$ . (See Corollary 3.2, [33].) Thus, $\theta_{0}$

restricted to $A_{k_{0}}\cap B’$ ( $k_{0}$ large enough) completely determines $\theta_{0}$ on the whole
tower. It is easy to see that $\theta_{0}$ on the tower is periodic. (Equip $A_{k_{0}}\cap B’$ with
the inner product determined by the canonical trace on the tower. Since this
trace comes from relevant conditional expectations, we can regard $\theta_{0}$ as a
unitary matrix. If this unitary had an eigenvalue $\exp(2\pi is)$ with an irrational
$s$ , then $\sigma_{st_{0}^{E}}^{\psi\circ}$ would appear in $\bigcup_{k}(\rho\overline{\rho})^{k}$ , which contradicts the assumption that
$M\supseteqq N$ is of finite-depth.) Let $n_{0}$ be the minimal integer sucb that $\theta_{0}^{n_{0}}=id$ on
the tower. We have already known $n_{0}\geqq n$ . If $n_{0}>n$ , then as above we find a
non-zero $x\in A_{k}\cap B’$ (for some $k$ ) such that $\theta_{0}(x)=\exp(2\pi i/n_{0})x$ . Hence,
$\sigma_{t_{0}/n_{0}}^{\psi\circ E}\prec U_{k}(\rho\overline{\rho})^{k}$ , which contradicts (i).

The converse can be proved by almost the identical argument. $\square$

Assume that the type III and type II graphs of $M\supseteqq N$ are different, and let

$id,$ $\sigma_{t_{0}’ n}^{\psi\circ E},$ $\sigma_{2t_{0}/n}^{\phi\circ E},$

$\cdots,$
$\rho_{\langle n-1)t_{0}/n}^{\psi\circ E}$

be the modular automorphisms in $u_{k}(p\overline{\rho})^{k}$ . We set $\beta=\sigma_{t_{0}/n}^{\psi\circ E}$ . This is an auto-
morphism in $Aut(M, N)$ with period $n$ . As was clarified in [16], the above
modular automorphisms in $u_{k}(p\overline{\rho})^{k}$ are responsible for the difference of the
two graphs. Therefore, it is natural to investigate the inclusion

$P=M)\triangleleft_{\beta}Z_{n}\supseteqq Q=N\rangle\triangleleft_{\beta}Z_{n}$ .
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Notice that this inclusion is conjugate to the pair of the fixed point algebras
(under the $Z_{n}$-action $\beta$ ):

$M^{z_{n}}\supseteqq N^{z_{n}}$ .
Since

$\beta(x)=\sigma_{t_{0}’ n}^{\psi\circ E}(x)=\sum a_{m}\exp(2\pi im/n)l^{m}$ for $x=\Sigma a_{m}l^{m}\in M=A$ )$\triangleleft_{\theta_{0}}Z$ ,

the above pair of the fixed point algebras are actually

(2) $A\rangle\triangleleft_{\theta_{0}^{n}}Z\supseteqq B\aleph_{\theta_{0}^{n}}Z$ .

Hence, $P\supseteqq Q$ are factors of type $III_{\lambda^{n}}$ (since $\theta_{0}^{n}$ scales the unique trace by $\lambda^{n}$ ),

and (2) shows that the type II graph is the one for the pair $A\supseteqq B(i.e.$ , the
type II graph of $M\supseteqq N$). The type III graph of $P\supseteqq Q$ can be computed as
the fixed point of $A_{k}\cap B’$ under the automorphism $\theta_{0}^{n}$ . However, the n-th
power of $\theta_{0}$ being trivial on the tower (Lemma 9), the type III graph of $P\supseteqq Q$

is the same as the type II graph.
Let $\hat{\beta}$ be the dual action of $\beta$ . By the Takesaki duality we have :

PROPOSITION 10. The pair $M\supseteqq N$ can be expressed as a pair of srmultaneous
crossed products $P\rangle\triangleleft t^{Z_{n}}\supseteqq Q_{\aleph_{\beta}}Z_{n}$ . Here, $P\supseteqq Q$ are factors of type $III_{\lambda^{n}}$ . The
incluston $P\supseteqq Q$ has the same type III and type II graphs( $=the$ type II graph
of $M\supseteqq N$).

A similar phenomenon with $n=2$ (in the type $III_{0}$ setting) was pointed out
in \S 4 of [31] (see also Remark 13).

It is also possible to show the above result from the following: Recall
$P=M)\triangleleft\beta Z_{n}=(A\rangle\triangleleft\theta_{0}Z)\cross_{\beta}Z_{n}$ . Since $\beta$ acts trivially on $A$ and $\beta(1)=\exp(2\pi i/n)l$ ,
this double crossed product can be expressed as $(A\otimes\lambda(Z_{n})’’)\rangle\triangleleft_{\theta_{0}}\approx Z$, with
$\theta_{0}(a\otimes l_{0})=\theta_{0}(a)\otimes\exp(2\pi i/n)l_{0}=(a\in A)$ for the generator $l_{0}(l_{0}^{n}=1)$ in the group
ring $\lambda(Z_{n})$ . Therefore, by performing the Fourier transform on $l^{2}(Z.)$ , we
end up with

$P\cong(A\otimes l^{\infty}(Z_{n}))\aleph_{\dot{\theta}_{0}}Z$ .
Here, $\tilde{\theta}_{0}$ is the tensor product $\theta_{0}\otimes AdS$ , and $S$ is the $n\cross n$ shift matrix

$(\begin{array}{lllllll}0 1 0 0\vdots \cdots 00 0 1 0\vdots \cdots 00 0 0 1 \vdots 0 |. \vdots 1\cdots 1 \cdots \cdots \cdots \cdots \cdots \cdots 0 . \cdots 0\end{array})$ .

Of course the same expression (with $B$ instead of $A$ ) is valid for $Q$ .
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Actually tbis approach is more fitting especially when one deals with
factors of type $III_{1}$ (see below). In fact, in this case $Z$-actions are around, and
a crossed product by a $Z$-action is easier to handle than a fixed point algebra
under a $T$-action for our purpose.

We now assume that $M\supseteqq N$ are factors of type $III_{1}$ with different type III
and type II graphs (so that (type III) graph has infinite-deptb, [16]) and that
the type II graph is of finite-depth. (A typical example is a locally trivial
inclusion with index 4 coming from a modular automorphism ([49]).)

Set
$\Theta(t)=\theta_{t}|_{\bigcup_{k}(\tilde{M}_{k^{\cap}}i\nabla^{l})}$ .

(This is a “flow of weights” for the purpose of subfactor analysis, which played
an important role in [22, 33, 34, 35, 47, 53, 54].) Since the type II graph is of
finite-depth, $\Theta(t)$ is completely determined by $\theta_{t}$ restricted to the finite-dimen-
sional algebra $\tilde{M}_{k}\cap\tilde{N}’$ (for $k$ large enough). We further assume that the kernel
of the continuous homomorphism $\Theta$ : $t\in R-e(t)$ is of the form $Ker\Theta=tZ$ for
some $t>0([35])$ .

LEMMA 11. The following conditions are equivalent:
(i) The modular automorphisms in $U_{k}(\rho\overline{\rho})^{k}$ are $\{\sigma_{ns_{0}^{E}}^{\psi\circ} ; n\in Z\}$ .
(ii) $Ker\Theta=(2\pi/s_{0})Z$.

PROOF. Assume $Ker\Theta=(2\pi/s_{0})Z$, and let $k_{0}$ be the depth of $\tilde{M}\supseteqq\tilde{N}$. Being
an $R$-action, $\theta_{t}$ cannot move each of the minimal central projections in $\tilde{M}_{k_{0}}\cap\tilde{N}’$ .
In each direct summand (i.e., a full matrix algebra) here, $\theta_{t}$ is inner. Since
$Ker\Theta=(2\pi/s_{0})Z$, one can find a non-zero $x\in\tilde{M}_{k_{0}}\cap\tilde{N}’$ satisfying $\theta_{t}(x)=\exp(is_{0}t)x$ .
Therefore, $\sigma^{\psi_{s_{0}}^{0}E}$ (and hence all of $\sigma_{ns_{0}}^{\psi\circ E}(n\in Z)$ ) appears in $U_{k}(\rho\overline{\rho})^{k}$ (Theorem 7).

On the other hand, if $\sigma^{\psi_{s_{1}^{o}}E}(0<s_{1}<s_{0})$ appeared in $U_{k}(\rho\overline{\rho})^{k}$ , we would have a
non-zero $x$ with $\theta_{t}(x)=\exp(is_{1}t)x$ and $\theta_{2\pi/s_{0}}(x)=\exp(2\pi is_{1}/s_{0})x\neq x$ , a contradiction.

The converse can be proved similarly. $\square$

Assume $Ker\Theta=(2\pi/s_{0})Z$ . Let $\beta=\sigma_{s_{0}}^{\psi\circ E}\in Aut(M, N)$ and we set

$P=M\lambda_{\beta}Z\supseteqq Q=N\rangle\triangleleft_{\beta}Z$ .

With the dual action $\hat{\beta}$ ( $T$-action), we get:

PROPOSITION 12. The pair $M\supseteqq N$ can be expressed as a pair of simultaneous
crossed products PX $\hat{\beta}T\supseteqq Q\rangle\triangleleft\dot{\beta}$ T. Here, $P\supseteqq Q$ are factors of type $III_{\lambda}$ with $\lambda=$

$\exp(-2\pi/s_{0})$ . The inclusion $P\supseteqq Q$ has the same type III and type II graphs
( $=the$ type II graph of $M\supseteqq N$).

PROOF. Notice

$P=M_{\aleph_{\beta}}Z=(\tilde{M}\aleph_{\theta}R)\rangle\triangleleft\beta Z=(\tilde{M}\otimes\lambda(Z)’’)\aleph_{\theta}^{\approx}R$
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with $\theta_{t}(m\otimes l)=\theta_{t}(m)\otimes\exp(is_{0}t)l\approx$ since $\beta(\lambda(t))=\exp(is_{0}t)\lambda(t)$ and $\beta|\Pi^{=id}$ . There-
fore, after the Fourier transform, we have

$P\cong(\tilde{M}\otimes L^{\infty}(T))x_{\dot{\theta}}R$ ,

where $\tilde{\theta}_{t}$ is $\theta_{t}$ tensored with the translation by $s_{0}t/2\pi$ on the torus $T=R/Z$
(hence the flow of weights has period $2\pi/s_{0}$). We also have the similar
expression for $Q$ (with $\tilde{N}$ instead).

The type II graph of $P_{=}Q$ can be seen from the inclusion $\tilde{M}\otimes L^{\infty}(T)\supseteqq$

$\tilde{N}\otimes L^{\infty}(T)$ . Since tensoring with $L^{\infty}(T)$ does not do anything, the type II graph
is the one determined by $\tilde{M}\supseteqq\tilde{N}$. On the other hand, the type III graph of
$P\underline{\supset-}Q$ can be determined from

$((\tilde{M}_{k}\otimes L^{\infty}(T))\cap(\tilde{N}\otimes L^{\infty}(T))’)_{\tilde{\theta}}=((\tilde{M}_{k}\cap\tilde{N}’)\otimes L^{\infty}(T))_{\dot{\theta}}$ .

Since $\theta_{2\pi/s_{0}}=id$ on $U_{k}(\tilde{M}_{k}\cap\tilde{N}’)$ (Lemma 11) and the flow has period $2\pi/s_{0}$ on
the center $L^{\infty}(T)$ , it is plain to see that the type III graph is also the one
determined by $\tilde{M}\supseteqq N.$

$\square$

The assumption $Ker\Theta=tZ(t>0)$ is actually essential in the above argument,
and the author thanks F. Hiai for pointing out this fact.

EXAMPLE. Let $P$ be a factor of type $III_{1}$ , and we consider the locally
trivial inclusion

$M=P\otimes M_{3}(C)\supseteqq N=\{(\begin{array}{lll}x 0 00 \sigma_{1}(x) 00 0 \sigma_{r}(x)\end{array}) ; x\in P\}$ ,

where $\sigma$ denotes the modular action as usual and $r$ is irrational. It is elementary
to see that the type II inclusion is given by

$\tilde{M}=\tilde{P}\otimes M_{3}(C)\supseteqq\tilde{N}=\{(\begin{array}{lll}x 0 00 \tilde{\sigma}_{1}(x) 00 0 \tilde{\sigma}_{r}(x)\end{array}) ; x\in\tilde{P}\}$

with the dual action $\theta_{t}^{\overline{M}}=\theta_{t}^{\tilde{P}}\otimes Id$ . Here, $\tilde{\sigma}_{t}$ means the canonical extension (to

the $II_{\infty}$-factor $\tilde{P}$) of $\sigma_{t}$ so that

$\tilde{\sigma}_{1}=Adl(1)$ and $\tilde{\sigma}_{r}=Adl(r)$ .

Therefore, $\tilde{M}\supseteqq\tilde{N}$ is conjugate to

$\tilde{P}\otimes M_{3}(C)\supseteqq\tilde{P}\otimes C1$

by the inner conjugation
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$Ad(\begin{array}{lll}1 0 00 l(1)^{*} 00 0 l(r)^{*}\end{array})$ .

Under this conjugation, the dual action $\theta_{\iota}^{p}\otimes Id$ is transformed to

$\theta_{t}^{p}\otimes Ad(\begin{array}{lll}1 0 00 exp(it) 00 0 exp(irt)\end{array})$ .

Since $r$ is irrational, we obviously have $Ker\Theta=\{0\}$ . On the other hand, it is
plain to see that (when $N=p(M)$ )

$p\overline{\rho}=1\oplus 1\oplus\sigma_{1}\oplus\sigma_{r}$

as a sector. The group $G$ of all one dimensional sectors in $U_{k}(\rho\overline{\rho})^{k}$ is

$G=\{\sigma_{m+nr} ; n, m\in Z\}$

(which is isomorphic to a dense subgroup in $R$). As before, $M\supseteqq N$ can be
identified with

$(M)\triangleleft G))\triangleleft\hat{G}\supseteqq(NxG)\rangle\triangleleft\hat{G}$ .
However, $M\rangle\not\in G$ (and $N$ )$\triangleleft G)$ is no longer a factor of type $III_{\lambda}$ . (It is of type
$III_{0}$ and its flow of weights has pure point spectrum.)

Propositions 10, 12 dealt with type $III_{\lambda}$ and type $III_{1}$ cases respectively,
but we have not touched the type $III_{0}$ case. In this case, we are probably
forced to deal with “modular endomorphisms” in the sense of Izumi ([17]). In
fact, a recent important result by Izumi says that (in the $III_{0}$ case) a graph
change occurs if and only if a modular endomorphism appears in $U_{k}(\rho\overline{\rho})^{k}$ .

However, when the index is less than 4, Theorem 7 enables us to deal
with the type $III_{0}$ case.

REMARK 13. Let $M\supset N$ be a pair of type $III_{0}$ factors with the type III
graph $A_{4m-3}$ and the type II graph $D_{2m}$ . By the presence of the two end-points
in the $D_{zm}$ graph, $(1-e_{0}\vee e_{1}\cdots\vee e_{2m-4})(\tilde{M}_{2m-3}\cap\tilde{N}’)$ can be identified with
$L^{\infty}(\Omega\cross\{0,1\})$ . Since the type III and type II graphs are different, the dual
action $\{\theta_{t}\}_{t\in R}$ restricted to $(1-e_{0}\vee e_{1}\vee\cdots\vee e_{2m-3})(\tilde{M}_{2m-3}\cap\tilde{N}’)$ gives rise to the
two-to-one ergodic extension $(F_{t}’, \Omega\cross\{0,1\})$ of $(F_{t}, \Omega)$ , the flow of weights of
$M$ ( $=that$ of $N$):

$F_{t}’(\omega, i)=(F_{t}(\omega), \varphi_{\omega.t}(i))$ .
Here, $\varphi:(\omega, t)\in\Omega\cross Rarrow\varphi_{\omega,t}\in S_{2}\cong\{\pm 1\}$ is an $F_{t}$ -cocycle. We set

$c_{t}(\omega)=\varphi_{\omega.t}\in(\pm 1\}$ ,

$x=^{x_{o_{xt0I}-\chi_{\Omega x\{1t}}}\in L^{\infty}(\Omega\cross\{0,1\})$ $( \tilde{M}_{2m-3}\cap\tilde{N}’)$ .
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It is elementary to see $\theta_{t}(x)=c_{t}x$ . Notice that $e=\{c_{t}\}_{c\in R}$ is a $V(\mathcal{Z}(\tilde{M}))$-valued
$\theta_{t}$-cocycle, and hence by Theorem 7 the associated extended modular automor-
phism $\beta=\sigma_{e}$ (of period 2) appears in $U_{k}(\rho\overline{\rho})^{k}$ . We set

$P=M_{\aleph_{\beta}}Z_{2}\supseteqq Q=N\aleph_{\beta}Z_{2}$ .
Then, the type III and type II graphs of the new pair are both $D_{2m}$ . In fact,

this fact can be seen based on the arguments in \S 4 and Appendix A of [31],

and details are left to the reader. As above $M\supseteqq N$ can be identiPed with
PX $\hat{\beta}Z_{2}\supseteqq Q_{\aleph_{\hat{\beta}}}Z_{2}$ by the Takesaki duality.

5. Strong freeness and strong outerness.

In [54] $Winsl\emptyset w$ studied automorphisms for pairs of factors of type $III_{\lambda}$ .
TO do so, he considered a certain algebraic property (corresponding to the
(non-)central triviality ([24, 51]) or the non-pointwise innerness ([9, 10, 11]) in
the study of automorphisms on single factors) for such automorphisms or actions.
This property was called the strong freeness, and he obtained some classification
results for non-strongly free actions of groups with certain properties. In this
section we will show that the strong freeness is stronger than the strong
outerness.

AS in the previous section, let $M\supseteqq N=p(M)$ be an inclusion of factors of
type III such that the associated inclusion $\tilde{M}\supseteqq\tilde{N}$ of von Neumann algebras of
type $II_{\infty}$ has the identical center. Let $\alpha(\in Aut(M, N))$ be an automorphism for
the pair in question, and we assume that $\alpha$ is already extended to the tower as
was explained in \S 3 ( $i.e.$ , all the Jones projections are fixed).

Let $\tilde{\alpha}$ be the canonical extension of $\alpha$ in the sense of $Haagerup- St\emptyset rmer$

$([9])$ , that is, $\tilde{\alpha}$ is the automorphism of $\tilde{M}=M$ )$\triangleleft\sigma\psi\circ ER$ defined by

$\tilde{\alpha}(\pi_{\sigma}\psi\circ E(m))=\pi_{\sigma}\psi\circ E(\alpha(m))$ , $m\in M$ ( $i.e.,\tilde{\alpha}|_{M}=\alpha$ for $Mc\tilde{M}$ )

a $(\lambda(t))=\pi_{\sigma}\psi\circ E((D(\psi\circ E\circ a^{-1}) : D(\psi\circ E))_{t})\lambda(t)$ , $t\in R$

with the Connes Radon-Nikodym cocycle $(D(\cdot):D(\cdot))_{t}$ . Since the Radon-Nikodym
cocycle belongs to $N$ in the present case, the automorphism $\tilde{\alpha}$ actually belongs
to $Aut(\tilde{M},\tilde{N})$ . It is also straight-forward to see that this extension procedure
of an automorphism (for a pair) is compatible with the basic extension, etc..

DEFINITION 14 ([54, 55]). An automorphism $a\in Aut(M, N)$ is called strongly

free if the following condition is satisfied for each $k$ :

If $x\in\tilde{M}_{k}$ satisfies $yx=x\tilde{\alpha}(y)$ for all $y\in\tilde{M}$, then we must have $x=0$ .
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Since the canonical extension $\tilde{\alpha}$ commutes with the dual action $\{\theta_{t}\}_{t\in R}$ , one
can further extend $\tilde{\alpha}$ to an automorphism of the second crossed product

$\overline{M}=\tilde{M}x_{\theta}R=(Mx_{\sigma}\psi\circ ER)\aleph_{\theta}R=\langle\tilde{M}\cong\pi_{\theta}(\tilde{M}), \lambda’(R)\rangle’’$ .

Namely, we define a $\in Aut(\dot{M})$ (actually $a\approx\in Aut(\dot{M},\overline{N})$ ) by

$\tilde{\alpha}|p=\tilde{\alpha}$ ,

$a\approx(\lambda’(s))=\lambda’(s)$ $(s\in R)$ .

The Takesaki duality says that the pairs $M^{*}\supseteqq N^{\approx}$ and $M\otimes B(L^{2}(R))\supseteqq N\otimes B(L^{2}(R))$

are conjugate via $\Pi:M^{\approx}=(M\aleph_{\sigma}\psi\circ ER)\rangle\triangleleft\theta R-M\otimes B(L^{2}(R))$ satisfying

$(\Pi(\pi_{\theta}\circ\pi_{\sigma}\psi\circ E(m))\xi)(r)=\sigma_{r}^{\underline{\psi}\circ E}(m)\xi(r)$ ,

$(\Pi(\pi_{\theta}(\lambda(t)))\xi)(r)=\xi(r-t)$ ,

$(\Pi(\lambda’(s))\xi)(r)=\exp(isr)\xi(r)$ ,

where $\xi$ is a vector in $L^{2}(M)\otimes L^{2}(R)\cong L^{2}(R;L^{2}(M))$ . We now figure out how
$\alpha\approx$ looks like under this isomorphism. From the definition of $a\simeq$ , we obviously
have

(3) $(\Pi(\alpha\approx(\pi_{\theta}\circ\pi_{\sigma}\psi\circ E(m)))\xi)(r)=\sigma_{r}^{\underline{\psi}\circ E}\circ a(m)\xi(r)$ ,

(4) $(\Pi(a\approx(\pi_{\theta}(\lambda(t))))\xi)(r)=\sigma_{\mathring{r}^{E}}^{\underline{\psi}}((D(\psi\circ E\circ a^{-1}) : D(\psi\circ E))_{t})\xi(r-t)$ ,

(5) $(\Pi(\alpha\approx(\lambda’(s)))\xi)(r)=\exp(isr)\xi(r)$ .

Define the unitary $v$ (acting on $L^{2}(M)\otimes L^{2}(R)$ ) by

$(v\xi)(r)=(D(\psi\circ E\circ\alpha^{-1}):D(\psi\circ E))_{-r}\xi(r)$ .

Notice that $v$ commutes with an arbitrary element in $M’\otimes C1_{L^{2}(R)}$ . Hence, $v$ is
a unitary in $M\otimes B(L^{2}(R))$ (actually in $N\otimes B(L^{2}(R))$ ), and $Adv$ gives us an inner
automorphism. The operator given by (5) obviously commutes with $v$ . It is also
elementary to see that the adjoint $v^{*}$ is given by

$(v^{*}\xi)(r)=(D(\psi\circ E\circ\alpha^{-1}):D(\psi\circ E))_{-r}^{*}\xi(r)$ .

Then, having (3) in mind, we compute

$(D(\psi\circ E\circ\alpha^{-1}):D(\psi\circ E))_{-r}\sigma_{r}^{\underline{\psi}\circ E}\circ\alpha(m)(D(\psi\circ E\circ\alpha^{-1}):D(\psi\circ E))_{-r}^{*}\xi(r)$

$=\sigma^{\underline{\psi}^{\circ_{\mathcal{T}}E\circ a^{-1}}}\circ a(m)\xi(r)$

$=a\circ\sigma_{r}^{\underline{\psi}\circ E}(m)\xi(r)$ ,

where the intertwining property of the Connes cocycle and the fact $\sigma^{\psi_{t}\circ E}=\alpha^{-1_{\circ}}$

$\sigma^{\psi_{t}\circ E\circ a_{Q}^{-1}}a$ were used. Similarly, having (4) in mind, (thanks to the cocycle
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property) we compute

$(D(\psi\circ E\circ\alpha^{-1}):D(\psi\circ E))_{-r}\sigma_{r}^{\underline{\psi}\circ E}((D(\psi\circ E\circ\alpha^{-1}):D(\psi\circ E))_{t})$

$\cross(D(\psi\circ E\circ a^{-1}):D(\psi\circ E))_{-(r-t)}^{*}\xi(r-s)$

$=(D(\psi\circ E\circ a^{-1}) : D(\psi\circ E))_{-r+t}(D(\psi\circ E\circ a^{-1}) : D(\psi\circ E))_{-r+t}^{*}\xi(r-s)$

$=\xi(r-t)$ .
Therefore, we have shown:

LEMMA 15. Under the Takesaki duality, the secmd extenston $a\approx\in Aut(\dot{M}, N^{\approx})$

corresPonds to $Adv^{*}\circ(\alpha\otimes id_{B(L^{2}(R))})\in Aut(M\otimes B(L^{2}(R)), N\otimes B(L^{2}(R)))$ .

In the rest of the section, we will show that the strong freeness implies the
strong outerness (by repeating similar arguments as those in \S 4). To do so, we
assume that $\alpha\in Aut(M, N)$ is not strongly outer. By Lemma 15, $\alpha\approx\in Aut(\dot{M},\tilde{N})$

is not strongly outer, and

$\mathcal{H}=$ { $x\in M_{k}^{*}$ ; $yx=xa\approx(y)$ for all $y\in\tilde{M}$ }

is‘ a non-zero linear space (for some $k$ ). Let $\{\sigma_{t}\}_{t\in R}(\in Aut(\overline{M}, N^{\approx}))$ be the dual
action of $\{\theta_{t}\}_{t\in R}$ . Since $\sigma_{t}|_{jY_{k}}=id$ and $\sigma_{t}(\lambda’(s))=\exp(ist)\lambda’(s)$ , we easily observe
$\sigma_{t^{\circ a=a\circ\sigma_{t}}}^{\simeq\approx}$ (by applying the both sides to generators). Hence, we have the
invariance $\sigma_{t}(\mathcal{H})=\mathcal{H}(t\in R)$ . As was pointed out in \S 4, $\mathcal{H}$ is a finite dimen-
sional space and one can choose a basis $\{x_{1}, x_{2}, , x_{n}\}$ such that $\sigma_{t}(x_{j})=$

$\exp(is_{j}t)x_{j}$ for some $s_{j}\in R$ . Hence, we can express each $x_{j}$ as

$x_{j}=z_{j}\lambda’(s_{j})$ for some $z_{j}\in(M_{k}^{*})^{\sigma}=\tilde{M}_{k}$ .

Hence, the intertwining property shows that for each $y\in\tilde{M}(\subseteqq\tilde{M})$ we have

$yz_{f}\lambda’(s_{j})=z_{j}\lambda’(s_{j})a\approx(y)$

$=z_{j}\lambda’(s_{j})\tilde{\alpha}(y)$

$=z_{j}\theta_{s_{j}}\circ\tilde{\alpha}(y)\lambda’(s_{j})$ ,

and we have

(6) $yz_{j}=z_{j}\theta_{s_{j^{\circ}}}\tilde{\alpha}(y)$ for all $y\in\tilde{M}$ .

LEMMA 16. Each $s_{j}$ is zero.

PROOF. Since $\alpha$ is non-strongly outer, $\alpha$ appears in $U_{m}(p\overline{\rho})^{m}$ (Theorem 3).

Therefore, $mod (\alpha)=1$ , i.e., $\tilde{\alpha}|_{Z(\overline{M})}=id([16])$ . As in \S 3, by assuming $s_{j}\neq 0$ ,

we will get the contradiction $z_{j}=0$ .
At first we consider the type $III_{0}$ case. As in \S 4, (6) implies $z_{j}=0$ by the

central freeness of $0_{s_{f^{\circ}}}\alpha\sim$ .
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Secondly we consider the type $III_{1}$ case. Since the canonical $tracetr$ on
$\tilde{M}$ satisfies $tro\tilde{\alpha}=tr$ (Proposition 12.2, [9]), we have $tr\circ\theta_{s_{j}}\circ\tilde{\alpha}=\exp(-s_{j})tr$ and
(6) shows $z_{j}=0$ as in \S 4.

Finally we consider the type $III_{\lambda}$ case. If $s_{j}$ is not in $(-\log\lambda)Z$, we have
$z_{j}=0$ as in the type $III_{0}$ case. So let us assume $s_{j}=(-\log\lambda)n(n\neq 0\in Z)$ . Since
$mod (a)=1$ we can find a unitary $u\in N$ such that $\psi\circ E\circ a=\psi\circ E\circ Adu(\psi=domi-$

nant weight). In fact, $\psi\circ a|_{N}=\psi(u\cdot u^{*})$ for some $u\in^{c}U(N)$ (Proposition 2.6, [10]).

Since $E\circ a=a\circ E$ , we have $\psi\circ E\circ\alpha=\psi\circ\alpha oE=\psi(uE(\cdot)u^{*})=\psi\circ E(u\cdot u)^{*}$ . Thus, after
an inner perturbation, we can assume $\psi\circ E\circ a=\psi\circ E$ , which implies that $a$ and
$\sigma^{\psi_{t}\circ E}$ commute. Recall the factor of type $II_{\infty}$

$M_{0}=M\aleph_{\sigma}\psi\circ E(R/t_{0}Z)=\langle M, \lambda_{0}(t)\rangle’’$

and the isomorphism $\Psi:\tilde{M}\mapsto M_{0}\otimes L^{\infty}([0, -\log\lambda))$ in Appendix. We extend $a$ to
$a_{0}\in Aut(M_{0})$ by setting $a_{0}(\lambda_{0}(t))=\lambda_{0}(t)$ . We know (Lemma A.1, (iii) in Appendix)
that, under this isomorphism, $\tilde{\alpha}=\alpha_{0}\otimes id_{L^{\infty}(C0.-\log\lambda))}$ . Since $\theta_{\epsilon_{j}}$ corresponds to
$\theta_{0}^{n}\otimes id_{L^{\infty}(\mathfrak{c}0.-\log\lambda))}$ and $z_{j}$ is regarded as an operator-valued function on $[0, -\log\lambda)$ ,
(6) means

$y(\omega)z_{j}(\omega)=z_{j}(\omega)\theta_{0}^{n}\circ a_{0}(y(\omega))$ $a.e$ . $\omega$

for $y(\omega)\in M_{0}$ . Since a (unique) $trace\tau$ on $M_{0}$ satisfies $\tau(\theta_{0}^{n}\alpha_{0}(\cdot))=\lambda^{n}\tau$ (Lemma

A.l, (ii) $)$ , the above implies $z_{j}(\omega)=0$ a.e. $\omega$ and $z_{j}=0$ . $\square$

This lemma shows $z_{j}=x_{j}$ and $\mathcal{H}\subseteqq\tilde{M}_{k}$ . Hence, (6) shows that $x_{j}\neq 0\in\tilde{M}_{k}$

satisfies
$yx_{j}=x_{j}\tilde{\alpha}(y)$ for all $y\in\tilde{M}$ ,

that is, $\tilde{\alpha}$ is not strongly free. So far we have been assuming that factors are
of type III. Obviously, the same proof works for semi-finite factors since in
this case the flow of weights is simply the reals $R$ together with the usual
translation (with speed 1).

Therefore, we have shown:

THEOREM 17. Let $M\supseteqq N$ be an inclusion of factors such that the associated
inclusion $\tilde{M}\supseteqq\tilde{N}$ of von Neumann algebras of type $II_{\infty}$ has the identical center.
If $a\in Aut(M, N)$ is strongly free, then it is strongly outer.

$coROLLARY_{l}^{\lambda}18$ . We keep the same assumptims as in the above theorem. Let
$a\in Aut(M, N)$ be an automorphism appearing in $U_{k}(\rho p)^{k}$ and let $\sigma_{e}$ be an extended
modular automorphism. Then, the composrtim $\sigma_{e}\circ a$ is non-strmgly free.

PROOF. Since $a$ appears in $U_{k}(\rho\overline{\rho})^{k}$ , by Theorem 3 and Theorem 17 there
exists a non-zero $x\in\tilde{M}_{k}$ (for some $k$ ) such that $yx=x\tilde{\alpha}(y)$ for all $y\in\tilde{M}$. Recall
that the canonical extension of an extended modular automorphism is inner
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([10]): $\tilde{\sigma}_{e}=Adv_{e}$ for some $v_{e}\in^{c}U(\tilde{M})$ . Then, $(\sigma_{e}\circ a)^{\sim}=\tilde{\sigma}_{e}\circ\tilde{\alpha}([9])$ and the non-
zero element $xv_{e}^{*}\in\tilde{M}_{k}$ satisfies:

$xv_{e}^{*}(\sigma_{e}\circ\alpha)^{\sim}(y)=x\tilde{\alpha}(y)v_{e}^{*}=yxv_{e}^{*}$ ,

that is, $\sigma_{e}\circ\alpha$ is non-strongly free. $\square$

When $M=N$ , Haagerup and $St\emptyset rmer$ showed that $\tilde{\alpha}$ is inner (i.e., $\alpha$ is
point-wise inner) if and only if $a$ is an extended modular automorphism (up to
an inner perturbation) (see [9, 10, 11]). The above result and Theorem 19 (in
the next section) suggest that for analysis of automorphisms for pairs one has
to look at automorphisms coming from $U_{k}(\rho\overline{\rho})^{k}$ as well.

6. Non-strongly free automorphisms.

In this section, we will obtain the converse of Corollary 18 for factors of
type $III_{\lambda}(\lambda\neq 0)$ . Hence, we will be able to describe all the non-strongly free
automorphisms (up to an inner perturbation) in this case if the irreducible
decomposition of $U_{k}(\rho\overline{\rho})^{k}$ ( $i.e.$ , the fusion rule) is known.

THEOREM 19. Let $M\supseteqq N=p(M)$ be an inclusion of factors of tyPe $III_{2}$

$(\lambda\neq 0)$ such that the associated inclusion $\tilde{M}\supseteqq\tilde{N}$ of von Neumann algebras of type
$II_{\infty}$ has the identical center. If $a\in Aut(M, N)$ is non-strongly free, then $\alpha=$

$\sigma^{\dot{\varphi}_{t}\circ E}\circ\beta$ for some automorphism $\beta$ appearing in $U_{k}(\rho\overline{\rho})^{k}$ and $t\in R$ .

PROOF. Let us assume the existence of x-t $0\in\tilde{M}_{n}$ satisfying

(7) $yx=x\tilde{\alpha}(y)$ for all $y\in\tilde{M}$ .

At first we consider the type $III_{1}$ case. Since $\tilde{M}\supseteqq\tilde{N}$ are factors,

$\tilde{\mathcal{H}}=\{x\in\tilde{M}_{n} ; yx=x\tilde{a}(y), y\in\tilde{M}\}$

is a (non-zero) finite dimensional linear space. Since the dual action $\theta_{t}$ satisfies
$0_{t}\circ\tilde{\alpha}=\tilde{\alpha}\circ\theta_{t}$ , we have $\theta_{t}(\tilde{\mathcal{H}})=\tilde{\mathcal{H}}$ and as before one can choose $x_{1},$ $X_{2},$

$\cdots$ $x_{m}\in\tilde{\mathcal{H}}$

such that $\theta_{t}(x_{j})=\exp(is_{j}t)x_{j}$ for some $s_{j}\in R$ . Thus, $x_{j}=z_{j}\lambda(s_{j})$ with $z_{j}\in(\tilde{M}_{n})_{\theta}$

$=M_{n}$ , and for $y\in M(\subseteqq\tilde{M})$ we compute

$yz_{j}\lambda(s_{j})=z_{j}\lambda(s_{j})\tilde{\alpha}(y)-z_{j}\lambda(s_{j})a(y)=z_{j}\sigma_{\_{j}}^{\psi\circ E}\circ a(y)\lambda(s_{j})$

thanks to (7). Hence, $z_{j}\neq 0\in M_{n}$ satisfies $yz_{j}=z_{j}\sigma_{ j}^{\psi\circ E_{Q}}a(y)$ and, by Proposition
4, $\beta=\sigma_{s_{j}}^{\psi\circ E}\circ\alpha$ appears in $(p\overline{\rho})^{n}$ (as a sector) and $a=\sigma_{s_{j}}^{\underline{\psi}\circ E}\circ\beta$ (up to an inner
perturbation).

We now go to the type $III_{\lambda}$ case. The existence of $x\neq 0$ satisfying (7)
forces that $mod (a)=1$ . In fact, there exists a unique central projection $P$ such
that a is the identity on P%(M) and free on $(1-p)\mathcal{Z}(\tilde{M})$ . Since $\tilde{a}$ commutes



448 H. KOSAKI

with the dual action $\theta_{t}$ , we have $0_{t}(p)=p$ , $t\in R$ . Therefore, the central
ergodicity implies that either we have $mod(a)=1$ or a is centrally free. How-
ever, if $a$ were centrally free, then (7) would be impossible. (Recall the
argument in the type $III_{0}$ case before Lemma 6.)

Thus, as in the proof of Lemma 16, we may and do assume $\psi\circ E\circ a=\psi\circ E$

(and hence the extension $a_{0}(a_{0}(\lambda_{0}(t))=\lambda_{0}(t))$ satisfies $\tilde{\alpha}=a_{0}\otimes id_{L^{\infty}(L0.-\log\lambda))}$ via the
isomorphism $\Psi$). Therefore, (7) guarantees the existence of a non-zero $x_{0}\in(M_{0})_{n}$ ,
the n-th extension of $M_{0}\supseteqq N_{0}$ , satisfying $y_{0}x_{0}=x_{0}a_{0}(y_{0}),$ $y_{0}\in M_{0}$ . We now con-
sider the non-zero linear space

$\mathcal{H}_{0}=$ { $x\in(M_{0})_{n}$ ; $yx=xa_{0}(y)$ for all $y\in M_{0}$}.

Once again $\mathcal{H}_{0}$ is finite dimensional since $M_{0}\supseteqq N_{0}$ are factors, and $\theta_{0}\circ\alpha_{0}=\alpha_{0}\circ\theta_{0}$

(Lemma A.l, $(i)$) implies $\theta_{0}(\mathcal{H}_{0})=\mathcal{H}_{0}$ . Considering $\theta_{0}|_{\mathcal{H}_{0}}$ as a matrix, one
chooses an “eigenvector” $x_{0}\neq 0$ satisfying $\theta_{0}(x_{0})=\mu x_{0}(\mu\in C)$ . Since $0_{0}$ is an
automorphism $(||\theta_{0}(x_{0})||=||x_{0}||)$ we actually have $\theta_{0}(x_{0})=\exp(is)x_{0}$ for some $s\in R$ .
Therefore, $x_{0}=z_{0}\lambda_{0}(s_{0})$ with some $z_{0}\in((M_{0})_{n})_{\theta_{0}}=M_{n}$ and $s_{0}\in[0, t_{0})$ . The rest of
the proof is exactly the same as in the type $III_{1}$ case, and we are done. $\square$

This result probably remains valid for the type $III_{0}$ case as well with an
extended modular automorphism instead, however, so far the author has been
unable to prove it.

COROLLARY 20. Let $M\supseteqq N$ be as in the previous theorem. When the identity
is the only irreductble sector with statistical dimenston 1 appearing in $U_{k}(\rho\overline{\rho})^{k}$ ,

or more generally, when all the (non-trivzal) irreducible sectors with statistical
dimension 1 appearing in $U_{k}(\rho\overline{\rho})^{k}$ are modular automorphisms, then a non-strongly

free automorphism in $Aut(M, N)$ is just a modular automorphism(up to an inner
perturbation).

We now assume that $M\supseteqq N$ are AFD factors of type $III_{\lambda},$ $0<\lambda<1$ , with
index (strictly) less than 4, and we will describe all the non-strongly free (non-
trivial) automorphisms (up to an inner perturbation). Recall that in this case
inclusions $M\supseteqq N$ have already been classified ([20, 33, 47]): The Dynkin diagrams
$A_{n}$ $(n$ 111:3 $)$ , $D_{am}(m\geqq 2),$ $E_{6}$ , and $E_{8}$ appear. Ixcept when the graph is given by
the Dynkin diagram $A_{4m-3}$ , the classification is the same as that in the AFD $II_{1}$

case and an inclusion splits, $i.e.,$ $M\supseteqq N$ is conjugate to $R_{\lambda}\otimes A\supseteqq R_{\lambda}\otimes B$ , where
$R_{\lambda}$ is the Powers factor and $A\supseteqq B$ is an inclusion of AFD $II_{1}$-factors with the
Dynkin diagram in question. When the graph is given by the Dynkin diagram
$A_{4m-S}$ , there are exactly two inclusions: the non-splitting inclusion (type II
graph is the Dynkin diagram $D_{2m}$ in this case) and the splitting inclusion.

1. The graph is $A_{4m-3}$ and non-splitting: One non-trivial sector with
statistical dimension 1 appears in $U_{k}(\rho\overline{\rho})^{k}$ , but this is a modular automorphism
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([16]). Therefore, the non-strongly free automorphisms are exactly the modular
automorphisms due to Corollary 20 (see below). Among all the modular auto-
morphisms $\sigma^{\psi_{t}\circ E}(0<t<t_{0})$ , only $\sigma_{t_{0}’ 2}^{\psi\circ E}$ is non-strongly outer (Theorem 3) since it
appears in $U_{k}(\rho\overline{\rho})^{k}$ (see below).

2. The graph is one of $A_{even},$ $D_{2m}(m\geqq 3),$ $E_{8}$ (and hence splitting): The
only irreducible sector with statistical dimension 1 in $U_{k}(p\overline{\rho})^{k}$ is the identity.
Hence, once again the non-strongly free automorphisms are exactly the modular
automorphisms due to Corollary 20. However, in this case, all of them are
strongly outer.

3. The graph is one of $A_{odd}$ (and splitting), $D_{4},$ $E_{6}$ : As noted above,
$M=R_{\lambda}\otimes A\supseteqq N=R_{\lambda}\otimes B$ . The decomposition of $U_{k}(p\overline{\rho})^{k}$ is obviously determined
by just the inclusion $A\supseteqq B$ of $II_{1}$-factors. On the other hand, modular auto-
morphisms come from $\Re_{\lambda}$ . Therefore, due to Corollary 18 and Theorem 19,
the non-strongly free automorphisms are $\sigma_{t}\otimes 1(0<t<t_{0})$ , and $\sigma_{t}\otimes\alpha$ (O$t $<t_{0}$).

Here, $\sigma_{t}$ is a modular automorphism (of $R_{\lambda}$ ) and $a$ is an automorphism attached
to a non-trivial $A-A$ bimodule of index 1 appearing in $U_{kA}L^{2}(A_{k})_{A}$ . There
are two such automorphisms in the $D_{4}$ case (since $B=A^{Z_{3}}$ ) while there is only
one such $\alpha$ in the other cases. (The latter is a period 2 automorphism which
played an important role in $[14, 15]$ .) Among these, only $1\otimes a$ is non-strongly
outer.

In Case 2 modular automorphisms are obviously coming from $\ovalbox{\tt\small REJECT}_{\lambda}$ while in
Case 1 they appear as follows: We start from the usual discrete decomposition
$\Re_{\lambda}=R_{01}\aleph_{\theta_{0}}Z$ . Let $C\supseteqq D$ be a unique inclusion of AFD $II_{1}$-factors with the
graph $D_{2m}$ , and let $\beta\in Aut(C, D)$ be a unique (period 2) automorphism with
non-trivial Loi invariant. (Cf. [4, 21].) Or equivalently, we set $C=A\rangle\triangleleft\alpha Z_{2}\supseteqq D$

$=Bx_{\alpha}Z_{2}$ (by making use of $(A\supseteqq B,$ $\alpha)$ in Case 3) and let $\beta$ be the dual action
of $\alpha$ . We set $\tilde{\theta}_{0}=\theta_{0}\otimes\beta\in Aut(\ovalbox{\tt\small REJECT}_{01}\otimes C, \Re_{01}\otimes D)$ . Then, $M\supseteqq N$ in Case 1 is
actually $(R_{01}\otimes C)\rangle\triangleleft\theta_{0}Z\supseteqq(R_{01}\otimes D)\rangle\triangleleft\tilde{\theta}_{0}Z$ . In fact, the type II graph is obviously
determined by $C\supseteqq D$ (i.e., the Dynkin diagram $D_{2m}$ ). Due to the presence of
$\beta$ , the type III graph (which is determined by $(C_{n}\cap D’)_{\beta}$ ) shrinks to the Dynkin
diagram $A_{4m-3}$ . From this description, it is clear that the modular automorphisms
in Case 1 appear as the dual action ( $T$-action) of $\tilde{\theta}_{0}$ . Recall that the (extended)
$\beta$ switches the two end-points of the Dynkin diagram $D_{2m}$ (the Loi invariant).

Let $p,$ $q$ be the projections (in the relative commutant $C_{2m-3}\cap D’$ ) corresponding
to the two end-points. The above description means that the (extended) $\tilde{\theta}_{0}$

satisfies $\tilde{\theta}_{0}(1_{R_{01}}\otimes(p-q))=1_{R_{01}}\otimes(q-p)$ . Therefore, $-1$ turns out to be an
eigenvalue, and hence $\sigma_{t_{0}^{o}/2}^{\psi E}$ appears in $(\rho\rho)^{2m-2}$ thanks to Theorem 7 (or more
precisely, the variant mentioned before Lemma 9 together with Theorem 3).

Similar analysis can be made when the index is 4 (based on [34, 47]), and
this is left to the reader as an amusing exercise.
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Appendix A. Type $III_{\lambda}$ case.

Let $M\supseteqq N$ be factors of type $III_{\lambda}(0<\lambda<1)$ with the assumptions at the
beginning of \S 4. Since modular automorphisms $\sigma^{\psi_{t}\circ E}\in Aut(M, N)$ have the period
$t_{0}=-2\pi/1og\lambda$ , (as was explained in [9]) the inclusion $\tilde{M}\supseteqq\tilde{N}$ (acting on
$L^{2}(R;L^{2}(M)))$ can be explicitly identified with the tensor product of an inclu-
sion of factors of type $II_{\infty}$ and the common abelian von Neumann algebra
$L^{\infty}([0, -\log\lambda))$ . For the reader’s convenience, we briefly recall the identification
in [9] together with some remarks. Full details can be found in [9].

We consider the inclusion of factors of type $II_{\infty}$ :

$M_{0}=M\rangle\triangleleft\sigma\psi\circ E(R/t_{0}Z)\supseteqq N_{0}=N\rangle\triangleleft\sigma\psi\circ E(R/t_{0}Z)$ .

The usual generators for these crossed products will be denoted by $\pi_{0}(x)(x\in M$

or $x\in N$), $\lambda_{0}(t)$ in what follows. We then consider the inclusion

$M_{0}\otimes L^{\infty}([0, -\log\lambda))\supseteqq N_{0}\otimes L^{\infty}([0, -\log]\lambda))$ .

The underlying Hilbert space here is

$\mathscr{K}=L^{2}(R/t_{0}Z;L^{2}(M))\otimes L^{2}([0, -\log\lambda))\cong L^{2}((R/t_{0}Z)\cross[0, -\log\lambda);L^{2}(M))$ .

Notice that $[0, -\log\lambda)$ can be identified with the dual group of $t_{0}Z$ (by
$(\gamma, nt_{0})\in[0, -\log\lambda)Xt_{0}Z\mapsto e^{i\gamma nt_{0}}=e^{2\pi in\gamma/(-\log\lambda)})$ . Let $\xi\in \mathscr{K}$ and $t\in R$, and write
$t=i+mt_{0}$ with $i\in[0, t_{0})$ . Consider the operator $T$ from $\mathscr{K}$ to $L^{2}(R;L^{2}(M))$

dePned by

$(T \xi)(t)=\frac{l}{\sqrt{-\log\lambda}}\int_{0}^{(-\log\lambda)}\xi(i, \gamma)e^{-i\gamma\iota}d\gamma$

$= \frac{1}{\sqrt{-\log\lambda}}\int_{0}^{(-\log\lambda)}\xi’(i, \gamma)e^{-imt_{0}\gamma}d\gamma$

with $\xi’(i, \gamma)=\xi(i, \gamma)e^{-i\gamma i}$ . Then, it can be shown that $T$ is a surjective isometry
from $\mathscr{K}$ onto $L^{2}(R;L^{2}(M))$ and that $\Psi=AdT^{*}$ gives rise to an isomorphism
from $\tilde{M}=\langle\pi_{\sigma}\psi\circ E(M), \lambda(R)\rangle’’$ onto $M_{0}\otimes L^{\infty}([0, -\log\lambda))$ . Let $m(e^{it})$ be the multi-
plication operator (acting on $L^{2}([0,$ $-\log\lambda)$) $)$ defined by $(m(e^{it})\xi)(\gamma)=e^{it\gamma}\xi(\gamma)$ .
Then $\Psi$ satisfies

$\Psi(\pi_{\sigma}\psi_{0}E(x))=\pi_{0}(x)\otimes 1$ $(x\in M)$ ,

$\Psi(\lambda(t))=\lambda_{0}(t)\otimes m(e^{it})$ $(t\in R)$ .

This isomorphism of course sends $\tilde{N}$ onto $N_{0}\otimes L^{\infty}([0, -\log\lambda))$ . Let $\theta_{0}$ be the
dual autOmorPhiSm on the crossed products $M_{0}\supseteqq N_{0}$ . Via the isomorphism $\Psi$ ,

when $t=n\cross(-\log\lambda)+r$ with $r\in[0, -\log\lambda)$ the dual action $\theta_{t}$ is expressed as

(8) $\theta_{t}=(\theta_{0}^{n}\otimes\beta_{r})\oplus(0_{0}^{n+1}\otimes\beta_{r+\log\lambda})$ .
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Here, $L^{\infty}([0, -\log\lambda))$ is considered as the direct sum of $L^{\infty}([0, -\log\lambda-r))$ and
$L^{\infty}([-\log\lambda-r, -\log\lambda))$ , and $\beta_{r}$ is the shift: $(\beta_{r}f)(\gamma)=f(\gamma-r)$ . ( $\beta_{r}$ : $L^{\infty}([0,$ $-\log\lambda$

$-r))arrow L^{\infty}([r, -\log\lambda))$ and $\beta_{r+\log\lambda}$ : $L^{\infty}([-\log\lambda-r, -\log\lambda)arrow L^{\infty}([0, r)))$ .
Let $tr$ be the canonical trace on $\tilde{M}(tr\circ 0_{t}=e^{-t}tr)$ , and $\tau$ be the one on $M_{0}$

$(T^{\circ}\theta_{0}=\lambda\tau)$ . Via $\Psi$ , we have

(9) $tr= \int_{\subset 0,-\log\lambda)}^{\oplus}e^{-\gamma}\tau_{\gamma}d\gamma$ on $M_{0} \otimes L^{\infty}([0, -\log\lambda))\cong\int_{\ddagger 0,-\log\lambda)}^{\oplus}(M_{0})_{\gamma}d\gamma$

with $(M_{0})_{\gamma}=M_{0}$ and $\tau_{\gamma}=\tau$ .
Let $a$ be an automorphism in $Aut(M, N)$ , and we assume the invariance $\psi\circ E\circ\alpha$

$=\psi\circ E$ . Since $a$ commutes with $\sigma^{\psi_{t}\circ E}$, one can extend $a$ to $a_{0}\in Aut(M_{0}, N_{0})$ by
setting

$a_{0}(\pi_{0}(x))=\pi_{0}(a(x))$ ,

$a_{0}(\lambda_{0}(t))=\lambda_{0}(t)$ .

LEMMA A.l. The extension $a_{0}$ satisfies (i) $a_{0}\circ\theta_{0}=\theta_{0}\circ a_{0}$ , (ii) $\tau\circ a_{0}=\tau$ , and
(iii) via $\Psi$ , the canonical extension $\tilde{\alpha}$ in the sense of $Haagerup- St\phi rmer$ corre-
sponds to $\alpha_{0}\otimes d_{L^{\infty}(Io,-\log\lambda))}$ .

PROOF. (i) This can be directly checked by applying the both sides to
$\pi_{0}(x)$ and $\lambda_{0}(t)$ .

(iii) The invariance implies $\tilde{\alpha}(\lambda(t))=\lambda(t)$ (see the paragraph before Defini-
tion 14).

Hence, we compute

$\Psi(\tilde{\alpha}(\lambda(t)))=\Psi(\lambda(t))=\lambda_{0}(t)\otimes m(e^{tt})=(\alpha_{0}\otimes id)(\lambda_{0}(t)\otimes m(e^{tt}))=(a_{0}\otimes id)\Psi(\lambda(t))$ .
Similarly we have $\Psi(\tilde{\alpha}(\pi_{\sigma}\psi\circ E(x)))=(a_{0}\otimes id)\Psi(\pi_{\sigma}\psi\circ E(x))$ .

(ii) This follows from (iii) and (9) thanks to $tr\circ\tilde{\alpha}=tr$ (Proposition 12.2,
[9] $)$ . $\square$
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