# Existence of curves of genus three on a product of two elliptic curves 

By Hisao Yoshitara

(Received June 13, 1995)

## 1. Introduction.

Let $E$ be an elliptic curve over the field of complex numbers, and let $A$ be the abelian surface $E \times E$. It seems interesting to study if $A$ contains a smooth curve of genus $g$. In the case when $g=2$, Hayashida and Nishi [3] studied this subject. Their aim was to determine if a product of two elliptic curves can be a Jacobian variety of some curve. In this note we will consider the case when $g=3$. Our first aim is to determine if $A$ has a ( 1,2 )-polarization which is not a product one ([1]). Second one is as follows: for an algebraic variety $V$, the degree of irrationality $d_{r}(V)$ has been introduced in [4] or [7]. Especially we take an interest in the value $d_{r}(A)$ for an abelian surface $A$. Concerning this we have shown that $d_{r}(A)=3$ if an abelian surface $A$ contains a smooth curve of genus 3 ([5]).

On the other hand the following assertion has been obtained ([8]) :
Let $n$ be a positive square free integer. Put $\omega=\sqrt{-n}[$ resp. $\{1+\sqrt{-n}\} / 2]$ if $-n \equiv 2$ or $3(\bmod 4)[$ resp. $-n \equiv 1(\bmod 4)]$. Let $K=\boldsymbol{Q}(\sqrt{-n})$ be an imaginary quadratic field. For each $\xi \in K \backslash \boldsymbol{Q}$, let $a \xi^{2}+b \xi+c=0$ be the equation of $\xi$ satisfying that $a, b, c \in \boldsymbol{Z}, a>0$ and $(a, b, c)=1$. Let $L$ be the lattice generated by $\{1, \xi\}$ and let $E$ be the elliptic curve $\boldsymbol{C} / L$.

Proposition 1. Under the situation above, suppose that at least one of $a, b, c$ is an even number. Then there exist two elliptic curves $E_{1}$ and $E_{2}$ on $A=E \times E$ satisfying ( $E_{1}, E_{2}$ )=2, where ( $E_{1}, E_{2}$ ) denotes the intersection number of $E_{1}$ and $E_{2}$. Especially there exists a nonsingular curve of genus 3 on $A$, hence $d_{r}(A)=3$.

Remark 2. Of course there are many elliptic curves $E$ satisfying the condition in this proposition. In fact, if $-n \equiv 2$ or $3(\bmod 4)$, then $b$ is even, because $a \xi$ becomes an integer. Hence every $\xi$ enjoys the condition. For the remainder case, letting $k$ and $l(\neq 0)$ be rational integers, we have the following.

[^0](i) If $-n \equiv 1(\bmod 8)$, then $\xi=k+l \omega$ and $1 / 2+l \omega$ are the suitable ones.
(ii) If $-n \equiv 5(\bmod 8)$, then $\xi=k+2 l \omega$ and $1 / 2+l \omega$ are the suitable ones.

Moreover we will consider if $A$ has an infinitely many smooth curves of genus 3 modulo birational equivalence.

We would like to thank the referee for suggesting a simple proof of Theorem 6.

## 2. Statement of results.

Let $m$ be 0 or a square free positive integer and put $K=\boldsymbol{Q}(\sqrt{ }-m)$. Let $口$ be the principal order of $K$. When $m=0$, we understand that $K$ and o coincide with $\boldsymbol{Q}$ and $\boldsymbol{Z}$, respectively. Let $E$ be an elliptic curve with the ring of endomorphisms isomorphic to $\mathfrak{o}$ and let $A$ be the abelian surface $E \times E$. Then our result is stated as follows:

Theorem 3. If $m \neq 0$ and $\neq 3$, then there exists a smooth curve of genus 3 on $A$. On the contrary if $m=0$ or 3 , then there exists no such a curve.

Remark 4. If $m=1,7$ or 15 , then there exists no smooth genus- 2 curve, but exists a genus-3 curve in each case.

Remark 5. If $E$ has complex multiplications, then $d_{r}(E \times E)=3$. Because, in case $m=3$, there is an automorphism $\varphi$ of order 3. Since $A / \varphi \times \varphi$ is a rational surface, we conclude that $d_{r}(E \times E)=3$ (cf. [5]).

Similarly as in [3] we feel an interest to know whether there are infinitely many smooth curves of genus 3 on $A$. Contrary to the case of genus 2 the result is as follows.

Theorem 6. If an abelian surface $B$ contains a smooth curve of genus 3, then it contains infinitely many such curves modulo birational equivalence. Hence in case $m \neq 0$ and $\neq 3, E \times E$ contains infinitely many smooth curves of genus 3.

## 3. Proof of Theorems.

In this section we use the same notation as in [3]. First we enumerate several lemmas.

Lemma 7. Let $X$ be an effective divisor on an abelian surface with $X^{2}=4$. Then $X$ is one of the following, where $E^{\prime}, E^{\prime \prime}$ and $F$ are elliptic curves:
(i) $X$ is a smooth genus-3 curve.
(ii) $X$ is an irreducible curve with one double point and the genus of the normalization of $X$ is 2 .
(iii) $X=E^{\prime}+E^{\prime \prime}$ and $\left(E^{\prime}, E^{\prime \prime}\right)=2$.
(iv) $X=F+E^{\prime}+E^{\prime \prime}$ and $\left(F, E^{\prime}\right)=\left(F, E^{\prime \prime}\right)=1,\left(E^{\prime}, E^{\prime \prime}\right)=0$.

Proof. See (1.2) in [1].
Lemma 8. Let $X$ be a divisor as in Lemma 7. Then $X$ is not of type (iv) if and only if $\left(X, E_{\lambda, \mu}\right)>1$ for all elliptic curves $E_{\lambda, \mu}$ on $A$.

Proof. If $X$ is of type (iv), i.e., $X=F+E^{\prime}+E^{\prime \prime}$, then $\left(X, E^{\prime}\right)=\left(X, E^{\prime \prime}\right)=1$. Note that $E^{\prime}$ and $E^{\prime \prime}$ can be expressed as translations of $E_{\alpha, \beta}$ for some $\alpha, \beta \in \mathfrak{D}$ (cf. Lemma 1 in [3]). Suppose that $X$ is not of type (iv) and that ( $X, E_{\lambda, \mu}$ )=1 for some $E_{\lambda, \mu}$. Then we have a contradiction as follows: in case $X$ is irreducible, we have a birational mapping $E \times E \rightarrow X \times E_{\lambda, \mu}$, i.e., $E \times E$ and $\tilde{X} \times E_{\lambda, \mu}$ are birational (cf. Cor. 2, Th. 4 in [6]), where $\tilde{X}$ is the normalization of $X$. This means that the irregularity of $\tilde{X}$ must be 1 . In the case when $X$ is reducible, put $X=E^{\prime}+E^{\prime \prime}$. We may assume that ( $E^{\prime}, E_{\lambda, \mu}$ ) $=1$ and $\left(E^{\prime \prime}, E_{\lambda, \mu}\right)=0$. This means that $E_{\lambda, \mu}$ is a translation of $E^{\prime \prime}$, hence ( $E_{\lambda, \mu}, E^{\prime \prime}$ ) must be 2, which is a contradiction.

Lemma 9. If there is an effective divisor $X$ in Lemma 7, which is not of type (iv), then there is a smooth genus-3 curve on $A$.

Proof. Since the pencil $|X|$ has no fixed components, its general member is irreducible and smooth (see, (1.5) in [1]).

We will prove the theorem in a similar way as in [3]. Let $D$ be a divisor on $A$. Note that the Néron-Severi group of $A$ is generated by $E_{1,1}, E_{1, \omega}, E_{1,0}$ and $E_{0,1}$, where we regard $E_{1, \omega}$ as 0 in case $m=0$. Hence we have a unique expression

$$
D \equiv a E_{1,1}+b E_{1, \omega}+c E_{1,0}+d E_{0,1},
$$

where $a, b, c, d \in Z$.
Therefore we obtain that

$$
\left(D, E_{\xi, \eta}\right)=(k \xi \bar{\xi} \bar{\xi}+\operatorname{l\eta } \bar{\eta}-\alpha \xi \bar{\xi}-\bar{\alpha} \bar{\xi} \eta) / N(\xi, \eta),
$$

where $k=a+b \omega \bar{\omega}+d, \alpha=a+b \omega, l=a+b+c$.
Hence we have that

$$
(D, D)=2(k l-\alpha \bar{\alpha}) \text { and }\left(D, E_{1,0}\right)=k
$$

Now let $X$ be a divisor as in Lemma 7. Since $X$ is effective and $X^{2}=4, X$ is ample and hence $k>0$. Conversely, let $D$ be a divisor on $A$ with $D^{2}=4$. If $k>0$, then $l(D)>0$. So we may assume that $D$ is effective. Combining the lemmas above, we obtain the following criterion:

Lemma 10 (Criterion). Let $D$ be a divisor on $A$ satisfying that

$$
\begin{equation*}
k>0, \quad k l-\alpha \bar{\alpha}=2 \tag{1}
\end{equation*}
$$

If the equation

$$
\begin{equation*}
k \xi \bar{\xi}+l \eta \bar{\eta}-\alpha \xi \bar{\eta}-\bar{\alpha} \bar{\xi} \eta=N(\bar{\xi}, \eta) \tag{2}
\end{equation*}
$$

has a non-trivial solution $(\xi, \eta) \neq(0,0)$ in $\mathfrak{v}$, then $X$ is of type (iv); and otherwise there exists a smooth genus-3 curve on $A$.

We now divide the proof of Theorem 3 into several cases according to the value $m$.
(I) The case $m=0$.

In this case we may assume that $b=0$. Then the criterion becomes as follows:

$$
\begin{align*}
& a+d>0, \quad(a+d)(a+c)-a^{2}=2  \tag{3}\\
& (a+d) x^{2}-2 a x y+(a+c) y^{2}=1 \tag{4}
\end{align*}
$$

Put $q(x, y)=(a+d) x^{2}-2 a x y+(a+c) y^{2}$. By the condition (3) this quadratic form is primitive, i.e., $(a+d, 2 a, a+c)=1$. The discriminant $\delta$ of $q$ is -8 , hence the class number of the discriminant $h^{+}(\delta)$ is 1 . Thus we infer that the equation $q(x, y)=1$ has a primitive solution. Namely, there is no smooth genus-3 curve on $E \times E$.
(II) The case $m>0$.

Let $\mathfrak{a}$ and $\mathfrak{b}$ be ideals of $\mathfrak{D}$ satisfying $(\xi, \eta) \mathfrak{a}=\eta$ and $(\xi, \eta) \mathfrak{b}=(k \xi-\bar{\alpha} \eta)$. In case $\eta=0$, we see that $k=1$ if $\xi \neq 0$. Hence for our purpose we may assume that $k \neq 1$ hereafter. Thus $\eta \neq 0$. Putting $\gamma=\mathfrak{a} \overline{\mathfrak{a}} / \eta$, we obtain that

$$
\left\{\begin{array}{l}
(\gamma \xi, \gamma \eta)=\overline{\mathfrak{a}} \\
\gamma \eta=\mathfrak{a} \overline{\mathfrak{a}}=N(\mathfrak{a})
\end{array}\right.
$$

Putting further $\zeta=\gamma \xi \in \mathcal{D}$ and $n=\gamma \eta \in N$, we infer that the equation (2) becomes

$$
k \zeta \bar{\zeta}-\alpha \zeta n-\bar{\alpha} \bar{\zeta} n+l n^{2}=n
$$

Multiplying $k$ on both sides of this equation and using (1), we obtain that

$$
\begin{equation*}
N(k \zeta-\alpha n)=n(k-2 n) \tag{5}
\end{equation*}
$$

We want to find ( $k, l, \alpha$ ) satisfying (1) such that (5) has no non-trivial solutions. By Proposition 1 we have only to consider the case when $-m \equiv 1(\bmod 4)$.
(II-1) The case $m \equiv 7(\bmod 8)$.
Let $a=b=1$, i.e., $\alpha=1+\omega$, then we let $k=2$. In this case the equation (5) becomes

$$
N(2 \zeta-\alpha n)=n(2-2 n)
$$

In case $n=0$, the solution is trivial, but in case $n=1$, we have $2 \zeta=1+\omega$, hence $\zeta \notin \mathfrak{o}$. So that there is no non-trivial solution.
(II-2) The case $m \equiv 3(\bmod 8)$.
Claim 1. Suppose that $m=3$. Then the simultaneous equations (1) and (2) have always solutions.

Proof. In the equation (2) put $\xi=x+y \omega$ and $\eta=s+t \omega$. Then we can regard the left hand side of (2) as a quadratic form $Q$ of $x, y, s$ and $t$ over $\boldsymbol{Z}$. By a simple calculation we infer that $Q$ is positive definite if $m=3$, and its determinant is $9 / 4$. Since the minimum value of $Q$ is not greater than $\sqrt[4]{9}$ (cf. Appendix in [2]], the minimum value must be 1 . Hence the equation (2) is always satisfied when $\xi$ and $\eta$ give the minimum value of $Q$. Therefore there is no smooth genus- 3 curve on $A$.

Claim 2. Suppose that $m \neq 3$. Then for a suitable value ( $k, l, \alpha$ ) satisfying (1), the equation (5) has no non-trivial solution.

Proof. Let us express $m$ as $8 m_{1}+3$.
(a). If $m_{1} \equiv 0$ or $2(\bmod 3)$, then let $k=3$ and $\alpha=\omega$ or $1+\omega$, respectively. The equation (5) becomes $N(3 \zeta-\alpha n)=n(3-2 n)$. If $n=0$, then $\zeta=0$, which yields a trivial solution. Hence $n=1$, this means that $3 \zeta-\alpha$ must be a unit in $\mathfrak{o}$, i.e., $3 \zeta-\alpha= \pm 1$, since $m_{1} \neq 0$. Then we have that $\zeta \notin \mathfrak{0}$.
(b). If $m_{1} \equiv 1(\bmod 3)$, then put $m_{1}=3 m_{2}+1$, i.e., $m=11+24 m_{2}$. If $m_{2} \equiv 1$ $(\bmod 5)$, then $2+\alpha \bar{\alpha}$ can be a multiple of 5 for suitable values of $a$ and $b$, so let $k=5$. Consider the equation (5); $N(5 \zeta-\alpha n)=n(5-2 n)$. Clearly $n$ must be odd. So let $n=1$, then we have $N(5 \zeta-\alpha)=3$. This equation has solutions only if $m_{2}=0$. Hence we consider the case when $m=11$. Take $a=0$ and $b=5$, i.e., $\alpha=5 \omega$ and let $k=11$. Then $N(11 \zeta-\alpha n)=n(11-2 n)$. If we put $11 \zeta-\alpha n=x+y \omega$, then this equation becomes

$$
x^{2}+x y+3 y^{2}=n(11-2 n)
$$

where $1 \leqq n \leqq 5$.
Clearly $n$ must be odd, so the right hand side takes the values 9,15 and 5 . By checking each case $n=1,3$ and 5 , we conclude that there are no solutions.

Lastly we consider the case when $m_{2} \equiv 1(\bmod 5)$. Put $m_{2}=5 m_{3}+1$ and $. n_{3}=11 m_{4}+r$, where $0 \leqq r \leqq 10$. Then the equation (1) becomes

$$
\begin{equation*}
k l=2+a^{2}+a b+(9+30 r) b^{2}+330 m_{4} b^{2} . \tag{6}
\end{equation*}
$$

Note that for each value $r$, there exist $a, b \in \boldsymbol{Z}$ satisfying $b \equiv 0(\bmod 11)$ and the right hand side of (6) is a multiple of 11 . For example we can take as follows:

$$
\begin{aligned}
(r, a, b) & =(0,0,1),(1,6,3),(2,0,5),(3,1,8), \\
& =(4,1,6),(5,0,2),(6,2,5),(7,4,2), \\
& =(8,1,1),(9,0,4),(10,0,3) .
\end{aligned}
$$

Then we consider the equation (5): $N(11 \zeta-\alpha n)=n(11-2 n)$. Putting $11 \zeta-\alpha n=$ $x+y \omega$, we see that this equation becomes

$$
x^{2}+x y+(9+30 r) y^{2}+330 m_{4} y^{2}=n(11-2 n) .
$$

Clearly $n$ must be odd, hence the right hand side of this equation takes the values 9,15 and 5 . If $r \neq 0$ or $m_{4} \neq 0$, then $y=0, x= \pm 3$. Hence $n=1$ and $11 \zeta-\alpha= \pm 3$. Thus we see that $\zeta \notin \mathfrak{o}$ in view of the above list of $(r, a, b)$. If $r=m_{4}=0$, then take $a=0$ and $b=8$, and let $k=17$. Similarly we infer that the equation $N(17 \zeta-\alpha n)=n(17-2 n)$ has no solutions.

Thus we complete the proof of Theorem 3. We note the following.
Remark 11. In the classification of (1, 2)-polarization in Lemma 7, the singularity of the curve of type (ii) is a node.

Proof. By the genus formula we infer that the double point is a node or a (simple) cusp. Let $\tilde{C}$ be the normalization of $C$, then there is a finite unramified covering $\lambda: J(\tilde{C}) \rightarrow A$ satisfying $\lambda(\tilde{C})=C$, where $J(\tilde{C})$ is the Jacobian variety of $\tilde{C}$. This implies that the singularity cannot be locally irreducible, i.e., it is a node.

Let $C$ be a smooth curve of genus 3 on an abelian surface $B$. The complete linear system $|C|$ has four base points. By blowing-up these points, we obtain a morphism $f: S \rightarrow \boldsymbol{P}^{1}$. Let $\omega_{S / \boldsymbol{P}^{1}}$ be the dualising sheaf of $f$. Then, since $\operatorname{deg} f_{*} \omega_{S / P^{1}}>0, f$ is locally non-trivial. Hence Theorem 6 is clear. Note that $f$ has singular fibers, each of which is of type (ii), (iii) or (iv) in Lemma 7 . Finally we mention a problem concerning $d_{r}$.

Problm. We do not know the value $d_{r}(E \times E)$ when $E$ has no complex multiplications. Moreover we conjecture that $d_{r}\left(E_{1} \times E_{2}\right)=4$ if $E_{1}$ and $E_{2}$ are not isogenous.

## References

[1] W. Barth, Abelian surfaces with (1,2)-polarization, Adv. Studies in Pure Math., 10 (1987), 41-84.
[2] J.W.S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, 1971.
[3] T. Hayashida and M. Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan, 17 (1965), 1-16.
[4] T.T. Moh and W. Heinzer, On the Lüroth semigroups and Weierstrass canonical divisors, J. Algebra, 77 (1982), 62-73.
[5] H. Tokunaga and H. Yoshihara, Degree of irrationality of abelian surfaces, J. Algebra, 174 (1995), 1111-1121.
[6] A. Weil, Variété abéliennes et courbes algébriques, Hermann 1971.
[7] H. Yoshihara, Degree of irrationality of an algebraic surface, J. Algebra, 167 (1994), 634-640.
[8] H. Yoshihara, Degree of irrationality of a product of two elliptic curves, Proc. Amer. Math. Soc. 124 (1996), 1371-1375.

Hisao Yoshihara<br>Faculty of Science<br>Niigata University<br>Niigata, 950-21<br>Japan<br>E-mail address: yosihara@geb.ge.niigata-u.ac.jp


[^0]:    This research was partially supported by Grant-Aid for Scientific Research (No. 07640025), Ministry of Education, Science and Culture, Japan.

