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1. Introduction.

Throughout this paper we assume that K is a field. Given a K-algebra A
we denote by mod(A) the category of finitely generated right 4-modules and by
fin(A) the full subcategory of mod(/) consisting of finite dimensional modules.
Moreover we denote by pr(4) and inj(A4) the full subcategories of mod(A)
consisting of projective and injective modules, respectively.

By a bipartite algebra we mean a K-algebra (not necessarily finite dimen-
sional) of the upper triangular form

_ A AMB
1.1) R= ( 0 ‘B
where A, B are K-algebras and 4Mj is an A-B-bimodule (see [22, Section 17.4]).
Right modules X in mod(R) will be identified with the systems

(1.2) X=Xl X3, ¢ X'QuMp— X3

where X/ is in mod(A), X% is in mod(B) and ¢ is a B-homomorphism. Note
that ¢ is uniquely determined by the B-homomorphism

(1.3) @ : X4 —> Homp(uMp, X%)

adjoint to ¢ and defined by formula @(x)(m)=¢(xQm).

We recall from that a module X is said to be prinjective if X4 is
A-projective and X% is B-injective. We denote by prin(R)# the category of
finitely generated prinjective right R-modules.

We define the module X in mod(R) to be propartite if X/ is A-projective
and X% is DB-projective, or equivalently, if X viewed as a module over the

subalgebra (‘61 g) of R is projective. Following we call ithe propartite
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wule X (1.2) B-complete if ¢ is surjective. We denote by modBi(R)4 and
modBi(R)4 the category of finitely generated propartite modules and B-complete
p/r@artite modules over 1?:(61 %I >, /rgpectively. We often write modBi(R) and
modBi(R) instead of modBi(R)s and modBi(R)s, respectively.

The aim of this paper is to gtﬁblish basic representation theory properties
of the categories mod5i(R)# and mod5:i(R)s, and their relations with prinjective
modules, bimodule matrix problems (see [5], [22]), representations of bocses
(see [4], [19], [27]) and representation theory of orders [17].

We show in the paper that modBi(R)s is an additive Krull-Schmidt category
which is closed under kernels of epimorphisms, under direct sums and summands
and under extensions. It is shown that the Grothendieck group of the category
modBi(R)3 is free abelian of finite rank. If Mjp is a projective B-module or
dimg R is finite then modBi(R)$ has enough relative projective objects and the
indecomposable relative projective modules in modBi(R)4 are the modules [3.5).
Moreover, modSf(R)3 is a hereditary subcategory of mod(R) in the sense that
Extk(X, Y)=0 for any pair of modules X and Y in modBi(R)5 (see Proposition
3.7. 1f Mjp is projective, then the projective dimension pdgX is <1 for any
module X in modBi(R)z.

It is shown in the paper that the propartite modules play an important role
in the study of the representation types of matrix problems and orders. We
prove in that for any pair of Krull-Schmidt categories K and L
having only a finite number of the isomorphism classes of indecomposable
objects, and for any L-K-bimodule

M:K°°XL —> b

which is finitely generated projective viewed as a left L-module there exist a
bipartite semiperfect ring Ry and an equivalence of categories

Mat(;Mg) = modB5(R},)

where Mat(;Mg) is the category of ;Mg-matrices in the sense of Drozd (see
[22]). We recall from that, in case the bimodule My is finite dimen-
sional, the study of Mat(,Mg) reduces to the study of prinjective modules. This
is not the case in general if the bimodule is infinite dimensional. However, in
this case the category of propartite modules applies.

A motivation for the study of modBi(R)s over infinite dimensional algebras
R is the fact proved in Section 7 that for any D-order A4 in a semisimple
Dy-algebra C the study of the category latt(A4) of right A-lattices and its rep-
r/egntation type reduces by the functors in the diagram (7.14) to the study of
modp,<61 ?), where [" is a maximal order in C containing 4. We apply this
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reduction to the study of the representation type of the category latt(A) by
reducing the problem to the finite dimensional case (compare with [7], [18], [13].
Our main results of Section 7 are and the adjustment functor

—~ AT
(1.4) G: modgi( ) —> latt(A)
0r
which is full, dense, preserves tameness and wildness, and vanishes only on
finitely many indecomposable modules up to isomorphism. Every module in
@gf.(ﬁl }:) has the projective dimension at most 1.

In a subsequent paper the interpretation of /I-lattices in terms of /'-complete
propartite modules over the infinite dimensional algebra (61 f:) will be essentially
used in defining a covering technique for latt(/) (compare with [12]).

In case the bipartite algebra R:(‘Sl Aé] ) is finite dimensional our main
results are the following statements proved in Sections 4-6.

(a) The category modbi(R)s has Auslander-Reiten sequences, source maps
and sink maps, and has enough relative projective and relative injective objects.
Sink maps ending at indecomposable relative projective objects in modBi(R)4 are
described in

(b) The category modBi(R)% is equivalent to the category of prinjective
modules over a bipartite algebra, and to the category rep(Bz) of K-linear rep-
resentations of a free triangular bocs By associated to K. The equivalences
preserve tameness and wildness. P

(¢) Tame-wild dichotomy holds for the categories modBi(R)s and modB:i(R)4,
and modB:(R)4 is an open subcategory of mod(R) in the sense of [5]. The
representation properties of the category modBi(R)s are studied by means of
affine varieties prop? and an algebraic group action G Xpropf— prop?, where
v is a vector in the Grothendiec/k\group Ko<m0d§§(R)§>zZ"+’". In particular the
tameness of modBi(R)s and of modBi(R)s is characterized by a dimension con-
dition of GZ-orbits of prop# and of propZ.

One of the main results of this paper having important consequences in
applications (see and Section 7) is which asserts that the
adjustment functors in diagram preserve and reflect tame representation
type and the polynomial growth property. If R is finite dimensional, then they
preserve also wildness.

Let us recall that the propartite modules over a class of finite dimensional
algebras were considered by Green and Reiner [7, p. 617 in a connection with
the study of lattices over orders, and by the author [22, Theorem 17.81] in a
connection with a module-theoretical description of arbitrary bipartite matrix
problems.
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It was shown in [22, Theorem 17.81] that for any finite dimensional
bipartite K-algebra Rz({)l Aé[ ) there exists a bipartite K-algebra R= (‘4 M )
with Mz B-projective, and an equivalence of categories prin(R)4 ~modBi(R)3.

Let us mention that propartite modules appear implicitly in the Drozd’s
study of module categories by means of representations of bocses. We recall
that for any finite dimensional K-algebra S the study of the category mod(S)
was reduced by Drozd [4, Proposition 137 to the study of the category rep(8Bs)
of K-linear representations of a free triangular bocs B associated to S in such

a way that rep(Bs) is equivalent to the full subcategory modﬁ{(bg g) of

modB; g ‘g) consisting of all modules (X§, X%, ¢) such that Im ¢ Srad(X”).
Moreover the equivalence respects representation types. The construction of
Bs involves the bipartite algebra ({)S é*), where J=rad(S) and /*=Homx(/J, K)
(see [2 Pr0p051t10n 6.1]). It was shown in [25, Lemma 2.7] that modp,(g ‘g)N
prm(O g )

The main connection between rep(Bs) and mod(S) is given by the cokernel
functor rep(%s)z;n\oagi((‘? g)—»mod(S), (Xs, X%, ¢)—Coker ¢. Our functor
is a counterpart of this construction for the category latt(/).

Main results of this paper were presented on the representation theory
seminar in the University of Paderborn in May 1993.

2. Propartite modules, the adjustment functor and the category of
matrices.

Throughout this paper we suppose that Rz(‘é Aé[ ) is a bipartite K-algebra,

where the algebras A and B are semi-perfect. We fix two complete sets

(2.1) {er, +, en} S A, {enss, »+, enim} EB

of primitive orthogonal idempotents in A and B, respectively.

A B-complete module X=(X}, X} gp) in modg§<61 %I) is defined to be
super fluous if the kernel of the map ¢ adjoint to ¢ (1.3) is contained in the
radical rad(X}) of X). We denote by -mod,,,(g1 Ag ) the full subcategory of

@B?(‘g Aél) consisting of all superfluous modules.

Following and we call a module X in mod(‘é fg ) projectively
adjusted if X is in mod(A), X% is in pr(B) and ¢ is injective. If, in addition,
¢ is surjective we call X B-complete. We denote by modp.(R)s and @pr(R)B
the category of prOJectlvely adjusted modules and B-complete projectively
adjusted modules over R= (0 B)’ respectively. Consider the commutative
diagram
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‘modzz(3 W) = modgx({) %) = moaz(§ )
(2.2) -éA ~ l @A \L G4

@pr(’g Ag ) (@nlly mod,,,(’([)1 Ag )

where @4 is the adjustment functor defined by the formula @4(X)=(Im ¢, X%, ¢)
and ¢:Im ¢Q®4Mp— X% is the map adjoint to the inclusion Im & <, Hompg(,Mp,
%) (see [20]). We denote by
ex: X —> O4X)

the canonical epimorphism. The functors .64 and @* are the restrictions of &4

N - A M /\pr A M .
to -modgr<0 B) and to mod,,,(0 B ), respectively.

If X=(X4, X%, ¢) is a module in one of the categories modgi({)l Aé‘, ) and
mod,,r(‘al Ag) then X% is in pr(B) and there are decompositions

PyXY) = (e, )P - BlenA)'n, Xj = (ens1B)» 11D - Ben,mB)'ntm

where Pu(X’) is the A-projective cover of the A-module X’. The bipartite
integral vector

(2.3) cdn(X) = (sy, ', Sn; Snst, **» Snam) E NPXNT
is called a coordinate vector of X (compare with [22, Section 17.97).

PROPOSITION 2.4. (a) The adjustment functors @4 and 64 in (2.2) are full
dense, and Ker @4=[pr(A)], Ker @A:[pr(}%lg, that is, Ker &4 and Ker @4 are
the two-sided ideals in modBi(R)j and in modﬁi(‘é Ag), respectively, consisting of
all homomorphisms having a factorz'zatiwrough a module in pr(A) viewed as a
full subcategory of modSi(R)s and of modﬁi(‘g jg ) via the algebra surjection
R— A.

(b) For any X in modBi(R)s and any Y in mody(R)s there exists a natural
isomorphism Homg(04(X), Y)=Homg(X, Y). For any Z in modSi(R)4 the map
e%: Homgz(Z, X)—Homg(Z, O4(X)) induced by the canonical epimorphism ey :
X — O4X) is an epimorphism.

(¢) Assume that X=(X}, X%, ¢) is an indecomposable module in mod3i(R)z.
Then OXX)=0 if and only if X=e;A for some j=1, ---, n. If O4X)+#0 then
64(X) is indecomposable, the natural epimorphism Xy—lIm ¢ is the A-projective
cover and

(2.5) cdn O@4(X) =cdn X.
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A S P /
(d) The functor «©4 : +mod5si [3 Z\éI)__) modpr<61 Ag) is a representation equiv-
alence.

Proor. The proof of Lemma 11.33 in extends to our situation. We
leave it to the reader. 0

Following an idea in and we shall show in Section 7 that for any
order /4 in a semisimple algebra C there is an equivalence of categories latt(A)
;mod,,,(‘(/)l ?), where /' is a maximal order in C containing 4. In the present
paper we shall apply this equivalence to the study of the representation type of
the category latt(/) of lattices over an order .

Let us finish this section by describing a functorial connection between the
category of propartite modules over a bipartite algebra and the category of
matrices Mat(;Mg) in the sense of Drozd defined as follows (see or [22,
Section 17.9]).

Let K and L be additive categories having the finite unique decomposition
property (see [22, Chapter 17]). Suppose that ;Mg is an L-K-bimodule, that is,

(2.6) M: K°XL —> b

is an additive functor, where Ab is the category of abelian groups. The objects
of Mat(;M) are triples (x, y, m), where x<ob K, y=ob L and meM(x, y). A
morphism from (x, y, m) to (x’, y’, m’) in Mat(tMg) is a pair (¢, ¢), where
p=K(x, x'), ¢=L(y, y') are such that M(x, ¢)ym=M(p, y")m’'.

[t is easy to check that Mat(;My) is an additive category with the finite
unique decomposition property. The direct sum of two objects (x, y, m) and
(x', v/, m’) of Mat(Mg) is the object (xPx’, yBy’, mPm’), where

, (m 0 M(x, y) M(x, )\ _ / /
m@m =g ) € (e Mirr yry) = MEDE', 58

under the obvious identifications. By a bipartite bimodule matrix problem we

shall mean the classification of indecomposable objects in the category Mat(,My).
Assume that the sets of representatives of the isomorphism classes of the

indecomposable objects '

indK: {xly Tty xn}) indL = {yl‘ ) y""}
of K and L are finite. We set
XK:)Q@“'@X,L aI'ld }7L:yl@“'®ym'

In this case we associate with the bimodule My the bipartite ring
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2.7) Ry = (‘4 M "9)

0 B
Where A:K(XK, XK>, B:L(YL, YL) and AM,B:HomB(M(XK, YL)? B).

THEOREM 2.8. Let ;Mg be an K-L-bimodule satisfying the conditions stated
above and let Ry be the bipartite ring (2.7) associated with My. If M is
finitely generated projective viewed as a left L-module then there exists an
equivalence of categories (see (2.10) below) p*: Mat(;Mg)— modBi(Ry,).

PrOOF. Let X=Xg, Y=Y, and let w: K—pr(4), o' : L—pr(B) be the
Yoneda equivalences given by the formulas w(—)=K(X, —), o' (—)=L(Y, —),
where pr(A) and pr(B) are the categories of finitely generated projective modules
over A and B, respectively.

We recall that the correspondences H— H(X) and T— T(Y) define equiva-
lences of categories

Add(K°P, b) = Mod(A4), and Add(L, Ab) = Mod(B°?)

where Add(K°P, 4b) is the category of all additive contravariant functors
H: K- b and Add(L, Ab) is the category of all additive covariant functors
T:L—Ab. By our assumption, M(X, Y) viewed as a left module over B=
End(Y) is finitely generated projective. This together with Yoneda’s Lemma
yields natural isomorphisms

2.9) M(x, y) = Nat(K(—, x), M(—, »))
=~ Hom4(K(X, x), M(X, v))
=~ Hom(K(X, x), L(Y, v)QXsM(X, Y))
= Hom(w(x), Homs(4M3, ©'(3)))
= Homp(w(x)Q4 M5, ()
where Nat(K(x, —), M(—, y)) is the abelian group consisting of all natural

transformations of functors K(x, —)— M(—, y). The fourth isomorphism in
(2.9) is a consequence of the fact that the map

P'Q@sM(X, V) —> Homp(uM3, P’), p'Q@mr—> (p— p'-@(m)),

is natural with respect to B-homomorphisms P’ — P}, and it is bijective if P/=B8B
or if P’ is a finitely generated projective right B-module.
It follows that the functor

(2.10) p*: Mat(;Mg) —> modBi(Ryp)

(x, v, m)— (o(x), ®'(y), p(m)), is an equivalence of categories, where g is the
composed isomorphism [2.9). m
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3. The Grothendieck group and relatively projective propartite modules.

Throughout this section we suppose that R is a semiperfect bipartite
K-algebra of the form [(1.1).

DEFINITION 3.1. The Grothendieck group Kq(mod5i(R)z) of mod3i(R)3 is the
abelian group generated by the isomorphism classes [ X]%f modules X in mod5:(R)$

subject to the set of relations [X]=[X']+4+[X”] corresponding to all exact
sequences

*) 0— X' — X —> X" —>0
in mod(R) with all terms in modBs(R)4. 0

LEMMA 3.2. Let R:(‘S1 Ag) be a basic semiperfect bipartite K-algebra.

(@) If 0-X—>Y—>Z—0 4s an exact sequence in mod(R) consisting of
propartite modules then cdn(X)+cdn(Z)=cdn(Y).

(b) The map X— cdn(X) induces a group isomorphism

(#%) cdn : Ko(modBi(R)4) —> Z™+™

and the elements [e,A], ---, [esA], [e,.1B], -+, [en.nB] form a set of free
generators of the group Ko(modBi(R)H).

If, in addition, dimg R is finite and C(A)=[aji;], C(B)=[b;;] are the Cartan
matrices of A and B (see [16]) with respect to the fixed complete sets {e,, -, e},
{eni1, =+, Cnym} [2.1) of primitive orthogonal idempotents of A and B, where
ai;=dimg(e;jAe;), bi,=dimg(e,Be;), then the following statements hold.

(c) The natural group homomorphism B : Ke(modB:i(R)#)— Ke(mod(R)), [X]
— [ X, makes the diagram

cdn
Ko(modBi(R)%)

(3.3) ¥:
Ko(mod(R)) —> Zm*m

Zn.+m

commutative, where dim is the group isomorphism induced by attaching to any
R-module X the dimension vector dim(X) of X, and d* is the group homomorphism
defined by the formula

3.4 d* = ”'(C(OA) c?m)tr :

In particular, the equality

c4) 0
0 C(B)

tr
— dcdn X

dim(X) = cdn(X)-(
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holds for any module X in modBi(R)s.

(d) The homomorphism (8 is an isomorphism if and otnly if tlee matrix
C(A)C(B) is Z-invertible. If this is the case then vzd”(c(‘(;l) C(%)“) for any
vector veZ™ ™,

Proor. The statement (a) follows immediately from the definition.

(b) It follows from (a) that the group homomorphism (#x) is well defined.
Given a module X=(X), X%, ¢) in modBi(R)s with v=cdn(X) there is an exact
sequence 0— X4 — X — X, —0, where

Xa= (e )P Plead)n, Xz =(ensuB)nt1D - DeninB)ntm.

It follows that the equality
n m
[X] :jzﬂSj[ejA]_*—i; Sn+i[en+iB]
holds in the group Ko(modBi(R)%) and therefore the set

Z= {I:elA]r Ty [enA], [en+lB]) ) [€n+mB:|}

generates the group K¢(modBi(R)#). Since cdnle,,;B]=§,,; for i=1, -+, m, and
cdn[e;A]=¢;, for 7<n, where & is the j-th standard basis vector of Z"*™, then
the set & is a free basis of the group Ko(modBi(R)s) and the map (x+) is an
isomorphism.

It follows from the definition that § is a well defined group homomorphism
and a simple computation shows that the diagram is commutative. Since
the remaining parts of (c) and (d) are easy, the proof is complete. O

Suppose that R is a semiperfect bipartite K-algebra of the form (1.1} An
important role in a study of the category mod5:i(R)# of propartite R-modules is
played by the following family of indecomposable modules in mod5i(R)s :

(3°5) Fl: ) Pn) Pn+1) '”}Pn-i-m
where P,=¢;R for j=1, ---, n+m and we set

P; = (¢;A, e;Mg, t;) for j < n,
where
2;M 5 = Homp(Ps(Homs(e; My, B)), B)

Pp(3Z) is the B-projective cover of a B-module zZ and t;: ¢;AQ s Mp— e;Mp is
the composed B-homomorphism

*

ev e
¢, AR 4 My = ¢;My —> Homy(Homp(e;Ms, B), B) —> ¢;Ms.
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Here ev:e;Mp—Homg(Hompg(e;Mp, B), B), m—(p—¢(m)), is the evaluation
homomorphism and

¢¥ : Homg(Homp(e;Mp, B), B) —> Homp(Ps(Homp(e; M5, B)), B) = e;Mp
is the map induced by the projective cover epimorphism
&j. PB(HomB(ejMB, B)) e HomB(ejMB, B).

We note that if My is a finitely generated projective B-module then e;Mp=¢;Mp
for any 7, and therefore P,=P,, :--, P,=P,.
For any j=1, ---, n and i=n+1, -+, n+m, we consider the homomorphisms

(Ej: ld): (PA(rad ejA), ejMB, t;) —_—> pj

3.6) .
0, &;): (P;, Pg(rad P,), &;) —> P,

where &; is the composed map P,(rad ¢;A)—rad(e;A) s ¢;A, ti=t; (§,Qid), ¢, is
the composed map Px(rad ¢;B)—rad(e;B)C, e;B=P,, P, isthe A-projective cover
of the kernel of the homomorphism

Homg(4Mp, ¢;): Homp(uM3, Pg(rad e;B)) —> Homp(4 M3, ¢;B)

and &;: P;Q4Mz— Pg(rad P;) is the adjoint map to the natural homomorphism
PiﬂHomB(AMB, PB(rad P,;)). U

A module N in modBi(R)3 is said to be relatively projective (resp. relative
injective) if for any short exact sequence 0— X—Y—Z —0 in mod(R), with
X, Y, Z in modBi(R)4, the induced map Homg(N, V) — Homg(N, Z) is surjective
(resp. Homg(Y, N)— Homg(X, N) is injective).

We recall from [24] that a subcategory A of Mod(R) is defined to be a
representation subcategory of Mod(R) if the following conditions are satisfied :

(a) A is a full subcategory of mod(R), which is closed under finite direct
sums, summands, extensions and isomorphic images.

(b) A has the finite unique decomposition property (see [22, Chapter 17).

The main homological properties of the category mod5i(R)# are listed in the
following proposition.

PROPOSITION 3.7. Suppose that Ii’::(é1 Aé[ ) is a bipartite semiperfect ring.

If the right B-module Mg is finitely generated projective or the algebra R is
finite dimensional over a field K, then the following statements hold.

(@) The category modBi(R)4 is a representation subcategory of mod(R).

(b) If X is an R-module in modSi(R)4 then there exists an exact sequence

3.8) 0 L, L, X 0
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in mod(R), where L, is a direct sum of copies of modules (3.5) and L, is a
projective B-module, which is a direct sum of copies of modules P,,,, -, Pnim.
If Mg is B-projective, L, is projective and pdp X<1.

(c) A module L in modBi(R)j is relatively projective if and only if
Exti(L, X)=0 for all X in modBi(R)5. The modules (3.5) form a complete
set of pairwise non-isomorphic indecomposable relatively projective modules in
modBi(R)%.

(d) If Mg is B-projective, then modSi(R)s is a hereditary subcategory of
mod(R), that is, Extk(X, Y)=0 for all X, Y in modBi(R)z.

PrROOF. (a) Follows immediately from definitions.

(b) Assume first that Mjp is finitely generated projective and let X=
(X4, X%, ¢) be a propartite R-module. Since X/ is projective and the right
B-module My is projective, then the R-module L =(X7%, X'@4Mp, id) is projective
and therefore L is a direct sum of copies of the projective modules P,=P,, -,

P,=P,. The maps idy’, and id x4 induce an exact sequence

0—>(0, Y5, 0) —> LB, X3 0) — X —> 0

in modBi(R)3, where Y is a projective B-module. Since the modules (0, Y5, 0),
(0, X%, 0) are direct sum of copies of P,.,, -, P, then by taking L,=(0, Y, 0),
L,=L&H0, X4, 0) we get the exact sequence required in (b), which is a projec-
tive resolution of X. Then pdz X=1 as required.

If R is a finite dimensional algebra the statement (b) follows from Prop-
osition 4.5 proved below.

(¢) If My is a finitely generated projective B-module then e,Mp=e;Mj,
P=P, ..., P,=P, and P,,,, -, P,,n are projective modules and therefore they
are relatively projective in modgi({)1 B)’ If R is a finite dimensional algebra
then according to [Proposition 4.5 below the modules P, ---, P, and Py, -, Prim
are relative projective. Then (c) follows immediately from (b).

(d) By our assumption and the final part of (b) the exact sequence is
a projective resolution of X and therefore (d) follows.

4, Propartite modules over artin algebras and representations of bocses.

The aim of this section is to describe a relation between propartite modules,
prinjective modules and representations of bocses.

Assume that B is an artin algebra and let D: mod(B)— mod(B°?) be the
standard duality. Then the Nakayama functor (see [28])
4.1) Nz = DHom(—, B): mod(B) —> mod(B)

induces the Nakayama equivalence
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4.2) Nz pr(B) — inj(B)

where pr(B) and inj(B) are the full subcategories of mod(B) consisting of pro-
jective and injective modules, respectively.

Assume that Xz is a module in pr(B). Then for any left module N in
mod(B°?) there is a natural isomorphism (see [16, (0.3)] or [22, 17.79])

4.3) XQN — Homp(D(N), Ng(X)).

Further, we observe that for any module M in mod(B) and X in pr(B) the
Nakayama functor Nz induces the natural isomorphism

4.4) N%: Homp(M, X) —> Homp(Ns(M), Np(X)), ¢+— Na(e).

For this purpose we note that the map
XQpHomg(M, B) —> Homp(M, X), x&@¢— (m— x-@(m)),

is natural in the B-module X and is bijective if Xy is finitely generated
projective. Then, by applving to N=Homgz(M, B), we get [4.4).

The main connection between propartite modules and prinjective modules is
given by the following result.

PROPOSITION 4.5. Suppose that R:(‘g %I) is an artin algebra.

(a) There exists a commutative diagram

modi; g Aé[) —T» prin 61 Ag)
(4.6) |6 IR

modpr<‘61 Aéf ) T/> modlc<‘61 ]‘g >

where JMp=Nyz(uM3), the right-hand functor @4 1is defined in [16, (3.1)], the
functors T and T' induced by Ny and defined below (see [22, 17.84]) are equiv-
alences of categories and the following conditions are satisfied.

(b) The functors T and T’ carry exact sequences to exact ones, induce the
group isomorphisms

Extp(X, V) = Exti(T(X), T(Y)) and Extp(Z, U) = Extpx(T'(Z), T'(U))

and the equalities cdn X=cdn T(X) and cdn Z=cdn T'(Z) hold for all X, Y in

modpr(o Aé]) and all Z, U in modpr(g1 Ag) where cdn T(X) and cdn T'(Z) are

the coordinate vectors of the prinjective modules T(X) and T'(Z) defined in [16].
(¢) The modules P, ---, P, (3.5) are relative projective in modpr<161 jg)
(d) There exists an equivalence of categories
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~ modB?(A

m°d35(A 0 B)

0 5)

where M is the bimodule
4.7) AMB = Hompg(Pg(Homp(4Mp, B)), B)

which is a projective B-module.

PrROOF. (a) Given a module X=(X}, X3 ¢) in modf;i(é Ag) or in

modpe(ff M) we set TO=T'(X)=(X4, Ra(Xp), §), where ¢ X'Da My Rs(X})
is the B-module homomorphism adjoint to the composed A-module one

6 R
X% —> Homp(,M3p, X%) = Homp(4Mp, Na(XE)).

The isomorphism follows from [4.4). It is clear that T and T’ are equivalences
of categories making the diagram [4.6) commutative.

The proof of (b) follows immediately from definitions.

(¢) 1t follows from (b) that a module X in modBi(‘g Aé’) is relative projec-
tive if and only if the module TX is prin-projective. Moreover, there is an
isomorphism P, --- ®P,=(A, Mg, t), where ,Mjp is the bimodule [4.7) and t=
cev: AQ,Mgz— My is defined in a similar way as the map ¢; in the formula
[35). Then it is sufficient to show that T(A, My, t) is a prin-projective module.
For this purpose we observe that applied to Xz=Mj, together with the
composed B-isomorphism

Rp(Mp) = DPg(Hompz(Mp, B)) = Ez(DHomyz(Ms, B)) = Ex(My)
induces the composed A-module isomorphism

Homz(AR 4 My, My) =~ Homyz(Mp, My
= HomB(A;IB, mB(MB))
= HOHIB(MB, EB(MB)):

which carries the B-homomorphism ¢: AR Mz— +My to the inclusion B-homo-
morphism s': Mp— Eg(Mp) from Mz=Rx(Mp) to its injective envelope Ex(Mp).
It follows that T(A4, Mp, t)=(A,, Ex(M3), s’), and in view of [16, Proposition
2.4] the module (A4, Eg(Mp), s') is prin-projective. This finishes the proof of (c).

(d) Let T(P)=P, for j=1, ---, n and let T(P,,)=°Q; for i=1, -, m. It

follows from Theorem 17.89 in that prin(’él %I)zmodgi(’g %I,) where

My = Hom("Q:® - ®°Qn, PD - PP,
T~l
— HOm(Pn.HEB EBPner, Pl@ @pn>
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= HomR(B, pl@ @Pn)
= Homjp(5B, AMB)%AMB

see (4.7)). is together wit yields and finishes the proof. |
( (4.7)). Thi h ith (b) yields (d) and finis! h f

COROLLARY 4.8. Suppose that R:(‘g .%I) is a bipartite artin algebra.

(@) The category modBi(R)4 is functo;ially finite. The categories modBi(R)z
and modp(R)s have Auslander-Reiten sequences, source morphisms and sink
morphisms.  The left-hand term of any Auslander-Reiten sequence in modBi(R)z
zprin({)1 Ag ) can be constructed from the right-hand term by applying two
partial Coxeter operators defined in [16, (3.8)] for prinjective modules.

(b) The homomorphisms (3.6) are minimal right almost split morphisms in
mod5i(R)3.

(¢) If R is a directed K-algebra, K is an algebraically closed field
and bp(x, y)=30 ;-1 x;¥:dimg(e;Ae;)— 271 §%1 XY nss dimg Hompg(e:M, e, B)+
S X ysdimg(esAey) is the Z-bilinear form of R, them for any pair of
modules X and Z in modBi(R)z

(4.8") br(cdn X, cdn Z) = dimg Homg(X, Z2)—dimg Exth(X, Z).

Proor. The statement (a) is a consequence of [Proposition 4.5, and [16,
Theorem 3.4]. The statement (c) is a consequence of the exact sequence
in (see also the proof of Proposition 11.93 in [22]).

(b) It follows from [Proposition 4.5 that f is a right minimal almost split
morphism if and only if 7'(f) is right minimal almost split. Since one easily
check that the functor T carries the morphisms (£;, id) to the right minimal
almost split morphisms described in [16, 2.5] then (§;, id) is minimal right
almost split. Since the fact that (0, §;) is minimal right almost split follows
by a straightforward calculation then (b) follows. O

Now we shall relate the categories of propartite modules with categories of
representations of bocses. We recall that a bocs is a pair

B = (B, 5V»)

where B is a K-algebra and 3V is a B coalgebra, that is, V is a B-B-bimodule
equipped with two B-B-bimodule maps ¢: V— B (the counit) and p: V—-V&zV
(the comultiplication), satisfying the usual counity and coassociativity laws
(1®e)p=(eR)p=idy and p(1RQu)=p(p®1).

If S is a finitely generated K-algebra then the category rep(¥, S) of left
S-module representations of the bocs B=(B, gVp) has as objects the S-B-bimod-
ules ¢Xg in mod(B®S°P), which are finitely generated projective when viewed
as left S-modules. A morphism from Xz to sYp is the S-B-bimodule homo-
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morphisms f: s XQeVp— sY s The composition of f:sXz—sY 5 and g: sV
—gZp in rep(B, S) is defined to be the composed S-B-bimodule homomorphism
1Qu f&1
sXXs Vg sXQsV&®sVs
(see [2], [4], [5]). We set repx(B)=rep(B, K) and we call it the category of
K-linear representations of 8. For the concepts of a free triangular bocs and
the representation type of a bocs we refer to [2], [4], [5].

PROPOSITION 4.9, Suppose that Rz(é g) is a bipartite finite dimensional

algebra over an algebraically closed field K.
(@) There exist a free triangular bocs By and an equivalence of categories

> sYRpVp—— 523

op op op
(4.10) Fi: modg;(A®S M&S )M

0 BRS®Jnesor > TPDR S)

B®s°
for any finitely generated K-algebra S. In particular the functor
(4.11) Fx : modBi(R)s —> repx(Br)

s an equivalence of categories.
(b) For any module L in fin(S°?) and any S-R-bimodule sX 4 in the category
(ARSP MRSor\4es°P . . .
modgr( 0 B®S°p>g®sop there exists an isomorphism

(4.12) Fr(LQs Xp) = LQs Fs(sXr)

which is functorial with respect to the S-homomorphisms L — L' and S-R-bimodule
maps sXrp— sXg.

PrRoOOF. Let M, =Homz( M3z, B) and we view it as a B-A-bimodule. For
any finitely generated K-algebra S we consider the category rep(sM,; S) of
left S-representations of the bimodule zM,, whose objects are the triples
(sVi, sV4 t:sVi—sV'QsMy), where sV, and sV%4 are bimodules which are
finitely generated projective over S, and ¢ is an S-A-bimodule homomorphism
(see [4]). The morphism from (sV3, sV4, 1) to (sUg sU%, s) is a pair (f, f”),
where f7:sVj—sU% and f':sVi— U} are such that (f'®id)t=sf”. Let us
define the equivalence of categories

AQSe® M®S°P)A®S°p

Fs: modgﬁ( 0 BRS°P

—> rep(BMA ;S)

B®SOP

by the formula Fs(sX%, sX% ¢)=(sX%, sX}4 &), where  is the composed S-A-
bimodule homomorphism

% —
X4 —> Homp(,Mp, X3) = sX"QpsM,4.
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Let Bz be the bocs associated with the bimodule zM, in [4, Proposition 11] or
in [5, Theorem 1.1] (see also the proof of Propoesition 6.1 in [2]) and let

4:rep(zMa; S)—rep(Bg, S) be the equivalence of categories defined there.
Applying Drozd [4, Propositions 11 and 13] and [5, Theorem 1.1] (see also the
proof of Proposition 6.1 in [2]) it is easy to check that the composed functor
Fs=F¥%-Fj% satisfies the required conditions. O

5. Varieties of propartite modules.

Suppose that R:<‘3 A}g]) is a bipartite finite dimensional algebra over an

algebraically closed field K and we fix primitive orthogonal idempotents [2.1).

Throughout this section we use the notation introduced in [22, Section 14.5].
Given a dimension vector d=(d,, dg)€Z" X Z™ we denote by mod#(d) the

affine variety (in Zariski topology) of all R-modules X of the dimension vector

d, that is dim(X)=d (see [14], [15]). Let
(5.1) * 1 Gl(d) Xmod®(d) — mod®(d)
be the action of the algebraic group
Gl(d) = GI(d)XGl(d5) =TI Gl(dy, K)
on the variety mod®(d). We denote by mod3i(d, R) and indmodB;(d, R) the sub-

varieties defined by propartite modules and indecomposable propartite modules
respectively. To any bipartite coordinate vector

v="_(vy4, vp) € Z"XZ™ = K\(modBi(R))
we associate the standard projective modules
Pu) = (e, AP - Plea Ay ™
B() = (€n 1 B)’** DD -+ PlensmB)***™

over A and B, respectively. If X=(X%4, X%, ¢) is a propartite R-module such
that X, =P/,() and X%=P4(v) then cdn X=v and (¢) vields dim (X)
=d®, where d“zv-(c(OA) C(OB))tr (see [3.4).

Let us denote by modfi(d®, R) the subvariety of modfi(d®, R) defined by all
modules X=(X7}, X%, ¢) with X,=P%(v) and X3=P%(v), and let

Gl(d") = Gl(d%) X Gl(d3)

(6.2)

be the algebraic subgroup of Gl(d®) consisting of all pairs g=(g,, gp) such that
g4* Pi(v)=P4(v) and gp* P§(v)=P}).
Let AzS Br be representation subcategories of mod(R). We denote by
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A, the subset of the variety mod®(d) defined by the modules in Az of the
dimension vector d&N**™, Following we say that p is an open sub-
category of @y if for any d=N"*™ the set By, » iS a subvariety of mod#(d)
and Ay g is an open subset of B p).

LEMMA 5.3. (a) Under the notation above moddi(d, R) is an open subset of
mod#(d), indmodpi(d, R) is a constructible subset of modBi(d, R) and modSi(R) is
an open sub/cczegory of mod(R).

(a”) -modﬁf(f(é)1 ]g) is an open subcategory of modg,f(‘al jg)

(b) For any vector vEN"XN™ the variety modfi(d®, R) is a closed subset
of modSi(d®, R) which intersects every Gl(d)-orbit of modpi(d®, R) in at least
one point. If X=(X4 X%, ¢) and Y=, Y%, ¢) are modules in modBi(R) such
that X,=Y4=P4(v) and X3=Y%=P3), then X=Y if and only if X and Y
belong to the same Gl(d®)-orbit of modfi(d®, R).

PROOF. Apply the arguments used in [22, Section 15.2] and [8, Lemma
2.12]. O

For any veN"XN™ we consider the affine algebraic varieties
propy = Homp(P4(v)®4 Mp, P5(v)) and GF = Aut,P4(v)XAutzP3(v)
with respect to Zariski topology, and the natural algebraic group action
(5.4) * : GF X propf —> propy

where G£ is viewed as an algebraic group. We call prop# the matrix variety
of propartite R-modules of coordinate vector ve N"* ™,

LEMMA 5.5. For any coordinate vector v N* X N™ there exist a K-variety
isomorphism t: props —modpi(d®, R), and an algebraic group isomorphism T :
Gf— Gl(d®) making the following diagram commutative

GZx propZ —>  propy
l X7 l T
%
Gl(d®) Xmodpi(d®, R) —> modpi(d®, R).
PrOOF. Apply the arguments used in [22, Proposition 15.12] and in [23,
Proposition 2.3]. 0
6. Representation type.

In the definition of tame and wild representation type we shall need the
following notation (see [22, Chapter 14], and [24]). Let K[y] be the K-algebra
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of all polynomials in one indeterminate y. Given a non-zero polynomial A€ K[y]
we denote by K[y], the localization of K[y] with respect to the multiplicative
system {A;};en. For any A€K we consider the simple K[y]-module

6.1) K;=K[1/(y—4.

Let R and A be K-algebras. We recall from that an additive functor
H: fin(A)— Mod(R) preserves the indecomposability if H carries indecomposable
modules to indecomposable ones. The functor H is said to respect the isomor-
phism classes if the existence of an isomorphism H(X)=H(Y) for X, YV in
mod(A4) implies that X=Y holds.

The functor T : fin(4) — Mod(R) is defined to be a representation embedding
if T is exact, preserves the indecomposability and respects the isomorphism
classes.

Let Az be one of the categories of the diagram [2.2). A representation
embedding T : fin(A) — AzSMod(R) is defined to be smooth if T is of the form
T=(—)QR4 Mg, where sMg is a A-R-bimodule having the following properties :

(sl) 4Mpg is flat as a left A-module and is finitely generated as a /-R-
bimodule (see [5, (M1)-(M4)7]).

(s2) The A-R-bimodule sMp viewed as a right R®.°P-module belongs to
ArgaoP.

We define Az to be of wild representation type (resp. smooth wild) if there
exists a W-R-bimodule ¢y M which is flat as a left module over the free algebra

W= K<t1, te)

of polynomials in two non-commuting indeterminates #, and f,, and ¢ Mz induces
a representation embedding functor (resp. smooth representation embedding)

M = (—)Qqp M : in(W) —> Az S Mod(R).

It follows from the wildness correction lemma [24, Lemma 2.6] that one can
suppose without loss of generality that the bimodule M is free when viewed
as a left 9-module. If, in addition, R is a finite dimensional algebra then one
can suppose without loss of generality that the bimodule M is finitely generated
free when viewed as a left 9/-module.

Moreover, it follows from [24, Theorem 2.7] that the category Az is of
wild representation type if and only if there exists an exact functor

T : mod 10{ gS)HJR, which preserves the indecomposability and respects the

isomorphism classes.
It follows from below that the category mod5:i(R)s is of wild
representation type if for any finitely generated K-algebra S there exists a
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smooth representation embedding M=(—)®s M : fin(S) — modBi(R)4. For some
technical reasons it is more convenient sometimes to work with the smooth
representation embeddings than with representation embeddings.

DEFINITION 6.2. Let S be a finitely generated K-algebra, let 85 be one of
the categories fin(S), ind(S) and ind,(S) and let R be a bipartite K-algebra.
Suppose that Ap is a representation subcategory of Mod(R), and

6.2") 1\7[(1), o M Bg —> Ap

are additive functors of the form MY =(—)Rs M§’, where sM§, ---, sM§ are
S-R-bimodules. The family (6.2") is defined to be an almost S-parametrizing
family for the category ind,(Ag) if the following conditions are satisfied :

(P1) All but finitely many modules in ind,(Ag) are isomorphic to modules
in Im MU - Ulm M®,
P2) M@, -, M are finitely generated as S-modules.

If the bimodules sM§, ---, sM§ are finitely generated as S-R-bimodules and
satisfy the conditions (sl) and (s2) we call the family smooth.
The almost S-parametrizing family (6.2”) is defined to be a strict almost

S-parametrizing family for the category ind.(Ag) if the following condition is
satisfied :

(P3) The functors (6.2') preserve the indecomposability and respect the
isomorphism classes.

Let Agr be one of the categories of the diagram (2.2). We define Az to be
of tame representation type (resp. of smooth tame) if for any bipartite coordinate

vector v&N"*™ there exists a polynomial hK[y] and a family of additive
functors

(6.3) M®, o) M® :ind,(K[y]s) —> Az S Mod(R)

forming an almost K[y].-parametrizing family (resp. of smooth family) for the
category ind,(Ag).

Given a number v=1 or a vector vEN"'™ we define pl,(v) to be the
minimal number s of functors (6.3) forming an almost K[y],-parametrizing
family for the category ind,(Az). The tame category Az is defined to be of poly-
nomial growth if there exists an integer G =1 such that gl,(v)<[v|¢ for all
vectors v&N™*™ such that |v||=Z74"v;=2 (compare with [22, Section 15.10]).

O

It follows from Lemma 6.4 below that our definition of tameness is equiv-
alent to that one given in [24]
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LEMMA 6.4. Suppose that Rz(é1 Aé") is a basic finite dimensional bipartite

K-algebra.
(@) The category modBi(R)g is of tame representation type if and only if
for any integer tEN there exist a polynomial heK[y], and additive functors

M®, ..., M® : ind,(mod(K[y],)) —> modB:(R)#

where M =(—)Qxry1, M§, forming an almost parametrizing family for the
category ind,(modBi(R)$).

(b) The category modBi(R)s is tame of polynomial growth if and only if there
exists an integer G=1 such that pl()<t° with Ap=modbi(R)4, for all integers
1=2.

ProOOF. Given veN""™ we set |vi|=27"v; and we denote by d°&N"*™
the vector v-(C(OA)C&,))tr (see [3.4). It follows from Lemma 3.2 (c) that if
X is a module in modBi(R)s and v=cdn(X), then dim(X)=d". Hence we con-
clude that for any veN™*™ the inclusion ind,(mod5i(R)#)Sind,(modBi(R)4) holds
up to isomorphism with »=|/d"||. Furthermore, for any =N the inclusion
ind,(modbi(R)$) S\ Uver v ind,(modBi(R)§) holds up to isomorphism, where L(t)=
fveN"™; ||d°|=t}.

Since the kernel of the group homomorphism de: Z**™— Z"*™ p—sd?,
restricted to N**™ is zero then for any d<=N"*™ there are only finitely many
vectors vEN™*™ such that d=d® (see also [9]). Hence we conclude that the
set L(¢) is finite for any ¢, and therefore the lemma follows from the definition
of tame representation type and of polynomial growth. |

THEOREM 6.5. Suppose that 1’?——*(‘61 %) s a basic finite dimensional algebra

over an algebraically closed field K, and we have fixed a set of primitive orthog-
onal idempotents (2.1). The following conditions are equivalent.

(@) The category modRBi(R)3 is of tame representation type.

(@) The category modBi(R)§ is of smooth tame representation type.

(b) For any veN"XN™ there exists a constructible subset C(v) of the sub-
variety indpropf of prop# (defined by the indecomposable propartite modules) such
that GEx C(v)=indprop? and dim C(v)<1.

(¢) The category modRi(R)s is not of wild representation type.

(¢") The category modBi(R)g is not of smooth wild representation type.

(@) The category repg(Br) is of tame representation type.

(d") The category repx(Br) is not of wild representation type.

ProoF. The implications (a’)= (a) and (c)=(c’) are obvious. The implica-
tions (a)=>(b)=(c) can be proved by a slight modification of the arguments in
[4], [14], 122, Corollary 15.17, Theorem 15.13], or in [10, Section 3].
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It follows from [Proposition 4.9 (b), [5, Theorem 1] and the definition of
smooth wild and smooth tame representation type that mod3i(R) is of smooth
wild (resp. smooth tame) representation type if and only if the category repx(Bz)
is of wild (resp. tame) representation type. Since (d)& (d’) follows from or
[5] then the implications (c’) & (d’) < (d)=)(a’) follow and the proof is complete.

O

COROLLARY 6.6. Under the assumption of Theorem 6.5 the following con-
ditions are equivalent. P

(@) The category ogo\dgﬁ(R)é is of tame representation type.

(@’) The category modBi(R)§ is of smooth tame representation type.

(b) For any vE N"XN™ there exists a constructible subset C(v) of the variety

. N . P
indemod}i(d®, R):= indmod}i(d®, R)N+mod3i(d®, R)

such that Gl(d")* C(v)=ind-mod?i(d®, R) and dim C()<L.

T
(¢) The category ~modBi(R)# is not of wild representation type.
(c’) The category ~modB¥(R)$ is not of smooth wild representation type.

Proor. The implications (a’) = (@)= (b)= (c)=(c’) follow in a similar way
as in the proof of [Theorem 6.5
0 /\ .
(¢/Y)=(a’) Since according to Lemma 5.3 *modB8i(R)# is an open subcategory

of modgig?)\é then by [Proposition 4.9 the equivalence /FQ : modBi(R)3 . repx(Br)
carries +modhi(R)s to the open subcategory Fx(-modpi(R)s) of repx(Br) and
Theorem 2 in [5] applies to F K(-go\dg:(R)g). If (¢’) holds then from Proposition
4.9 it follows that the category FK(»go\dgi(R)jé) is not of wild representation
type, and by [5, Theorem 2] it is of tame representation type. Applying
[Proposition 4.9 again we conclude that (a’) follows. O

We say that a functor T : A—B preserves tame (resp. wild) representation
type if the tameness (resp. wildness) of A implies the tameness (resp. wildness)
of @. The functor T reflects tame (resp. wild) representation type if the
tameness (resp. wildness) of @ implies the tameness (resp. wildness) of A.

As a consequence of the proof of we get the following.

COROLLARY 6.7. The functor Fy:mod5bf ‘61 %I)—Wep;{(%) (4.11) preserves

and reflects representation types. O

COROLLARY 6.8. (a) The functors T and T’ in diagram (4.6) preserve and
reflect wild and tame representation type.

(b) The category prin(R)g is either of tame representation type or of wild
representation type, and these types are mutually exclusive.
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PROOF. (a) It follows from [Proposition 4.5 that T and 7’ carry exact
sequences to exact ones. Then the corollary is a consequence of [24, Theorem
2.77 for the wild representation type. The statement (a) for tame representa-
tion type follows from [9, Lemma 2.3]. The statement (b) follows from (a)
and [Theorem 6.5 O

We shall observe below that the functors @4 and +@4 lower and lift
representation embedding functors with the domain ind,(fin(K[y])) in the
following sense.

DEFINITION 6.9. Let S, R and A be K-algebras and assume that S is a
commutative domain. Let A be a representation subcategory of Mod(4) and
Bs<Mod(S) be one of the categories mod(S), fin(S), ind(fin(S)) and ind,(fin(S)).

We say that an additive functor H: A— Mod(R) lowers the representation
embedding functor M=(—)Rs M : Bs— ASMod(A) defined by the S-A-bimodule
sM, if there exist a non-zero element ~&S and a representation embedding
M'=(—)Rs, Mz: 85, —>Mod(R) defined by the S,-R-bimodule s,M% and the
following conditions are satisfied :

(el) The diagram

A
M
s, Mod(R)

is commutative up to a natural equivalences of functors, where S, is the local-
ization of S at h and ,M=S,Qs M.

(e2) Given a module X in Bs, the module »M(X) is indecomposable if and
only if M'(X) is indecomposable, and there is isomorphism M'(X)=M'(Y) if and
only if there is an isomorphism ,M(X)=,M(Y).

We say the functor H: A—Mod(R) [lifts the representation embedding
functor M: Bs— Mod(R) if there exist a non-zero element A=S and a repre-
sentation embedding M’ : Bs, — ASMod(4) such that the diagram

|
H
WM
Bs, — Mod(R)

is commutative up to a natural equivalences of functors and the condition (e2)
is satisfied. O

We recall from [23, Proposition 2.4] that for any finite poset J the
adjustment functor 6 : prin(KJ)— mod,(KJ)= J-spr lowers the representation
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embedding functors M :ind,(mod(K[v],))— prin(KJ) and lifts representation
embedding functors M : ind,(mod(K [y],)) — modsp(KJ). The differential &, 5 :
I-sp— 0, » I-sp with respect to a suitable pair (a, b) of elements of a poset [
has also the lifting and the lowering property for representation embedding
functors with the domain ind,(mod(K[y],)) (see [22, Lemma 15.47]).

THEOREM 6.10. (a) The adjustment functors @4, 04 and *O4 in the com-
mutative diagram (2.2) lower and lift representation embedding functors with
the domain ind,(mod(K[v]1.)).

(b) The adjustment functors O4, 64 and 64 preserve and rveflect tame
representation type and the polynomial growth property.

(¢) If the algebra (61 Aé[) s finite dimensional then the functors

AM

o /\(AM)

—> modpr 0 B

), @A:go\dgf—(A M

64: modg§(A M 0 B)

0 B ) ”—’ m°dpr<

preserve wild representation type.

ProoFr. (a) If (’61 ‘%I ) is finite dimensional then in view of [Proposition 4.5

and the statement (a) follows from [9, Section 2]. If (61 Aél ) is
infinite dimensional we can prove (a) by applying the arguments used in [9,
Section 2] (see also [23, Proposition 2.4]).

The statement (b) follows from (a) and [Proposition 2.4 (c). The fact that
the functors preserve tameness can be also proved by the arguments applied in
the proof of (c) below.

(¢) Assume that the category modg?(fa1 Ag ) is of wild representation type.
It follows from and the wildness correction lemma [24, Lemma 2.6]
that it is of smooth wild representation type and therefore there exists a
representation embedding

U = (—)Rq Us: fin(3) —> modZi(R)4

defined by an W-R-bimodule ¢ Ug=(9U%, U%, t) such that gU is finitely
generated free 9¥-module and the bimodules 4, U’, U4% are finitely generated
projective as bimodules. It follows from [22, Proposition 14.10] that there
exists a full faithful representation embedding

N = (—)®4Ny : fin(4) —> fin(%)

where A=K[t, t.] and 4Ng is a A-I-bimodule which is finitely generated free
as a left A-module. It follows that sNQg Ur=(UNQqy U’ INQq U, 1R01).
Since L4 NQq Us=UN(L) for any L<fin(A), the right B-module L& JNRq U
is by definition finitely generated projective.
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Since ,Mp is finite dimensional then Pz®@Homp(,Mpz, B)=Homz(4Mp, Pz)
for any projective right R-module Pz, and for any L<fin(A) there are natural
isomorphisms

(%) L&®sHomp(uMp, ANQqUjp) = LRANKRQq U”QpHomp(4Mp, B)
= Homp(uMp, LQINQQqy Uj).

Consider the commutative diagram of /-A-bimodules

1Rt
ANQq Uy —> Hompg(uMp, ANQq U%) —> 4H4s —> 0

() l l id l id

Im(l@f) s HomB(AMB, AN@CW U%) —> AHA —> 0,

It follows from our assumption that 4H,=Coker(1&)i) viewed as a .-A-bimodule
is finitely generated and since dimy A is finite then 4H is a finitely generated
A-module. By Lemma 6.11 below there exists a polynomial h&< A such that the
localization of 4H, with respect to & is zero or a finitely generated free module
over the localization 4, of 4. By a localization with respect to & we get the
diagram (xx), with A=KT[t, t,], and 4H4 a finitely generated free .4-module.

In view of the isomorphism (x) the tensoring of the diagram (x*) by a
module L in fin(A) vields the commutative diagram

1X1Xt
L& 4NQgy Uy — Homp(uMp, LOANRyUg) —> L&OsHs—> 0

| Lid i

LR4Im(1®:H < Homg(uMs, LRANRyUg) —> LQ4Hs—> 0

with exact rows. It follows that @4 LRiNRqy Ur)= LR 104(4NRQq Ur) and
therefore the functor (—)Q4O4(UNQRq Ug) : in(K [¢,, t,]s) — modp(R)A is a rep-
resentation embedding. This proves that the category mod,(R)j is of wild
representation type (see [24, Theorem 2.7]). The second part of (c) follows in
a similar way. O

For a convenience of the reader we include the following well-known result

(see [1].

LEMMA 6.11. Let A be a noetherian domain and let N be a finitely gener-
ated A-module. Then there exists a non-zero element h<A such that the
localization Ny, =NQ A, of N with respect to the multiplicative system {h™},en
is zero or a free module over the localization A, of A.

a
PrOOF. Choose an exact sequence A™— A™— N—0. Assume that Ac
M., (A) is the mXm matrix of a in the standard basis of A™. If Q is the field
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of fractions of 4 then there exist matrices B, C€Gl(im, Q) such that C"'AB=
diag(l, -+, 1, 0, ---, 0) is the diagonal matrix with u identities and m—u zeros
on the main diagonal. Let A=/ be a non-zero element such that B, B™, C, C!
eGl(m, 4,). We get the commutative diagram of A,-modules

ap
A® —> AP —> N, —> 0

FERY:

AR A N’ 0

with exact rows, where 8 and y are the isomorphisms defined by B and 4, and
0(x1, =y xm)=(xy, -, x4, 0, ---, 0). It follows that N’ is a free A,-module of
rank m—u and there is an isomorphism N,=N’. O

COROLLARY 6.12. Let R:(‘a1 %I) be a finite ﬁiﬁlensional algebra and let

ArSmod(R) be one of the categories mod,(R)s or mod,(R)3. Then the follow-
ing conditions are equivalent.

(@) Jg is of tame representation type.

(b) For any coordinate vector v&EN™™ there exists a constructible subset
C(v) of the variety ind A v, gy C Ao m (see Section 5) such that dim C(v)<1 and
Gl(d®)* C(v)=ind A g, p).

(¢) Ag is not of wild representation type.

Proor. The implications (a)= (b)=>(c) can be proved by standard algebraic
geometry arguments as in Theorem 15.13 and Corollary 15.17 of (see also
[10, Section 37). For the proof of (¢c)=)(a) we denote by A% one of the cate-
gories mods;,(R)j or @g;(l?)é respectively. Let @:Jz;— Agr be one of the
adjustment functors ©4 or @4, respectively (see [2.2)).

If (¢) holds then in view of (¢) the category Ay is not of
wild representation type and by [Theorem 6.5 and [Corollary 6.6 it is of tame
representation type. Since according to (b) the functor O preserves
tameness then Ap is of tame representation type. This finishes the proof. [

7. Lattices over orders and propartite modules over bipartite algebras.

In this section we suppose that K is an algebraically closed field, D is a
K-algebra which is a complete discrete valuation domain, F is a field of fractions
of D, p is the unique maximal ideal of D and D/p=K.

We assume that /A is a D-order in a semisimple F-algebra C, that is,

(0) A viewed as a D-module is finitely generated free, and

(0,) A is a D-subalgebra of C containing an F-basis of C, i.e., AF=FA=C.
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We recall that a right 4-module X is said to be a right A-lattice if X is
finitely generated and X is free when viewed as a D-module [17]. We denote
by latt(A) the category of right /-lattices.

Throughout we fix the following notation. Given X in latt(/4) we view the
module

(7.1) XF:=XQpF

as a right 4-module in a natural way. Since C=F/4 we can view XF as a
right C-module. Moreover we view X as a /-submodule of XF along the
A-monomorphism X — X®p F=XF.

Given X in latt(4) we denote by rk,X the D-rank of X. For any number
reN we denote by ind,(latt(4)) the full subcategory of latt(/) consisting of
pairwise non-isomorphic representatives of the isomorphism classes of indecom-
posable A-lattices of D-rank r.

Following an idea in [21, Example 3.8] and in [22, 13.0] we shall study
the category latt(A4) and its representation type by means of propartite modules.
For this purpose we fix a D-order I such that

Acsl'cC

and /" is maximal in C. It follows that /[ is a hereditary D-order and since
I'//4 is a finitely generated torsion D-module then there exists a two-sided
I'-ideal I such that

(7.2) I Srad(4), Icrad(l’), dimgl/I<c and IND=(p%),

for some c=1, where p is a generator of the maximal ideal pSD.

Throughout this paper we fix a maximal D-order I' and a two-sided ideal
I satisfying the condition and we consider the surjection ¢: Ap— A,
of bipartite K-algebras, where

(7.3) Ar = (4 }:) Ir=(4 B) and A=a/1c.B=171

is a K-algebra injection induced by the inclusion AZSI'. It follows from our
assumption that A, is a finite dimensional K-algebra. Throughout we shall
view mod(1 ) as a full subcategory of mod(Ar).

We recall from that 4 and I are semiperfect K-algebras in the sense
that their finitely generated modules admits projective covers. It follows that
Ar is a semiperfect noetherian D-algebra.

Throughout we suppose that 4 is a basic K-algebra and we fix complete
sets

(7.4) {71, =, pat E A and  {pnsr, =, Premt S 1



Prinjective modules, propartite modules 57

of primitive orthogonal idempotents of 4 and of I, respectively. It follows
that {5, ~*, %n, Nns1, ***, Yn+m} IS a complete set of primitive orthogonal idem-
potents of the bipartite K-algebra Ar. Since /4 is basic then A/rad(A)=
Kx -+ XK (n copies). Let

¢;=17;=1n;+1

be the coset of y; modulo I for j=I1, -, n+m. Then the sets
{eb Ty en} S A and {en+1: Ty en+m} g B

are complete sets of primitive orthogonal idempotents of A and of B, respec-
tively. Moreover the algebra A is basic.

Given a A-lattice X and a [-lattice Y the projective covers P4(X) and Pr(Y)
of X and Y have the forms

PAX) = (. A)*1D -+ D A)¥n
and

Pr(Y) = (7]n+lr)wn+1@ @(vn+mr)wn+m-

Following and the coordinate vectors of the A-lattice X and of the
I-lattice Y are defined to be the vectors

(75) Cdl’l(X) - (wh ) wn) 55 Nn, Cdn(Y) - (wn+1y ) wn+m) = Nm.

Moreover given a vector veN" we set |v|=v,+ -+ +v,, and we denote by
ind,(latt(A)) the full subcategory of latt(4) consisting of representatives of the
isomorphism classes of indecomposable A-lattices X with cdn(X)=v.

Let A be a D-order in a semisimple algebra C. We recall from that
a D-order /A is said to be of wild lattice type (or the category latt(A4) to be of
wild representation type) if there exists a representation embedding functor
T : fin(w) — latt(A), where W=K<¢t,, 1,y is the free algebra of polynomials in
two non-commuting indeterminates ¢{; and ¢,. It is well-known that every such
a functor T is of the form T=(—)Rqy M4, where oM, is a W-A-bimodule. In
view of [24, Lemma 2.6 and 3.6] one can suppose without loss of generality
that the bimodule M is finitely generated free when viewed as a left 9%-module.
Moreover, it follows from [24, Theorem 3.5] that the category latt(1) is of
wild representation type if and only if there exists an additive exact functor
T: mod(lo{ gs)alatt(/l) which preserves the indecomposability and respects the
isomorphism classes.

DEFINITION 7.6. Let S be a finitely generated K-algebra, let $¢ be one of
the categories fin(S), ind(S) and ind,(S) and let 4 be a D-order in a semisimple
F-algebra C. Suppose that

(7.6") MO, . M®: B —> latt(A)
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are additive functors of the form MW =(—)RsM’, where sM®P, -, M are
S-A-bimodules. The family (7.6") is defined to be an almost S-parametrizing
family for the category ind.(latt(4)) if the following conditions are satisfied :

(P0O) The left S-modules sM®, ..., JM® are flat.

(P1) All but finitely many lattices in ind,(latt(1)) are isomorphic to lattices
in Im MU - Ulm M.

(P2) sM$, -, dM$ are finitely generated as S-/-bimodules,

P3) MP, -, M viewed as D-modules are torsion-free.
The family (7.6”) is defined to be a weak almost parametrizing family for the
category ind,(latt(4)) if it has the properties (P1) and (P2). The almost
S-parametrizing family (7.6’) is defined to be a strict almost S-parametrizing
family for the category ind,(latt(A)) if the following condition is satisfied :

(P4) The functors (7.6") preserve the indecomposability and respect the
isomorphism classes. O

We define A to be of tame lattice type if for any vector v&N" there exists
a polynomial h€K{[v] and a family of additive functors

(7.7 MO, o M :ind (K[ y]a) —> latt(A)

forming a weak almost K[ y],-parametrizing family for the category ind,(latt(1)).

Given an integer v=1 or a vector v&N" we define g1 (V) to be the
minimal number s of functors forming an almost K[y],-parametrizing
family for the category ind,(latt(4)). The D-order A of tame lattice type is
defined to be of polynomial growth if there exists an integer G=1 such that
Ly Z W)€ for all vectors veN™ such that ||v]=2 (compare with [22,
Section 15.107). OJ

It follows from Theorems 3.6 and 3.8 in that our definition of D-orders
of tame lattice type and of wild lattice type is equivalent to that one given by
Drozd and Greuel in [6]. Therefore the results of Drozd-Greuel yield that
any D-order A is of tame or of wild lattice type and these types are mutually
exclusive. Note that if A is of finite lattice type then it is of tame lattice type.

Now we are going to reduce the study of the category latt(4) to the study
of I'-complete propartite (‘61 ?)modules and to B-complete propartite (‘61 g)
modules by means of the commutative diagﬁcin (7.14) below. The main idea
for that is to view A-lattices as modules in modp,(‘g ;) We do it by defining
the pair of adjoint functors

I AT
7.8) latt(1) T mod,,
( resg ’ (0 P>

where res, is the restriction functor defined by the formula ress(Z7, Z#, ¢)=2.
The induction functor 9r is defined as follows. Given a A-lattice X we set
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(7.9) IrX)= (X, XI', 1)

where XI'SXF=X®, F is the [-submodule of the C-module XF generated by
X, and

(7.10) /,z:X(X)AFr——%XF

is the I™-homomorphism such that the 4-homomorphism f: X —Hom/(4["r, XI")
=~ XI" adjoint to g is the embedding X c, XI". Note that Ker p is the I'-submodule
of X®,1I' consisting of all D-torsion elements and

XI' = (X®sI")/Ker p.

If f: X—Y.is a homomorphism of A-lattices we set Jr(f)=(f, f): IX)—I(Y),
where f is a unique I'-homomorphism making the diagram

X ., XI
Vo
YV ., ¥YI'
commutative. It is easy to see that 4 is a covariant K-linear functor.

~ ProPoOSITION 7.11. (a) For any A-latlice X and any module Z=(Z), ZT, ¢)
mn mod,,x(()l ?) the restriction map

ress: Homy (97 (X), Z) —> Hom (X, ress(Z))

(f', [/ f', is an isomorphism and it is natural with respect to the homomor-
phisms X —Y and Z —U. In other words, the functor r is left adjoint to the
exact functor resy. Moreover (see (7.4))

(7.12) - ledn(X )| < m|edn(X)||(rkp A1).

(by The functor resy is full faithful and establishes an equivalence of cate-

gortes
P

(7.13) res . modp,<61 ?) —> latt(A).
The quasi-inverse of resy is the functor Ir.

(¢c) The functor res, preserves representation types and the polynomial growth
property.

(@) If the functor 9r is exact then 9r preserves and reflects representation
types and the polynomial growth property.

Proor. The proof of (b) and the first part of (a) easily follows from
definitions and we leave it to the reader. For the second part of (a) we note
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that cdn(I)=(, -, DEN™, cdn(XQp I )=(kp X, -, rkp X)&N™, the I'-module
XQpI' is free and there are [-module epimorphisms X®Rp [ — XR [ — XI'.
It follows that the projective cover Pr(XI') of XI' is a direct /'-summand of
X®pI' and therefore cdn(X®pl')—cdn(XI')eN™. This together with the
inequality rkp X< jledn(X)||-rkp 4 (see Lemma 3.8 (a) in [24]) yields [cdn(X®pI")ll
=m(rkp X)<mjcdn(X)||(rkp 4) and (a) follows.

(c) We note that given a K-algebra S any S-A,-bimodule sN,, may be
identified with the triple

sNap=(sN%4 sN7, @)

where ¢N’y and sN% are bimodules and @: sN%— sN% is a homomorphism of
S-A-bimodules. Moreover, for any right S-module Ug there exists a Ar-
isomorphism

URsNap = URsNYy URs N7, idX@)

which is natural with respect to the S-homomorphisms U— V. It is easy to
see that for any right S-module U there is an isomorphism

resAUQs Nap) = URsress(sNa,)

which is natural with respect to S-homomorphisms U— V. It follows that the
functor res, preserves wild representation type and carries K[y],-parametrizing
families of functors to K[y],-parametrizing families. Moreover, since the set
Hw)={w; |lw| =ml|v|(rkp A)} is finite and the inclusion

, : == (4T
Iriind(latt()) € L) inde, w>(modpr(0 F>)

holds for any veN?", then the functor res, preserves tame representation type
and the polynomial growth property. To see this we shall show that if v&N»
and

N .. N® . ind,(mod(K [y]s)) —> @P"(g ?)

is an almost parametrizing family for \Jy,ecnw indq, w)(@pr«{ F)) then the
functors resse N, -, resoN® form an almost parametrizing family for
ind,(latt(4)). This follows from the fact that if X is in ind,(latt(4)) then the
module J,(X) belongs to \Uwernw indg, w)(goipr(g ;)) and therefore 9, (X)=
NO(KY) for some j and A=K (see (6.I)). Hence we get X=res (JIr(X))=
KiQ«kry1, N, and we are done. Further, by applying the same type of
arguments we show that the functor res, preserves the polynomial growth
property (see also the proof of Corollary 3.9 in [24]).

(d) It is easy to see that given an S-A-bimodule sM, the right A,-module
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Ir(sMy) = (sMy, sMI'r, p)

(see has a natural S-/p-bimodule structure. If 4, is exact then there is
an isomorphism

IrlUQsMy) = UQs Ir(sMa)

which is natural with respect to S-homomorphisms U — V. It follows that the
functor 4, preserves wild representation type and carries K[y],-parametrizing
families of functors to K[y]-parametrizing families. Further, it follows from

that
ind,(latt(0) 2 res,(ind, ,,,,n/uﬁ,,,({f ?))

for any weN™ and any v=N". Hence (d) easily follows by applying the
arguments used in the proof of (¢). This finishes the proof.

CONVENTION. Following our discussion in Section 2 the right modules over
the algebra /11’:(61 ?) will be identified with triples X=(X/, X, t: X' = X”),
where X’ is a right 4-module, X” is a right /-module and ¢ is a 4-homomor-
phism. Analogously, right modules over A p:(é Ig,) will be identified with
triples Y=, Y4, t:Y'—Y”), where YV’ is a right A-module, Y” is a right
B-module and ¢ is an A-homomorphism.

A fundamental role in applications is played by the functorial connections
between lattices over orders, propartite modules and representations of bocses
given in the commutative diagram induced by a maximal D-order I"SC con-
taining /4, and a two-sided ideal I<rad(A)Nrad(I") (see

—~pryd I’ F, —~pr/A B
mod (0 [') > 'mOdpr(O B)
pryA I’ F, pr/A B
modpr 0 F) —_— modpr 0 B)
64 l@A 194 o4
(7.14)
mod 4 r i--> mod (A B)
v /' pr 0 F pr 0 B \ v
go\d (A r F, . /E A B
pr\0 I , Mo pr(O B)

= lres,;

latt(A)
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where A=A/Ic, B=I"/I, @4, O+, 64, +B4 are the adjustment functors (see
and res, is the functor defined in[(7.8). The functor F is defined by the formula

(7.15) FX) = (X/XI, XI'/XI, u: X)XI—XI')XI)

where u is the A-module embedding induced by the monomorphism X<, X/’
(see [7],[18]. By Proposition 3.7 (d), th ies ‘mode(4 1)emode(4 L,

see [7], g . By ropo%ltlon .7/ (d), the categories ‘modz: 0 F)=mo 2o )
-modg;(‘é B)gmodgf 0 B) consist of modules of projective dimension at most

1. Keeping the notation of [7.3)] we set

AF)}- (AB

A”:(o r) 4=\ p

) and A= A/I-B=1I.
In order to define the functors F,, F,, F;, F, we consider the two-sided ideal

(7.16) I= ((1) ﬁ) c rad(‘g ?)

of Ar. For any j=1, 2, 3, 4 and a Ap-module X=(X’, X% t: X'—X") we set
(7.17) Fi(X) = X/XI = (X3/X4I, Xt/ X}, §)

where ¢ : X/ X4l — X}/ X} is the residue class A-homomorphism. If f=(f’, f”):
(Xl Xp t)— Yy, Y, w)is a Ap-homomorphism we set F;(f)=F=(f', "), where
FiX/XI-Y /YD, F i XyXyI—YyyYyl and F7: X4/ Xt —Y}/ Y4 are the
residue class homomorphisms induced by f, /' and f”, respectively. It is easy
to check that F, F,, ---, F, are covariant additive K-linear functors making the
diagram (7.14) commutative.

The proof of our main theorem of this section depends essentially on the
following result on lowering and lifting bimodules.

LEMMA 7.18. Assume that S is a commutative noetherian K-domain.
(@) Let sMyp=(sM}, sM¥, ¢ sMyy— sM?) be an S-Ar-bimodule and let

Fj(sMAp) = (sN% sN%, @), @A(SMA[") = (Im ®, AMY, u).

where sNiu=sMy/sM'l, sNi=sMp/sM"I and u is the embedding Im o, JM¥.
Then F{sMsy) are S-Ap-bimodules and O/ (sM4y) is an S-Ar-bimodule. If <MY,
is a finitely generated projective S-I'-bimodule then there exists an element heS
such that

(i) The left Sy-module O, My ,.) is projective.
(ii) For any U in fin(S,) there are isomorphisms

FiUQs, :Map) = URs, Fi(nMu,), @A(U®sh wMyp) = UQs, @A(nMAp)

for j=1, 2, 3, 4, which are functorial with respect to the homomorphisms U —U’.
(b) For any S-Apr-bimodule



Prinjective modules, propartite modules 63

sNip = (sN4 sN%, ¢)
such that sN% is a finitely generated projective S-B-bimodule there exist an
element h<=S and an S-Ar-bimodule sMy,=(sM?}, sM7p, ¢) such that the left
S-module sM is projective, sM} is a finitely generated projective S-I'-bimodule
and for any U in fin(S,) there are isomorphisms

FiURs, 1:Map) = URs, FiaMap), OHUQs, nMap) = UQs, O4M4p)
for 7=1, 2, 3, 4, which are functorial with respect to the homomorphisms U —U’.
PROOF. (a) Assume that sM/% is a finitely generated projective S-I’-bimod-

ule and consider the commutative diagram of bimodules

E’

sM'l —, My — sN, — 0

e e

3

SM”] (NN SM;/‘ —> SNg: —> 0
|
l \l’ e—// l
0 Coker ¢ —> Coker g —> 0

with exact rows and columns. It follows that £” is bijective. By our assump-
tion A and B are finite dimensional algebras, and N/ and N/ are finitely
generated bimodules. It follows that the bimodule Coker & is finitely generated
and therefore the left S-modules 3N/, sN% and Coker ¢ are finitely generated.
By Lemma 6.11], there exists an element A<S such that the localizations of
sN%, sN% and Coker & with respect to h are projective S,-modules. It follows
that S,Xs Coker ¢ is a projective S,-module and therefore Im(S,&¢p)=S,QsIm ¢
is projective, because by the assumption the bimodule sM#% is finitely generated
projective and therefore the left S,-module S,&QsM” is projective. Hence (a)
follows.

(b) It follows from Lemma 4 in and its proof that for any S-Ap-
bimodule sNj,=(sNj sNj, g‘é)' as in (a) there exists a commutative diagram
above, where the bimodule sM# is finitely generated projective and the locali-
zation of Coker ¢ with respect to some h&S is a flat S,-module. Hence we
conclude as in the proof of (a) that the conditions required in (b) are satisfied.

a
Now we are able to prove the main result of this section.

THEOREM 7.19. In the notation and assumption made above the following
statements hold.
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(@) The functors F, F,, F, are K-linear representation equivalences, that is,
they are full dense and reflect isomorphisms. The diagram (7.14) is commutative
and

(7.200  cdn X =cdn F(X), cdnY =cdn*@4Y), cdnZ = cdn *64(2)

for j=1, 2, 3, 4, for any indecomposable module X such that F;X)#0, and for
all indecomposable modules Y in -modEZ({)l 5:) and Z in -modgi({)l g)

(b) The functors F, F., F, F. F, and the adjustment functors »64, 64,
64, 64 lower and lift smooth almost K[yl,-parametrizing families. Moreover
they preserve and reflect tame representation type as well as the polynomial
growth property.

(¢) The functors Fl, Fz, Fs, F, preserve and reflect smooth wildness. The
adjustment functors 61, -H4 preserve smooth wildness.

PROOF. (a) It was proved in and that the functor F is a repre-
sentation equivalence. The arguments applied there also shows that the functors
F, and F, are representation equivalences. The commutativity of the diagram
(7.14) follows immediately from definition.

In order to prove (7.20) we note that since /=rad(4) and /<rad(/’) then
given a Ar-module X=(X}, X%, t) the canonical epimorphisms ¢’ : X% — X',/ X'I
and ¢”: Xf— X#/X”I are minimal epimorphisms and therefore they induce the
isomorphisms topAX/)=top4(X/X'I) and top,(X7)=topsg(X}/X”I). Hence (7.20)
follows for the functors F,, ---, F,. The remaining part of (7.20) follows in a
similar way.

(b) We shall show that F, lowers smooth almost parametrizing families,
preserves tame representation type and the polynomial growth property for
7=1, 2, 3, 4. For, assume that j=4 and that

N, ..., N : ind,(mod(K [y]»)) —> 'm°d35(61 ?)

. .. . . (AT
is a smooth almost parametrizing family for the category ind, -mong(O F>>
It follows from (a) that

F4(indv§<ﬁpr(61 ?)) = ind,( modﬁ{(‘g g))

We shall show that the functors F,oN®, ..., F,oN® form an almost param-
.. . . (A B
etrizing family for 1ndv<-modm(0 B))
It follows from [Lemma 7.18/(a) that the polynomial h&K[t] can be chosen
in such a way that the equivalence FpN‘”;(—)@mM N® holds for i=1, ---, s,
where NO=N®/N®] Since N is a finitely generated K[y],-4r-bimodule
then according to Lemma 3.4 (ii) in N® is finitely generated over D[y],
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and therefore N® is a finitely generated module over the K[y].-algebra
(D/DNI)[y]s. We recall that (D/DNI)=D/(p%), ¢=1, is a finite dimensional
K-algebra. Hence (D/DNI)[y], is a finitely generated module over K[y], and
therefore N is a finitely generated K[y],-module for i=1, ---, s.

P
Now if Y is a module in md(modp,(*{)1 g)) then according to (a) there

exists a module X in mdv<60\dpr(61 ?)) such that F(X)=Y. By our assump-
tion all but finitely many such modules X have the form X=K;&x(,;, N for
some index i and 2K (see [6.1). Hence Y =F,(X)=KiRQxry3, N©. This shows
that the functors F,oN®, ..., F,o-N® form an almost parametrizing family for
indv(go\dp,(’g g)) It follows that the functor F, lowers smooth almost K[y],-
parametrizing families, preserves tame representation type and the polynomial
growth property. The fact that F, lifts smooth almost K[y],-parametrizing
families, reflects tame representation type and the polynomial growth property
can be proved in a similar way by applying Lemma 7,18 (b). The proof for
the functors F,, F, F. is analogous.

(¢c) Assume that the category -@Bf(é ?) is of smooth wild representa-
tion type. It follows that for S=KTt, t,] there exists an S-Ar-bimodule sM,
which is finitely generated projective as a bimodule and induces an exact
representation embedding M : ﬁn(S)~>-modP1<61 ?) According to
(a) there exists &S such that the composed functor ‘

PN

ﬁn(Sh)h—A—{ -mod{i{(‘(/)l ;) —> °modgt<€ g)

is exact and of the form (—)&s, N7,. Since S, is representation-wild then the
category -modSi(é g) is of wild representation type (see [24]). This shows
that F, preserves wild representation type. The fact that F, reflects wild
representation type can be proved in a similar way by applying
(b). The proof for the functors F,, F,, F, is analogous.

The fact that the adjustment functor .64 preserves smooth wildness is
analogous to that one for the functor F,. Then in view of (c)
the statement (c) is proved. O

The functors F, F,, F,, F,;, F, are reduction functors in the sense of
Dieterich [3].

Under the assumption and notation above let us define the lattice adjustment
functor

(7.21) G: modg:({} {w)—»latt(/l)

o1 __ res
to be the composed functor modgi 61 I]:)——émodpr(‘g 5:) — latt(4). It will
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play an important role in developing the covering technique for latt(1) (compare
with [12]).

Note that according to [Proposition 3.7| (b), the category mod‘gi 61 ?) con-
sists of modules of projective dimension at most 1.

Main properties of G are collected in the following corollary, which immedi-
ately follows from [Proposition 2.4, Proposition 7.11 and [Theorem 7.19 (b).

COROLLARY 7.22. Let ACI'SC be as above and let G be the functor (7.21).
(@) G is full dense, and G carries a homomorphism f to zero if and only if
f has a factorization through a projective A-module viewed as a ( 0 F)-module.

(b) Let X=(X}, X}, ¢) be an indecomposable module in mod‘"({)l {:) Then
G(X)=0 if and only if X =0. If G(X)#0 then cdn(G(X))=cdn(X?%).

(¢) The functor G preserves and reflects representation types, and the
restriction

Rty AT
(7.23) G- : ~modgi( o ) —latt(D
of G to -@Si(é 5:) is a representation equivalence. O

Let us finish the paper by a list of open problems on propartite modules.

PROBLEMS 7.24. (a) Is the category modbi(R)4 a hereditary subcategory of
mod(R) for any bipartite semiperfect ring R-(O1 ]g)? (Compare with Proposi-
tion 3.7 (d).)

(b) Complete by constructing minimal left almost split mor-

phisms in the category modbi(R)j starting with any indecomposable relative
injective module.
/\(c) It would be interesting to know if the categories modgi(()l ?) and
mod§§<61 F) have almost split sequences for any pair of D-orders AS['SC,
where 'S C is a hereditary order. It seems to us that this should be done by
using the functor [7.21), the fact that latt(4) has almost split sequences and
by applying the method used in [22, Theorem 11.68] and [16, Theorem 3.4]
(compare also with [26]).

(d) It would be interes&r@ to develop a tilting theory for the categories
of the form modSi(R)4 and modBi(R)s, where 1’?:(61 Aé[ ) is a bipartite algebra.
In this case a tilting module should be bipartite, that is, of the form T=T'PT”,
w1th Hompg(T’, T”)=0. Then the tilted algebra is a bipartite one of the form

=End(T)=(‘) }/), Where A’=End(T"), B'=End(T”) and M'=Homa(T", T).

N
This applied to modBi(A4,) should provide with a tilting procedure for latt(A)
(compare with [6]), because of the functor [7.2I). An example of such a bipartite
tilting is provided by Theorem 17.81 in [22].
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