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Abstract. We classify complete conformally flat three dimensional Riemannian manifolds
with constant scalar curvature and constant squared norm of Ricci curvature tensor by
applying the Generalized Maximum Principle due to H. Omori.

1. Introduction.

It is interesting to investigate the structure of complete and conformally flat
Riemannian manifolds with constant scalar curvature. The class of such manifolds is
very wide. In fact, from Theorem due to Yamabe, Trudinger, Aubin and Schoen in
any compact Riemannian manifold can be deformed into a Riemannian manifold with
constant scalar curvature by a conformal transformation. So the metric structure on
conformally flat Riemannian manifold M” will be specified under certain restrictions on
the behavior of Ricci curvature tensor of M” for the classification of them. Throughout
this article, let M" be a connected complete and conformally flat Riemannian manifold
of constant scalar curvature r without boundary. The Riemannian product M"!(c) x
N are well known as such examples, where M"~!(c) is (n — 1)-dimensional manifold of
constant sectional curvature ¢ and N' = S! or R. The scalar curvature r of M"~!(c) x
N'! is positive (negative, respectively) according as ¢ > 0 (¢ < 0, respectively).

In [3] (cf. [2]), S. T. Goldberg essentially proved that every complete conformally flat
Riemannian manifold M" with positive constant scalar curvature r is a space form if the
Ricci curvature tensor of M" satisfies the inequality

2
) r
sup ZRi/<—n_1’
bJj

where Y, . R; is the squared norm of the Ricci curvature tensor of M”. We should
remark that the condition of r being positive is essential in the proof of Goldberg’s
Theorem.

The purpose of this article is to study the metric structure of M”" with (not
necessarily positive) constant scalar curvature such that the squared norm of the Ricci
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curvature tensor is constant. The basic tool used here is the Generalized Maximum
Principle due to H. Omori:

GENERALIZED MAXIMUM PRINCIPLE (H. Omori [5]). Let X be an n dimensional
complete Riemannian manifold whose sectional curvature is bounded from below. If fis a
C2-function bounded from above on X, then there exists a sequence {p,,} of points in X
such that

lim f(p,)=supf, lim |grad f|(p,) =0,

lim supV,\V,f(p,) <0 forl=12 ... n

Here grad f is the gradient vector field for function f and V is the operator of covariant
differentiation on X.

Our Main Theorems in this article are stated as follows:

MAIN THEOREM 1. Let M3 be a 3-dimesional complete conformally flat Riemannian
manifold with constant scalar curvature and constant squared norm of the Ricci curvature
tensor. Then we have

(1) If the scalar curvature r is nonnegative, M is either isometric to a space form or
else the Riemannian product M*(c) x N (¢ > 0).

(2) If the scalar curvature r is negative, either M?> is isometric to a space form or
else the squared norm of the Ricci curvature tensor of M? lies in (r*/3,r%/2].

ReEMARK 1. It is obvious that the 3-dimensional hyperbolic space form H3(c)
is conformally flat and it satisfies S = r?/3, where S is the squared norm of the Ricci
curvature tensor of H?(c). We also know the conformally flat space H?(c) x R
satisfies S =r2/2. But we do not know whether there exist complete conformally flat
Riemannian manifolds with negative constant scalar curvature r and constant squared
norm S of the Ricci curvature tensor which satisfies 72/3 < S < r?/2. From
in the section 3, we propose the following conjecture.

CONJECTURE. Let M? be a 3-dimensional complete conformally flat Riemannian
manifold with negative constant scalar curvature and constant squared norm of the Ricci

curvature tensor. Then, M3 is isometric to a space form or else the Riemannian product
H?*(c) x N' (¢ <0).

MAIN THEOREM 2. There is no 3-dimensional compact conformally flat Riemannian
manifold M> such that the following conditions (1) and (2) are satisfied:

(1) The scalar curvature of M? is negative constant.

(2) The squared norm of the Ricci curvature tensor of M?> is constant and the eigen-
values of Ricci curvature tensor are all distinct at every point of M?>.

ACKNOWLEDGEMENT. Authors would like to express their gratitude to the referee for
his valuable suggestion.
2. Preliminaries.

In this section we shall prepare some local formulas for conformally flat Riemannian
manifolds with constant scalar curvature. Let M" be a conformally flat Riemannian
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manifold and ey, ..., e, an orthonormal basis of 7,M", where T, M" is the tangent space
at a point p to M". We denote the components of curvature tensor of M" by Ryy;.
Since M" is conformally flat, we have

1
(2.1) Rij = PR (Rik0ji — Ridji + 61 Rjy — 0y Rj)
r
(n—1)(n-2)
where R;’s are the components of Ricci curvature tensor and r the scalar curvature of
M".
Next we assume that r is constant. Since M is conformally flat, we have

(0ik0j1 — 0itdjk ),

(2.2) ViR = VR,

where V' is the operator of covariant differentiation on M". At each point p, we can
choose an orthonormal basis ej,...,e, such that R; = 4,0;. We put S = Zi, ; R?
S .22 and B=3",(4 —r/n)>. Then B=S —r?/n. By letting Ry :=ViRy, Rju =
ViViRj, etc., we have the Ricci formulas:

(2.3) Rjsr — Rk = > RiyRarr+ YRRy,
t t
(2.3-ii) Rij kim — Rijmt = > Ryj ik Ruitm + > Rig i Ry
t t
+ Z Rij, Reim-
t

Because of B =S —r?/n, the Ricci formula (2.3-) and (2.1) yield

—AB R+ Z R;AR;;
iJ

i,j k

= ZRU & —+ Z RinmkRmijk + Z RinimRmkjk

i,j,k i,j,k,m i,j,k,m
2n —1 3
_ 3
S (1 )
i,j,k
and
(24) —AZRM D Riut D RyxdRyp
i,j,k i,j,k,l i,j, k

where 4 is the Laplace operator on M". By directly calculating AR; and AR; ; and
using Ricci formulas (2.3-1), (2.3-ii), we obtain the equations

(2.5) ARj; = Z Rijjn = Z Ry Rijji + Z RiR;j
I I :

and
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/ /

- Z Ry + Z V) (Z szRtik1> + Z V) (Z Rt,-R;,-k,)
_ Z Rj + ; Ry 1 Ri + ; Ry 1Ry

+ ; Ry szz;;z + ; RU',ZRzil;l + ; Ris, 1 Rjka

+ Z RyRuui + Z RiRyjia.1. |

It It

Hence, by using (2.5) and [2.6), we have

(2.7) > RyidRyr=3> AR}, +5 Ry xRy 1Rkl
i,j,k i,j,k i,j,k,l t
+2 Z R;iRj i Ry 1 + Z Ry Ry i Ryji
ij it ikl t

where Rju =V, Rju. Since

1
(2.8) Rijii.m = — (Rike,m0jt — Rit,mOjk + Oixc Rjt,m — OitRjke,m)
in the case of r =constant, we also obtain the relations
(2.9) Z RiiRjj ik Rijia, 1 = 0,
i,j, k1t
(2.10) > RuRy iRy i = — Z,L T ZRU .
i,j k1t i,j, k i.j,k
and

Z Rij i Ryj, 1 Reijs = — > Z Ai RZJ P Z sz 2

i,j,k, 1t i,j,k
Hence, we have finally
3n+2
‘AZRuk > Riu+ =5 D iRy~ (n_l Zlek
i,j.k ij,k,l i,j k
Summing up the above computations, we have proved the following [Proposition 1i:

PrROPOSITION 1.  On conformally flat Riemannian manifold M" with constant scalar
curvature r, we have the following formulae (2.11) and (2.12):

2n —1 r
1 b 3
(2.11) AB E Rl/k+ (n E 2; pa— rS+n_ 1)
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and

3n 42
(2.12) —AZRM S R+ Ntz Zilek

i,j, k i,j,k,l i,j k

(n+2)r
_(n—l ZRU"

REMARK 2. Using the formula and the Generalized Maximum Principle
of Omori, we can conclude the result due to Goldberg denoted in section 1 and the
following result of Tani [6]: Any compact conformally flat Riemannian manifold with
constant scalar curvature r and positive Ricci curvature is of constant curvature.

Now, we consider the case of n =3 and S =constant. Then and
become

(2.13) YR = 32,13 —rS——r3

i,j,k
and
(2.14) ARG =347
i,j,k i
respectively. Setting x, = 4; — r/3, we have
2.15 =0, B= .Z:S—lrz,
( Hi 1 3
1
(2.16) Z/lf:zu§+r3+§r3
1
4 - 2 = 2 -
(2.17) Z/l B +3 Zu, + B—|—27r

and can be rewritten as

(2.18) Y R, = —32,1, ——rB

i,j,k

Since

Z Z leRkj iy
i,j k
we obtain from [2.16] and [2.5)
(219) _Azluz _ZZARUk—}_Z’{izRii,kk
ik

i, ],k
5 N TV TN
_ZZ,ullek—k VZRUk+§rZﬂi+§B —|—§VB
i,j, k i,j,k i

(Bzﬂzﬂl +4Zﬂ,R§ k)

7]7
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Therefore we have from [2.18) and [2.19)

(2.20) Ay R}, = ——<Bz+rZul+4Zﬂ1R§k)

i,j,k i,j,k

Moreover we have from (2.12), (2.19), [(2.20)

(2.21) > Riu= IIZilek—l— rZRUk-i- AZR%

i,j k1 i,j, k i,j,k

1
:—2OZMRM lerRl]k <B—3V2>

i,k

Summing up the above computations, we have proved the following [Proposition 2

PrROPOSITION 2. If the squared norm of Ricci curvature tensor of the conformally flat
Riemannian manifold M?> with constant scalar curvature r is constant, then we have the
following three formulae:

SR =-3> 4 —5"B

i,j,k
Azluz - (Bz_l_rZ:ul +4Zﬂ1R5k>

i,j, k
ZR;H——ZOZ,U,R;,{ rZRl]k ’ (B_éﬂ).
i,j k1 i,j k

3. Theorems and their proofs.
First of all, we consider the case of r > 0.

THEOREM 1.  In addition to the assumptions in Main Theorem 1, if r > 0, then M? is
either isometric to a space form or the Riemannian product M? x N, where M?* and N'
are of constant curvature with dimension 2 and 1, respectively.

PrOOF. Since M?* is conformally flat and the squared norm of Ricci curvature
tensor is constant, we know from (2.1) that the sectional curvature of M? is bounded.
Applying the Generalized Maximum Principle to the function B := Y, 2, there exists a
sequence {p, } of points in M? such that

(3.1) lim B;(p,,) =supB;, lim |grad Bs|(p,,) =0,
m— o0 m— o0

(3.2) lim supV,V;Bs(p,) <0 for/=1,2,3.
m— o0

From [2.18) and (2.21) it follows that R;; and R;x are bounded. Thus, by taking

a subsequence if necessary, we see that the sequences {4;(p,,)}, {t:(pn)}s {B3(P,)}s

{Rijk(Pn)} and {Ryx(p,)} have their limits 47, w, B3, R, and R}, respectively.
First we note the following lemma:
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LemMa 1.
B3/2 B3/2

=P E

and the equality holds if and only if at least two of u; are equal.

PrOOF. Because of >, i, = 0 and Y, #? = B, by making use of Lagrange multiplier
method, it follows that —B*?/1/6 < By < B*?/ \/6 and the equality holds if and only if
at least two of y; are equal. This finishes the proof.

Now, if S <r?/2, then we know from the result in due to Wu and first-named
author that M?3 is either isometric to a space form or Riemannian product M? x N!.
Thus, Theorem 1 is true for the case of S <r?/2.

Next we shall prove that S >r?/2 is impossible. In fact, by and the as-
sumptions for r and S, we have ) . R, =0 and >, ;;R;ix =0 on M 3. In particular,
we get

(3.3) ZR” ., =0 forall k
and
(3.4) Z 1Ry =0 forall k.

> 4P R;; =0 is obtained from [3.T]. So we have, together with (3.3) and (3.4), the
followmg system of linear equatlons.

Z Rll k=
(3.5) ZuZ‘RE?,k =0
Zlu*lel k=

for k=1,2 and 3.
(i) If uf, @y and pg are all distinct, then R;, =0 for i,k =1,2,3. This fact and
(2.15) mean

* * 1 * * * *
(3.6) Zﬂi Rij%k = 3 Z (ﬂf T4+ /‘k)Rij?k
ik [y
a1 )R D KRG
i#j

=0.

Therefore (2.21) and (3.6) imply

1
(3.7) Z i k, 12FZR11, (B—6r2>

i,j k1

This is a contradiction because B= S —r?/3 > r>/6 and r > 0.
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(ii) If u{, w5 and wj are not distinct with each other, then we have yf = pj = i or
2uy =2p5 = —u3.

(ii-1) g = w5 = ui case. In this case, implies uf = p5 = uf =0 and hence
we have S =r?/3.

(ii-2) 2uf =2p5 = —p case. In this case, we have from

B3/2
Bl=+"—.
TV
If
B3/2
B =-"_,
V6

then from we know B; =constant. Hence the A;’s are constant. Thus, we
have 4;R; =0. So we see from

.1 3vB 1
This means B =0 or 3v/B/v6 =r/2, that is, S =r?/3 or S =r?/2.
If

B3/2

Bi="r

then we see from (2.18)

3 1 VB 1
0> —B¥?4+_rB= 3B(—+—r> > 0.
NG 2 V6 6

This means B=0 and hence S =r?/3. Thus, the proof of is
completed. ]

Next we consider the case of r < 0.

THEOREM 2. In addition to the assumptions in Main Theorem 1, if r <0, then the
squared norm S of the Ricci curvature tensor satisfies the following inequality:

(3.9)
PrROOF. By rewriting in term of B3, we have

3
(3.10) ABs =3 <32+FB3—|—4Z,MI-R§-J{).
i,j,k

Hence, by using (3.2), we have

(3.11) B+ rB; +4) W R <0.
i,k
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(i) If u’s are distinct with each other, then by making use of the similar method to
the proof of [Theorem 1, we have

(3.12) > R =0

i),k
and hence the inequality
(3.13) B* +rB; <0.
On the other hand, by using we know
(3.14) r’B+ 6rB; > 0.
Thus, (3.13) and (3.14) imply the inequality

1
—irzB <3rBj < — 3B~
Therefore, the proposed relation

l”2 r

< —
3_S 2

IA
(9]

in is valid in this case.
(i) If u’s are not distinct with each other, then by the same reasons as in

we have S =r?/3 or

B3/2
3.15 B =+—.
( ) 3 - \/6
If
B3/2
B; =

then V;R; =0 by the same reason as in the case of (ii-2) of the proof of Theoreml
1. Therefore we have from

1 3VB r
A =-3B; —-rB=2RB = .
(3.16) 0 3B; 37 ( NG 2)
Because of r <0, we see 3vB/v6—r/2>0. Hence, B=0, that is, S=r?/3 is
valid. It should be remarked that in this case r < 0, we can only get S =r?/3 and we
can not conclude S =r?/2 from the above equality [3.16).
If
B3/2
B} =—,
V6
then we see from

B3? 1 1 r
3= _ +_-rB=23B —\/E—i——) <0
Ve 2 <% 6
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This means B <r?/6. Hence we conclude S <r?/2. This completes the proof of

MTheorem 2. O
PrROOF OF MAIN THEOREM 1. From [Theorem 1, we know that the assertion (1) in

Main Theorem 1 is true. When r < 0, we have the inequality r?/3 < S <r?/2 from
Theorem 2. If S =r?/3, then we know that

1 2

l*j
Hence the conformally flat Riemannian manifold M3 is Einstein space. So we can

conclude that M? is space form by which the assertion (2) in Main Theorem 1 is also
true. This completes the proof of Main Theorem 1. O

In order to prove Main Theorem 2, we will prepare the following Theorem 3.

THEOREM 3. In addition to the assumptions in Main Theorem 1, if r <0, then we
have

B3/2
sup Bz = —.

V6

Proor. We use the same notations above. Suppose Bj := sup Bz # B3 /4/6, then
we shall get a contradiction. To do it, we first prepare the following lemma:

Lemma 2. If B; # BY?/\/6, then we have

(1) wuf, @, ui are all distinct.
2

2) 0<B<_.
6 5 9 r?
*2 *2
B).EIR%M_—Tyz:R%k—ZB<B—E).
l7J7k7l b l7j7k

B
) Bj=-—>0.

ProOOF. As a consequence of noted in the proof of [Theorem 1, the
statement (1) is obtained.
In view of and its proof, the statement (1) yields the inequality

2 2
Lo S<—
35753
that is, the relation (2) holds:

2

(3.17) O<B<%.

The relation (3) is proved as follows:
From the statement (1), we have, by using [3.5),

(3.18) R =0 forik=123.
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Hence (2.18) means

*2 *2 r
(3.19) ;R S =6R3 5 = 32” —5B.

By differentiating (2.18) and using (3.1), we get

(3.20) > R Ry = 3 lim V;Bs(p,) =0 forl=1,2,3.

ik m— oo

According to (3.18) and (3.20), we infer

(3.21) R =0 forij#k#1i
From the Ricci formula (2.3-i) and (2.1), we have

(3.22) R — Rii = Z R R + Z Ry Ry =0 foris#j#k+#i.

Thus, (3.21) and (3.22) yield

(3.23) i =0 foris#j#k#Ii
Because of
1
(3.24) 0= EVIVkS = Z RjiRj jy + Z R kR
i,j i,j
and

0=VVir=> Riu,
:

we have

(3.25) ZR” e

and

(3.26) Z ARG 1+ ZRU R =

In view of Ricci formula (2.3-i) and (2.1), the relations (3.23), and imply
(3.27) R = Ry j =0 for j#k.

Thus, [2.21), [3.6), (3.21), (3.23) and (3.27) yield the relation (3) of this [Lemma 2k

(328) Z Rjjzkl =3 Z Rll i ZZRZZU
i)j’k /
rZRZZk —§B<B— é 2)

Finally, the inequality (4) is proved as follows:
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we have

llm supAZﬂl D) = hm sup( AZRUkpm)
i,j, k
(B2+rZB3 +4Zﬂ l]k>

i.j.k

By using (2.19),

wl,_‘ >

Since u;’s are all distinct, (3.18) is also true. Hence,

> R =0.

i,j,k
Thus the inequality
B2
(3.29) B> —-——>0

r

holds because r < 0. Thus the proof of is finished.

Now we continue to prove [Theorem 3. By taking k =/ in [3.25) and [3.26), we
have

(3.30) ZR =0 forl=1,273

and

(3.31) Zﬂl* f;zl ZRUI 2RT§,3
i

1
ZErB—I—B;‘ for/=1,2,3,

respectively. On the other hand, the Ricci formula (2.3-i) and (2.1) yield

* * * * * * 1
(3.32) R — R i = (1 —,uj)(,ui + 1 —|—6r> for [ =1,2,3.

In view of (3.32), we can solve the rank 5 linear system (3.30) and of six equations
and six unknowns R ,. In fact, the solutions are

1 1

(3.33) R =17+ grﬂf - §B + Ygig1-
Here

B; 1
3.34 =t -3 — B
(3.34) gi = 0’ 3 > 3
and y is a quantity which need not to be determined. Hence we get

1 B 2
(3.35) ZRU "= Z(ﬂ;& +8Vﬂl~* -3t ygiQ/)
B

12 2 *
=5 B—I—gr + X" +rB;



Conformally flat 3-Manifolds

and
1 1 2

1 1 B 1 1 2

=37 T3Pty 3 +5% 3785 =3

+2y> utgl + J’VZ#Z g; ——Bx

i
1 1 A B 1
:§x2 —§x<B+ErB3> +37B3 +832 +%r2B,

where

2 %2
xX=y 5 _5 :
6 B
Zu*292 B2 B§2
i Yi B

B*Z BZ

By using (3) in [Lemma 2| (3.35] and (3.36), we have

Here we used

and

2 B\ 3 1
(3.37) I;IR,] = 2x° +3x(B+r§) +2B(B+6r )
B—2 P2 B + 3rB: 2rB*
3 18 33773

Therefore, we obtain the quadratic equation of x

1 B\ 13 o, 7,
(3.38) X +3x<B+r§)+ﬁ rBy +24B 36! B=0

of which the solutions are

B) 6 B 2

* %\ 2
(3.39) x:-é(3+r&)+l\/ﬂ(&) s

221
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Since u;’s are all distinct as noted in [Lemma 2, we can conclude, by using the inequality
(4) in

(3.40) U <u; <0 and w3 >0
and

1 V2 B2 o1 1 o 2
(3.41) 8B<ﬂ §B+TT’ 0 <y <€B’ EB</z3 <§B.

Here we assumed without loss of generality uf < u; < u; and used the formulas B3 =
3u(w* — B/2) for j=1, 2 and 3.

On the other hand, by making use of the similar computation as in [2.19], we have
from (3.2) the inequality

. 1
0> lim § supV,V,B3(p,,)

ij
From (3.18) and (3.19), we obtain

* px2 *2
22#;&,1‘2 i+ )R = =20 Ry, 5
ij

1
= (grB—i—B;‘),ul*.

Hence, by using (3.30), (3.33) and this relation, we get the inequality
2
*2 * Pk *
(3.42) 0> Zi Riy+2) W RZ +3r) Ry,
2y, LJ
— *2 + %V + lr ¥ _ lB + .
- - lui 3 lul lul 6 lui 3 yglgl
+ (EVB+B3>/1, —|—§r(—6rB—B3>

3 (., 2 L1 L1
= <—l—;x<,u,2—§3) -|-3,u,2-|-§r,ul —B> (,ulz —6B>

Next, we estimate x by using (4) in and so on.
LemMmA 3. If B; # B3?/\/6, then

Proor. If x > —(B+r(B;/B))/6, then, by taking / =1 in and using 3.17),

(3.29) and (3.41), we have
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3 *2 *2 1 *
OZ—EX mho =3B +34 tormy — B
= E(ﬂ12—§B> (B""’?s) +3ﬂ12+§”ﬂ1 —-B

> —%<B+%r\/§) > 0.

This is a contradiction. Thus the proof of lemma 3 is finished.
Now, means that

1 By\ 1 [,/By\? 35 . , 121,

Finally we estimate B as follows.

Lemma 4. If B; # B%?/\/6, then

16

B < 1.
(47)°-9

Proor. By taking /=2 in and using the inequality 44? — B/6 < 0 in [3.41),
we have

3 2 1
(3.44) 0< — T;x(”;z - §B> + 357 +5ruy — B.

First of all, we assert B < r?/7. In fact, since B and r are constant by the as-
supmtion and B < r?/6 as noted in [Lemma 2, there exists a constant a > 0 such that
(1+a)B<r*/6. If a>1/6, then B < r?/7. In this case our assertion holds. If a <
1/6, then we have

o B\ 1 B\’
(3.45) x——g(B—I—rf) —6\/<(1—6a)B—l—r§> + G,

where G is defined by

121
G = —(1 —6a)*B* - 2(1 — 6a)rB; — %SVB;‘ + 7Br? — —

B
According to rBi < — B? of (4) in and (1 +a)B <r?/6 we have

35 121
G> — (1 —6a)’B*>+2(1 — 6a)B> +332 +42(1 +a)B* - 732

= B%*(42a — 36a*) > 0.

Therefore, we obtain

1 B\ 1 B
< —- S+ ((1- =) = —aB.
x < 6<B+VB)+6((1 6a)B—|—rB) aB
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Using this inequality, 4> — B/6 < 0 in [3.41) and u&; <0, (3.44) implies

2 1
0< 3a<,u§2 —§B> + 357 +§rﬂ§ - B

1
=3(a+ 1)y’ —l—ir,u; —(2a+1)B

< m+mB—JzVE—@a+uB

1
2 2V6
Hence, we have

2

U+6@B<%.

If 6a>1/6, then our assertion is true. If 6a < 1/6, then by applying the above
procedures for a; = 6a, we get

2

u+¢@3<%.

If we repeat the above procedure k times so that 6¥a > 1/6, then we have

2

(1+M@B<%.

Thus we obtain B < r?/7, that is, our assertion holds.

Next, by taking account of B < r2/7, we will show B<r?/24 and B < (4r)*/
(3-47)* finally. In fact, from [3.43), rBf < — B2 of (4) in Cemma 2 and B < r2/7, we
have

1 By 1 B\ B

Hence, by substituting the above inequality [3.46) into [3.44), from 0 < 13> < B/6 and
w, <0, we get

2 1 1 5
2 1 5 r
<ZB———r B——B:—N@<J§+——)
37 2v6 3 2v6
Thus we have
B’
24"

By applying the above method to B < r?/24, which introduced [3.46) and [3.47), we get

16

B < 1.
(47)7-9

Thus the proof of [Lemma 4 is completed.
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In view of and the inequality rB} < — B> of (4) in [Lemma 2, we
obtain

4r? 1 121 1 , B3
<_£ . r )B*+ 923__B2_|_ 2

2" " 3vB 2 3" B
:%CZ* IZSB 2\7)2—%(1251%% \F) 23—%32 0.
Therefore, we have
ORI )
Z—éB+31%r\f—é<l—%)r%§.

Hence, by substituting the above inequality into (3.44) and using the inequality
rB; < —B? of (4) in [Lemma 2, we get finally

3/ ., 2 1 2\ B; o 1
< — — N JE— JE— N _— — — —
0< B(”2 33)( B+3\/_r\/_ 6( \/-6->VB)+3/12 +50u; — B

2 1 1 2 1
2 _ZB)(-B———=rVB——|1—-—=|B 2+ —rul — B
<,u2 3 ><6 3\/5“/_ 6 V6 e e

1 1 1
<—-———B+-B———rB—B<0.
2v6 2 26

But this is impossible. Thus the proof of is completed. O

3
< =
B

PROOF OF MAIN THEOREM 2. From in the proof of Theorem 1|, it follows
that B = B¥2/v/6 if and only if two of u*’s are equal with each other. Therefore,
from and the assumptions (1) and (2) in Main Theorem 2 we complete the
proof of Main Theorem 2. O
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