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1. Introduction.

All graphs considered in this paper are finite, undirected and without loops
or multiple edges. Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$ .
For a vertex $v$ of $V(G)$ , the neighbourhood of $v$ in $G$ , denoted by $N_{G}(v)$ , is the
set of vertices of $G$ adjacent to $v$ , and the degree $d_{G}(v)$ of $v$ in $G$ is $|N_{G}(v)|$ .
We denote by $\delta(G)$ and $\kappa(G)$ the minimum degree and the connectivity of $G$ ,
respectively. For a subset $S$ of $V(G)$ , let $\langle S\rangle_{G}$ denote the subgraph of $G$

induced by $S$ . For standard terms or notation not defined here, see [1] or [2].

Given a graph $G$ of order $n$ and a partition $n=\Sigma_{i=1}^{k}a_{i}$ with $a_{i}\geqq 1$ , S. B.
Maurer [10] conjectured that if $\kappa(G)\geqq k$ , then $V(G)$ can be decomposed as
$V(G)=U_{i\Leftarrow 1}^{k}A_{i}$ with the conditions $|A_{i}|=a_{i}$ and $\kappa(\langle A_{i}\rangle_{G})>0$ (i.e., $\langle A_{t}\rangle_{G}$ is
connected) for all $i,$ $1\leqq i\leqq k$ . A. Frank [7], on the other hand, conjectured the
following stronger form of this, which was settled independently by L. Lov\’asz
[9] and E. Gy\’ori [8].

THEOREM A $[9, 8]$ . Let $G$ be a graph of order $n$ , and $n= \sum_{i=1}^{k}a_{i}$ be a
partitim of $n$ zuzth $a_{i}\geqq 1$ . Suppose that $\kappa(G)\geqq k$ . Then for any distinct $k$

vertices $v_{1},$ $\cdots,$ $v_{k}$ of $V(G),$ $V(G)$ can be decomposed as $V(G)= \bigcup_{i=1}^{k}A_{i}$ with the
cmditims $|A_{i}|=a_{i},$ $v_{i}\in A_{i}$ and $\kappa(\langle A_{i}\rangle_{G})>0$ for all $i,$ $1\leqq i\leqq k$ .

Turning his attention from “ connectedness” to “ no isolation”, Frank also
conjectured the following as an analogue of Maurer’s conjecture, in which the
conditions on the connectivity are replaced by those on the minimum degree.
(Note that $\delta(\langle A_{i}\rangle_{G})>0$ implies that $\langle A_{i}\rangle_{G}$ contains no isolated vertices.) There-
after some partial results on this came out in a row, while a complete proof
was finally given by H. Enomoto [4].

THEOREM $B[4]$ . Let $G$ be a connected graph of order $n$ , and $n= \sum_{i=1}^{k}a_{i}$

be a partitim of $n$ with $a_{i}\geqq 2$ . Suppose that $\delta(G)\geqq k$ . Then $V(G)$ can be
decomposed as $V(G)= \bigcup_{i=1}^{k}A_{i}$ wfth the conditions $|A_{i}|=a_{i}$ and $\delta(\langle A_{i}\rangle_{G})>0$ for
all $i,$ $1\leqq i\leqq k$ .
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In the present paper, we shall prove the following generalization of this,

which was conjectured by Y. Egawa [3].

THEOREM 1. Let $G$ be a connected graph of order $n$ , and $n=\Sigma_{i=1}^{k}a_{i}$ be a
partition of $n$ with $a_{i}\geqq 2$ . Then $V(G)$ can be decomposed as $V(G)= \bigcup_{i=1}^{k}A_{i}$ with
the conditims $|A_{i}|=a_{i}$ and “ if $d_{G}(v)\geqq k$ and $v\in A_{i}$ , then $v$ is not isclated in
$\langle A_{i}\rangle_{G}$ for all $i,$ $1\leqq i\leqq k$ .

Here we should like to remark that Theorem 1 not only generalizes Theo-
rem $B$ but plays an important role in establishing the following analogue of
Theorem A. This will be proved in a forthcoming paper.

THEOREM [6]. Let $G$ be a graph of order $n$ , and $n=\Sigma_{i=1}^{k}a_{i}$ be a partition
of $n$ with $a_{i}\geqq 2$ . Suppose that $\delta(G)\geqq 3k-2$ . Then for any distinct $k$ vertices
$v_{1},$

$\cdots$ $v_{k}$ of $V(G),$ $V(G)$ can be decomposed as $V(G)= \bigcup_{i=1}^{k}A_{i}$ with the conditims
$|A_{i}|=a_{i},$ $v_{i}\in A_{t}$ and $\delta(\langle A_{t}\rangle_{G})>0$ for all $i,$ $1Si\leqq k$ .

The rest of the paper is organized as follows. In the next section, we
introduce some specialized terms and notation and briefly show our basic
strategy to prove Theorem 1. In Section 3, with the help of some key prop-
osition and lemmas, we prove Theorem 1. Sections 4-6 contain the proofs of
those key results used in Section 3.

\S 2. Preliminaries.

Let $n$ be a positive integer. A sequence $a=(a_{1}, \cdots , a_{k})$ of positive integers
is called a $k$-partiticn of $n$ if $n=\Sigma_{i=1}^{k}a_{i}$ , and a $k$ -partition $a$ is said to be
non-singular if $a_{i}\geqq 2$ for all $i,$ $1\leqq i\leqq k$ . Given a graph $G$ and a $k$ -partition $a$

of $|V(G)|$ , a sequence $\mathcal{A}=(A_{1}, \cdots, A_{k})$ of subsets of $V(G)$ is called an a-decom-
position if the following conditions $(D1)-(D3)$ are satisfied:

(D1) $V(G)=U_{i=1}^{k}A_{i}$ ;
(D2) $|A_{i}|=a_{i}$ for all $i,$ $1\leqq i\leqq k$ ;
(D3) $\delta(\langle A_{i}\rangle_{G})>0$ for all $i,$ $1\leqq i\leqq k$ .

On the other hand, $\mathcal{A}$ is called an $a^{*}$-decomPosition if the following weaker
condition (D3) replaces (D3) in the above:

(D3) If $d_{G}(v)\geqq k$ and $v\in A_{i}$ , then $v$ is not isolated in $\langle A_{i}\rangle_{G}$ .
NOW we can restate Theorem $B$ and Theorem 1 in a more simple style as

Theorem $C$ and Theorem 2 below, respectively. In proving Theorem 1, we
therefore give the proof of Theorem 2.

THEOREM $C[4]$ . Let $G$ be a connected graph of order $n$ with $\delta(G)\geqq k$ .
Then $G$ has an a-decompositim for any non-singular k-partition $a$ of $n$ .
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THEOREM 2. Let $G$ be a connected graph of order $n$ . Then $G$ has an
$a^{*}$-decomPosition for any $nm$-singular k-partition $a$ of $n$ .

A subset $W$ of $V(G)$ is dominating if $G-W$ contains no edges. We say
that $W$ is $k$-dominating if $W$ is dominating and $d_{G}(x)\geqq k$ for all $x\in V(G)-W$ .
A subgraph $H$ of $G$ is interpreted to be dominating (resp. $k$-dominating) if
$V(H)$ is dominating (resp. k-dominating).

A tree $T$ is called a fork if there exists a vertex $v\in V(T)$ satisfying $d_{T}(v)$

$=3$ and $d_{T}(x)\leqq 2$ for all $x\in V(T)-\{v\}$ . Figure 1 illustrates a 2-dominating
fork (the subgraph consisting of the black vertices and the thick edges).

Figure 1. A graph to illustrate a 2-dominating fork.

A $k$ -partition $a$ is said to be small if $a_{i}\leqq 4$ for all $i$ , lSi$k. As a special
case of small $k$ -partitions, we say that $a$ is exceptional if the $a_{i}’ s$ are all two
or all three.

The following two lemmas, which are of great importance in our proof of
Theorem 2, describe a certain connection between the concept of domination
and our question of decompositions calling for “ no isolation”.

LEMMA $D[5]$ . Let $G$ be a graph of order $n$ , and $a$ a non-singular k-parti-
tion of $n$ . If $G$ has a $k$-dominating path, then $G$ has an a-decomposition.

LEMMA $E[4]$ . Let $G$ be a graph of order $n$ , and $a$ a $nm$-singular k-parti-
tion of $n.$ SuPPose that $a$ is not exceptional and that $G$ has a $k$-dominating fork.
Then $G$ has an a-decomposition.

Our approach to the proof of Theorem 2 is through extraction of a special
structure of paths. Let $g=(P_{0}, \cdots, P_{r})$ be a sequence of paths in $G$ , with
$P_{i}=(v_{1}^{(i)}, \cdots v_{m_{i}}^{(i)}),$ $1\leqq i\leqq r$ . For each $P_{i}$ , let end $(P_{i})$ denote $\{v_{1}^{(i)}, v_{m_{i}}^{(t)}\}$ , and define
$W_{i}$ $:= \bigcup_{f=0}^{i}V(P_{j})$ and $S:=V(G)-W_{r}$ . Si‘ is called a path-system of degree $k$ if
the conditions (PSO)-(PS12) below are satisfied. (The term “ path-system ” first
appeared in [4], and the definition we give here is its refinement.) Here we
consider all $i,$ $1SiSr$ , for (PSI)-(PS10), and assume, without loss of generality,
$N_{G}(v_{1}^{(i)})\cap W_{i-1}\neq\emptyset$ for $(PS4)-(PS10)$ .
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(PSO) $P_{0}$ is a longest path in $G$ .
(PS1) $V(P_{i})\subseteqq V(G)-W_{i-1}$ .
(PS2) $|V(P_{i})|\geqq 2$ .
(PS3) $N_{G}(end(P_{i}))\cap W_{i-1}\neq\emptyset$ .
(PS4) $N_{G}(v_{j}^{(i)})\cap N_{G}(v_{j+1}^{(i)})\subseteqq W_{i}$ for all $j,$ $1\leqq j\leqq m_{i}-1$ .
(PS5) $N_{G}(v_{m}^{ti)})$ Sli $W_{i}$ .
(PS6) $N_{G}(v_{m_{i}-1}^{(i)})\subseteqq W_{i}\cup S$ , and if $x\in N_{G}(v_{m_{i}-1}^{(i)})\cap S$ , then $N_{G}(x)\subseteqq W_{i}\cup S$ .
(PS7) If $m_{i}=2$ and $k\geqq 2$ , then $N_{G}(v_{1}^{(i)})\subseteqq W_{i}$ .
(PS8) If $m_{i}=3$ and $k\geqq 3$ , then $N_{G}(v_{1}^{(i)})\subseteqq W_{i}$ .
(PS9) If $m_{i}=3$ and $k\geqq 3$ , then $d_{G}(v_{1}^{(i)})\geqq k$ or $d_{G}(v_{3}^{(i)})\geqq k$ .
(PS10) If $m_{\ell}\geqq 3$ and $N_{G}(v_{m_{i}-1}^{(t)})\cap S\neq\emptyset$ , then $v_{m_{i}-2}^{(i)}v_{m_{i}}^{(t)}\not\in E(G)$ .
(PSII) If $r\geqq 1$ , then $|V(P_{0})|\geqq 2k+1$ and $|V(P_{0})|+|V(P_{1})|\geqq 3k+1$ .
(PS12) If $r\geqq 2$ and $|V(P_{2})|\geqq 3$ , then $|V(P_{0})|+|V(P_{1})|+|V(P_{2})|\geqq 4k+1$ .
Stated in this term, the following proposition is essential in our proof of

Theorem 2. We leave the proof to Section 4.

PROPOSITION 3. Let $G$ be a connected graph of order $n$ , and $a$ a non-singular
$k$-partition of $n$ . Let $(P_{0}, \cdots, P_{r})$ be a sequence of paths in $G$ with $P_{r}=(v_{1}, \cdots, v_{rn})$ ,

and let $W_{i}=\cup;_{=0}V(P_{j})$ and $S=V(G)-W_{r}$ . Suppose that $W_{r}$ is $k$-dominating, and
that either

(i) $(P_{0}, \cdots, P_{r})$ is a path-system of degree $k$ ; or
(ii) $a$ is not small, $(P_{0}, \cdots P_{r-1})$ is a path-system of degree $k$ , and “ $m\geqq 2$ ,

$N_{G}(v_{1})\cap W_{r-1}\neq\emptyset$ and $N_{G}(v_{i})\cap N_{G}(v_{i+1})\cap S=\emptyset$ for all $i,$ $1\leqq i\leqq m-1$ .
Then $G$ has an a-decomPosition.

Let us return to Theorem 2. From the statement, one may readily notice
that attention should be paid primarily to the vertices with degree not less
than $k$ . Accordingly, we say that a vertex $v\in V(G)$ is major if $d_{G}(v)\geqq k$ and
define $V_{major}$ $:=$ {$v\in V(G)|v$ is major}. Also, we shall refer to any $v\in V(G)-$

$V_{major}$ as a minor vertex and define $V_{\min or}:=V(G)-V_{major}$ . Now consider
joining all the minor vertices in $G$ , and let us denote the resulting graph by
$\hat{G}$ . Then it is quite evident that we may prove Theorem 2 by working with
$\hat{G}$ instead of $G$ , since deletion of those edges added to $G$ after decomposing
$V(\hat{G})$ does not affect the adjacency around the major vertices. Thus, in the
remainder of this section and related Sections 3, 5 and 6, we are only concerned
with $\hat{G}$ . As we shall see later on, this provides a useful relaxation in the
structure of a graph. We now construct a sequence of paths in $\hat{G}$ as follows.
Here we again use the notation end $(P_{i})$ to denote the endvertices of $P_{i}$ .

Step $0$ . Take $P_{0}$ as a longest path in $\hat{G}$ . Define $W:=V(P_{0})$ and $i:=1$ .
Step 1. If possible, take $P_{?}$. in $\hat{C_{X}}-W$ such that:
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(1) $V(P_{i})\subseteqq V(\hat{G})-W,$ $|V(P_{i})\cap V_{major}|\geqq 2$ , and $N_{\hat{G}}(end(P_{i}))\cap W\neq\emptyset$ ;
(2) $|V(P_{i})\cap V_{major}|$ is as large as possible;
(3) Subject to (1) and (2), $|V(P_{i})|$ is as large as possible.

Step 2. Put $W:=W\cup V(P_{i})$ and $i:=i+1$ . Apply Step 1.

For a sequence $(P_{0}, \cdots , P_{s})$ of paths taken as above, we now observe the
following two lemmas, which are crucial indeed in our later argument. (The

proofs will appear in Sections 5 and 6.)

LEMMA 4. If $s\geqq 1$ , then $|V(P_{0})|\geqq 2k+1$ and $|V(P_{0})|+|V(P_{1})|\geqq 3k+1$ .
LEMMA 5. If $s\geqq 2$ and $|V(P_{2})|\geqq 3$ , then $|V(P_{0})|+|V(P_{1})|+|V(P_{2})|\geqq 4k+1$ .

\S 3. Proof of Theorem 1.

AS mentioned earlier, we give the proof of Theorem 2. Since we are only
concerned with $\hat{G}$ , for simplicity we write $G$ for $\hat{G}$ throughout this section and
Sections 5 and 6.

PROOF OF THEOREM 2. If $k=1$ , then we are done. So we suppose $k\geqq 2$

and let $a=(a_{1}, \cdots, a_{l})$ . To begin with, we take a sequence $9=(P_{0}, , P_{s})$ of
paths in $G$ in such a manner as shown at the end of the preceding section.
Define $W_{i}$ $:=U_{J=0}^{t}V(P_{j})$ and $S:=V(G)-W_{s}$ . We first claim the following.

CLAIM 1. $q$ is a Path-system of degree $k$ .
PROOF OF CLAIM 1. From the construction, clearly (PSO)-(PS3) hold. For

each $P_{i},$ $1\leqq i\leqq s$ , let $P_{i}=(v_{1}^{(i)}, \cdots, v_{m_{i}}^{(i)})$ and define $\mu_{i}:=|V(P_{i})\cap V_{major}|$ ; without
loss of generality, we may assume $N_{G}(v_{1}^{(i)})\cap W_{i-1}\neq\emptyset$ . Again from the con-
struction, (PS4) and (PS5) are immediate. Noting that $P_{i}$ is taken maximally
with respect to $\mu_{i}$ , one can easily verify (PS6) as well. Now suppose $m_{i}=2$ .
In this case, $v_{2}^{(i)}\in V_{major}$ , and so $N_{G}(v_{2}^{(i)})\cap W_{i-1}\neq\emptyset$ (notice $d(v_{2}^{(i)})\geqq k\geqq 2$). Thus
by the maximality, we see (PS7). To see (PS8) and (PS9), next suppose $m_{i}=3$

and $k\geqq 3$ . Since $\mu_{i}\geqq 2$ , clearly $v_{1}^{(i)}\in V_{major}$ or $v_{3}^{(i)}\in V_{major}$ , readily implying (PS9).

NOW, if $v_{3}^{ti)}\in V_{major}$ , then by (PS5), $N_{G}(v_{3}^{(i)})\cap W_{i-1}\neq\emptyset$ , so that by the maxi-
mality, $N_{G}(v_{1}^{(i)})\subseteqq W_{i}$ . If $v_{3}^{(i)}\in V_{\min OT}$ , on the other hand, then $S\cap V_{\min or}=\emptyset$ .
(Recall that all the minor vertices are adjacent.) Hence, $N_{G}(v_{2}^{(i)})\cap(V(G)-W_{i})$

$=\emptyset$ , for otherwise another path with more major vertices would exist, which
contradicts the choice of $P_{\iota}$ . By this together with $k\geqq 3$ and $v_{z^{i)}}^{(}\in V_{major}$ , we
have $N_{G}(v_{2}^{(i)})\cap W_{i-1}\neq\emptyset$ ; thus $N_{G}(v_{1}^{(i)})\subseteqq W_{i}$ . So (PS8) has been verified. (PS10)

also follows from the maximality. Finally, (PSII) and (PS12) are immediate
from Lemmas 4 and 5, respectively. $\square$
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NOW, if $S\cap V_{\min or}=\emptyset$ , then $W_{s}$ is $k$ -dominating in $G$ . Accordingly, in
such a case, Claim 1 hints that the conclusion follows from Proposition 3.
Therefore, in what follows, we assume $S\cap V_{\min or}\neq\emptyset$ . We next claim the
following.

CLAIM 2. $W_{\epsilon}|\geqq 2k+1$ .

PROOF OF CLAIM 2. By (PSII) the claim holds if $s\geqq 1$ . So suppose $s=0$ ,
and let $P_{0}=(v_{1}, \cdots, v_{m})$ . By the maximality, clearly $v_{1},$ $v_{m}\in V_{major}$ and $N_{G}(v_{1})$

$\cup N_{G}(v_{m})\subseteqq V(P_{0})$ . NOW, if VlVi, $v_{i-1}v_{m}\in E(G)$ for some $2\leqq i\leqq m$ , then $(v_{1},$ $\cdots$ $v_{i-1}$ ,
$v_{m},$ $\cdots,$ $v_{i},$

$v_{1})$ is a cycle of length $m$ . So, if this is the case, then since $G$ is
connected, a longer path would exist, contradicting the choice of $P_{0}$ . Therefore,
$M\cap(N_{G}(v_{m})\cup\{v_{m}\})=\emptyset$ , where $M=\{v_{i-1}|v_{i}\in N_{G}(v_{1})\cap V(P_{0})\}$ . Noting that $|M|=$

$|N_{G}(v_{1})|$ , we soon have $|W_{0}|=|V(P_{0})|\geqq 2k+1$ . $\square$

Since $G$ is connected and $\langle S\cap V_{\min or}\rangle_{G}$ is complete, at most one major
vertex in $S$ has neighbours in $S\cap V_{\min or}$ , for otherwise another path could be
taken in $\langle S\rangle_{G}$ to augment the present sequence 9, a contradiction. Let us
now consider the case where no such major vertex exists. Noting Claim 2,
we first assign all the vertices of $S\cap V_{\min or}$ to the $A_{i}’ s$ so that the remaining
size of each $A_{i}$ stays not less than two. Here it is easy to see that 9 is still
a Path-system of degree $k$ in $G-(S\cap V_{\min or})$ . Thus we can now apply Prop-
osition 3, only to see the conclusion, to the graph $G-(S\cap V_{\min or})$ with the
remaining partition. We next consider the case where such a (unique) major
vertex, say $v$ , exists. Let $v’$ be any neighbour of $v$ in $S\cap V_{\min or}$ . Assume
now, without loss of generality, $(2\leqq)a_{1}\leqq\ldots\leqq a_{k}$ . Note that by Claim 2,
$a_{k}\geqq 3$ . If $a_{k}\geqq 4$ , then we assign $\{v, v’\}$ to $A_{k}$ , by which the problem is clearly
reduced to the above case (where no major vertex has neighbours in $S\cap V_{\min or}$).

By (PSII), however, this is always the case when $s\geqq 1$ . Let us thus suppose
$s=0$ and $a_{k}=3$ , and let $P_{0}=(v_{1}, \cdots v_{m})$ . Now, if $|S\cap V_{\min or}|\geqq 2$ , i.e., there
exists some $v’’(\neq v’)\in S\cap V_{\min or}$ , then by letting $A_{k}=\{v, v’, v’’\}$ , we can again
reduce the situation to the above case. So we may now further suppose
$S\cap V_{\min or}=\{v’\}$ . Then let $A_{k}=\{v’, v_{m-1}, v_{m}\}$ . By the maximality of $P_{0}$ , here,
$N_{G}(v)\cap\{v_{m-1}, v_{m}\}=\emptyset$ and $|N_{G}(x)\cap\{v’, v_{m-1}, v_{m}\}$ :Sl for all $x\in S-\{v, v’\}$ , which
together imply that $P_{0}’$ is a $(k-1)$-dominating path in $G’$ , where $G’=G-A_{k}$

and $P_{0}’=(v_{1}, \cdots v_{m-2})$ . In order to conclude, we now simply aPply Lemma $D$

to $G’$ with the remaining non-singular $(k-1)$-partition of $|V(G’)|$ .
This completes the proof of Theorem 2. $\square$
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\S 4. Proof of Proposition 3.

PROOF OF PROPOSITION 3. If $k=1$ , then it is trivial. We thus suppose
$k\geqq 2$ . Note that the assumption (i) is stronger than (ii) when $a$ is not small.
Hence, it suffices to show the proposition with the assumption (i) for a small
partition $a$ or with (ii). The proof is by induction on $n$ . Let $a=(a_{1}, \cdots, a_{k})$ ,

and define $S_{i}$ $:=N_{G}(v_{i})\cap S$ for each $i,$ $1\leqq i\leqq m$ . By taking $P_{r}$ maximally under
(ii), we may assume $S_{m}=\emptyset$ .

Let us first consider the case when $r=0$ or 1. If $r=0$ , then $P_{0}$ is a
$k$ -dominating path in $G$ ; so the conclusion is immediate from Lemma D. If
$r=1$ , on the other hand, then $(P_{0}, P_{1})$ forms a $k$ -dominating fork of $G$ . Under
the assumption (i), (PSII) implies that some $a_{i}\geqq 4$ , so that $a$ is not exceptional
in either assumption. Thus from Lemma $E$ , the conclusion again follows.
Hence, in the following, we suppose $r\geqq 2$ . Note that by this, tbere must be
some $a_{i}\geqq 4$ .

1’) $a$ is small.
We may assume $a_{1}=4$ . Note that we may also assume $m_{2}=2$ , for otherwise

$a$ cannot be small under the condition (PS12). We assign the vertices of $V(P_{2})$

to $A_{1}$ and let $G=G-V(P_{2})$ and $\tilde{a}=(a_{1}-2, a_{2}, \cdots, a_{k})$ . Then $\tilde{a}$ is a non-singular
$k$ -partition of $|V(\tilde{G})|(=n-2)$ . Moreover, by (PS5) and (PS7), we see that
$\tilde{\underline{\varphi}}=(P_{0}, P_{1}, P_{3}, \cdots , P_{r})$ is a path-system of degree $k$ , and that $W.-V(P_{2})$ is
$k$ -dominating in $\tilde{G}$ . Accordingly, we can apply induction to $\tilde{G}$ with $\tilde{a}$ and $\overline{g)}$

to obtain an $\tilde{a}$-decomposition $(\tilde{A}_{1}, \cdots,\tilde{A}_{k})$ of $V(\tilde{G})$ . Then clearly $(\tilde{A}_{1}\cup V(P_{2})$ ,
$\tilde{A}_{2},$ $\cdots,\tilde{A}_{k})$ is a desired $a$-decomposition of $V(G)$ .

2’) $a$ is not small.
In the remainder we shall only be concerned with the case in which $a$ is

not small; we may assume $a_{1}\geqq 5$ . We proceed principally by working with
the two paths $P_{r}$ and $P_{r-1}$ along with $S_{1},$ $\cdots$ $S_{m-1}$ . The argument goes some-
what complicated since we have to distinguish so many cases; however, for
an inductive argument, our step is mostly based on the following (a) $and/or(b)$ :
(a) Find a subset $A_{i}$ such that $|A_{i}|=a_{i},$ $\delta(\langle A_{i}\rangle_{G})>0$ and $W_{r}-A_{i}$ is $(k-1)-$

dominating in $G-A_{i}$ ;
(b) Find a subset $A$ such that $|A|\leqq a_{i}-2,$ $\delta(\langle A\rangle_{G})>0$ and $W_{r}-A$ is k-dominating

in $G-A$ .
In the former way (a), for a non-singular $(k-1)$-partition $a’=(a_{1},$ $\cdots,$ $a_{i-1},$ $a_{i+1}$ ,

$\cdot$ $a_{k})$ , we obtain by induction an $a’$ -decomposition $(A_{1}, \cdots, A_{i-1}, A_{i+1}, \cdots, A_{h})$

of $V(G)-A_{i}$ , which certainly provides a desired $a$-decomposition $(A_{1}, \cdots A_{k})$ of
$V(G)$ . In the latter way (b), for a non-singular $k$ -partition $\tilde{a}=(a_{1},$

$\cdots,$ $a_{i-1},$ $a_{i}$

$-|A|,$ $a_{i+1},$ $\cdots,$
$a_{k})$ , we obtain an $\tilde{a}$ -decomposition $(\tilde{A}_{1}, --, \tilde{A}_{k})$ of $V(G)-A$ .

Then $(\tilde{A}_{1}, \cdots,\tilde{A}_{i-1},\tilde{A}_{i}\cup A,\tilde{A}_{i+1}, , \tilde{A}_{k})$ is a desired $a$-decomposition of $V(G)$ .



168 H. ENOMOTO and S. MATSUNAGA

TO simplify the proof, hereafter, if $V(P)=\emptyset$ and $(P_{0}, \cdots , P_{i})$ is a path-
system, then we shall refer to $(P_{0}, \cdots , P_{i}, P)$ also as a path-system.

Let $a’=(a_{1}, \cdots, a_{i-1}),$ $\alpha=a_{k}$ and $P_{r-1}=(u_{1}, \cdots u_{l})$ . (Note that $a’$ is not
small.) Define $s_{i}$ $:=|S_{i}|$ for each $i$, l$i\leqq m--1.

Case 1. $m\neq 3$ and $\alpha\leqq s_{m-1}+2$ .
Let $A_{k}=R\cup\{v_{m-1}, v_{m}\}$ for any subset $R\subseteqq S_{m-1}$ with $|R|=\alpha-2$ , and let

$P_{r}’=$ ( $v_{1},$
$\cdots$ , Vm-l). Further, let

$G’=G-A_{k}$ ,

$9’=(P_{0}, \cdots, P_{r-1}, P_{r}’)$ .

From the assumption, $|N_{G}(x)\cap\{v_{m-1}, v_{m}\}$ ;$1 for all $x\in S$ . We can therefore
apply induction to the triple $(G’, a’, 9’)$ to obtain an $a’$ -decomposition $(A_{1},$ $\cdots$ ,
$A_{k-1})$ of $V(G’)$ , for which, as noted, we soon have a desired a-decomposition
$(A_{1}, \cdots A_{k})$ .

Case 2. $m\neq 3$ and $\alpha\geqq s_{m-1}+4$ .
We assign $A=S_{m-1}\cup\{v_{m-1}, v_{7n}\}$ to $A_{k}$ , and let

$\tilde{G}=G-A$ ,

$\tilde{a}=(a_{1},$ $\cdots$ , a k-l, a $k^{-s_{m-1}-2)}$ ,

$\tilde{9}=(P_{0}, \cdots Pr_{-1}, P_{r})$ ,

where $\tilde{P}_{r}=(v_{1}, \cdots, v_{m-2})$ . Since $\tilde{a}$ is non-singular and also $|N_{G}(x)\cap\{v_{m-1}, v_{m}\}|$

;Sl for all $x\in S$ , here we can apply induction to $(\tilde{G},\tilde{a},\overline{\Omega^{)}})$ to obtain an
$\tilde{a}- decomposition(\tilde{A}_{1}, \cdots,\tilde{A}_{k})$ of $V(\tilde{G})$ . Then $(A_{1}, \cdots \tilde{A}_{i-1},\tilde{A}_{k}\cup A)$ is a desired
a-decomposition.

Case 3. $m\neq 2,4$ and $\alpha=s_{m-1}+3$ .
Let $A_{k}=S_{m-1}\cup\{v_{m-2}, v_{m-1}, v_{m}\}$ , and let $P_{r}’=$ ( $v_{1},$

$\cdots$ , Vm-s). Recalling $S_{m}=\emptyset$ ,

we certainly have $|N_{G}(x)\cap\{v_{m-2}, v_{m-1}, v_{m}\}$ :$1 for all $x\in S$ . The same argument

as in Case 1 applies.
Case 4. $m=4$ and $\alpha=s_{3}+3$ .
We may assume $a_{2}=\cdots=a_{k-1}=\alpha$ , for otherwise using such $a_{i}(\neq\alpha)$ instead

of $\alpha$ , we can reduce this to Case 1 or Case 2. Now suppose $k=2$ . Then for
any $x\in S$ , since $|N_{G}(x)\cap\{v_{2}, v_{3}, v_{4}\}$ :Sl, $N_{G}(x)\cap(W_{r-1}\cup\{v_{1}\})\neq\emptyset$ ; thus for $A=$

$S_{3}\cup\{v_{2}, v_{\}, v_{4}\}$ , we can take $(V(G)-A, A)$ as an $a$-decomposition. So we may
now assume $k\geqq 3$ as well. On the other hand, suppose there exists some
$v\in S_{3}-S_{1}$ . Then for such $v$ , letting $A_{k}=(S_{3}-\{v\})\cup V(P_{r})$ , we can apply induc-
tion, as in Case 1, to $(G-A_{k}, a’, (P_{0}, \cdots P_{r-1}))$ . (Note that $|N_{G}(x)\cap V(P_{r})|\leqq 1$

for all $x\in(S-S_{3})\cup\{v\}.)$ Hence we may also assume $S_{3}\subseteqq S_{1}$ here. We now
distinguish four subcases.
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Subcase 4.1. $s_{3}\geqq 2$ (i.e., $\alpha\geqq 5$) and $l\neq 3$ .
For any $v\in S_{8}$ , let $A_{k}=(S_{3}-\{v\})\cup\{v_{3}, v_{4}\}\cup\{u_{l-1}, u_{l}\}$ and $A=\{v, v_{1}, v_{2}\}$ . Let

also $\tilde{a}=(a_{1}, \cdots, a_{k-2}, a_{\iota_{-}1}-3)$ and $\tilde{P}_{r-1}=(u_{1}, \cdots, u_{l-2})$ . By (PS5) and (PS6),
$|N_{G}(x)\cap(V(P_{r})\cup\{u_{l-1}, u_{l}\})|\leqq 1$ for all $x\in S-S_{3}$ . Therefore, applying induction
to $(G-(A_{k}\cup A),\tilde{a}, (P_{0}, \cdots , P_{r-2},\tilde{P}_{r-1}))$ , we obtain an a-decomposition $(\tilde{A}_{1}, \cdots,\tilde{A}_{k-1})$

of $V(G)-(A_{k}\cup A)$ , for which we have an $a$-decomposition $(\tilde{A}_{1},$ $\cdots,\tilde{A}_{k-2},\tilde{A}_{k-1}\cup$

$A,$ $A_{k})$ .
Subcase 4.2. $s_{3}\geqq 2$ and $1=3$ .
Let $A_{k}=(S_{3}-\{u, v\})\cup\{v_{3}, v_{4}\}\cup V(P_{r-1})$ for any $u,$ $v\in S_{3}$ , and $P_{r}’=(v_{1}, v_{2})$ .

By (PS5), (PS6) and (PS8), we have $|N_{G}(x)\cap(\{v_{3}, v_{4}\}\cup V(P_{r-1}))|\leqq 1$ for all $x\in S$ ,

and also $N_{G}(v_{1})\cap V(P_{r-1})=\emptyset$ , implying $N_{G}(v_{1})\cap W_{r-2}\neq\emptyset$ . It is quite easy to see
that we can now aPPly induction to $(G-A_{k}, a’, (P_{0}, \cdots, P_{r-2}, P_{r}’))$ .

Subcase 4.3. $s_{3}=1$ (i.e., $\alpha=4$).

First suppose $a_{1}\leqq s_{1}+s_{2}+4$ . Then let $A_{1}=R\cup V(P_{r})$ for any $R\subseteqq S_{1}\cup S_{2}$ with
$S_{3}\subseteqq R$ and $|R|=a_{1}-4$ . As before, noting $|N_{G}(x)\cap V(P_{r})|\leqq 1$ for all $x\in S-R$ ,

we can apply induction to $(G-A_{1}, a’’, (P_{0}, \cdots, P_{r-1}))$ , where $a’’=(a_{2}, \cdots, a_{t})$ .
(Note that $a’’$ may be small, while $(P_{0},$ $\cdots$ , $P_{r-1})$ is a path-system of degree $k.$ )

Next suppose $a_{1}\geqq s_{1}+s_{2}+5$ . In this case, assign $A=S_{1}\cup S_{2}\cup\{v_{1}, v_{2}\}$ to $A_{1}$ and
$A’=\{v_{3}, v_{4}\}$ to $A_{2}$ , and also let $\tilde{a}=(a_{1}-s_{1}-s_{2}-2, a_{2}-2, a_{3}, \cdots , a_{k})$ . Here,
$N_{G}(x)\cap V(P_{r})=\emptyset$ for all $x\in S-(S_{1}\cup S_{2})$ . We thus now apply induction to
$(G-(A\cup A’),\tilde{a}, (P_{0}, \cdots, P_{r-1}))$ , obtaining an $\tilde{a}$-decomposition $(\tilde{A}_{1}, - , \tilde{A}_{k})$ of
$V(G)-(A\cup A’)$ . Then $(\tilde{A}_{1}\cup A,\tilde{A}_{2}\cup A’,\tilde{A}_{3}, \cdots , \tilde{A}_{k})$ is a desired a-decomposition.

Subcase 4.4. $s_{3}=0$ (i.e., $\alpha=3$).

We may assume $a_{1}\geqq 7$ , for otherwise $n\leqq 6+3(k-1)=3k+3$ , contradicting
$n\geqq|V(P_{0})|+|V(P_{1})|+|V(P_{r})|\geqq 3k+5$ (see (PSII)). We assign $A=\{v_{3}, v_{4}\}$ to $A_{1}$ ,

and thereby let $\tilde{a}=(a_{1}-2, a_{2}, \cdots, a_{k})$ and $\tilde{P}_{r}=(v_{1}, v_{2})$ . (Note that $\tilde{a}$ is not small.)

Here, $N_{G}(x)\cap\{v_{3}, v_{4}\}=\emptyset$ for all $x\in S$ . Apply induction to $(G-A,\tilde{a},$ $(P_{0},$ $\cdots$ ,
$P_{r-1},\tilde{P}_{r}))$ .

Case 5. $m=2$ and $\alpha=s_{1}+3$ .
We may assume $a_{2}=\cdots=a_{k-1}=\alpha$ as in Case 4. We distinguish three sub-

cases.
Subcase 5.1. $s_{1}\geqq 2$ (i.e., $\alpha\geqq 5$) and $l\neq 3$ .
Let $A_{k}=(S_{1}-\{v\})\cup V(P_{r})\cup\{u_{l-1}, u_{l}\}$ for any $v\in S_{1}$ , and $P_{r-1}’=(u_{1}, \cdots , u_{l-2})$ .

AS before, $|N_{G}(x)\cap(V(P_{r})\cup\{u_{l-1}, u_{l}\})|\leqq 1$ for all $x\in S$ , whence aPPly induction
to $(G-A_{k}, a’, (P_{0}, \cdots , P_{r-2}, P_{r-1}’))$ .

Subcase 5.2. $s_{1}\geqq 2$ and $l=3$ .
For all $x\in S_{1}$ , by (PS5) and (PS6), $N_{G}(x)\cap\{u_{2}, u_{3}, v_{2}\}=\emptyset$ , implying $N_{G}(x)$

$q(W_{r- 2}\cup\{u_{1}\})\neq\emptyset$ (recall $k\geqq 2$). So, if $k=2$ , then letting $A=(S_{1}-\{v\})\cup V(P_{r})$

$\cup\{u_{2}, u_{3}\}$ for any $v\in S_{1}$ , we can take, as required, $(V(G)-A, A)$ as an a-decom-
position. If $k\geqq 3$ , then we let $A_{\hslash}=(S_{1}-\{u, v\})\cup V(P_{r})\cup V(P_{r-1})$ for any distinct
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$u,$ $v\in S_{1}$ . Here, $N_{G}(u_{1})\cap S=\emptyset$ by (PS8); hence $|N_{G}(x)\cap(V(P_{r})\cup V(P_{r-1}))|$ Sl for
all $x\in S$ . Now apply induction to $(G-A_{k}, a’, (P_{0}, \cdots, P_{r-2}))$ .

Subcase 5.3. $s_{1}\leqq 1$ (i.e., $\alpha\leqq 4$).

AS in the latter part of Subcase 4.3, assign $A=S_{1}\cup V(P_{r})$ to $A_{1}$ and let
$\tilde{a}=(a_{1}-s_{1}-2, a_{2}, \cdots, a_{k})$ . Then apply induction to $(G-A,\tilde{a}, (P_{0}, \cdots, P_{r-1}))$ .

Case 6. $m=3$ and $\alpha\geqq s_{2}+5$ .
If $S_{1}\neq\emptyset$ , then assign $A=S_{2}\cup\{v_{2}, v_{3}\}$ to $A_{k}$ and apply induction to $(G-A$ ,

$\tilde{a},$
$(P_{0}, \cdots, P_{r-1},\tilde{P}_{r}))$ , where $\tilde{a}=(a_{1}, \cdots , a_{k-1}, a_{k}-s_{2}-2)$ and $\tilde{P}_{r}=(v_{1}, v)$ for some

$v\in S_{1}$ . If $S_{1}=\emptyset$ , on the other hand, then assign $A=S_{2}\cup V(P_{r})$ to $A_{k}$ and apply
induction to $(G-A,\tilde{a}, (P_{0}, \cdots, P_{r-1}))$ , where $\tilde{a}=(a_{1}, \cdots, a_{k-1}, a_{i}-s_{2}-3)$ .

Case 7. $m=3$ and $3\leqq\alpha\leqq s_{2}+3$ .
Let $A_{k}=R\cup V(P_{r})$ for any $R\subseteqq S_{2}$ with $|R|=\alpha-3$ . Then apply induction

to $(G-A_{k}, a’, (P_{0}, \cdots, P_{r-1}))$ .
Case 8. $m=3$ and $\alpha\in\{2, s_{2}+4\}$ .
If $a_{1}\geqq s_{1}+s_{2}+5$ , then by assigning $A=S_{1}\cup S_{2}\cup V(P_{r})$ to $A_{1}$ , we can apply

induction to $(G-A,\tilde{a}, (P_{0}, \cdot .. P_{r-1}))$ , where $\tilde{a}=(a_{1}-s_{1}-s_{2}-3, a_{2}, \cdots, a_{k})$ . Also,

if $a_{1}\leqq s_{1}+s_{2}+3$ , then by letting $A_{1}=R\cup V(P_{r})$ for any $R\subseteqq S_{1}\cup S_{2}$ with $|R|=$

$a_{1}-3$ , we can apply induction, as before, to $(G-A_{1}, a’’, (P_{0}, \cdots, P_{r-1}))$ , where
$a’’=(a_{2}, \cdots , a_{k})$ . Thus, in what follows, we are only concerned with the case
$a_{1}=s_{1}+s_{2}+4$ . Note that if $a_{t}\not\in\{2, s_{2}+4\}$ for some $i$ , 2$iS $k-1$ , then as before,

we may use such $a_{i}$ for $\alpha$ , reducing this to Case 6 or Case 7. So we shall
assume $a_{i}\in\{2, s_{2}+4\}$ for $2\leqq i\leqq k$ . However, if $a_{2}=$ $=a_{k}=2$ , then $n=2(k-1)$

$+a_{1}$ , contradicting the following:

$n=|V(P_{0})|+|V(P_{r})|+|S_{1}|+|S_{2}|$

$\geqq(2k+1)+3+s_{1}+s_{2}\geqq 2k+a_{1}$ .
Accordingly, we may assume, in particular, $\alpha=s_{2}+4$ . Now note that by this,
if $S_{1}\neq\emptyset$ , then as in Case 6, by taking $\tilde{P}_{r}=(v_{1}, v)$ for some $v\in S_{1}$ , the same
assignment is still in effect. Hence we now assume $S_{1}=\emptyset$ as well, which
readily implies that $a_{1}=s_{2}+4$ along with $s_{2}>0$ (since $5\leqq a_{1}=s_{1}+s_{2}+4$). Here
we again distinguish three subcases.

Subcase 8.1. $1\neq 3$ .
Let $A_{k}=(S_{2}-\{v\})\cup V(P_{r})\cup\{u_{l-1}, u_{l}\}$ for any $v\in S_{2}$ , and $P_{r-1}’=(u_{1}, \cdots, u_{l-2})$ .

Then apply induction to $(G-A_{k}, a’, (P_{0}, \cdots, P_{r-2}, P_{\tau-1}’))$ .
Subcase 8.2. $l=3$ and $s_{2}\geqq 2(i.e., \alpha\geqq 6)$ .
Let $A_{k}=(S_{2}-\{u, v\})\cup V(P_{r})\cup V(P_{r-1})$ for any $u,$ $v\in S_{2}$ . Then apply induc-

tion to $(G-A_{k}, a’, (P_{0}, \cdots P_{r-2}))$ .
Subcase 8.3. $l=3$ and $s_{2}=1$ (i.e., $\alpha=5$).

Note that in this case, $a_{1}=a_{k}=5$ . So, if $k=2$ , then $a=(5,5)$ , and hence
$n=10$ , which is impossible since by (PSII), $n\geqq|V(P_{0})|+|V(P_{r-1})|+|V(P_{r})|\geqq 2k$
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$+7=11$ . We thus suppose $k\geqq 3$ . Now, by (PS5) and (PS8), $N_{G}(x)\cap\{u_{1}, u_{3}\}=\emptyset$

for all $x\in S$ . Therefore, if $N_{G}(u_{2})\cap S=\emptyset$ , then assign $A=V(P_{r-1})$ to $A_{k}$ and
aPply induction to $(G-1i,\tilde{a}, (P_{0}, \cdots, P_{r-2}, P_{r}))$ , where $\tilde{a}=(a_{1}, \cdots, a_{k-1}, a_{k}-3)$ .
(Note that as observed in Subcase 4.2, $N_{G}(v_{1})\cap W_{r-2}\neq\emptyset.$ ) $lfN_{G}(u_{2})\cap S\neq\emptyset$ , on
the other hand, then let $A_{k}=V(P_{r})\cup\{u_{2}, u_{3}\}$ if $d_{G}(u_{1})\geqq k$ , or $A_{k}=V(P_{r})\cup\{u_{1}, u_{2}\}$

otherwise. In either case, by (PS9) and (PS10), $W_{r-2}$ is $(k-1)$ -dominating in
$G-A_{k}$ ; so we can apply induction to $(G-A_{k}, a’, (P_{0}, \cdots, P_{r-2}))$ .

This completes the proof of Proposition 3. $\square$

\S 5. Proof of Lemma 4.

PROOF OF LEMMA 4. Let $P_{0}=(u_{1}, \cdots, u_{\iota})$ and $P_{1}=(v_{1}, \cdots, v_{m})$ , and define
$S:=V(G)-(V(P_{0})\cup V(P_{1}))$ . Note that $l\geqq m\geqq 2$ . Also, define $F:=N_{G}(v_{1})\cap V(P_{0})$ ;
without loss of generality, we may assume $F\neq\emptyset$ . For any $u_{\lambda}\in F$, by the
maximality of $P_{0}$ , we have $\lambda>m$ and $l-\lambda\geqq m$ , and consequently $1\geqq 2m+1$ . So
if $m\geqq k$ , then the conclusion is immediate. We thus assume $m<k$ here, by
which it suffices to show $l+m\geqq 3k+1$ . We next remark that we may also
assume $v_{1}\in V_{major}$ . To see this, suppose $v_{1}\in V_{\min or}$ . Then we can always take
$v_{m}$ as a major vertex. (If $v_{m}\in V_{\min 0}$ , consider by its index the first major
vertex on $P_{1}$ , say $v_{i_{0}}$ . Since all the minor vertices are adjacent, we may use
the path $(v_{1}, \cdots, v_{i_{0}-1}, v_{m}, \cdot. . v_{i_{0}})$ for $P_{1}$ with its endvertex $v_{i_{0}}\in V_{major}.$ ) Ac-
cordingly, $N_{G}(v_{m})qS=\emptyset$ , implying that $N_{G}(v_{m})\cap V(P_{0})\neq\emptyset$ (notice $m<k$ ). By
reversing $P_{1}$ , we may now use the path $(v_{m}, \cdots , v_{1})$ for $P_{1}$ having its initial
endvertex $v_{m}\in V_{majo\tau}$ . Thus, in the following, we also assume $v_{1}\in V_{major}$ .

$\underline{v_{1}v}_{m}\star\star P_{1}$
$v_{1}\ldots\ldots\ldots\underline{v_{\xi}}\ldots v_{m}\star\star*P_{1}$

$\frac{uu}{(i)}1lP_{\Phi}$ $\frac{uu}{(ii)}1lP_{0}$

Figure 2. (i) $\xi=m$ and (ii) $\xi<m$ ( $\star$ : major vertex, $*:$ minor vertex).

NOW set $\xi:=\max\{i|v_{i}\in V_{maj_{Of}}\}$ . Principally, we distinguish two cases as to
whether (i) $\xi=m$ or (ii) $\xi<m$ (see Figure 2). We here note that if $\xi<m$ , then
we may assume $v_{i}\in V_{major}$ for $1\leqq i\leqq\xi$ and $v_{i}\in V_{\min or}$ for $\xi+1\leqq i\leqq m$ (for

otherwise there must be some $v_{i}\in V_{major}(2<i\leqq m-1)$ with $v_{i-1}\in V_{\min or}$ , and
for such $v_{i}$ , we can take the path $(v_{1}, \cdots v_{i-1}, v_{m}, \cdots v_{t})$ for $P_{1}$ , reducing this to
the first case $\xi=m$ ). We also note that in either case, $N_{G}(v_{\xi})\cap S=\emptyset$ . (For (i),

it soon follows from the maximality of $P_{1}$ . For (ii), since $S\cap V_{\min or}=\emptyset$ (i.e.,
$S\subseteqq V_{major})$ , by the choice of $P_{1}$ , it again follows.) Thus, defining $L:=N_{G}(v_{\xi})$
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$\cap V(P_{0})$ , we have $L\neq\emptyset$ , from which we see also $N_{G}(v_{1})\cap S=\emptyset$ by a similar
argument. (That is, $N_{G}(v_{i})\subseteqq V(P_{0})\cup V(P_{1})$ for $i=1,$ $\xi.$ ) Now, define further
$I:=F\cap L$ and $\gamma:=|I|$ , and for a subset $X$ of $V(P_{0})$ , let $X^{(^{-}i)}$ denote $\{u_{j-i}|u_{j}$

\in X(i$j) $\}$ . By the maximality of $P_{0}$ , we observe that: $F-I,$ $(F-I)^{(1)}-,$ $L-I$,
$(L-I)^{(^{-}1)},$ $I,$ $I^{(^{-}I)},$

$\cdots,$
$I^{(-\xi)}$ are mutually disjoint. Let here

$\{$

$H=(F-I)\cup(F-I)^{(}-1)\cup(L-I)\cup(L-I)^{(-1)}$ ;

$K=I\cup I^{(-1)}\cup\cdots\cup I^{(\xi)}-$ .
Also, let $F\cup L=\{u_{\lambda_{1}}, \cdots, u_{\lambda_{r}}\}$ with $\lambda_{1}<...<\lambda_{r}$ . For later use, for the case
$I=\emptyset$ , we show that $l+m\geqq 4k(\geqq 3k+1)$ .

(i) $\xi=m$ .
From the above, clearly $|F|$ li $k-m+1$ (1Z2) and $|L|\geqq k-m+1(\geqq 2)$ , and

by the maximality of $P_{0},$ $\lambda_{1}>m$ and $1-\lambda_{r}$ llllm.
Case 1. $I=\emptyset$ .
Since $F\neq\emptyset$ and $L\neq\emptyset$ , we can take some $u_{\lambda_{j}},$

$1$ $j‘<r$ , such that $u_{\text{\‘{A}}_{j}}\in F$

and $u_{\lambda_{j+1}}\in L$ or ”
$u_{Z_{j}}\in L$ and $u_{\lambda_{j+1}}\in F’$ . In either case, by the maximality

of $P_{0},$ $\lambda_{j+1}-\lambda_{j}>m$ . The maximality also implies that for such $u_{\lambda_{j}}$ ,

$H\cap\{u_{1}, \cdots u_{\lambda_{1^{-2}}}, u_{\lambda_{j}+1}, \cdots, u_{\lambda_{j+1}-2}, u_{\lambda_{r}+1}, \cdots, u_{l}\}=\emptyset$ ,

whence
$l+m$ Illl $2|F|+2|L|+\{(\lambda_{1}-2)+(\lambda_{j+1}-\lambda_{j}-2)+(l-\lambda_{r})\}+m$

1 $4(k-m+1)+\{2(m-1)+m\}+m=4k+2$ .

Case 2. $I\neq\emptyset$ .
By the maximality of $P_{0}$ ,

$(H\cup K)\cap\{u_{\lambda_{\tau^{+1}}}, \cdots, u_{\iota}\}=\emptyset$ .

If $\gamma\geqq k-1$ , then disregarding $H$ in the above, we have

$l+m\geqq(m+1)|I|+(l-\lambda_{r})+m$

$)$ $(m+1)\gamma+2m\geqq 3k+1$ .
On the other hand, if $0<\gamma<k-1$ , then

$l+m$ Ell $2|F-I|+2|L-I|+(m+1)|I|+(l-\lambda_{r})+m$

$\geqq 4(k-m+1-\gamma)+(m+1)\gamma+2m$

$=3k+(k-m+1)+(m-3)(\gamma-1)$ .
NOW, if $m=2$ ,

$l+m\geqq 3k+(k-\gamma)\geqq 3k+2$ ;

otherwise
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$l+m\geqq 3k+(k-m+1)\geqq 3k+2$ .
(ii) $\xi<m$ .
Note that if $v_{1}v_{i}\in E(G),$ $\xi+2\leqq i\leqq m$ , then we can take the path $(v_{1},$ $v_{i},$ $\cdots$

$v_{m},$ $v_{i-1},$ $\cdots$ $v_{2})$ for $P_{1}$ , reducing this to (i). So we assume $N_{G}(v_{1})\cap V(P_{1})\subseteqq$

$\{v_{2}$ , $\cdot$ .., $v_{\xi+1}\}$ ; thus, $|F|\geqq k-\xi$ and $|L|\geqq k-m+1$ in this case. (Note that in (ii),
$m>\xi\geqq 2.)$

Case 1. $I=\emptyset$ .
Suppose first $u_{\lambda_{1}}\in F$ or $u_{\lambda_{r}}\in F$ ; without loss of generality, we may assume

$u_{\lambda_{1}}\in F$ (reverse $P_{0}$ if necessary). By the maximality of $P_{0},$ $\lambda_{1}>m$ and $1-\lambda_{r}\geqq\xi$ .
AS before, take any $u_{\lambda_{j}},$

$1\leqq j<r$ , with “
$u_{\lambda_{j}}\in F$ and $u_{\lambda_{j+1}}\in L$ or “

$u_{\lambda_{j}}\in L$ and
$u_{\lambda_{j+_{1}}}\in F’$ . Then again by the maximality, $\lambda_{j+1}-\lambda_{j}>\xi$ , and also

$H\cap\{u_{1}, \cdots, u_{\lambda_{1}-2}, u_{\lambda_{j}+1}, \cdots, u_{\lambda_{j+_{1^{-2}}}}, u_{\lambda_{r}+1}, \cdots, u_{l}\}=\emptyset$ .

Here we have
$(\lambda_{1}-2)+(\lambda_{j+1}-\lambda_{j}-2)+(l-\lambda_{r})\geqq m+2\xi-2$ .

On the other hand, suppose $u_{\lambda_{1}}\not\in F$ and $u_{\lambda_{r}}\not\in F$. Then by the maximality,
$\lambda_{1}>\xi$ and $l-\lambda_{r}\geqq m-\xi+1$ . Let $u_{\lambda_{a}}$ be, by its index, the first vertex of $F$, and
$u_{\lambda_{b}}$ the last. (Note that $\lambda_{1}<\lambda.<\lambda_{b}<\lambda_{r}.$ ) Then $\lambda_{a}-\lambda_{a-1}>\xi,$ $\lambda_{b+1}-\lambda_{b}>\xi$, and

$H\cap\{u_{1}, \cdots, u_{\lambda_{1}-2}, u_{\lambda_{a-1^{+1}}}, \cdots, u_{\lambda_{a}-2}, u_{\lambda_{b^{+1}}}, \cdots, u_{\lambda_{b+_{I^{-2}}}}, u_{l_{r^{+}}1}, \cdots, u_{l}\}=\emptyset$ .

Here
$(\lambda_{1}-2)+(\lambda_{a}-\lambda_{a-1}-2)+(\lambda_{b+1}-\lambda_{b}-2)+(l-\lambda_{r})$

$)$ $3(\xi-1)+(m-\xi+1)=m+2\xi-2$ .

Therefore, in either case,

$l+m$ ;–; $2|F|+2|L|+(m+2\xi-2)+m$
1 $2(k-\xi)+2(k-m+1)+2m+2\xi-2=4k$ .

Case 2. $I\neq\emptyset$ .
Subcase 2.1. $v_{1}v_{\xi+1}\not\in E(G)$ .
In th\’is case, $|F|\geqq k-\xi+1$ (and 1 $L|\geqq k-m+1$). Now, if $u_{\lambda_{r}}\in F$, then by

the maximality, as before, $l-\lambda_{r}\geqq m$ , and also

$(H\cup K)\cap\{u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ .

If $u_{\lambda_{r}}\not\in F$, then $l-\lambda_{r}\geqq m-\xi+1$ , and for the last vertex $u_{2_{b}}$ of $F$,

$(H\cup K)\cap\{u_{\lambda_{b^{+1}}}, \cdots, u_{\lambda_{b+_{1^{-2}}}}, u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ .
Here, $\lambda_{b+1}-\lambda_{b}>\xi$ , and so $(\lambda_{b+1}-\lambda_{b}-2)+(l-\lambda_{r})\geqq m$ .
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Thus, as in Case 2 of (i), if $\gamma\geqq k-1$ , then

$l+m\geqq(\xi+1)|I|+m+m$

4 $(\xi+1)\gamma+2m\geqq 3k+3$ .
If $0<\gamma<k-1$ , then

$l+m$ li $2|F-I|+2|L-I|+(\xi+1)|I|+m+m$
$\geqq 2(k-\xi+1-\gamma)+2(k-m+1-\gamma)+(\xi+1)\gamma+2m$

$=3k+(k-\xi+1)+(\xi-3)(\gamma-1)$ .
So, if $\xi=2$ ,

$l+m\geqq 3k+(k-\gamma)\geqq 3k+2_{j}$

otherwise
$l+m\geqq 3k+(k-\xi+1)\geqq 3k+3$ .

Subcase 2.2. $v_{1}v_{\xi+1}\in E(G)$ .
In this case, we may assume $v_{\xi}v_{i}\not\in E(G)$ for $\xi+2\leqq i\leqq m$ , since otherwise by

taking $(v_{1}, v_{\xi+1}, \cdots , v_{i-1}, v_{m}, \cdots , v_{i}, v_{\xi}, \cdots , v_{2})$ for $P_{1}$ , we can again reduce this
to (i). Thus, $N_{G}(v_{\xi})\cap V(P_{1})\subseteqq\{v_{1}, \cdots, v_{\xi-1}, v_{\xi+1}\}$ , so that $|L|\geqq k-\xi$ . On the
other hand, the maximality always requires $\lambda_{1}>m$ and $1-\lambda_{r}\geqq m$ , for we can
take another path $(v_{\xi}, \cdots , v_{1}, v_{\xi+1}, \cdots , v_{m})$ of order $m$ . As before, it is easy
to see

$(H\cup K)\cap\{u_{1}, \cdots, u_{\lambda_{1}-\xi-1}, u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ .
NOW, if $\gamma\geqq k-1$ , then

$l+m\geqq(\xi+1)|I|+\{(\lambda_{1}-\xi-1)+(l-\lambda_{r})\}+m$

$\geqq(\xi+1)\gamma+\{(m-\xi)+m\}+m$

$\geqq(\xi+1)\gamma+2\xi+3$ llii $3k+4$ .
If $0<_{7}<k-1$ , then

$l+m\geqq 2|F-I|+2|L-I|+(\xi+1)|I|+\{(\lambda_{1}-\xi-1)+(l-\lambda_{r})\}+m$

1 $4(k-\xi-\gamma)+(\xi+1)\gamma+\{(m-\xi)+m\}+m$

1 $3k+(k-\xi+1)+(\xi-3)(\gamma-1)-1$ .
$ln$ view of Subcase 2.1, the conclusion clearly follows.

This completes the proof of Lemma 4. $\square$

\S 6. Proof of Lemma 5.

PROOF OF LEMMA 5. Let $P_{0}=(u_{1}, \cdots, u_{l}),$ $P_{1}=(v_{1}, \cdots, v_{m})$ and $P_{2}==(w_{1}$ , ,
$w_{h})$ , and define $S:=V(G)- \bigcup_{J=0}^{2}V(P_{j})$ . Note that $l\geqq m\geqq 3$ and $l\geqq h\geqq 3$ . On the



GraPh decompositions 175

other hand, we may assume $h<k$ , for otherwise the conclusion ls immediate
from Lemma 4. Now define $F_{0}^{1}:=N_{G}(v_{i})\cap V(P_{0})$ and $F_{j}^{2}$ $:=N_{G}(w_{1})\cap V(P_{j}),$ $j=0,1$ .
Without loss of generality, we may assume $F_{0}^{1}\neq\emptyset$ and $F_{0}^{2}\cup F_{1}^{2}\neq\emptyset$ . By taking
$w_{1}$ here for $v_{1}$ in the proof of Lemma 4, we may also assume $w_{1}\in V_{major}$ .
Setting $\xi:=\max\{i|v_{i}\in V_{major}\}$ and $\eta$

$:= \max\{i|w_{i}\in V_{major}\}$ , we next define $L_{0}^{1}$ :
$=N_{G}(v_{\xi})\cap V(P_{0})$ and $L_{j}^{2}$ $:=N_{G}(w_{\eta})\cap V(P_{j}),$ $j=0,1$ . Define further $I_{0}^{1}$ $:=F_{0}^{1}\cap L_{0}^{1}$

(and $\gamma_{0}^{1}:=|I_{0}^{1}|$ ) and $I_{j}^{2}:=F_{j}^{2}\cap L_{j}^{2}$ (and $\gamma_{j}^{2}:=|I_{j}^{2}|$ ), $j=0,1$ . As in the preceding
proof, we let $F_{0}^{1}\cup L_{0}^{1}=\{u_{\lambda_{1}}, \cdots, u_{\lambda_{r}}\}$ with $\lambda_{1}<...<\lambda_{r}$ . Also, we use the same
notation $X^{(^{-}i)}$ here, and similarly define $Y^{(^{-}i)}$ to be $\{v_{j-i}|v_{j}\in Y(i\leq])\}$ for any
subset $Y\subseteqq V(P_{1})$ .

We split the following argument primarily into two pieces: when (I) $m<k$

and when (II) $m\geqq k$ , in each of which, as before, we distinguish the two cases
$\xi=m$ and $\xi<m$ . Note that in either (I) or (II), when $\xi<m$ , by the maximality
of $P_{1},$ $\eta=h$ (since all the minor vertices are adjacent).

(I) $m<k$ .
AS before, we may assume $v_{1}\in V_{majo}$ . Clearly, it suffices to show $l+m\geqq$

$4k-2$ . In the preceding proof, however, we have already observed it for the
case $I_{0}^{1}(=I)=\emptyset$ . Accordingly, in what follows, we also assume $I_{0}^{1}\neq\emptyset$ (i.e.,
$\gamma_{0}^{1}\neq 0)$ . AS observed, $F_{0}^{1}-I_{0}^{1},$ $(F_{0}^{1}-I_{0}^{1})^{(1)}-,$ $L_{0}^{1}-I_{0}^{1},$ $(L_{0}^{1}-I_{0}^{1})^{(1)}-,$ $I_{0}^{1},$ $I_{0}^{1(-1)},$ $\cdots$ , $I_{0^{(\xi)}}^{1-}$

are mutually disjoint. Let now

$\{$

$H=(F_{0}^{1}-I_{0}^{1})\cup(F_{0}^{1}-I_{0}^{1})^{(-1)}\cup(L_{0}^{1}-I_{0}^{1})\cup(L_{0}^{1}-I_{0}^{1})^{(}-1)$ ;

$K=I_{0}^{1}\cup I_{0}^{1(-1)}\cup\cdots\cup I_{0}^{1(^{-}\xi)}$ .

(I-i) $\xi=m$ .
We recall, by the maximality of $P_{1},$ $|F_{0}^{1}|\geqq k-m+1$ and $|L_{0}^{1}|\geqq k-m+1$ , and

also, by the maximality of $P_{0},$ $l-\lambda_{r}1m$ .
Case 1. $F_{0}^{1}=L_{0}^{1}(=I_{0}^{1})$ .
By the maxlmality, $K\cap\{u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ ; hence

$l+m\geqq(m+1)|I_{0}^{1}|+(l-\lambda_{r})+m$

1 $(m+1)(k-m+1)+2m$

$=4k+(m-3)\{k-(m+1)\}-2$

$\geqq 4k-2$ .

Case 2. $F_{0}^{1}\neq L_{0}^{1}$ .
Since $|F_{0}^{1}|\geqq 2$ and $|L_{0}^{1}|\geqq 2$ , we observe:

$(*)$ There exists some $u_{\lambda_{j}},$

$l$ $j<r, such that “
$u_{\lambda_{j}}\in F_{0}^{1}$ and $u_{\lambda_{j+1}}\in L_{0}^{1}-I_{0}^{1}$

‘

or “
$u_{\lambda_{f}}\in L_{0}^{1}$ and $u_{\lambda_{f+_{1}}}\in F_{0}^{1}-I_{0}^{1}’$ .
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Then for such $u_{\lambda_{j}},$
$(H\cup K)\cap\{u_{\lambda_{j^{+1}}}, \cdot. , u_{\lambda_{j+1^{-2}}}, u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ with $\lambda_{j+1}-\lambda_{j}$

$>m$ , so that

$l+m$ llil $2|F_{0}^{1}-I_{0}^{1}|+2|L_{0}^{1}-I_{0}^{1}|+(m+1)|I_{0}^{1}|+\{(m-1)+m\}+m$

$\geqq 4(k-m+1-\gamma_{0}^{1})+(m+1)\gamma_{0}^{1}+3m-1$

$=4k+(m-3)(\gamma_{0}^{1}-1)\geqq 4k$ .

(I-ii) $\xi<m$ .
Recall that in this case, we may assume $N_{G}(v_{1})\cap V(P_{1})\subseteqq\{v_{2}, \cdots, v_{\xi+1}\}$ . As

before, we consider the two cases: when $v_{1}v_{\xi+1}\not\in E(G)$ and when $v_{1}v_{\xi+1}\in E(G)$ .
(Note that throughout (I-ii), $m>\xi(\geqq h)\geqq 3.$ )

Case 1. $v_{1}v_{\xi+1}\not\in E(G)$ .
In this case, $|F_{0}^{1}|\geqq k-\xi+1$ and $|L_{0}^{1}|$ li $k-m+1$ .
Subcase 1.1. $F_{0}^{1}=L_{0}^{1}(=I_{0}^{1})$ .
By the maximality, $l-\lambda_{r}\geqq m$ , and also $K\cap\{u_{\lambda_{r^{+1}}}, , u_{l}\}=\emptyset$ . Hence

$l+m\geqq(\xi+1)|I_{0}^{1}|+(l-\lambda_{r})+m$

1 $(\xi+1)(k-\xi+1)+2m\geqq(\xi+1)k-\xi^{2}+2\xi+3$

$=4k+(\xi-3)\{k-(\xi+1)\}\geqq 4k$ .
Subcase 1.2. $F_{0}^{1}\neq L_{0}^{1}$ .
Suppose first $u_{\lambda_{1}}\in F_{0}^{1}$ or $u_{\lambda_{r}}\in F_{0}^{1}$ . Without loss of generality, we may

assume $u_{\lambda_{r}}\in F_{0}^{1}$ ; hence $1-\lambda_{r}\geqq m$ . Now, if $(*)$ holds, then as above, $(H\cup K)\cap$

$\{u_{\lambda_{j^{+1}}}, \cdots, u_{\lambda_{j+1^{-2}}}, u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ with $\lambda_{j+1}-\lambda_{j}>\xi$ . If $(*)$ fails, which means
that $u_{\lambda_{1}}\not\in I_{0}^{1}$ and $u_{\lambda_{j}}\in I_{0}^{1}$ for all $j$ , $2\leqq j\leqq r$ (notice $F_{0}^{1}\neq L_{0}^{1}$), then $(H\cup K)\cap$

$\{u_{1}, \cdots, u_{\lambda_{1^{-}}2}, u_{\lambda_{r^{+1}}}, \cdots, u_{l}\}=\emptyset$ with $\lambda_{1}>\xi$ . Thus, in either case,

$l+m\geqq 2|F_{0}^{1}-I_{0}^{1}|+2|L_{0}^{1}-I_{0}^{1}|+(\xi+1)|I_{0}^{1}|+\{(\xi-1)+m\}+m$

$\geqq 2(k-\xi+1-\gamma_{0}^{1})+2(k-m+1-\gamma_{0}^{1})+(\xi+1)\gamma_{0}^{1}+2m+\xi-1$

$=4k+(\xi-3)(\gamma_{0}^{1}-1)\geqq 4k$ .
Suppose next $u_{\lambda_{1}}\not\in F_{0}^{1}$ and $u_{\lambda_{\gamma}}\not\in F_{0}^{1}$ . Then $\lambda_{1}>\xi$ and $l-\lambda_{\tau}\geqq m-\xi+1$ . Moreover,
$(*)$ holds for the last vertex $u_{\lambda_{b}}$ of $F_{0}^{1}$ , for which we have $(H\cup K)\cap\{u_{1}$ , ,

$u_{\lambda_{1}-2},$ $u_{\lambda_{b^{+1}}},$ $\cdots,$ $u_{\lambda_{b+_{1^{-2}}}},$ $u_{\lambda_{r^{+1}}},$ $\cdots,$
$u_{l}\}=\emptyset$ with $\lambda_{b+1}-\lambda_{b}>\xi$ . Therefore here

$(\lambda_{1}-2)+(\lambda_{b+1}-\lambda_{b}-2)+(l-\lambda_{r})\geqq m+\xi-1$ , ending in the same calculation as above.
Case 2. $v_{1}v_{\xi+1}\in E(G)$ .
AS observed, $l-\lambda_{r}1m$ , and we may assume $N_{G}(v_{\xi})\cap V(P_{1})\subseteqq\{v_{1}, \cdots, v_{\xi-1}, v_{\xi+1}\}$ .

In this case, hence, $|F_{0}^{1}|\geqq k-\xi$ and $|L_{0}^{1}|\geqq k-\xi$ . We now remark that we may
also assume $m\geqq\xi+2$ , since otherwise $(i.e., m=\xi+1)$ by taking $(v_{1}, v_{m}, \cdots, v_{2})$

for $P_{1}$ , we can reduce this to (I-i).



Graph decompositions 177

Subcase 2.1. $F_{0}^{1}=L_{0}^{1}(=I_{0}^{1})$ .
AS before, $K\cap\{u_{\lambda_{r^{+1}}}, \cdots u_{l}\}=\emptyset$ , and so

$l+m\geqq(\xi+1)|I_{0}^{1}|+(l-\lambda_{r})+m$

1 $(\xi+1)(k-\xi)+2m\geqq(\xi+1)k-\xi^{2}+\xi+4$

$=4k+(\xi-3)\{k-(\xi+2)\}-2\geqq 4k-2$ .

Subcase 2.2, $F_{0}^{1}\neq L_{0}^{1}$ .
In this case, by reversing $P_{0}$ if necessary, we can always take such $u_{\lambda_{j}}$ as

in $(*)$ . Then for such $u_{\lambda_{j}},$
$(H\cup K)/\tau\{u_{\lambda_{J^{+1}}}, \cdots u_{l_{j+1^{-2}}}, u_{\lambda_{r}+1}, \cdots u_{l}\}=\emptyset$ with

$\lambda_{j+1}-\lambda_{j}>\xi$ . Hence

$l+m\geqq 2|F_{0}^{1}-I_{0}^{1}|+2|L_{0}^{1}-I_{0}^{1}|+(\xi+1)|I_{0}^{1}|+\{(\xi-1)+m\}+m$

$\geqq 4(k-\xi-\gamma_{0}^{1})+(\xi+1)\gamma_{0}^{1}+2m+\xi-1$

$\geqq 4k+(\xi-3)\gamma_{0}^{1}-\xi+3$

$=4k+(\xi-3)(\gamma_{0}^{1}-1)\geqq 4k$ .

(II) $m\geqq k$ .
AS differs from the case (I), we shall exPlicitly show $l+m+h\geqq 4k+1$ by

working with all the paths $P_{0},$ $P_{1}$ and $P_{2}$ . Since $w_{1},$ $w_{\eta}\in V_{major}$ and $h<k$ , by
the maximality of $P_{2}$ , we have $|F_{0}^{2}\cup F_{1}^{2}|\geqq 2$ and $|L_{0}^{2}\cup L_{1}^{2}|\geqq 2$ . However, if
$F_{1}^{2}=\emptyset$ and $L_{1}^{2}=\emptyset$ , then the same argument as in the proof of Lemma 4 to the
paths $P_{0}$ and $P_{2}$ gives $l+h\geqq 3k+1$ , bringing us to the conclusion. (This can be
observed since in the preceding proof, we have only been concerned with the
degrees of $v_{1}$ and $v_{\xi}.$ ) Therefore, in what follows, we assume $F_{I}^{2}\cup L_{1}^{2}\neq\emptyset$ , and
thereby let $v_{p}\in F_{1}^{2}\cup L_{1}^{2}$ . Note that in (II) we cannot determine whether $v_{1}\in V_{major}$

or $v_{1}\in V_{minor}$ .
(II-i) $\xi=m$ .
We first note that we may assume $|L_{0}^{1}|$ Sl. (If not, then we can take some

distinct two vertices $u_{a}\in F_{0}^{1}$ and $u_{\beta}\in L_{0}^{1}$ (we may assume $\alpha<\beta$); by the maxi-
mality, each of the subPaths $(u_{1}, \cdots, u_{\alpha-1}),$ $(u_{\alpha+1}, \cdots, u_{\beta-1})$ and $(u_{\beta+1}, \cdots u_{l})$

must have order at least $m$ , showing that $l+m\geqq 4m+2\geqq 4k+2.$ ) Now, define
$L_{1}^{1}:=N_{G}(v_{m})\cap V(P_{1})$ , and let $L_{1}^{1}=\{v_{\zeta_{1}}, -- , v_{\zeta_{\theta}}\}$ with $\zeta_{1}<$ $<\zeta_{s}$ . Since $|L_{1}^{1}|\geqq$

$k-|L_{0}^{1}|\geqq k-1$ , we have $\zeta_{1}\leqq m-k+1,$ $m-\zeta_{s}\leqq m-k+1$ and $\zeta_{j+1}-\zeta_{j}<m-k+1$

for $1Si\leqq s-1$ .
Case 1. $\eta\geqq k/3$ .
We assume $v_{p}\in L_{1}^{2}$ here, since the argument for the case $v_{p}\not\in L_{1}^{2}$ (i.e.,

$v_{p}\in F_{1}^{2})$ results in essentially the same. First suppose $p>\zeta_{1}$ . Then clearly:

$(**)$ Either there exists some $\zeta_{j}(1\leqq j<s)$ satisfying $\zeta_{j}<p\leqq\zeta_{j+1}$ , or $\zeta_{s}<p$ .
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NOW, for such $\zeta_{j}$ , consider the path $P=$ $(v_{1}, \cdots , v_{\zeta_{j}}, v_{m}, \cdots, v_{p}, w_{\eta}, \cdots , w_{1})$ of
order at least $\{m-(m-k)\}+\eta=k+\eta$ . Then by the maximality of $P_{0}$ ,

$l+m+h\geqq(2|P|+1)+m+\eta$

$)$ $2k+m+3\eta+1\geqq 4k+1$ .
Next suppose $p\leqq\zeta_{1}$ . If $F_{0}^{2}\neq\emptyset$ , then by taking the path $P=(w_{1},$ $\cdots,$ $w_{\eta},$ $v_{P}$ , ,
$v_{m})$ , we can conclude with the same calculation as above (since $|P|\geqq\eta+k$ ). So
now further suppose $F_{0}^{2}=\emptyset$ . Then $|F_{1}^{2}|\geqq 2$ , and hence we can take some
$v_{q}\in F_{1}^{2}$ distinct from $v_{p}$ . Now, if $q>\zeta_{1}$ , then by interchanging the roles of $w_{1}$

and $w_{\eta}$ in the above, we are done. On the other hand, if $q\leqq\zeta_{1}$ , take as $P$,
$(v_{1}, \cdots, v_{p}, w_{\eta}, \cdots, w_{1}, v_{q}, \cdots v_{m})$ when $p<q$ , or $(v_{1}, \cdots , v_{q}, w_{1}, \cdots , w_{\eta}, v_{p}, \cdots, v_{m})$

when $p\geqq q$ . Since $|P|$ I $k+\eta+1$ in either case, the conclusion again follows.
Case 2. $\eta<k/3$ .
We first claim we may assume $|F_{0}^{2}\cup F_{1}^{2}|\geqq 2k/3+1$ . Since $|F_{0}^{2}\cup F_{1}^{2}|\geqq k-h+1$ ,

this is true when $\eta=h-1$ or $\eta=h$ . So suppose $\eta<h-1$ . Now, if $w_{1}w_{i}\in E(G)$

for some $\eta+1<i\leqq h$ , then we can take the path $(w_{1}, w_{i}, \cdots, w_{h}, w_{i-1}, \cdots, w_{2})$

of order $h$ with its both endvertices $w_{1},$ $w_{2}\in V_{major}$ , which is the very case
$\eta=h$ . If not (i.e., $N_{G}(w_{1})\cap V(P_{2})\subseteqq\{w_{2},$

$\cdots,$ $w_{\eta+1}\}$ ), then clearly $|F_{0}^{2}\cup F_{1}^{2}|\geqq 2k/3$

$+1$ . The claim is thus verified. We now recall that $\mu_{i}=|V(P_{i})\cap V_{major}|\geqq 2$

$(i=1,2)$ and that $P_{1}$ is taken in $G-V(P_{0})$ such that $\mu_{1}$ is as large as possible. So,
$F_{1}^{z_{(}-2)},$ $F_{1}^{2(^{-}1)},$ $(L_{1}^{1}\cup\{v_{m}\})$ must be mutually disjoint; thus, $m\geqq 2|F_{1}^{2}|+(|L_{1}^{1}|+1)$

$\geqq 2|F_{1}^{2}|+k$ , implying that $|F_{1}^{2}|$ $(m-- $k$ )$/2<k/6$ . Consequently, we have $|F_{0}^{2}|\geqq$

$k/2+1$ . We again assume $v_{p}\in L_{1}^{2}$ here; however, we see the conclusion also for
the case $v_{p}\not\in L_{1}^{2}$ by simply replacing the subpath $(w_{1}, , w_{\eta})$ or $(w_{\eta}, , w_{1})$ by
$w_{1}$ in each $P$ below. As in Case 1, if $p>\zeta_{1}$ , then take $P=(v_{1},$ $\cdots$

$v_{\zeta_{j}},$ $v_{m},$ $\cdots,$ $v_{p}$ ,
$w_{\eta},$ $\cdots,$

$w_{1})$ , otherwise $P=(w_{1}, \cdots, w_{\eta}, v_{p}, \cdots, v_{m})$ . Here, as observed, $|P|\geqq\eta+k$

in either case. Now let $u_{f}$ be (by its index) the first vertex of $F_{0}^{2}$ , and $u_{g}$ the
last. Then by the maximality of $P_{0},$ $f>|P|$ and $l-g\geqq|P|$ . The maximality
also implies that $F_{0}^{l},$ $F_{0^{(1)}}^{2-},$ $\{u_{1}, \cdots, u_{f-2}, u_{g+1}, \cdots, u_{l}\}$ are mutually disjoint;
thus

$l+m+h$ lli $(2|F_{0}^{2}|+2|P|-1)+m+h$

$)$ $3k+m+3\eta+1\geqq 4k+7$ .
(II-ii) $\xi<m$ .
Recall that in this case, $\eta=h(i.e., w_{h}\in V_{major})$ , and also that $L_{0}^{2}\cup L_{1}^{2}\neq\emptyset$ .
Case 1. $F_{0}^{2}=\emptyset$ or $L_{0}^{2}=\emptyset$ .
Without loss of generality, we may assume $F_{0}^{2}=\emptyset$ . Then $|F_{1}^{2}|\geqq k-h+1$

$(>0)$ . Let now $v_{g’}$ be the last vertex of $F_{1}^{2}$ . Then by the choice of $P_{1}$ ,

$\xi-g’\geqq h$ ; hence
$|P_{1}|\geqq(2|F_{1}^{2}|-1)+h+(m-\xi)\geqq 2k-h+2$ ,
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so that
$l+m+h\geqq(2m+1)+|P_{1}|+h$

$)$ $(2m+1)+2k-h+2+h$

1 $4k+3$ .

Case 2. $F_{1}^{2}\neq\emptyset$ and $L_{0}^{2}\neq\emptyset$ .
Suppose first that $|F_{0}^{2}|\leqq|F_{1}^{2}|$ or $|L_{0}^{2}|\leqq|L_{1}^{2}|$ ; we may here assume $|F_{0}^{2}|\leqq$

$|F_{1}^{2}|$ . Let $v_{f’}$ be the first vertex of $F_{1}^{2}$ . Then for the path $P=(w_{1}, v_{f’}, \cdots, v_{m})$ ,

as above,

$|P|\geqq|\{w_{1}\}|+(2|F_{1}^{2}|-1)+h+(m-\xi)\geqq 2|F_{1}^{2}|+h+1$ ,

whence by the maximality,

$l\geqq 2|F_{0}^{2}|+2|P|-1\geqq 2(|F_{0}^{2}|+|F_{1}^{2})|)+2|F_{1}^{2}|+2h+1$

Ell $3(|F_{0}^{2}|+|F_{1}^{2}|)+2h+1$ lli $3(k-h+1)+2h+1$

$=3k-h+4$ .
Suppose next that $|F_{0}^{2}|>|F_{1}^{2}|$ and $|L_{0}^{2}|>|L_{1}^{2}|$ . Then clearly $|F_{0}^{2}|\geqq(k-h+1)/2$

and $|L_{0}^{2}|\geqq(k-h+1)/2$ . As remarked, $F_{1}^{2}\cup L_{1}^{2}\neq\emptyset$ in (II); in particular, we may
assume $L_{1}^{2}\neq\emptyset$ with $v_{p}\in L_{1}^{2}$ . Now, if $p\geqq m/2$ , then consider the path $(w_{1},$

$\cdots,$ $w_{h}$ ,

$v_{p},$ $\cdots,$
$v_{1})$ , otherwise $(w_{1}, \cdots, w_{h}, v_{p}, \cdots, v_{m})$ . In either case, the path has order

at least $h+m/2$ . Therefore by a similar argument to that we have applied in
the proof of Lemma 4 or in (I), it soon follows that

$l$ llli $2|F_{0}^{2}-I_{0}^{2}|+2|L_{0}^{2}-I_{0}^{2}|+\{(h+m/2)-h\}+(h+m/2)$

44 $\{(k-h+1)/2-\gamma_{0}^{2}\}+(h+1)\gamma_{0}^{2}+m+h$

$\geqq 2k+m+(h-3)\gamma_{0}^{2}-h+2\geqq 3k-h+2$ .

The above argument together with the assumption $m\geqq k$ readily leads to the
conclusion.

This completes the proof of Lemma 5. $\square$
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