Homotopy groups of the spaces of self-maps of Lie groups

By Ken-ichi Maruyama and Hideaki Ōshima

(Received Jul. 4, 2007)
(Revised Sep. 7, 2007)

Abstract

We compute the homotopy groups of the spaces of self maps of Lie groups of rank $2, \mathrm{SU}(3), \mathrm{Sp}(2)$, and G_{2}. We use the cell structures of these Lie groups and the standard methods of homotopy theory.

1. Introduction.

For pointed spaces X and Y, we let $\operatorname{map}_{*}(X, Y)$ denote the space of pointed maps from X to Y. We take the trivial map $*$ as a base point of $\operatorname{map}_{*}(X, Y)$. The homotopy groups of function spaces have long been studied in homotopy theory. Indeed, if $X=\mathrm{S}^{n}$, then $\operatorname{map}_{*}\left(\mathrm{~S}^{n}, Y\right)$ coincides with the iterated loop space $\Omega^{n} Y$. Hence the homotopy groups $\pi_{n} \operatorname{map}_{*}\left(\mathrm{~S}^{n}, Y\right)$ are known by the homotopy groups of Y. However, even if the number of the cells of X is small, the determination of the group structure of $\pi_{n} \operatorname{map}_{*}(X, Y)$ is not easy in general.

In this paper we study the homotopy groups of the self maps map ${ }_{*}(X, X)$ in the case where X is a compact Lie group of rank 2. Precisely, we consider $\mathrm{SU}(3)$, $\operatorname{Sp}(2)$, and G_{2}. The homotopy-theoretic structures of these spaces are well known. In particular, their homotopy groups are computed in Mimura-Toda [MT], and Mimura $[\mathbf{M}]$. Our results entirely depend on their work.

The homotopy groups of $\operatorname{map}_{*}(X, X)$ are closely related to the homotopy groups of other interesting spaces. For instance, we have
(i) We can apply our results to the homotopy groups of the spaces of selfhomotopy equivalences. When X is a topological group, all connected components of $\operatorname{map}_{*}(X, X)$ have the same homotopy type. Hence we have an isomorphism:

$$
\pi_{n}\left(\operatorname{aut}_{*}(X), 1_{X}\right) \cong \pi_{n} \operatorname{map}_{*}(X, X)
$$

where $\operatorname{aut}_{*}(X)$ is the space of the based maps of X which are homotopy equivalences. In [D], Didierjean studied the homotopy groups of $\pi_{n}\left(\operatorname{aut}_{*}(X)\right)$ for rank 2

[^0]Lie groups by using other methods. Our results in this paper extend some of the results in [D].
(ii) Our results in this paper can be used to know the homotopy types of the gauge groups $\mathscr{G}(P)$. Generally, for a principal G-bundle $P \rightarrow X$,

$$
\operatorname{map}_{P}(X, B G) \simeq B \mathscr{G}(P)
$$

by Atiyah-Bott $[\mathbf{A B}]$, where $\operatorname{map}_{P}(X, B G)$ is a subspace of $f \in \operatorname{map}(X, B G)$ such that f is homotopic to the classifying map of P. There exists a fibration as follows.

$$
G \xrightarrow{\alpha} \operatorname{map}_{*, P}(X, B G) \rightarrow B \mathscr{G}(P) \rightarrow B G
$$

where $\operatorname{map}_{*, P}(X, B G)=\operatorname{map}_{*}(X, B G) \cap \operatorname{map}_{P}(X, B G)$. In particular, when $X=$ S^{n}, the adjoint of the map α is an element of $\pi_{n-1} \operatorname{map}_{*}(G, G)$.

Finally, we make mention of the homotopy group $\pi_{0} \operatorname{map}_{*}(X, X)$. This set is considered as the homotopy classes $[X, X]$, and is a group when X is a topological group. In the case that X is a connected Lie group of rank $2, \pi_{0} \operatorname{map}_{*}(X, X)$ are studied in $[\mathbf{A O S}],[\mathbf{K O}],[\mathbf{M O}],[\mathbf{O 1}],[\mathbf{O 2}],[\mathbf{O 3}]$.

Now we state our main results in this paper.

Theorem 1.

n	$\pi_{n} \mathrm{map}_{*}(\mathrm{SU}(3), \mathrm{SU}(3))$	$\pi_{n} \mathrm{map}_{*}(\mathrm{Sp}(2), \mathrm{Sp}(2))$
1	\boldsymbol{Z}_{3}^{2}	\boldsymbol{Z}_{2}^{2}
2	$\boldsymbol{Z} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{5}$	\boldsymbol{Z}_{2}^{3}
3	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{3}^{2}$	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{5}$
4	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{3}^{2} \oplus \boldsymbol{Z}_{5}$	$\boldsymbol{Z} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{16} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{7}$
5	$\boldsymbol{Z}_{2} \oplus A \oplus \boldsymbol{Z}_{3}^{3} \oplus \boldsymbol{Z}_{5}$	\boldsymbol{Z}_{2}^{3}
6	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}^{2} \oplus \boldsymbol{Z}_{3}^{2} \oplus \boldsymbol{Z}_{7}$	\boldsymbol{Z}_{2}^{4}
7	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{3}^{2} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{5}^{2}$	$\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{32} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{5}^{3} \oplus \boldsymbol{Z}_{7}$
8	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{3}^{2} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{7}$	$\boldsymbol{Z}_{2}^{3} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{5} \oplus \boldsymbol{Z}_{7}$

Here \boldsymbol{Z}_{n}^{r} denotes the direct sum of r copies of \boldsymbol{Z}_{n}, and A is $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}$ or \boldsymbol{Z}_{8}. Hamanaka-Kono [HK] proves $A=\boldsymbol{Z}_{8}$.

For the exceptional Lie group G_{2} we obtain the following.
THEOREM 2. $\quad \pi_{1} \operatorname{map}_{*}\left(G_{2}, G_{2}\right) \cong \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$.
Acknowledgements. We thank Professor A. Kono for suggesting the relationship between the gauge group theory and our work. We thank also the referee for useful comments. For example, our original proof of Proposition 4.4 (4) below has been replaced by simpler one.

2. Preliminaries.

As defined in the introduction, $\operatorname{map}_{*}(X, Y)$ denote the function space of pointed maps from X to Y. We consider $\operatorname{map}_{*}(X, Y)$ as a topological space having the compact open topology. We denote by $\pi_{n} \operatorname{map}_{*}(X, Y)$ the homotopy group of the component of the trivial map. Namely,

$$
\pi_{n} \operatorname{map}_{*}(X, Y)=\pi_{n}\left(\operatorname{map}_{*}(X, Y), *\right)
$$

In this paper we shall identify $\pi_{n} \operatorname{map}_{*}(X, Y)$ with $\left[\Sigma^{n} X, Y\right]$ by the adjoint isomorphism, where $\Sigma^{n} X=\mathrm{S}^{n} \wedge X$.

Recall that if the following diagram is commutative up to homotopy, then we call \bar{h} an extension of h and \widetilde{f} a coextension of f.

Here $C_{g}=Y \cup_{g} C X$ is the reduced mapping cone of g, i is the inclusion, and q is the quotient map.

We follow Toda's notation [T2] for elements of homotopy groups of spheres. As is well-known, we have

$$
\begin{gathered}
\mathrm{SU}(3)=\mathrm{S}^{3} \cup_{\eta_{3}} e^{5} \cup_{\phi} e^{8}, \quad \pi_{4}\left(\mathrm{~S}^{3}\right)=\boldsymbol{Z}_{2}\left\{\eta_{3}\right\} \\
\mathrm{Sp}(2)=\mathrm{S}^{3} \cup_{\omega} e^{7} \cup e^{10}, \quad \pi_{6}\left(\mathrm{~S}^{3}\right)=\boldsymbol{Z}_{12}\{\omega\}, \quad \omega=\nu^{\prime}+\alpha_{1}(3) .
\end{gathered}
$$

Let

$$
\mathrm{S}^{3} \xrightarrow{i^{\prime}} C_{\eta_{3}} \xrightarrow{j} \mathrm{SU}(3) ; \quad \mathrm{S}^{3} \xrightarrow{i^{\prime}} C_{\omega} \xrightarrow{j} \mathrm{Sp}(2)
$$

be the inclusion maps. Write $i=j \circ i^{\prime}$. Let

$$
q_{3}: C_{\eta_{3}} \rightarrow \mathrm{~S}^{5}, \quad q: \mathrm{SU}(3) \rightarrow \mathrm{S}^{8} ; \quad q_{3}: C_{\omega} \rightarrow \mathrm{S}^{7}, \quad q: \mathrm{Sp}(2) \rightarrow \mathrm{S}^{10}
$$

be the quotient maps. Let

$$
\mathrm{S}^{3} \xrightarrow{i} \mathrm{SU}(3) \xrightarrow{p} \mathrm{~S}^{5} ; \quad \mathrm{S}^{3} \xrightarrow{i} \mathrm{Sp}(2) \xrightarrow{p} \mathrm{~S}^{7}
$$

be the canonical fibrations. As is well-known, $p \circ j=q_{3}$.
Notation 2.1. Given $x \in\left[\Sigma^{m} C_{\eta_{3}}, \mathrm{SU}(3)\right]$ (resp. $x \in\left[\Sigma^{m} C_{\omega}, \mathrm{Sp}(2)\right]$), an extension of x to $\Sigma^{m} \mathrm{SU}(3)$ (resp. $\left.\Sigma^{m} \mathrm{Sp}(2)\right)$ is denoted by $\bar{x} \in\left[\Sigma^{m} \mathrm{SU}(3), \mathrm{SU}(3)\right]$ (resp. $\bar{x} \in\left[\Sigma^{m} \operatorname{Sp}(2), \operatorname{Sp}(2)\right]$), that is, $x=\left(\Sigma^{m} j\right)^{*} \bar{x}$. Given $z \in\left[\Sigma^{m} S^{3}, \mathrm{SU}(3)\right]$ (resp. $z \in\left[\Sigma^{m} \mathrm{~S}^{3}, \mathrm{Sp}(2)\right]$), we denote by $\overline{\bar{z}}$ an element of $\left[\Sigma^{m} \mathrm{SU}(3), \mathrm{SU}(3)\right]$ (resp. $\left.\left[\Sigma^{m} \operatorname{Sp}(2), \mathrm{Sp}(2)\right]\right)$ such that $z=\left(\Sigma^{m} i\right)^{*}(\overline{\bar{z}})$.

For any abelian group Γ and a set of prime numbers P, let $\Gamma_{(P)}$ be the localization of Γ at P. Given maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, we usually denote their composition by $g \circ f$, but sometimes we denote it simply by $g f$.

3. $\pi_{n} \operatorname{map}_{*}(\mathrm{SU}(3), \mathrm{SU}(3))$.

The odd primary components of [$\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)$] are easily obtained from the results in [T2], since if p is an odd prime, then $\mathrm{SU}(3)_{(p)} \simeq \mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{5}$ (homotopy equivalent). Thus

$$
\begin{equation*}
\left[\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)\right]_{(p)} \cong \pi_{n+3}\left(\mathrm{~S}^{3} \times \mathrm{S}^{5}\right)_{(p)} \oplus \pi_{n+5}\left(\mathrm{~S}^{3} \times \mathrm{S}^{5}\right)_{(p)} \oplus \pi_{n+8}\left(\mathrm{~S}^{3} \times \mathrm{S}^{5}\right)_{(p)} \tag{3.1}
\end{equation*}
$$

Hence in the rest of this section we calculate $\left[\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)\right]_{(2)}$ for $n \geq 1$. We use

n	$\pi_{n} \mathrm{SU}(3)$	gen. of 2-comp.	n	$\pi_{n} \mathrm{SU}(3)$	gen. of 2-comp.
$1,2,4,7$	0		12	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{15}$	$\left[\sigma^{\prime \prime \prime}\right]\left(2\left[\sigma^{\prime \prime \prime}\right]=i_{*} \mu_{3}\right)$
3	\boldsymbol{Z}	$i_{*} \iota_{3}$	13	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{3}$	$i_{*} \varepsilon^{\prime}$
5	\boldsymbol{Z}	$[2 \iota 5]$	14	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{21}$	$\left[\nu_{5}^{2}\right] \nu_{11}, i_{*} \mu^{\prime}$
6	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{3}$	$i_{*} \nu^{\prime}$	15	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{9}$	$\left[2 \nu_{5}\right] \nu_{5} \sigma_{8}$
8	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{3}$	$\left[2 \iota_{5}\right] \nu_{5}$	16	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{63} \oplus \boldsymbol{Z}_{3}$	$\left[2 \iota_{5}\right] \bar{\zeta}_{5},\left[\nu_{5} \bar{\nu}_{8}\right]$
9	\boldsymbol{Z}_{3}		17	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{15}$	$\left[\nu_{5}\right] \nu_{11}^{2},\left[\nu_{5} \eta_{8} \varepsilon_{9}\right]$
10	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{15}$	$\left[\nu_{5} \eta_{8}^{2}\right]$	18	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{15} \oplus \boldsymbol{Z}_{3}$	$i_{*} \bar{\varepsilon}_{3},\left[\nu_{5} \eta_{8} \mu_{9}\right]$
11	\boldsymbol{Z}_{4}	$\left[\nu_{5}^{2}\right]\left(2\left[\nu_{5}^{2}\right]=i_{*} \varepsilon_{3}\right)$	19	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{3}^{2}$	$\left[\sigma^{\prime \prime \prime \prime}\right] \sigma_{12},\left[\nu_{5} \bar{\nu}_{8}\right] \nu_{16}$

Table 1. $\pi_{n}(\mathrm{SU}(3))$.

This is contained in $[\mathbf{M T}]$ with the following notation: $[x] \in \pi_{n}(\mathrm{SU}(3))$ denotes an element such that $p_{*}[x]=x$.

Fist we prove $[\Sigma \mathrm{SU}(3), \mathrm{SU}(3)]_{(2)}=0$. By Table 1, we have the following exact sequence.

$$
0 \xrightarrow{(\Sigma q)^{*}}[\Sigma \mathrm{SU}(3), \mathrm{SU}(3)]_{(2)} \xrightarrow{(\Sigma j)^{*}}\left[\mathrm{~S}^{4} \cup_{\eta_{4}} e^{6}, \mathrm{SU}(3)\right]_{(2)}
$$

It suffices for our purpose to prove

$$
\begin{equation*}
\left[S^{4} \cup_{\eta_{4}} e^{6}, \mathrm{SU}(3)\right]_{(2)}=0 \tag{3.2}
\end{equation*}
$$

By Table 1 we have the following exact sequence.

$$
\begin{equation*}
\boldsymbol{Z}_{(2)}\left\{\left[2 \iota_{5}\right]\right\} \xrightarrow{\eta_{5}^{*}} \boldsymbol{Z}_{2}\left\{i_{*} \nu^{\prime}\right\} \xrightarrow{\left(\Sigma q_{3}\right)^{*}}\left[\mathrm{~S}^{4} \cup_{\eta_{4}} e^{6}, \mathrm{SU}(3)\right]_{(2)} \xrightarrow{\left(\Sigma i^{\prime}\right)^{*}} 0 . \tag{3.3}
\end{equation*}
$$

We use the following theorem [MT, Theorem 2.1].
Theorem 3.1 ([MT]). Let $F \xrightarrow{i} X \xrightarrow{p} B$ be a fibration, and $\partial: \pi_{n}(B) \rightarrow$ $\pi_{n-1}(F)$ the boundary operator. Assume that $\alpha \in \pi_{m+1}(B), \beta \in \pi_{l}\left(\mathrm{~S}^{m}\right)$ and $\gamma \in \pi_{k}\left(\mathrm{~S}^{l}\right)$ satisfying $\partial \alpha \circ \beta=0$ and $\beta \circ \gamma=0$. For an arbitrary element $\delta \in$ $\{\partial \alpha, \beta, \gamma\} \subset \pi_{k+1}(F)$, there exists an element $\epsilon \in \pi_{l+1}(X)$ such that $p_{*} \epsilon=\alpha \circ \Sigma \beta$ and $i_{*} \delta=\epsilon \circ \Sigma \gamma$.

We apply this theorem to the fibration $\mathrm{S}^{3} \xrightarrow{i} \mathrm{SU}(3) \xrightarrow{p} \mathrm{~S}^{5}$ by taking

$$
\alpha=\iota_{5}, \quad \beta=2 \iota_{4}, \quad \gamma=\eta_{4}, \quad k=5, \quad l=m=4 .
$$

Indeed this case can be applied, since $\beta \circ \gamma=0$ and $\partial \alpha=\eta_{3}$ so that $\partial \alpha \circ \beta=0$. It follows that for any $\delta \in\{\partial \alpha, \beta, \gamma\}$ there exists $\epsilon \in \pi_{5}(\mathrm{SU}(3))$ such that

$$
p_{*} \epsilon=\alpha \circ \Sigma \beta=2 \iota_{5}, \quad i_{*} \delta=\epsilon \circ \Sigma \gamma .
$$

In particular we have $\epsilon=\left[2 \iota_{5}\right]$. Since $\left\{\eta_{3}, 2 \iota_{4}, \eta_{4}\right\}=\left\{\nu^{\prime},-\nu^{\prime}\right\}$ by [T2, (5.4)], we then have

$$
\begin{equation*}
i_{*} \nu^{\prime}=\left[2 \iota_{5}\right] \circ \eta_{5}=\eta_{5}^{*}\left[2 \iota_{5}\right] . \tag{3.4}
\end{equation*}
$$

Hence by (3.3) we have (3.2) as desired.
In order to calculate $\left[\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)\right]_{(2)}$ for $n \geq 2$, we recall a result of

Browder-Spanier [BS] that the attaching map of the top cell of an H-space is stably trivial. Hence

$$
\begin{equation*}
\Sigma^{3} \mathrm{SU}(3) \simeq \mathrm{S}^{6} \cup_{\eta_{6}} e^{8} \vee \mathrm{~S}^{11} \tag{3.5}
\end{equation*}
$$

More precisely, we can prove

$$
\Sigma \phi=\Sigma i^{\prime} \circ \nu_{4} \circ \eta_{7}
$$

We do not use this equality in this paper. So we omit its proof. We have
Lemma 3.2. $\quad\left[\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)\right] \cong \pi_{8+n}(\mathrm{SU}(3)) \oplus\left[C_{\eta_{3+n}}, \mathrm{SU}(3)\right]$ for $n \geq 2$.
Proof. If $n \geq 3$, then the result follows from (3.5). For $n=2$, we have

$$
\left[\Sigma^{2} \mathrm{SU}(3), \mathrm{SU}(3)\right] \cong\left[\Sigma^{3} \mathrm{SU}(3), B \mathrm{SU}(3)\right]
$$

and the lemma follows also from (3.5).
Hence it suffices for our purpose to determine $\left[C_{\eta_{3+n}}, \mathrm{SU}(3)\right]_{(2)}$ for $n \geq 2$.
The generators of the 2 -components of $\left[\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)\right]$ are as follows.

n	2-components	generators
1	0	
2	$\boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$	$\overline{\overline{2\left[2 \iota_{5}\right]}},\left(\Sigma^{2} q\right)^{*}\left[\nu_{5} \eta_{8}^{2}\right]$
3	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8}$	$\left(\Sigma^{3} q\right)^{*}\left[\nu_{5}^{2}\right], \overline{\overline{i_{*} \nu^{\prime}}}$
4	Z_{4}	$\left(\Sigma^{4} q\right)^{*}\left[\sigma^{\prime \prime \prime}\right]$
5	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{8}$	$\left(\Sigma^{5} q\right)^{*} i_{*} \varepsilon^{\prime}, \overline{\overline{\left[2 \iota_{5}\right]}{ }^{\circ} \nu_{5}}$
6	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{4}$	$\left(\Sigma^{6} q\right)^{*} i_{*} \mu^{\prime},\left(\Sigma^{6} q\right)^{*}\left(\left[\nu_{5}^{2}\right] \circ \nu_{11}\right), \overline{\Sigma^{6} q_{3}{ }^{*}\left[\nu_{5}^{2}\right]}$
7	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8}$	$\left(\Sigma^{7} q\right)^{*}\left(\left[2 \iota_{5}\right] \circ \nu_{5} \sigma_{8}\right), \overline{\left.\overline{\left[\nu_{5} \eta_{8}^{2}\right.}\right]}$
8	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8}$	$\left(\Sigma^{8} q\right)^{*}\left[\nu_{5} \bar{\nu}_{8}\right],\left(\Sigma^{8} q\right)^{*}\left(\left[2 \iota_{5}\right] \circ \zeta_{5}\right), \overline{\left.\overline{\left[\nu_{5}^{2}\right.}\right]}$

Table 2. 2-components of $\left[\Sigma^{n} \mathrm{SU}(3), \mathrm{SU}(3)\right]$.
3.1. $\quad\left[C_{\eta_{5}}, \mathrm{SU}(3)\right]$.

By Table 1, we have the following exact sequence.

$$
0 \longrightarrow\left[\mathrm{~S}^{5} \cup_{\eta_{5}} e^{7}, \mathrm{SU}(3)\right] \longrightarrow \boldsymbol{Z}\left\{\left[2 \iota_{5}\right]\right\} \xrightarrow{\eta_{5}^{*}} \boldsymbol{Z}_{2}\left\{i_{*} \nu^{\prime}\right\} \oplus \boldsymbol{Z}_{3}
$$

Hence by (3.4) we have $\left[C_{\eta_{5}}, \mathrm{SU}(3)\right]=\boldsymbol{Z}\left\{\overline{2\left[2 \iota_{5}\right]}\right\}$. Thus we obtain

$$
\left[\Sigma^{2} \mathrm{SU}(3), \mathrm{SU}(3)\right]=\boldsymbol{Z}\left\{\overline{\overline{2\left[2 \iota_{5}\right]}}\right\} \oplus \boldsymbol{Z}_{2}\left\{\left(\Sigma^{2} q\right)^{*}\left[\nu_{5} \eta_{8}^{2}\right]\right\} \oplus \boldsymbol{Z}_{15} .
$$

3.2. $\left[C_{\eta_{6}}, \mathrm{SU}(3)\right]_{(2)}$.

By [T2] and Table 1, we have the following commutative diagram with exact rows and columns.

By the first and third rows, we have the following results ([KMNST, Propositions 3.3 and 3.1]):

$$
\begin{equation*}
\left[C_{\eta_{6}}, S^{3}\right]_{(2)}=\boldsymbol{Z}_{2}\left\{\overline{2 \nu^{\prime}}\right\}, \quad\left[C_{\eta_{6}}, S^{5}\right]_{(2)}=\boldsymbol{Z}_{4}\left\{\left(\Sigma^{3} q_{3}\right)^{*} \nu_{5}\right\} . \tag{3.6}
\end{equation*}
$$

By the second row, the order of $\left[C_{\eta_{6}}, \mathrm{SU}(3)\right]_{(2)}$ is 8 . Hence the middle column is short exact by (3.6). Since

$$
p_{*}\left(\Sigma^{3} q_{3}\right)^{*}\left(\left[2 \iota_{5}\right] \circ \nu_{5}\right)=\left(\Sigma^{3} q_{3}\right)^{*} p_{*}\left(\left[2 \iota_{5}\right] \circ \nu_{5}\right)=2\left(\Sigma^{3} q_{3}\right)^{*} \nu_{5},
$$

we have $\left[C_{\eta_{6}}, \mathrm{SU}(3)\right]_{(2)} \neq \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2}$. Hence $\left[C_{\eta_{6}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{8}\left\{\overline{i_{*} \nu^{\prime}}\right\}$.
3.3. $\left[C_{\eta_{7}}, \mathrm{SU}(3)\right]_{(2)}$.

By Table 1, we easily see that $\left[C_{\eta_{7}}, \mathrm{SU}(3)\right]_{(2)}=0$.
3.4. $\left[C_{\eta_{8}}, \mathrm{SU}(3)\right]_{(2)}$.

By Table 1, we have the following exact sequence:

$$
0 \longrightarrow \boldsymbol{Z}_{2}\left\{\left[\nu_{5} \eta_{8}^{2}\right]\right\} \xrightarrow{\left(\Sigma^{5} q_{3}\right)^{*}}\left[C_{\eta_{8}}, \mathrm{SU}(3)\right]_{(2)} \xrightarrow{\left(\Sigma^{5} i^{\prime}\right)^{*}} \boldsymbol{Z}_{4}\left\{\left[2 \iota_{5}\right] \circ \nu_{5}\right\} \longrightarrow 0
$$

This does not split as shown by Hamanaka-Kono [HK]. Hence

$$
\left[C_{\eta_{8}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{8}\left\{\overline{\left[2 \iota_{5}\right] \circ \nu_{5}}\right\} .
$$

3.5. $\quad\left[C_{\eta_{9}}, \mathrm{SU}(3)\right]_{(2)}$.

By Table 1, we have the following exact sequence:

$$
\boldsymbol{Z}_{2}\left\{\left[\nu_{5} \eta_{8}^{2}\right]\right\} \xrightarrow{\eta_{10}^{*}} \boldsymbol{Z}_{4}\left\{\left[\nu_{5}^{2}\right]\right\} \xrightarrow{\left(\Sigma^{6} q_{3}\right)^{*}}\left[C_{\eta_{9}}, \mathrm{SU}(3)\right]_{(2)} \longrightarrow 0
$$

Thus $\eta_{10}^{*}\left[\nu_{5} \eta_{8}^{2}\right]$ is 0 or $2\left[\nu_{5}^{2}\right]$. To induce a contradiction, assume $\eta_{10}^{*}\left[\nu_{5} \eta_{8}^{2}\right]=2\left[\nu_{5}^{2}\right]$. Then $2\left(\left[\nu_{5}^{2}\right] \circ \nu_{11}\right)=\left(2\left[\nu_{5}^{2}\right]\right) \circ \nu_{11}=\left[\nu_{5} \eta_{8}^{2}\right] \circ \eta_{10} \circ \nu_{11}=0$ since $\eta_{10} \circ \nu_{11}=0$ by [T2]. This contradicts the fact that the order of $\left[\nu_{5}^{2}\right] \circ \nu_{11}$ is 4. Hence

$$
\begin{equation*}
\left[\nu_{5} \eta_{8}^{2}\right] \circ \eta_{10}=0 \tag{3.7}
\end{equation*}
$$

so that

$$
\left[C_{\eta_{9}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{4}\left\{\left(\Sigma^{6} q_{3}\right)^{*}\left[\nu_{5}^{2}\right]\right\}
$$

3.6. $\left[C_{\eta_{10}}, \mathrm{SU}(3)\right]_{(2)}$.

The purpose of this subsection is to prove

$$
\begin{equation*}
\left[C_{\eta_{10}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{8}\left\{\overline{\left[\nu_{5} \eta_{8}^{2}\right]}\right\} \tag{3.8}
\end{equation*}
$$

By [T2], Table 1 and (3.7), we have the following commutative diagram with exact rows and columns:

By the first row, we have the following result ([KMNST, Proposition 3.7]):

$$
\begin{equation*}
\left[C_{\eta_{10}}, S^{3}\right]_{(2)}=Z_{2}\left\{\left(\Sigma^{7} q_{3}\right)^{*} \mu_{3}\right\} . \tag{3.10}
\end{equation*}
$$

We need

Proposition 3.3.

(1) $\left[\nu_{5}^{2}\right] \circ \eta_{11}=0$.
(2) ([KMNST, Proposition 3.5]) $\quad\left[C_{\eta_{10}}, S^{5}\right]_{(2)}=\boldsymbol{Z}_{4}\left\{\overline{\nu_{5} \eta_{8}^{2}}\right\}$.

Before proving this proposition, we prove (3.8) by using it. By Proposition 3.3, we have the following commutative diagram with exact rows and columns.

Hence $\left[C_{\eta_{10}}, \mathrm{SU}(3)\right]_{(2)}$ is isomorphic to \boldsymbol{Z}_{8} or $\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2}$. To induce a contradiction, assume it is $\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2}$. Then

$$
\left.\left[C_{\eta_{10}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{4}\left\{\overline{\left[\nu_{5} \eta_{8}^{2}\right.}\right]\right\} \boldsymbol{Z}_{2}\left\{\overline{\left[\nu_{5} \eta_{8}^{2}\right]}-\left(\Sigma^{7} q_{3}\right)^{*}\left[\sigma^{\prime \prime \prime}\right]\right\}
$$

since $p_{*} \overline{\left[\nu_{5} \eta_{8}^{2}\right]}$ generates $\left[C_{\eta_{10}}, S^{5}\right]_{(2)}$. We have $i_{*}\left(\Sigma^{7} q_{3}\right)^{*} \mu_{3}=2\left(\Sigma^{7} q_{3}\right)^{*}\left[\sigma^{\prime \prime \prime}\right]=$ $2 \overline{\left[\nu_{5} \eta_{8}^{2}\right]}$. Hence the cokernel of the second i_{*} which is isomorphic to $\left[C_{\eta_{10}}, S^{5}\right]_{(2)}$ is $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$. This contradicts Proposition 3.3 (2). Therefore we obtain (3.8).

Proof of Proposition 3.3. The assertion (2) is proved in [KMNST, Proposition 3.5 (4)]. We prove (1) as follows. Since η_{11} is of order 2 , $\left[\nu_{5}^{2}\right] \circ \eta_{11}$ is 0 or $2\left[\sigma^{\prime \prime \prime}\right]$. To induce a contradiction, assume $\left[\nu_{5}^{2}\right] \circ \eta_{11}=2\left[\sigma^{\prime \prime \prime}\right]$. Then, by [T2, Lemma 6.4] and Table 1, we have

$$
\begin{equation*}
\left[\nu_{5}^{2}\right] \circ \sigma_{11} \circ \eta_{18}=\left[\nu_{5}^{2}\right] \circ \eta_{11} \circ \sigma_{12}=2\left(\left[\sigma^{\prime \prime \prime}\right] \circ \sigma_{12}\right) \neq 0 . \tag{3.11}
\end{equation*}
$$

By Table 1 , we can write $\left[\nu_{5}^{2}\right] \circ \sigma_{11}=a \cdot i_{*} \bar{\varepsilon}_{3}+b \cdot\left[\nu_{5} \eta_{8} \mu_{9}\right](a, b \in \boldsymbol{Z})$. Then

$$
\nu_{5}^{2} \sigma_{11}=p_{*}\left(\left[\nu_{5}^{2}\right] \circ \sigma_{11}\right)=b \cdot \nu_{5} \eta_{8} \mu_{9}
$$

By $[\mathbf{T} 2,(7.19)], \sigma^{\prime} \nu_{14}=x \cdot \nu_{7} \sigma_{10}$ with x odd. Hence

$$
\nu_{5} \circ \Sigma \sigma^{\prime} \circ \nu_{15}=\nu_{5} \circ x \cdot \nu_{8} \circ \sigma_{11}=\nu_{5}^{2} \sigma_{11}
$$

On the other hand, $\nu_{5} \circ \Sigma \sigma^{\prime}=2\left(\nu_{5} \sigma_{8}\right)$ by $\left[\mathbf{T 2}\right.$, (7.16)]. Hence $\nu_{5} \circ \Sigma \sigma^{\prime} \circ \nu_{15}=0$, since $2 \pi_{18}\left(\mathrm{~S}^{5}\right)_{(2)}=0$ by $[\mathbf{T} 2]$. Thus $\nu_{5}^{2} \sigma_{11}=0$ so that b is even and $\left[\nu_{5}^{2}\right] \circ \sigma_{11}=a \cdot i_{*} \bar{\varepsilon}_{3}$. We then have

$$
\left[\nu_{5}^{2}\right] \circ \sigma_{11} \circ \eta_{18}=a \cdot i_{*}\left(\bar{\varepsilon}_{3} \eta_{18}\right)=a \cdot i_{*}\left(\eta_{3} \bar{\varepsilon}_{4}\right)=a \cdot\left(i_{*} \eta_{3} \circ \bar{\varepsilon}_{4}\right)=0,
$$

since $i_{*} \eta_{3} \in \pi_{4}(\mathrm{SU}(3))=0$. This contradicts (3.11). Therefore $\left[\nu_{5}^{2}\right] \circ \eta_{11}=0$.

3.7. $\left[C_{\eta_{11}}, \mathrm{SU}(3)\right]_{(2)}$.

By Table 1 and Proposition 3.3 (1), we have the following commutative diagram with exact rows and columns:

The purpose of this subsection is to prove

$$
\begin{equation*}
\left[C_{\eta_{11}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{8}\left\{\overline{\left[\nu_{5}^{2}\right]}\right\}, \quad 4 \cdot \overline{\left[\nu_{5}^{2}\right]}=\left(\Sigma^{8} q_{3}\right)^{*} i_{*} \varepsilon^{\prime} . \tag{3.13}
\end{equation*}
$$

We need two lemmas.
Lemma 3.4.
(1) $\left[\sigma^{\prime \prime \prime}\right] \circ \eta_{12}=0$.
(2) ([KMNST, Proposition 3.6]) $\left[C_{\eta_{11}}, S^{5}\right]=\boldsymbol{Z}_{4}\left\{p_{*} \overline{\left[\nu_{5}^{2}\right]}\right\}, 2 \cdot p_{*} \overline{\left[\nu_{5}^{2}\right]}=$ $\left(\Sigma^{8} q_{3}\right)^{*} \varepsilon_{5}$.

Proof. Consider the following commutative diagram.

$$
\begin{array}{ccc}
\pi_{12}(\mathrm{SU}(3)) & \xrightarrow{i_{3,4_{*}}} \pi_{12}(\mathrm{SU}(4)) \xrightarrow{\cong} & \xrightarrow{i_{4,5_{*}}} \\
\pi_{12}(\mathrm{SU}(5)) \\
\eta_{12}^{*} & \downarrow \eta_{12}^{*} & \\
\pi_{13}(\mathrm{SU}(3))_{(2)} \xrightarrow{i_{3,4_{*}}} \pi_{13}(\mathrm{SU}(4)) \xrightarrow{i_{4,5_{*}}^{*}} \pi_{13}(\mathrm{SU}(5))
\end{array}
$$

Here $i_{k, l}: \mathrm{SU}(k) \rightarrow \mathrm{SU}(l)$ is the inclusion map. Recall from [$\mathbf{T 1}$, Theorem 4.4] that $\pi_{12}(\mathrm{SU}(5))=\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{45}$. Then the first $i_{3,4_{*}}$ is bijective and the second $i_{3,4_{*}}$ is injective by $[\mathbf{M T}]$. Since $\pi_{13}\left(\mathrm{~S}^{9}\right)=\pi_{14}\left(\mathrm{~S}^{9}\right)=0$ by [T2], the first $i_{4,5_{*}}$ is injective and the second $i_{4,5_{*}}$ is bijective. Let g denote a generator of the 2-primary part of $\pi_{12}(\mathrm{SU}(5))$ satisfying $i_{3,5_{*}}\left[\sigma^{\prime \prime \prime}\right]=2 g$. Then

$$
i_{3,5_{*}} \eta_{12}^{*}\left[\sigma^{\prime \prime \prime}\right]=\eta_{12}^{*} i_{3,5_{*}}\left[\sigma^{\prime \prime \prime}\right]=\eta_{12}^{*}(2 g)=g \circ 2 \eta_{12}=0
$$

Hence $\eta_{12}^{*}\left[\sigma^{\prime \prime \prime}\right]=0$ and we obtain (1).
Since no precise proof of (2) is in [KMNST], we give a proof of (2). We firstly claim that the second p_{*} of (3.12) is surjective, that is, the second ∂ of (3.12) is trivial. We have

$$
\partial \varepsilon_{5}=\partial \iota_{5} \circ \varepsilon_{4}=\eta_{3} \varepsilon_{4}=\varepsilon_{3} \eta_{11}=\eta_{11}^{*} \varepsilon_{3}
$$

so that

$$
\partial\left(\Sigma^{8} q_{3}\right)^{*} \varepsilon_{5}=\left(\Sigma^{7} q_{3}\right)^{*} \partial \varepsilon_{5}=\left(\Sigma^{7} q_{3}\right)^{*} \eta_{11}^{*} \varepsilon_{3}=0
$$

Of course $\partial p_{*} \overline{\left[\nu_{5}^{2}\right]}=0$. Hence the second ∂ of (3.12) is trivial, since $\left[C_{\eta_{11}}, S^{5}\right]$ is generated by $\left(\Sigma^{8} q_{3}\right)^{*} \varepsilon_{5}$ and $p_{*} \overline{\left.\nu_{5}^{2}\right]}$.

By [T2, (7.4)], $\sigma^{\prime \prime \prime} \eta_{12}=0$. Hence, by the second row of (3.12), the order of $\left[C_{\eta_{11}}, \mathrm{~S}^{5}\right]$ is 4 . To induce a contradiction, assume $\left[C_{\eta_{11}}, \mathrm{~S}^{5}\right] \cong \boldsymbol{Z}_{2}^{2}$, that is, $\left.\left[C_{\eta_{11}}, \mathrm{~S}^{5}\right]=\boldsymbol{Z}_{2}^{2}\left\{\left(\Sigma^{8} q_{3}\right)^{*} \varepsilon_{5}, p_{*} \overline{\left[\nu_{5}^{2}\right.}\right]\right\}$. Then the surjectivity of $p_{*}:\left[C_{\eta_{11}}, \mathrm{SU}(3)\right]_{(2)} \rightarrow$ $\left[C_{\eta_{11}}, S^{5}\right]$ implies that $\left[C_{\eta_{11}}, \mathrm{SU}(3)\right]_{(2)}$ is generated by at least two elements, that is, it must be that $\left[C_{\eta_{11}}, \mathrm{SU}(3)\right]_{(2)}=\boldsymbol{Z}_{2}\left\{\left(\Sigma^{8} q_{3}\right)^{*} i_{*} \varepsilon^{\prime}\right\} \oplus \boldsymbol{Z}_{4}\left\{\overline{\left[\nu_{5}^{2}\right]}\right\}$. But this is impossible, since $p_{*}\left(\Sigma^{8} q_{3}\right)^{*} i_{*} \varepsilon^{\prime}=\left(\Sigma^{8} q_{3}\right)^{*} p_{*} i_{*} \varepsilon^{\prime}=0$. Therefore $\left.\left[C_{\eta_{11}}, \mathrm{~S}^{5}\right]=\boldsymbol{Z}_{4}\left\{p_{*} \overline{\nu_{5}^{2}}\right]\right\}$ with $2 \cdot p_{*} \overline{\left[\nu_{5}^{2}\right]}=\left(\Sigma^{8} q_{3}\right)^{*} \varepsilon_{5}$.

We use the following fibration:

$$
\mathrm{SU}(3) \xrightarrow{\hat{i}} G_{2} \xrightarrow{\hat{p}} \mathrm{~S}^{6}
$$

We use notations and results of $[\mathbf{M}]$ freely. By $[\mathbf{T 2}, \mathbf{M}]$ and Table 1, we have the following commutative diagram with exact rows and columns where all groups are localized at 2:

Here we have used results of $[\mathbf{M}]$ that $\pi_{12}\left(G_{2}\right)=\pi_{13}\left(G_{2}\right)=0$. We need
Lemma 3.5.
(1) $\left([\mathbf{M}\right.$, Proposition 6.3] $) \quad \partial \bar{\nu}_{6}=\partial \varepsilon_{6}=i_{*} \varepsilon^{\prime}$.
(2) $\left(\left[\right.\right.$ KMNST, Proposition 3.6]) $\quad\left[C_{\eta_{12}}, \mathrm{~S}^{6}\right]_{(2)}=\boldsymbol{Z}_{4}\left\{\left(\Sigma^{9} q_{3}\right)^{*} \bar{\nu}_{6}\right\} \oplus$ $Z_{4}\left\{\Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}\right\}$ and $2 \cdot \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=\left(\Sigma^{9} q_{3}\right)^{*} \varepsilon_{6}$.

Proof. We give a proof of (2), because our notations are different from ones in [KMNST]. Consider the following commutative diagram with exact rows:

By Lemma 3.4 (2), we have

$$
\begin{equation*}
2 \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=\left(\Sigma^{9} q_{3}\right)^{*} \Sigma \varepsilon_{5}=\left(\Sigma^{9} q_{3}\right)^{*} \varepsilon_{6} \tag{3.15}
\end{equation*}
$$

We have $\eta_{13}^{*} \sigma^{\prime \prime}=4 \cdot \bar{\nu}_{6}$ by $[\mathbf{T} 2,(7.4)]$ so that we have the following short exact sequence:

$$
0 \longrightarrow \boldsymbol{Z}_{4}\left\{\left(\Sigma^{9} q_{3}\right)^{*} \bar{\nu}_{6}\right\} \oplus \boldsymbol{Z}_{2}\left\{\left(\Sigma^{9} q_{3}\right)^{*} \varepsilon_{6}\right\} \longrightarrow\left[C_{\eta_{12}}, S^{6}\right]_{(2)} \xrightarrow{\left(\Sigma^{9} i^{\prime}\right)^{*}} \boldsymbol{Z}_{2}\left\{\nu_{6}^{2}\right\} \longrightarrow 0
$$

Thus the order of $\Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}$ is 4 by (3.15), and we obtain (2) by the above exact
sequence, since $\left(\Sigma^{9} i^{\prime}\right)^{*} \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=\nu_{6}^{2}$.
Proof of (3.13). We have

$$
0=\partial \hat{p}_{*}\left(\Sigma^{9} q_{3}\right)^{*}\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle=\partial\left(\Sigma^{9} q_{3}\right)^{*}\left(\bar{\nu}_{6}+\varepsilon_{6}\right)=\partial\left(\Sigma^{9} q_{3}\right)^{*} \bar{\nu}_{6}+2 \cdot \partial \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]},
$$

where the last equality follows from (3.15). Hence

$$
-2 \cdot \partial \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=\partial\left(\Sigma^{9} q_{3}\right)^{*} \bar{\nu}_{6}=\left(\Sigma^{8} q_{3}\right)^{*} \partial \bar{\nu}_{6}=\left(\Sigma^{8} q_{3}\right)^{*} i_{*} \varepsilon^{\prime}
$$

where the last equality follows from Lemma 3.5 (1). Thus the order of $\partial \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}$ is 4 . On the other hand,

$$
\left(\Sigma^{8} i^{\prime}\right)^{*}\left(2 \cdot \overline{\left[\nu_{5}^{2}\right]}\right)=2\left[\nu_{5}^{2}\right]=\partial \nu_{6}^{2}=\partial\left(\Sigma^{9} i^{\prime}\right)^{*} \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=\left(\Sigma^{8} i^{\prime}\right)^{*} \partial \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]} .
$$

Hence there exists an integer x such that $2 \cdot \overline{\left[\nu_{5}^{2}\right]}-\partial \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=x \cdot\left(\Sigma^{8} q_{3}\right)^{*} i_{*} \varepsilon^{\prime}$. Thus $4 \cdot \overline{\left[\nu_{5}^{2}\right]}=2 \cdot \partial \Sigma p_{*} \overline{\left[\nu_{5}^{2}\right]}=\left(\Sigma^{8} q_{3}\right)^{*} i_{*} \varepsilon^{\prime}$. Therefore the order of $\overline{\left[\nu_{5}^{2}\right]}$ is 8 , and we obtain (3.13).

4. $\pi_{n} \operatorname{map}_{*}(\operatorname{Sp}(2), \operatorname{Sp}(2))$.

In this section we compute $\pi_{n} \operatorname{map}_{*}(\operatorname{Sp}(2), \operatorname{Sp}(2))$. Let $f: S^{9} \rightarrow S^{3} \cup_{\omega} e^{7}$ be the attaching map of the top cell of $\mathrm{Sp}(2)$, that is, $\mathrm{Sp}(2)=\mathrm{S}^{3} \cup_{\omega} e^{7} \cup_{f} e^{10}$. The double suspension of f is trivial, that is $\Sigma^{2} f=0$, because $\Sigma^{2} f$ is an element of the homotopy group $\pi_{11}\left(\mathrm{~S}^{5} \cup_{\Sigma^{2} \omega} e^{9}\right)$ which is isomorphic to the stable group, while f is a stably trivial element by $[\mathbf{B S}]$. Thus we obtain

$$
\Sigma^{2} \mathrm{Sp}(2) \simeq \mathrm{S}^{5} \cup_{\Sigma^{2} \omega} e^{9} \vee \mathrm{~S}^{12}
$$

The p-components of the homotopy groups for $p \geq 5$ are easily obtained from the results in [$\mathbf{T} 2$], since if $p \geq 5$

$$
\mathrm{Sp}(2)_{(p)} \simeq \mathrm{S}_{(p)}^{3} \times \mathrm{S}_{(p)}^{7}
$$

and thus for $n \geq 1$

$$
\begin{equation*}
\left[\Sigma^{n} \operatorname{Sp}(2), \operatorname{Sp}(2)\right]_{(p)} \cong\left(\pi_{n+3}\left(\mathrm{~S}^{3} \times \mathrm{S}^{7}\right) \oplus \pi_{n+7}\left(\mathrm{~S}^{3} \times \mathrm{S}^{7}\right) \oplus \pi_{n+10}\left(\mathrm{~S}^{3} \times \mathrm{S}^{7}\right)\right)_{(p)} \tag{4.1}
\end{equation*}
$$

Hence we must compute 2 and 3 components of [$\Sigma^{n} \operatorname{Sp}(2), \operatorname{Sp}(2)$] for $n \geq 1$. The
following table shows the generators of 2 and 3 components. Here we use the same notation as before.

n	2,3 -components	generators
1	\boldsymbol{Z}_{2}^{2}	$\Sigma q^{*} i_{*} \varepsilon_{3}, \overline{\overline{i_{*} \eta_{3}}}$
2	\boldsymbol{Z}_{2}^{3}	$\Sigma^{2} q^{*} i_{*} \mu_{3}, \Sigma^{2} q^{*} i_{*}\left(\eta_{3} \varepsilon_{3}\right), \overline{\overline{i_{*} \eta_{3}^{2}}}$
3	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{8}$	$\Sigma^{3} q^{*} i_{*}\left(\eta_{3} \mu_{4}\right), \Sigma^{3} q^{*}\left(\left[\nu_{7}\right] \nu_{10}\right), \overline{\Sigma^{3} q_{3}{ }^{*}\left[\nu_{7}\right]}$
4	$\boldsymbol{Z} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{16} \oplus \boldsymbol{Z}_{3}$	$\overline{\overline{3\left[12 \iota_{7}\right]}}, \overline{\Sigma^{4} q_{3}{ }^{*} i_{*} \varepsilon_{3}, \Sigma^{4} q^{*}\left[2 \sigma^{\prime}\right], \Sigma^{4} q^{*} i_{*} \alpha_{3}(3)}$
5	\boldsymbol{Z}_{2}^{3}	$\Sigma^{5} q^{*}\left[\sigma^{\prime} \eta_{14}\right], \overline{\Sigma^{5} q_{3}{ }^{*} i_{*} \mu_{3}}, \overline{\Sigma^{5} q_{3}{ }^{*} i_{*}\left(\eta_{3} \varepsilon_{4}\right)}$
6	\boldsymbol{Z}_{2}^{4}	$\frac{\Sigma^{6} q^{*}\left(\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{15}\right), \Sigma^{6} q^{*}\left(\left[\nu_{7}\right] \circ \nu_{10}^{2}\right),}{\Sigma^{6} q_{3}{ }^{*}\left(\left[\nu_{7}\right] \circ \nu_{10}\right)}, \overline{\Sigma^{6} q_{3}{ }^{*} i_{*}\left(\eta_{3} \mu_{4}\right)}$
7	$\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{32} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{9}$	$\Sigma^{7} q^{*}\left(\left[\nu_{7}\right] \circ \sigma_{10}\right), \overline{\overline{2\left[\nu_{7}\right]}}, 2 \cdot \overline{\overline{2\left[\nu_{7}\right]}}-z \cdot \overline{\Sigma^{7} q_{3}{ }^{*}\left[2 \sigma^{\prime}\right]}, \overline{\overline{i_{*} \alpha_{2}(3)}}$
8	$\boldsymbol{Z}_{2}^{3} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{9}$	$\Sigma^{8} q^{*} i_{*} \bar{\varepsilon}_{3}, \overline{\overline{i_{*} \varepsilon_{3}}}, \overline{\Sigma^{8} q_{3}{ }^{*}\left[\sigma^{\prime} \eta_{14}\right]}, \Sigma^{8} q^{*}\left[\zeta_{7}\right], \Sigma^{8} q^{*}\left[\alpha_{3}^{\prime}(7)\right]$

Table 3. 2 and 3 components of $\pi_{n} \operatorname{map}_{*}(\operatorname{Sp}(2), \operatorname{Sp}(2))$.
Here z is an odd integer.
As in the $\mathrm{SU}(3)$ case, we obtain the following lemma.
Lemma 4.1. $\quad\left[\Sigma^{n} \operatorname{Sp}(2), \operatorname{Sp}(2)\right] \cong \pi_{10+n}(\operatorname{Sp}(2)) \oplus\left[C_{\Sigma^{n} \omega}, \operatorname{Sp}(2)\right]$ for $n \geq 1$.
Proof. The proof is similar to that of Lemma 3.2.
Hence it suffices for our purpose to determine $\left[C_{\Sigma^{n} \omega}, \mathrm{Sp}(2)\right]_{(2,3)}$, the 2 and 3 components of $\left[C_{\Sigma^{n} \omega}, \operatorname{Sp}(2)\right]$, for $n \geq 1$. We use the following results of MimuraToda [MT].

n	$\pi_{n} \mathrm{Sp}(2)$	gen. of 2, 3-comp.	n	$\pi_{n} \operatorname{Sp}(2)$	gen. of 2, 3-comp.
$1,2,6,8,9$	0		12	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$	$i_{*} \mu_{3}, i_{*} \eta_{3} \varepsilon_{3}$
3	\boldsymbol{Z}	$i_{*} \iota_{3}$	13	$\boldsymbol{Z}_{4} \oplus \boldsymbol{Z}_{2}$	$\left[\nu_{7}\right] \circ \nu_{10}, i_{*} \eta_{3} \mu_{4}$
4	\boldsymbol{Z}_{2}	$i_{*} \eta_{3}$	14	$\boldsymbol{Z}_{16} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{35}$	$\left[2 \sigma^{\prime}\right], i_{*} \alpha_{3}(3)$
5	\boldsymbol{Z}_{2}	$i_{*} \eta_{3}^{2}$	15	\boldsymbol{Z}_{2}	$\left[\sigma^{\prime} \eta_{14}\right]$
7	\boldsymbol{Z}	$\left[12 \iota_{7}\right]$	16	$\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$	$\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{15},\left[\nu_{7}\right] \circ \nu_{10}^{2}$
10	$\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{3} \oplus \boldsymbol{Z}_{5}$	$\left[\nu_{7}\right], i_{*} \alpha_{2}(3)$	17	$\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{5}$	$\left[\nu_{7}\right] \circ \sigma_{10}$
11	\boldsymbol{Z}_{2}	$i_{*} \varepsilon_{3}$	18	$\boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{9} \oplus \boldsymbol{Z}_{35}$	$\left[\zeta_{7}\right], i_{*} \varepsilon_{3},\left[3 \cdot \alpha_{3}^{\prime}(7)\right]$

Table 4. $\quad \pi_{n}(\operatorname{Sp}(2))$.

4.1. $\quad\left[C_{\Sigma^{n} \omega}, \operatorname{Sp}(2)\right](n=1,2)$.

By the cofibration sequence and Table 4, it is easy to see that

$$
\left[C_{\Sigma \omega}, \operatorname{Sp}(2)\right]=\boldsymbol{Z}_{2}\left\{i_{*} \overline{\eta_{3}}\right\}, \quad\left[C_{\Sigma^{2} \omega}, \mathrm{Sp}(2)\right]=\boldsymbol{Z}_{2}\left\{i_{*}\left(\eta_{3} \circ \Sigma \overline{\eta_{3}}\right)\right\}
$$

4.2. $\left[C_{\Sigma^{3} \omega}, \mathrm{Sp}(2)\right]$.

By Table 4, we have the following exact sequence.

$$
\begin{equation*}
\boldsymbol{Z}\left\{\left[12 \iota_{7}\right]\right\} \xrightarrow{\left(\Sigma^{4} \omega\right)^{*}} \boldsymbol{Z}_{8}\left\{\left[\nu_{7}\right]\right\} \oplus \boldsymbol{Z}_{3}\left\{i_{*} \alpha_{2}(3)\right\} \oplus \boldsymbol{Z}_{5} \longrightarrow\left[C_{\Sigma^{3} \omega}, \operatorname{Sp}(2)\right] \longrightarrow 0 . \tag{4.2}
\end{equation*}
$$

Lemma 4.2. $\quad\left(\Sigma^{4} \omega\right)^{*}\left[12 \iota_{7}\right]=i_{*} \alpha_{2}(3)$.
Proof. It is known that $\Sigma^{4} \omega=2 \nu_{7}+\alpha_{1}(7)$. Let $p: \mathrm{Sp}(2) \rightarrow \mathrm{S}^{7}$ be the bundle projection with fibre S^{3}. Then $p_{*}\left(\left[12 \iota_{7}\right] \circ 2 \nu_{7}\right)=0$, and hence $\left[12 \iota_{7}\right] \circ 2 \nu_{7}=0$ by Table 4. Next consider the composition $\left[12 \iota_{7}\right] \circ \alpha_{1}(7)$. We apply Theorem 3.1 to the fibration $p: \operatorname{Sp}(2) \rightarrow \mathrm{S}^{7}$ by taking $\alpha=4 \iota_{7}, \beta=3 \iota_{6}, \gamma=\alpha_{1}(6)$. Then we obtain

$$
\begin{equation*}
\left[12 \iota_{7}\right] \circ \alpha_{1}(7)=i_{*} \alpha_{2}(3) . \tag{4.3}
\end{equation*}
$$

Hence $\left(\Sigma^{4} \omega\right)^{*}\left[12 \iota_{7}\right]=i_{*} \alpha_{2}(3)$ as desired.
Consequently, by (4.2) we obtain

$$
\left[C_{\Sigma^{3} \omega}, \operatorname{Sp}(2)\right]_{(2,3)}=\boldsymbol{Z}_{8}\left\{\left(\Sigma^{3} q_{3}\right)^{*}\left[\nu_{7}\right]\right\} .
$$

4.3. $\left[C_{\Sigma^{4} \omega}, \operatorname{Sp}(2)\right]$.

By Table 4, we have the following exact sequence.

$$
0 \longrightarrow \boldsymbol{Z}_{2}\left\{i_{*} \varepsilon_{3}\right\} \xrightarrow{\left(\Sigma^{4} q_{3}\right)^{*}}\left[C_{\Sigma^{4} \omega}, \mathrm{Sp}(2)\right] \xrightarrow{\left(\Sigma^{4} i^{\prime}\right)^{*}} \boldsymbol{Z}\left\{\left[12 \iota_{7}\right]\right\} \xrightarrow{\Sigma^{4} \omega^{*}} \boldsymbol{Z}_{120}
$$

By Lemma 4.2, $\operatorname{Ker}\left(\Sigma^{4} \omega\right)^{*}=\boldsymbol{Z}\left\{3\left[12 \iota_{7}\right]\right\}$. It follows that

$$
\left[C_{\Sigma^{4} \omega}, \operatorname{Sp}(2)\right]=\boldsymbol{Z}_{2}\left\{\left(\Sigma^{4} q_{3}\right)^{*} i_{*} \varepsilon_{3}\right\} \oplus \boldsymbol{Z}\left\{\overline{3\left[12 \iota_{7}\right]}\right\} .
$$

4.4. $\quad\left[C_{\Sigma^{5} \omega}, \operatorname{Sp}(2)\right]$.

By Table 4, we easily have $\left(\Sigma^{5} q_{3}\right)^{*}: \pi_{12}(\operatorname{Sp}(2)) \cong\left[C_{\Sigma^{5} \omega}, \operatorname{Sp}(2)\right]$. Hence

$$
\left[C_{\Sigma^{5} \omega}, \operatorname{Sp}(2)\right]=\boldsymbol{Z}_{2}\left\{\left(\Sigma^{5} q_{3}\right)^{*} i_{*} \mu_{3}\right\} \oplus \boldsymbol{Z}_{2}\left\{\left(\Sigma^{5} q_{3}\right)^{*} i_{*}\left(\eta_{3} \varepsilon_{4}\right)\right\} .
$$

4.5. $\left[C_{\Sigma^{6} \omega}, \mathrm{Sp}(2)\right]$.

By Table 4, we have the following exact sequence.
$\boldsymbol{Z}_{8}\left\{\left[\nu_{7}\right]\right\} \oplus \boldsymbol{Z}_{15} \xrightarrow{\left(\Sigma^{7} \omega\right)^{*}} \boldsymbol{Z}_{4}\left\{\left[\nu_{7}\right] \circ \nu_{10}\right\} \oplus \boldsymbol{Z}_{2}\left\{i_{*} \eta_{3} \mu_{4}\right\} \xrightarrow{\left(\Sigma^{6} q_{3}\right)^{*}}\left[C_{\Sigma^{6} \omega}, \operatorname{Sp}(2)\right] \longrightarrow 0$

Hence we obtain

$$
\left[C_{\Sigma^{6} \omega}, \operatorname{Sp}(2)\right]=\boldsymbol{Z}_{2}\left\{\left(\Sigma^{6} q_{3}\right)^{*}\left[\nu_{7}\right] \circ \nu_{10}\right\} \oplus \boldsymbol{Z}_{2}\left\{\left(\Sigma^{6} q_{3}\right)^{*} i_{*}\left(\eta_{3} \mu_{4}\right)\right\}
$$

4.6. $\left[C_{\Sigma^{7} \omega}, \operatorname{Sp}(2)\right]$.

By Table 4, we have the following exact sequence:

$$
\begin{aligned}
0 \longrightarrow \boldsymbol{Z}_{16}\left\{\left[2 \sigma^{\prime}\right]\right\} \oplus \boldsymbol{Z}_{3}\left\{i_{*} \alpha_{3}(3)\right\} \xrightarrow{\left(\Sigma^{7} q_{3}\right)^{*}}\left[C_{\Sigma^{7} \omega}, \operatorname{Sp}(2)\right]_{(2,3)} \\
\stackrel{\left(\Sigma^{7} i^{\prime}\right)^{*}}{\longrightarrow} \boldsymbol{Z}_{4}\left\{2\left[\nu_{7}\right]\right\} \oplus \boldsymbol{Z}_{3}\left\{i_{*} \alpha_{2}(3)\right\} \longrightarrow 0
\end{aligned}
$$

We shall prove

$$
\begin{gather*}
{\left[C_{\Sigma^{7} \omega}, \operatorname{Sp}(2)\right]_{(2)}=\boldsymbol{Z}_{32}\left\{\overline{2\left[\nu_{7}\right]}\right\} \oplus \boldsymbol{Z}_{2}\left\{2 \cdot \overline{2\left[\nu_{7}\right]}-z \cdot\left(\Sigma^{7} q_{3}\right)^{*}\left[2 \sigma^{\prime}\right]\right\}} \\
z \equiv 1 \quad(\bmod 2) \tag{4.4}\\
{\left[C_{\Sigma^{7} \omega}, \operatorname{Sp}(2)\right]_{(3)}=\boldsymbol{Z}_{9}\left\{\overline{i_{*} \alpha_{2}(3)}\right\}} \tag{4.5}
\end{gather*}
$$

Firstly we prove (4.4). By Table 4 and [T2], we have the following commutative diagram with exact rows and columns:

We claim that the second row splits:

$$
\begin{equation*}
\left[C_{\Sigma^{7} \omega}, S^{7}\right]_{(2)}=\boldsymbol{Z}_{8}\left\{q^{*} \sigma^{\prime}\right\} \oplus \boldsymbol{Z}_{8}\left\{\overline{\nu_{7}}\right\} \tag{4.7}
\end{equation*}
$$

This is done as follows. By [T2], we easily have

$$
\begin{equation*}
\left[C_{\Sigma^{3} \omega}, S^{3}\right]_{(2)}=Z_{4}\left\{\overline{\nu^{\prime}}\right\} \tag{4.8}
\end{equation*}
$$

and the following exact sequence:

$$
0 \longrightarrow \boldsymbol{Z}_{2}\left\{\sigma^{\prime \prime \prime}\right\} \xrightarrow{q^{*}}\left[C_{\Sigma^{5} \omega}, \mathrm{~S}^{5}\right]_{(2)} \xrightarrow{i^{*}} \boldsymbol{Z}_{8}\left\{\nu_{5}\right\} \longrightarrow 0
$$

Since $i^{*}\left(2 \cdot \overline{\nu_{5}}-\Sigma^{2} \overline{\nu^{\prime}}\right)=0$, we can write $2 \cdot \overline{\nu_{5}}-\Sigma^{2} \overline{\nu^{\prime}}=c \cdot q^{*} \sigma^{\prime \prime \prime}(c \in \boldsymbol{Z})$. Then $4 \cdot \overline{\nu_{5}}-2 \cdot \Sigma^{2} \overline{\nu^{\prime}}=0$ so that the order of $\overline{\nu_{5}}$ is 8 , since $i^{*}\left(2 \cdot \Sigma^{2} \overline{\nu^{\prime}}\right)=4 \nu_{5}$ so that the order of $2 \cdot \Sigma^{2} \overline{\nu^{\prime}}$ is 2 by (4.8). Define $\overline{\nu_{7}}:=\Sigma^{2} \overline{\nu_{5}}$. Then the order of $\overline{\nu_{7}}$ is 8 , for the order of $i^{*}\left(\overline{\nu_{7}}\right)=\nu_{7}$ is 8 . Thus we obtain (4.7).

In (4.6), we have $i^{*} \varepsilon^{\prime}=2\left[\nu_{7}\right] \circ \nu_{10}=\left(\Sigma^{7} \omega\right)^{*}\left[\nu_{7}\right]$ by [MT]. Hence $\partial \sigma^{\prime}=2 \varepsilon^{\prime}$, $i_{*} q^{*} \varepsilon^{\prime}=q^{*} i_{*} \varepsilon^{\prime}=0$ and

$$
\begin{equation*}
\partial q^{*} \sigma^{\prime}=q^{*} \partial \sigma^{\prime}=2 q^{*} \varepsilon^{\prime} \tag{4.9}
\end{equation*}
$$

Hence the kernel of the second i_{*} of (4.6) equals to $\boldsymbol{Z}_{4}\left\{q^{*} \varepsilon^{\prime}\right\}$. This kernel equals to the image of the second ∂ of (4.6). Hence

$$
\begin{equation*}
\partial \overline{\nu_{7}}= \pm q^{*} \varepsilon^{\prime} \tag{4.10}
\end{equation*}
$$

by (4.7) and (4.9). We have $i^{*}\left(2 \cdot \overline{\nu_{7}}-p_{*} \overline{2\left[\nu_{7}\right]}\right)=0$ so that we can write

$$
\begin{equation*}
2 \cdot \overline{\nu_{7}}-p_{*} \overline{2\left[\nu_{7}\right]}=a \cdot q^{*} \sigma^{\prime} \quad(a \in \boldsymbol{Z}) \tag{4.11}
\end{equation*}
$$

We then have

$$
\begin{aligned}
2 a \cdot q^{*} \varepsilon^{\prime} & =\partial\left(a \cdot q^{*} \sigma^{\prime}\right) \quad(\text { by }(4.9)) \\
& =\partial\left(2 \cdot \overline{\nu_{7}}-p_{*} \overline{2\left[\nu_{7}\right]}\right)=2 \cdot \partial \overline{\nu_{7}} \\
& =2 \cdot q^{*} \varepsilon^{\prime} \quad(\text { by }(4.10)) .
\end{aligned}
$$

Hence $2 a \equiv 2(\bmod 4)$, that is, a is odd. It follows that, by multiplying 4 with (4.11), we have

$$
4 \cdot q^{*} \sigma^{\prime}=-4 \cdot p_{*} \overline{2\left[\nu_{7}\right]} .
$$

On the other hand, we can write

$$
\begin{equation*}
4 \cdot \overline{2\left[\nu_{7}\right]}=y \cdot q^{*}\left[2 \sigma^{\prime}\right] \quad(y \in \boldsymbol{Z}) \tag{4.12}
\end{equation*}
$$

Hence we have

$$
4 \cdot q^{*} \sigma^{\prime}=-y \cdot p_{*} q^{*}\left[2 \sigma^{\prime}\right]=-2 y \cdot q^{*} \sigma^{\prime}
$$

Hence $-2 y \equiv 4(\bmod 8)$, that is,

$$
\begin{equation*}
y \equiv 2 \quad(\bmod 4) \tag{4.13}
\end{equation*}
$$

Thus the order of $4 \cdot \overline{2\left[\nu_{7}\right]}$ is 8 , that is, the order of $\overline{2\left[\nu_{7}\right]}$ is 32 . Also the order of $2 \cdot \overline{2\left[\nu_{7}\right]}-(y / 2) \cdot q^{*}\left[2 \sigma^{\prime}\right]$ is 2 . Therefore we obtain (4.4) by the first row of (4.6).

As a byproduct of (4.13), we have
Corollary 4.3. $\left[\nu_{7}\right] \circ \eta_{10}=i_{*} \varepsilon_{3} \in \pi_{11}(\operatorname{Sp}(2))=\boldsymbol{Z}_{2}\left\{i_{*} \varepsilon_{3}\right\}$.
Proof. Since indeterminacy of $\left\{2\left[\nu_{7}\right], 2 \nu_{10}, 4 \iota_{13}\right\}$ is $4 \cdot \pi_{14}(\operatorname{Sp}(2))$, we can write

$$
\begin{equation*}
\left\{2\left[\nu_{7}\right], 2 \nu_{10}, 4 \iota_{13}\right\}=x \cdot\left[2 \sigma^{\prime}\right]+4 \cdot \pi_{14}(\operatorname{Sp}(2)) \tag{4.14}
\end{equation*}
$$

Let $\psi^{k}: \operatorname{Sp}(2) \rightarrow \operatorname{Sp}(2)$ be defined by $\psi^{k}(A)=A^{k}$. We have

$$
\psi^{2} \circ\left\{2\left[\nu_{7}\right], 2 \nu_{10}, 4 \iota_{13}\right\} \subset\left\{4\left[\nu_{7}\right], 2 \nu_{10}, 4 \iota_{13}\right\} \subset\left\{\left[\nu_{7}\right], 8 \nu_{10}, 4 \iota_{13}\right\}=4 \pi_{14}(\operatorname{Sp}(2))
$$

Hence $2 x\left[2 \sigma^{\prime}\right] \in 4 \pi_{14}(\operatorname{Sp}(2))=\boldsymbol{Z}_{4}\left\{4\left[2 \sigma^{\prime}\right]\right\} \oplus \boldsymbol{Z}_{105}$ by Table 4 . Thus $x \equiv 0(\bmod 2)$.
On the other hand

$$
\begin{align*}
\left\{2\left[\nu_{7}\right], 2 \nu_{10}, 4 \iota_{13}\right\} & =\left\{\left[\nu_{7}\right], 4 \nu_{10}, 4 \iota_{13}\right\}=\left\{\left[\nu_{7}\right], \eta_{10}^{3}, 4 \iota_{13}\right\} \\
& =\left\{\left[\nu_{7}\right] \circ \eta_{10}, \eta_{11}^{2}, 4 \iota_{13}\right\} \tag{4.15}
\end{align*}
$$

To induce a contradiction, assume $\left[\nu_{7}\right] \circ \eta_{10}=0$. Then $\left\{2\left[\nu_{7}\right], 2 \nu_{10}, 4 \iota_{13}\right\}=$ $4 \pi_{14}(\operatorname{Sp}(2))$ by (4.15) and $x \equiv 0(\bmod 4)$ by (4.14). We then have

$$
\begin{aligned}
0 & =4 \cdot\left(\overline{2\left[\nu_{7}\right]} \circ \widetilde{4 \iota_{13}}\right)=\psi^{4} \circ \overline{2\left[\nu_{7}\right]} \circ \widetilde{4 \iota_{13}}=\left(4 \cdot \overline{2\left[\nu_{7}\right]}\right) \circ \widetilde{4 \iota_{13}} \\
& =\left(y \cdot q^{*}\left[2 \sigma^{\prime}\right]\right) \circ \widetilde{4 \iota_{13}}(\text { by }(4.12)) \\
& =\psi^{y} \circ\left[2 \sigma^{\prime}\right] \circ q \circ \widetilde{4 \iota_{13}}=\psi^{y} \circ\left[2 \sigma^{\prime}\right] \circ 4 \iota_{14} \\
& =4 y\left[2 \sigma^{\prime}\right]
\end{aligned}
$$

Thus $4 y \equiv 0(\bmod 16)$, that is, $y \equiv 0(\bmod 4)$. This contradicts (4.13).
Next we consider the 3 -primary part of $\left[C_{\Sigma^{7} \omega}, \mathrm{Sp}(2)\right]$, that is, we prove (4.5). First we remark that

$$
\left[C_{\Sigma^{7} \omega}, \mathrm{Sp}(2)\right]_{(3)} \cong\left[C_{\alpha_{1}(10)}, \mathrm{Sp}(2)\right]_{(3)} .
$$

Hence it suffices to prove

$$
\left[C_{\alpha_{1}(10)}, \mathrm{Sp}(2)\right]_{(3)} \cong \boldsymbol{Z}_{9} .
$$

We shall prove this as follows.
Proposition 4.4.
(1) $\left\{\alpha_{1}(5), \alpha_{1}(8), 3 \iota_{11}\right\}=\left\{3 \iota_{5}, \alpha_{1}(5), \alpha_{1}(8)\right\}=2 \alpha_{2}(5)+3 \pi_{12}\left(\mathrm{~S}^{5}\right)$.
(2) $i \circ \alpha_{3}(3)=\left[12 \iota_{7}\right] \circ \alpha_{2}(7) \in \pi_{10}(\operatorname{Sp}(2))$.
(3) $\left[C_{\alpha_{1}(10)}, \mathrm{Sp}(2)\right]_{(3)} \cong\left[C_{\alpha_{1}(10)}, \mathrm{S}^{7}\right]_{(3)}$.
(4) $\left[C_{\alpha_{1}(10)}, S^{7}\right]_{(3)} \cong \boldsymbol{Z}_{9}$.

Proof of Proposition 4.4 (1). It follows from [T2, Proposition 1.3] that

$$
\begin{gathered}
\Sigma^{\infty}\left\{\alpha_{1}(5), \alpha_{1}(8), 3 \iota_{11}\right\} \subset\left\langle\alpha_{1}, \alpha_{1}, 3\right\rangle, \quad \Sigma^{\infty}\left\{3 \iota_{5}, \alpha_{1}(5), \alpha_{1}(8)\right\} \subset\left\langle 3, \alpha_{1}, \alpha_{1}\right\rangle, \\
\Sigma^{\infty}\left\{\alpha_{1}(3), 3 \iota_{6}, \alpha_{2}(6)\right\} \subset\left\langle\alpha_{1}, 3, \alpha_{2}\right\rangle .
\end{gathered}
$$

We use the following relations [T2, (3.9)]:

$$
\begin{gather*}
\left\langle\alpha_{1}, \alpha_{1}, 3\right\rangle-\left\langle\alpha_{1}, 3, \alpha_{1}\right\rangle+\left\langle 3, \alpha_{1}, \alpha_{1}\right\rangle \ni 0, \\
\left\langle\alpha_{1}, \alpha_{1}, 3\right\rangle=\left\langle 3, \alpha_{1}, \alpha_{1}\right\rangle . \tag{4.16}
\end{gather*}
$$

Let $A \in\left\langle\alpha_{1}, \alpha_{1}, 3\right\rangle$. Since $\left\langle\alpha_{1}, 3, \alpha_{1}\right\rangle=\alpha_{2}$ and $\operatorname{Indet}\left\langle\alpha_{1}, \alpha_{1}, 3\right\rangle=3 G_{7}$, it follows from (4.16) that $2 A-\alpha_{2}+3 G_{7} \ni 0$ so that $A \in 2 \alpha_{2}+3 G_{7}$, since $G_{7(3)}=$ $Z_{3}\left\{\alpha_{2}\right\}$, where G_{k} denotes the k-th stable homotopy group of the sphere. Hence $\left\langle\alpha_{1}, \alpha_{1}, 3\right\rangle=2 \alpha_{2}+3 G_{7}$.

Since $\Sigma^{\infty}: \pi_{12}\left(\mathrm{~S}^{5}\right)=\boldsymbol{Z}_{3}\left\{\alpha_{2}(5)\right\} \oplus \boldsymbol{Z}_{10} \rightarrow \boldsymbol{G}_{7}$ is injective and $\operatorname{Indet}\left\{\alpha_{1}(5), \alpha_{1}(8), 3 \iota_{11}\right\}=\operatorname{Indet}\left\{3 \iota_{5}, \alpha_{1}(5), \alpha_{1}(8)\right\}=3 \pi_{12}\left(\mathrm{~S}^{5}\right)$, it follows that

$$
2 \alpha_{2}(5) \in\left\{\alpha_{1}(5), \alpha_{1}(8), 3 \iota_{11}\right\} \cap\left\{3 \iota_{5}, \alpha_{1}(5), \alpha_{1}(8)\right\}
$$

so that $\left\{\alpha_{1}(5), \alpha_{1}(8), 3 \iota_{11}\right\}=\left\{3 \iota_{5}, \alpha_{1}(5), \alpha_{1}(8)\right\}=2 \alpha_{2}(5)+3 \pi_{12}\left(\mathrm{~S}^{5}\right)$.

Proof of Proposition 4.4 (2). We can apply Theorem 3.1 to the fibration $\mathrm{Sp}(2) \rightarrow \mathrm{S}^{7}$ by taking $\alpha=4 \iota_{7}, \beta=3 \iota_{6}$ and $\gamma=\alpha_{2}(6)$. Indeed, we have $\beta \circ \gamma=0$ and $\partial \alpha \circ \beta=\alpha_{1}(3) \circ 3 \iota_{6}=0$ since $\partial \iota_{7}=\omega=\nu^{\prime}+\alpha_{1}(3)$. Hence we can use Theorem 3.1 in this case. Therefore there exists $\epsilon \in \pi_{7}(\operatorname{Sp}(2))$ such that $p_{*} \epsilon=12 \iota_{7}$ and $i_{*}\left(\alpha_{3}(3)\right)=\epsilon \circ \alpha_{2}(7)$ so that $\epsilon=\left[12 \iota_{7}\right]$ and $i_{*}\left(\alpha_{3}(3)\right)=\left[12 \iota_{7}\right] \circ \alpha_{2}(7)$.

Proof of Proposition 4.4 (3). By [T2] and Table 4, we have the following commutative diagram with exact rows.

It follows from (4.3) and Proposition 4.4 (2) that the first and the third $\left[12 \iota_{7}\right]_{*}$ are isomorphisms so that the second $\left[12 \iota_{7}\right]_{*}$ is also an isomorphism. Hence we obtain Proposition 4.4 (3).

Proof of Proposition 4.4 (4). We shall prove the following:

$$
\left[C_{\alpha_{1}(10)}, \mathrm{S}^{7}\right]_{(3)} \stackrel{\Sigma}{\cong}\left[C_{\alpha_{1}(9)}, \mathrm{S}^{6}\right]_{(3)} \stackrel{\Sigma}{\cong}\left[C_{\alpha_{1}(8)}, \mathrm{S}^{5}\right]_{(3)}=\boldsymbol{Z}_{9}\left\{\overline{\alpha_{1}(5)}\right\} .
$$

By [T2] and the fact $\alpha_{1}(5) \circ \alpha_{1}(8)=0([\mathbf{T 2},(13.7)])$, we have the following commutative diagram with exact rows.

Here $q^{\prime}: C_{\alpha_{1}(3)} \rightarrow \mathrm{S}^{7}$ is the quotient and $i^{\prime \prime}: \mathrm{S}^{3} \rightarrow C_{\alpha_{1}(3)}$ is the inclusion. By the EHP-sequence ([T2, (2.11)]), we know that two Σ 's in the first column are monomorphisms. Hence two Σ 's in the second column are also monomorphisms. Thus suspensions induce

$$
\left[C_{\alpha_{1}(8)}, \mathrm{S}^{5}\right]_{(3)} \cong\left[C_{\alpha_{1}(9)}, \mathrm{S}^{6}\right]_{(3)} \cong\left[C_{\alpha_{1}(10)}, \mathrm{S}^{7}\right]_{(3)}
$$

Since $\Sigma\left(3 \overline{\alpha_{1}(5)}\right)=\Sigma\left(3 \iota_{5} \circ \overline{\alpha_{1}(5)}\right)$, it follows that $3 \overline{\alpha_{1}(5)}=3 \iota_{5} \circ \overline{\alpha_{1}(5)}$. We have

$$
\begin{array}{rlr}
3 \iota_{5} \circ \overline{\alpha_{1}(5)} & \in\left\{3 \iota_{5}, \alpha_{1}(5), \alpha_{1}(8)\right\} \circ \Sigma^{5} q^{\prime} \quad(\text { by }[\mathbf{T} 2, \text { Proposition 1.9]) } \\
& =\left(2 \alpha_{2}(5)+3 \pi_{12}\left(\mathrm{~S}^{5}\right)\right) \circ \Sigma^{5} q^{\prime} \quad & \quad(\text { by Proposition } 4.4(1))
\end{array}
$$

Hence we can write

$$
3 \overline{\alpha_{1}(5)}=3 \iota_{5} \circ \overline{\alpha_{1}(5)}=\Sigma^{5} q^{\prime *}\left(2 \alpha_{2}(5)+x\right), \quad 10 x=0
$$

Thus the order of $\overline{\alpha_{1}(5)}$ is a multiple of 9 . Therefore $\left[C_{\alpha_{1}(8)}, \mathrm{S}^{5}\right]_{(3)}=\boldsymbol{Z}_{9}\left\{\overline{\alpha_{1}(5)}\right\}$. This completes the proof of Proposition 4.4.
4.7. $\left[C_{\Sigma^{8} \omega}, \mathrm{Sp}(2)\right]$.

Since $\Sigma^{m} \omega=2 \nu_{m+3}+\alpha_{1}(m+3)$ for $m \geq 2$, we have

$$
\left(\Sigma^{9} \omega\right)^{*} \pi_{12}(\mathrm{Sp}(2))=0, \quad\left(\Sigma^{8} \omega\right)^{*} \pi_{11}(\mathrm{Sp}(2))=0
$$

by Table 4. Hence we have the following commutative diagram with exact rows.

Thus we easily have

$$
\left[C_{\Sigma^{8} \omega}, \mathrm{Sp}(2)\right]=\boldsymbol{Z}_{2}\left\{\left(\Sigma^{8} q_{3}\right)^{*}\left[\sigma^{\prime} \eta_{14}\right]\right\} \oplus \boldsymbol{Z}_{2}\left\{i_{*} \overline{\varepsilon_{3}}\right\}
$$

5. $\pi_{1} \operatorname{map}_{*}\left(G_{2}, G_{2}\right)$.

In this section we shall compute $\left[\Sigma G_{2}, G_{2}\right]\left(\cong \pi_{1} \operatorname{map}_{*}\left(G_{2}, G_{2}\right)\right)$. As in the subsection 3.7 , we use the fibration

$$
\mathrm{SU}(3) \xrightarrow{\hat{i}} G_{2} \xrightarrow{\hat{p}} \mathrm{~S}^{6},
$$

and the following results from $[\mathbf{M}]$.

n	$\pi_{n} G_{2}$	gen. of 2-comp.
$1,2,4,5,7,10,12,13$	0	
3	\boldsymbol{Z}	$\hat{i}_{*} \iota_{3}$
6	\boldsymbol{Z}_{3}	
8	\boldsymbol{Z}_{2}	$\left\langle\eta_{6}^{2}\right\rangle$
9	\boldsymbol{Z}_{6}	$\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8}$
11	$\boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$	$\left\langle 2 \Delta \iota_{13}\right\rangle, \hat{i}_{*}\left[\nu_{5}^{2}\right]$
14	$\boldsymbol{Z}_{168} \oplus \boldsymbol{Z}_{2}$	$\left\langle\bar{\nu}_{6}+\epsilon_{6}\right\rangle, \hat{i}_{*}\left[\nu_{5}^{2}\right] \circ \nu_{11}$
15	\boldsymbol{Z}_{2}	$\left\langle\bar{\nu}_{6}+\epsilon_{6}\right\rangle \circ \eta_{14}$

Table 5. $\quad \pi_{n}\left(G_{2}\right)$.

In Table 5 we follow the notations in $[\mathbf{M}]$.
As is well-known, G_{2} has the cell structure:

$$
G_{2}=\mathrm{S}^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9} \cup e^{11} \cup e^{14} .
$$

Let $G_{2}^{(n)}$ denote the n-skeleton of G_{2}. Let $M^{n}=C_{2 \iota_{n-1}}=\mathrm{S}^{n-1} \cup_{2 \iota_{n-1}} e^{n}$ for $n \geq 2$, and

$$
\mathrm{S}^{n-1} \xrightarrow{i_{n}} M^{n} \xrightarrow{q_{n}} \mathrm{~S}^{n}
$$

be the inclusion and the quotient map, respectively. Remark that $\Sigma M^{n}=M^{n+1}$. Then there exist the cofibrations as follows.

$$
\begin{gather*}
\mathrm{S}^{3} \rightarrow G_{2}^{(6)} \xrightarrow{\pi_{1}} M^{6}, \tag{5.1}\\
G_{2}^{(6)} \rightarrow G_{2}^{(9)} \xrightarrow{\pi_{2}} M^{9} \xrightarrow{\delta} \Sigma G_{2}^{(6)} . \tag{5.2}
\end{gather*}
$$

From (5.1) we obtain [MS, Lemma 3.6]:
Lemma $5.1([\mathbf{M S}]) . \quad\left[\Sigma G_{2}^{(6)}, G_{2}\right]=0$.
Next we shall show the following.
Lemma 5.2. $\Sigma \pi_{2}{ }^{*}:\left[M^{10}, G_{2}\right] \rightarrow\left[\Sigma G_{2}^{(9)}, G_{2}\right]$ is an isomorphism.
Proof. From Lemma 5.1 it suffices to show that $(\Sigma \delta)^{*}:\left[\Sigma^{2} G_{2}^{(6)}, G_{2}\right] \rightarrow$ [$\Sigma M^{9}, G_{2}$] is trivial. By Table 5 we easily have

$$
\begin{equation*}
\left[\Sigma M^{9}, G_{2}\right]=\boldsymbol{Z}_{2}\left\{\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8}}\right\}, \quad\left(\Sigma i_{9}\right)^{*}\left(\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8}}\right)=\left\langle\eta_{6}^{2}\right\rangle \circ \eta_{8} \tag{5.3}
\end{equation*}
$$

and

$$
\pi_{8}\left(G_{2}\right) \xrightarrow[\cong]{\left(\Sigma^{2} q_{6}\right)^{*}}\left[\Sigma^{2} M_{6}, G_{2}\right] \xrightarrow[\cong]{\left(\Sigma^{2} \pi_{1}\right)^{*}}\left[\Sigma^{2} G_{2}^{(6)}, G_{2}\right] .
$$

Hence it suffices to to prove the following equality:

$$
\left(\Sigma i_{9}\right)^{*}(\Sigma \delta)^{*}\left(\Sigma^{2} \pi_{1}\right)^{*}\left(\Sigma^{2} q_{6}\right)^{*}\left\langle\eta_{6}^{2}\right\rangle=0
$$

We shall prove this by showing

$$
\begin{equation*}
\Sigma^{2} q_{6} \circ \Sigma^{2} \pi_{1} \circ \Sigma \delta \circ \Sigma i_{9}=0 \in \pi_{9}\left(\mathrm{~S}^{8}\right)=\boldsymbol{Z}_{2}\left\{\eta_{8}\right\} . \tag{5.4}
\end{equation*}
$$

By $[\mathbf{M u}]$, we have the following results.

$$
\begin{gather*}
{\left[M^{10}, S^{8}\right]=\boldsymbol{Z}_{4}\left\{\overline{\eta_{8}}\right\}, \quad 2 \overline{\eta_{8}}=\eta_{8}^{2} \circ q_{10},} \tag{5.5}\\
{\left[M^{10}, M^{8}\right] \cong \boldsymbol{Z}_{2}^{3}} \tag{5.6}
\end{gather*}
$$

We have $2\left(\Sigma^{2} \pi_{1} \circ \Sigma \delta\right)=0$ by (5.6). Hence it follows from (5.5) that $\Sigma^{2} q_{6} \circ \Sigma^{2} \pi_{1} \circ \Sigma \delta$ is divisible by 2 . Thus (5.4) is established.

Next we shall show that
Lemma 5.3.
(1) The induced map

$$
\Sigma i_{9,11}^{*}:\left[\Sigma G_{2}^{(11)}, G_{2}\right] \rightarrow\left[\Sigma G_{2}^{(9)}, G_{2}\right]
$$

is an isomorphism, where $i_{9,11}: G_{2}^{(9)} \rightarrow G_{2}^{(11)}$ is the inclusion.

Proof. The assertion (1) follows from $\pi_{12}\left(G_{2}\right)=0([\mathbf{M}])$ and [MS, Lemmas 3.9 (i) and 3.11] using the cofibration

$$
\mathrm{S}^{10} \longrightarrow G_{2}^{(9)} \xrightarrow{i_{9,11}} G_{2}^{(11)}
$$

The assertion (2) follows from (1), (5.3) and Lemma 5.2.
Let $f: \mathrm{S}^{13} \rightarrow G_{2}^{(11)}$ denote the attaching map of the top cell of G_{2}.

Lemma 5.4. There exists the following short exact sequence.

$$
\begin{equation*}
0 \longrightarrow \boldsymbol{Z}_{2} \longrightarrow\left[\Sigma G_{2}, G_{2}\right] \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 0 \tag{5.7}
\end{equation*}
$$

Proof. In the exact sequence induced by the cofibration $\mathrm{S}^{13} \xrightarrow{f} G_{2}^{(11)} \subset G_{2}$

$$
\begin{equation*}
\left[\Sigma^{2} G^{(11)}, G_{2}\right] \xrightarrow{\left(\Sigma^{2} f\right)^{*}} \pi_{15}\left(G_{2}\right) \xrightarrow{(\Sigma q)^{*}}\left[\Sigma G_{2}, G_{2}\right] \longrightarrow\left[\Sigma G_{2}^{(11)}, G_{2}\right] \xrightarrow{(\Sigma f)^{*}} \pi_{14}\left(G_{2}\right) \tag{5.8}
\end{equation*}
$$

$(\Sigma f)^{*}$ is trivial by [MS, Lemma 3.13]. Here $q: G_{2} \rightarrow \mathrm{~S}^{14}$ is the quotient map. We show that $\left(\Sigma^{2} f\right)^{*}$ is also trivial. To prove this, first we recall that

$$
\pi_{15}\left(G_{2}\right)=\boldsymbol{Z}_{2}\left\{\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle \circ \eta_{14}\right\}
$$

from $[\mathbf{M}]$. Here $\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle$ is an element of $\pi_{14}\left(G_{2}\right)$ such that $\hat{p}_{*}\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle=\bar{\nu}_{6}+\varepsilon_{6}$ by the bundle projection map $\hat{p}: G_{2} \rightarrow \mathrm{~S}^{6}$. By [T2, Lemma 6.3, Theorem 7.2], $\left(\bar{\nu}_{6}+\varepsilon_{6}\right) \circ \eta_{14}$ is stably nontrivial and so is $\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle \circ \eta_{14}$. On the other hand, the attaching map f is stably trivial by $[\mathbf{B S}]$. This means

$$
\operatorname{Im}\left(\Sigma^{2} f\right)^{*}=0
$$

in (5.8). Thus by (5.8), Lemma 5.2 and Lemma 5.3 , we obtain the result.

Theorem 5.5.

$$
\left[\Sigma G_{2}, G_{2}\right]=\boldsymbol{Z}_{2}\left\{\left\langle\bar{\nu}_{6}+\varepsilon_{6}\right\rangle \circ \eta_{14} \circ \Sigma q\right\} \oplus \boldsymbol{Z}_{2}\left\{\overline{\left.\overline{\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8}} \circ \Sigma \pi_{2}}\right\} . . . ~ . ~}\right.
$$

Proof. By Lemma 5.4, $\left[\Sigma G_{2}, G_{2}\right]$ is isomorphic to \boldsymbol{Z}_{2}^{2} or \boldsymbol{Z}_{4}. To induce a contradiction, assume that it is isomorphic to \boldsymbol{Z}_{4}. In this case, by Lemma 5.3 (2) and the proof of Lemma 5.4, we have

$$
2 \overline{\overline{\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8}} \circ \Sigma \pi_{2}}}=\left\langle\bar{\nu}_{6}+\epsilon_{6}\right\rangle \circ \eta_{14} \circ \Sigma q .
$$

Let $\ell:\left\{\Sigma G_{2}, G_{2}\right\} \rightarrow \pi_{15}^{s}\left(G_{2}\right)$ be a left inverse for $\Sigma^{\infty} q^{*}: \pi_{15}^{s}\left(G_{2}\right) \rightarrow\left\{\Sigma G_{2}, G_{2}\right\}$. It exists, because $\Sigma^{\infty} f=0$. Here $\{X, Y\}=\lim _{n \rightarrow \infty}\left[\Sigma^{n} X, \Sigma^{n} Y\right]$ and $\pi_{n}^{s}(X)=$ $\left\{\mathrm{S}^{n}, X\right\}$. We then have

$$
\begin{aligned}
2 \Sigma^{\infty} \hat{p}_{*} \circ \ell\left(\Sigma^{\infty} \overline{\left.\overline{\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8} \circ \Sigma \pi_{2}}}\right)}\right. & =\Sigma^{\infty} \hat{p}_{*} \circ \ell\left(2 \Sigma^{\infty} \overline{\left.\overline{\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8} \circ \Sigma \pi_{2}}}\right)}\right. \\
& =\Sigma^{\infty} \hat{p}_{*} \circ \ell \circ \Sigma^{\infty} q^{*}(\langle\bar{\nu}+\epsilon\rangle \circ \eta) \\
& =(\bar{\nu}+\epsilon) \eta \\
& =\eta^{2} \sigma .
\end{aligned}
$$

Note that the element $2 \Sigma^{\infty} \hat{p}_{*} \circ \ell\left(\Sigma^{\infty} \overline{\left.\overline{\left\langle\eta_{6}^{2}\right\rangle \circ \overline{\eta_{8} \circ \Sigma \pi_{2}}}\right) \text { is trivial since } \pi_{9}^{s}\left(S^{0}\right) \cong \boldsymbol{Z}_{2}^{3}, ~}\right.$ ([T2]). This contradicts $\eta^{2} \sigma \neq 0([\mathbf{T} 2])$. Therefore, the short exact sequence (5.7) splits and we obtain the result.

References

[AB] M. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Proc. Soc. London, A308 (1982), 523-615.
[AOS] M. Arkowitz, H. Ōshima and J. Strom, Noncommutativity of the group of selfhomotopy classes of classical simple Lie groups, Topology Appl., 125 (2002), 87-96.
[BS] W. Browder and E. Spanier, H-spaces and duality, Pacific J. Math., 12 (1970), 411-414.
[D] G. Didierjean, Homotopie de l'espace des equivalences d'homotopie, Trans. Amer. Math. Soc., 330 (1992), 153-163.
[HK] H. Hamanaka and A. Kono, Homotopy type of gauge groups of SU(3)-bundles over S^{6}, Topology and its Appl., 154 (2007), 1377-1380.
[KMNST] H. Kachi, J. Mukai, T. Nozaki, Y. Sumita and D. Tamaki, Some cohomotopy groups of suspended projective planes, Math. J. Okayama Univ., 43 (2001), 105-121.
[KO] A. Kono and H. Ōshima, Commutativity of the group of self homotopy classes of Lie groups, Bull. London Math. Soc., 36 (2004), 37-52.
[M] M. Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
[MO] M. Mimura and H. Ōshima, Self homotopy groups of Hopf spaces with at most three cells, J. Math. Soc. Japan, 51 (1999), 71-92.
[MS] M. Mimura and N. Sawashita, On the group of self-homotopy equivalences of H spaces of rank 2, J. Math. Kyoto Univ., 21 (1981), 331-349.
[MT] M. Mimura and H. Toda, Homotopy groups of $\operatorname{SU}(3), \mathrm{SU}(4)$ and $\mathrm{Sp}(2)$, J. Math. Kyoto Univ., 3 (1964), 217-250.
[Mu] J. Mukai, Stable homotopy of some elementary complexes, Mem. Fac. Sci. Kyushu Univ., XX (1966), 266-282.
[O1] H. Ōshima, Self homotopy set of a Hopf space, Quart. J. Math., 50 (1999), 483-495.
[O2] H. Ōshima, Self homotopy group of the exceptional Lie group G_{2}, J. Math. Kyoto Univ., 40 (2000), 177-184.
[O3] H. Ōshima, The group of self-homotopy classes of $S O(4)$, J. Pure App. Algebra, 185 (2003), 193-205.
[T1] H. Toda, A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto, 32 (1959), 103-119.
[T2] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, 49, Princeton, 1962.

Ken-ichi Maruyama
Chiba University
Chiba, Chiba 263-8522
Japan
E-mail: maruyama@faculty.chiba-u.jp

Hideaki Ōshima
Ibaraki University
Mito, Ibaraki 310-8512
Japan
E-mail: ooshima@mx.ibaraki.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55Q05; Secondary 55P10.
 Key Words and Phrases. function spaces, homotopy groups, Lie groups.

