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1. Introduction.

Let $E$ be an elliptic curve over the field of complex numbers, and let $A$ be
the abelian surface $ExE$ . It seems interesting to study if $A$ contains a smooth
curve of genus $g$ . In the case when $g=2$ , Hayashida and Nishi [3] studied this
subject. Their aim was to determine if a product of two elliptic curves can be
a Jacobian variety of some curve. In this note we will consider the case when
$g=3$ . Our first aim is to determine if $A$ has a $(1, 2)$-polarization which is not
a product one ([1]). Second one is as follows: for an algebraic variety $V$ , the
degree of irrationality $d_{r}(V)$ has been introduced in [4] or [7]. Especially we
take an interest in the value $d_{r}(A)$ for an abelian surface $A$ . Concerning thib
we have shown that $d_{r}(A)=3$ if an abelian surface $A$ contains a smooth curve
of genus 3 ([5]).

On the other hand the following assertion has been obtained ([8]):

Let $n$ be a positive square free integer. Put $\omega=\sqrt{-n}$ [resp. $\{1+\sqrt{-n}\}/2$]

if $-n\equiv 2$ or 3 (mod4) [resp. $-n\equiv 1$ (mod4)]. Let $K=Q(\sqrt{-n})$ be an imaginary
quadratic field. For each $\xi\in K\backslash Q$ , let $a\xi^{2}+b\xi+c=0$ be the equation of $\xi$ satis-
fying that $a,$ $b,$ $c\in Z,$ $a>0$ and $(a, b, c)=1$ . Let $L$ be the lattice generated by
$\{1, \xi\}$ and let $E$ be the elliptic curve $C/L$ .

PROPOSITION 1. Under the situation above, suppose that at least one of a, $b,$ $c$

is an even number. Then there exist two elliptic curves $E_{1}$ and $E_{2}$ on $A=E\chi E$

satisfying $(E_{1}, E_{2})=2$ , where $(E_{1}, E_{2})$ denotes the intersection number of $E_{1}$ and
$E_{2}$ . Especially there exists a nonsingular curve of genus 3 on $A$ , hence $d_{r}(A)=3$ .

REMARK 2. Of course there are many elliptic curves $E$ satisfying the con-
dition in this proposition. In fact, if $-n\equiv 2$ or 3 (mod4), then $b$ is even,
because $a\xi$ becomes an integer. Hence every $\xi$ enjoys the condition. For the
remainder case, letting $k$ and $l(\neq 0)$ be rational integers, we have the follow-
ing.
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(i) If $-n\equiv 1$ (mod8), then $\xi=k+l\omega$ and $1/2+1\omega$ are the suitable ones.
(ii) If $-n\equiv 5$ (mod8), then $\xi=k+2l\omega$ and $1/2+l\omega$ are the suitable ones.
Moreover we will consider if $A$ has an infinitely many smooth curves of

genus 3 modulo birational equivalence.
We would like to thank the referee for suggesting a simple proof of Theo-

rem 6.

2. Statement of results.

Let $m$ be $0$ or a square free positive integer and put $K=Q(\sqrt{-m})$ . Let $0$

be the principal order of $K$ . When $m=0$, we understand that $K$ and $0$ coincide
with $Q$ and $Z$, respectively. Let $E$ be an elliptic curve with the ring of endo-
morphisms isomorphic to $0$ and let $A$ be the abelian surface $E\cross E$ . Then our
result is stated as follows:

THEORFM 3. If $m\neq 0$ and $\neq 3$, then there exists a smooth curve of genus 3
on A. On the contrary if $m=0$ or 3, then there exists no such a curve.

REMARK 4. If $7n=1,7$ or 15, then there exists no smooth genus-2 curve,
but exists a genus-3 curve in each case.

REMARK 5. If $E$ has complex multiplications, then $d_{r}(E\cross E)=3$ . Because,
in case $m=3$ , there is an automorphism $\varphi$ of order 3. Since $A/\varphi x\varphi$ is a
rational surface, we conclude that $d_{r}(E\cross E)=3$ (cf. [5]).

Similarly as in [3] we feel an interest to know whether there are in-
finitely many smooth curves of genus 3 on $A$ . Contrary to the case of genus
2 the result is as follows.

THEOREM 6. If an abelian surface $B$ contains a smooth curve of genus 3,
then it contains infinitely many such curves modulo birational equivalence. Hence
in case $m\neq 0$ and $\neq 3,$ $E\cross E$ contains infinitely many smooth curves of genus 3.

3. Proof of Theorems.

In this section we use the same notation as in [3]. First we enumerate
several lemmas.

LEMMA 7. Let $X$ be an effective divisor on an abelian surface with $X^{2}=4$ .
Then $X$ is one of the following, where $E’,$ $E’’$ and $F$ are elliptic curves:

(i) $X$ is a smooth genus-3 curve.
(ii) $X$ is an irreducible curve with one double point and the genus of the

normalization of $X$ is 2.
(iii) $X=E’+E^{\parallel}and$ $(E’, E’’)=2$ .
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(iv) $X=F+E’+E’’$ and $(F, E’)=(F, E’’)=1,$ $(E’, E’’)=0$ .

PROOF. See (1.2) in [1].

LEMMA 8. Let $X$ be a divzSor as in Lemma 7. Then $X$ is not of type (iv)

if and only if (X, $E_{\lambda,\mu}$ ) $>1$ for all elliptic curves $E_{\lambda,\mu}$ on $A$ .

PROOF. If $X$ is of type (iv), i.e., $X=F+E’+E’’$ , then (X, $E’$ ) $=(X, E’’)=1$ .
Note that $E’$ and $E’’$ can be expressed as translations of $E_{a.\beta}$ for some $a,$ $\beta\in 0$

(cf. Lemma 1 in [3]). Suppose that $X$ is not of type (iv) and that (X, $E_{\lambda,\mu}$ ) $=1$

for some $E_{\lambda,\mu}$ . Then we have a contradiction as follows: in case $X$ is irre-
ducible, we have a birational mapping $E\cross Earrow X\cross E_{\lambda.\mu},$ $i.e.,$ $E\cross E$ and $\tilde{X}\cross E_{\lambda.\mu}$

are birational (cf. Cor. 2, Th. 4 in [6]), where $\tilde{X}$ is the normalization of $X$ .
This means that the irregularity of $\tilde{X}$ must be 1. In the case when $X$ is re-
ducible, put $X=E’+E’’$ . We may assume that $(E’, E_{\lambda.\mu})=1$ and $(E’’, E_{\lambda.\mu})=0$ .
This means that $E_{\lambda.\mu}$ is a translation of $E’$ , hence $(E_{\lambda.\mu}, E’)$ must be 2,
which is a contradiction. $\square$

LEMMA 9. If there is an effective divzSor $X$ in Lemma 7, which is not of
type (iv), then there is a smooth genus-3 curve on $A$ .

PROOF. Since the pencil $|X|$ has no fixed components, its general member
is irreducible and smooth (see, (1.5) in [1]). $\square$

We will prove the theorem in a similar way as in [3]. Let $D$ be a divisor
on $A$ . Note that the N\’eron-Severi group of $A$ is generated by $E_{1,1},$ $E_{1.\omega},$ $E_{1.0}$

and $E_{0.1}$ , where we regard $E_{1,\omega}$ as $0$ in case $m=0$ . Hence we have a unique
expression

$D\equiv aE_{1,1}+bE_{1.\omega}+cE_{1,0}+dE_{0.1}$ ,

where $a,$ $b,$ $c,$ $d\in Z$.
Therefore we obtain that

$(D, E_{\xi.\eta})=(k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta)/N(\xi, \eta)$ ,

where $k=a+b\omega\overline{\omega}+d,$ $\alpha=a+b\omega,$ $l=a+b+c$ .
Hence we have that

$(D, D)=2$ ( $kl-$ adi) and $(D, E_{1.0})=k$ .

NOW let $X$ be a divisor as in Lemma 7. Since $X$ is effective and $X^{2}=4,$ $X$

is ample and hence $k>0$ . Conversely, let $D$ be a divisor on $A$ with $D^{2}=4$ . If
$k>0$ , then $1(D)>0$ . So we may assume that $D$ is effective. Combining the
lemmas above, we obtain the following criterion:

LEMMA 10 (CRITERION). Let $D$ be a divzSor on $A$ satisfying that
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$k>0$ , $kl-\alpha\overline{\alpha}=2$ . (1)

If the equation

$k\xi\overline{\xi}+l\eta\overline{\eta}-\alpha\xi\overline{\eta}-\overline{\alpha}\overline{\xi}\eta=N(\xi, \eta)$ (2)

has a non-trivial solution $(\xi, \eta)\neq(0,0)$ in $\mathfrak{o}$ , then $X$ is of type (iv); and otherwise
there exists a smooth genus-3 curve on $A$ .

We now divide the proof of Theorem 3 into several cases according to the
value $m$ .

(I) The case $m=0$ .
In this case we may assume that $b=0$ . Then the criterion becomes as

follows:

$a+d>0$ , $(a+d)(a+c)-a^{2}=2$ (3)

$(a+d)x^{2}-2axy+(a+c)y^{2}=1$ (4)

Put $q(x, y)=(a+d)x^{2}-2axy+(a+c)y^{2}$ . By the condition (3) this quadratic
form is primitive, $i.e.,$ $(a+d, 2a, a+c)=1$ . The discriminant $\delta$ of $q$ is $-8$ ,
hence the class number of the discriminant $h^{+}(\delta)$ is 1. Thus we infer that the
equation $q(x, y)=1$ has a primitive solution. Namely, there is no smooth
genus-3 curve on $E\cross E$ .

(II) The case $m>0$ .
Let $\mathfrak{a}$ and $\mathfrak{b}$ be ideals of $0$ satisfying $(\xi, \eta)\mathfrak{a}=\eta$ and $(\xi, \eta)\mathfrak{b}=(k\xi-\overline{\alpha}\eta)$ . In

case $\eta=0$ , we see that $k=1$ if $\xi\neq 0$ . Hence for our purpose we may assume
that $k\neq 1$ hereafter. Thus $\eta\neq 0$ . Putting $\gamma=\mathfrak{a}\overline{\mathfrak{a}}/\eta$ , we obtain that

$\{$

$(\gamma\xi, \gamma\eta)=\overline{a}$

$\gamma\eta=\mathfrak{a}\overline{\mathfrak{a}}=N(\mathfrak{a})$ .

Putting further $\zeta=\gamma\xi\in 0$ and $n=\gamma\eta\in N$ we infer that the equation (2)

becomes
$k\zeta\overline{\zeta}-\alpha\zeta n-\overline{\alpha}\overline{\zeta}n+ln^{2}=n$ .

Multiplying $k$ on both sides of this equation and using (1), we obtain that

$N(k\zeta-\alpha n)=n(k-2n)$ . (5)

We want to find $(k, l, \alpha)$ satisfying (1) such that (5) has no non-trivial solutions.
By Proposition 1 we have only to consider the case when $-m\equiv 1(mod 4)$ .

(II-1) The case $m\equiv 7(mod 8)$ .
Let $a=b=1$ , i.e., $\alpha=1+\omega$ , then we let $k=2$ . In this case the equation (5)

becomes

$N(2\zeta-\alpha n)=n(2-2n)$ .
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In case $n=0$ , the solution is trivial, but in case $n=1$ , we have $2\zeta=1+\omega$ ,

hence $\zeta\not\in 0$ . So that there is no non-trivial solution.
(II-2) The case $m\equiv 3$ (mod8).

CLAIM 1. Suppose that $m=3$ . Then the simultaneous equations (1) and (2)

have always solutions.

PROOF. In the equation (2) put $\xi=x+y\omega$ and $\eta=s+t\omega$ . Then we can
regard the left hand side of (2) as a quadratic form $Q$ of $x,$ $y,$ $s$ and $t$ over $Z$.
By a simple calculation we infer that $Q$ is positive definite if $m=3$ , and its
determinant is 9/4. Since the minimum value of $Q$ is not greater than $\sqrt{9}^{4}$

(cf. Appendix in [2]), the minimum value must be 1. Hence the equation (2)

is always satisfied when $\xi$ and $\eta$ give the minimum value of $Q$ . Therefore
there is no smooth genus-3 curve on A. $\square$

CLAIM 2. SuPPose that $m\neq 3$ . Then for a suitable value $(k, l, \alpha)$ satisfying
(1), the equation (5) has no non-tremal solution.

PROOF. Let us express $m$ as $8m_{1}+3$ .
(a). If $m_{1}\equiv 0$ or 2 $(mod 3)$ , then let $k=3$ and $\alpha=\omega$ or $1+\omega$, respectively.

The equation (5) becomes $N(3\zeta-\alpha n)=n(3-2n)$ . $lfn=0$ , then $\zeta=0$, which yields
a trivial solution. Hence $n=1$ , this means that $3\zeta-\alpha$ must be a unit in $0,$ $i.e.$ ,
$3\zeta-\alpha=\pm 1$ , since $m_{1}\neq 0$ . Then we have that $\zeta\not\in 0$ .

(b). If $m_{1}\equiv 1$ (mod3), then put $m_{1}=3m_{2}+1$ , i.e., $m=11+24m_{2}$ . If $m_{2}\equiv 1$

(mod5), then $2+\alpha\overline{\alpha}$ can be a multiple of 5 for suitable values of $a$ and $b$ , so
let $k=5$ . Consider the equation (5); $N(5\zeta-\alpha n)=n(5-2n)$ . Clearly $n$ must be
odd. So let $n=1$ , then we have $N(5\zeta-\alpha)=3$ . This equation has solutions only
if $m_{2}=0$ . Hence we consider the case when $m=11$ . Take $a=0$ and $b=5,$ $i.e.$ ,
$\alpha=5\omega$ and let $k=11$ . Then $N(11\zeta-\alpha n)=n(11-2n)$ . If we put $11\zeta-\alpha n=x+y\omega$ ,

then this equation becomes

$x^{2}+xy+3y^{2}=n(11-2n)$ ,

where $1\leqq n\leqq 5$ .
Clearly $n$ must be odd, so the right hand side takes the values 9, 15 and 5.

By checking each case $n=1,3$ and 5, we conclude that there are no solutions.
Lastly we consider the case when $m_{2}\equiv 1$ (mod5). Put $m_{2}=5m_{3}+1$ and

$n_{3}=11m_{4}+r$ , where $0\leqq r\leqq 10$ . Then the equation (1) becomes

$kl=2+a^{2}+ab+(9+30r)b^{2}+330m_{4}b^{2}$ . (6)

Note that for eacb value $r$ , there exist $a,$ $b\in Z$ satisfying $b\equiv 0(mod 11)$ and the
right hand side of (6) is a multiple of 11. For example we can take as follows:
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$(r, a, b)=(O, 0,1),$ $(1,6,3),$ $(2,0,5),$ $(3,1,8)$ ,

$=(4,1,6),$ $(5,0,2),$ $(6,2,5),$ $(7,4,2)$ ,

$=(8,1,1),$ $(9,0,4),$ $(10,0,3)$ .

Then we consider the equation (5): $N(11\zeta-\alpha n)=n(11-2n)$ . Putting $11\zeta-\alpha n=$

$x+y\omega$ , we see that this equation becomes

$x^{2}+xy+(9+30r)y^{2}+330m_{4}y^{2}=n(11-2n)$ .

Clearly $n$ must be odd, hence the right hand side of this equation takes the
values 9, 15 and 5. If $r\neq 0$ or $m_{4}\neq 0$, then $y=0,$ $x=\pm 3$ . Hence $n=1$ and
$11\zeta-\alpha=\pm 3$ . Thus we see that $\zeta\not\in \mathfrak{o}$ in view of the above list of $(r, a, b)$ . If
$r=m_{4}=0$, then take $a=0$ and $b=8$, and let $k=17$ . Similarly we infer that the
equation $N(17\zeta-\alpha n)=n(17-2n)$ has no solutions. $\square$

Thus we complete the proof of Theorem 3. We note the following.

REMARK 11. In the classification of $(1, 2)$-polarization in Lemma 7, the
singularity of the curve of type (ii) is a node.

PROOF. By the genus formula we infer that the double point is a node or
a (simple) cusp. Let $\tilde{C}$ be the normalization of $C$ , then there is a finite
unramified covering $\lambda:J(\tilde{C})arrow A$ satisfying $\lambda(\tilde{C})=C$ , where $J(\tilde{C})$ is the Jacobian
variety of $\tilde{C}$ . This implies that the singularity cannot be locally irreducible,
i.e., it is a node. $\square$

Let $C$ be a smooth curve of genus 3 on an abelian surface $B$ . The complete
linear system $|C|$ has four base points. By blowing-up these points, we obtain
a morphism $f$ : $Sarrow P^{1}$ . Let $\omega_{S/P^{1}}$ be the dualising sheaf of $f$ . Then, since
$\deg f_{*}\omega_{S/p^{1}}>0,$ $f$ is locally non-trivial. Hence Theorem 6 is clear. Note tbat
$f$ has singular fibers, each of which is of type (ii), (iii) or (iv) in Lemma 7.
Finally we mention a problem concerning $d_{r}$ .

PROBLM. We do not know the value $d_{r}(ExE)$ when $E$ has no complex
multiplications. Moreover we conjecture that $d_{r}(E_{1}\cross E_{2})=4$ if $E_{1}$ and $E_{2}$ are
not isogenous.
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