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Abstract. Let g be a complex semisimple Lie algebra with symmetric decomposition

g ¼ kþ p. For each irreducible Harish-Chandra ðg; kÞ-module X, we construct a family of

nilpotent Lie subalgebras nðOÞ of g whose universal enveloping algebras UðnðOÞÞ act on X

locally freely. The Lie subalgebras nðOÞ are parametrized by the nilpotent orbits O in the

associated variety of X, and they are obtained by making use of the Cayley tranformation

of sl2-triples (Kostant-Sekiguchi correspondence). As a consequence, it is shown that an

irreducible Harish-Chandra module has the possible maximal Gelfand-Kirillov dimension

if and only if it admits locally free UðnmÞ-action for nm ¼ nðOmaxÞ attached to a principal

nilpotent orbit Omax in p.

Introduction.

Let g be a complex semisimple Lie algebra, and let g ¼ kþ p be the symmetric

decomposition of g defined by an involutive automorphism y of g. By a Harish-

Chandra module associated to the pair ðg; kÞ, we mean a UðgÞ-module X of finite length

on which the subalgebra UðkÞ acts locally finitely. Here UðqÞ denotes the universal

enveloping algebra of a complex Lie algebra q.

The main purpose of this paper is to give for each irreducible Harish-Chandra

module X a family of nilpotent Lie subalgebras nðOÞ of g whose enveloping algebras

UðnðOÞÞ act on X locally freely. The Lie subalgebras nðOÞ are parametrized by the

nilpotent K ad
C -orbits O contained in the associated variety VðXÞH p of X, where K ad

C

denotes the analytic subgroup of the adjoint group G ad
C ¼ IntðgÞ of g corresponding to

the Lie subalgebra k. We construct nðOÞ from a K ad
C -orbit O through the Cayley

transformation of normal sl2-triples that gives the Kostant-Sekiguchi correspondence of

nilpotent orbits ([10]).

The Harish-Chandra modules are essentially related to infinite-dimensional repre-

sentations of a real semisimple Lie group as follows. Let g0 be any real form of g, and

let G be a connected linear Lie group with Lie algebra g0. We choose an involution y

of g so that the real form g0 is y-stable and that k0 :¼ kV g0 coincides with the Lie

algebra of a maximal compact subgroup K of G ([4, Ch. III, §4]). By fundamental
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results of Harish-Chandra ([3], see also [13, Ch. 3]), any admissible Hilbert repre-

sentation ðp;HÞ of G of finite length yields a Harish-Chandra module X by passing to

the K-finite part of H through di¤erentiation. The irreducibility is preserved by the

assignment H ! X. Accordingly, we may say that the present work reveals some new

algebraic aspects of representations of the group G.

We now explain the results of this article in more detail.

(I) For a nonzero nilpotent K ad
C -orbit O in p, take a normal sl2-triple ðX ;H;YÞH

g with X A O (see 1.6), and define its Cayley transform ðX 0;H 0;Y 0Þ as in (1.2). Making

use of the l-eigenspaces gðlÞ ðl ¼ 1; 2; . . .Þ of g with respect to adðH 0Þ, we can construct

a nilpotent Lie subalgebra nðOÞ ¼ ðg11ð1Þl g33ð1ÞÞl ð0
lV2

gðlÞÞ of g with g11ð1Þl g33ð1Þ

H gð1Þ (see 1.4 and 1.6 for the precise definition of subspaces gk

h
ðlÞ of gðlÞÞ such that:

(i) dim nðOÞ ¼ dimO,

(ii) the Killing form B of g is nondegenerate on adðX Þk� nðOÞ.

(See Theorem 1.2 and Lemma 3.1.) Up to K ad
C -conjugacy, the Lie subalgebra nðOÞ is

independent of the choice of an sl2-triple ðX ;H;Y Þ. In addition, the ideal 0
lV2

gðlÞ of

nðOÞ becomes stable under the complex conjugation of g with respect to the real form

g0, if we construct nðOÞ from a strictly normal sl2-triple (Proposition 3.1). We can

describe concretely the Lie subalgebras nðOÞ associated to the holomorphic nilpotent

orbits O in p (Theorem 3.6), when g0 is a noncompact real simple Lie algebra of

hermitian type. As we indicate below, the above two properties (i) and (ii) are crucial

to establish the local freeness of the UðnðOÞÞ-action on Harish-Chandra modules.

(II) Now let X be an irreducible Harish-Chandra module. Through the natural

increasing filtlation UkðgÞ ðk ¼ 0; 1; . . .Þ of UðgÞ, we attach to each nonzero vector v A X

a graded module M ¼ grðX; vÞ :¼ 0y

k¼0
UkðgÞv=Ukÿ1ðgÞv over the symmetric algebra

SðgÞF0y

k¼0
UkðgÞ=Ukÿ1ðgÞ of g, where Uÿ1ðgÞ :¼ f0g. The associated variety VðXÞ

of X is then defined to be the set of the common zeros of elements in the annihilator

AnnSðgÞðMÞ of M. Here, VðXÞ is independent of the choice of a vector v, and we

identify SðgÞ with the ring of polynomial functions on g through the Killing form B.

As is shown by Vogan [12], the variety VðXÞ associated to X is a union of finitely

many nilpotent K ad
C -orbits in p (cf. Lemma 2.2). If O is a K ad

C -orbit contained in

VðXÞ, the above properties (i) and (ii) imply that the natural projection p : g ! g=nðOÞ?

induces a linear isomorphism from the tangent space adðXÞk of O at X onto g=nðOÞ?,

where nðOÞ? is the orthogonal of nðOÞ in g with respect to B. This allows us to deduce

that M ¼ grðX; vÞ is a torsion free SðnðOÞÞ-module for every nonzero v A X. As a

consequence, we establish the main result of this article as follows.

Theorem. (Theorem 3.2) Let X be an irreducible Harish-Chandra module. The

enveloping algebra UðnðOÞÞ of nilpotent Lie subalgebra nðOÞ acts on X locally freely for

every nilpotent K ad
C -orbit OH p contained in the associated variety VðXÞ of X.

We remark that, by the Hilbert-Serre theorem, X is a torsion free UðnÞ-module for a

Lie subalgebra n of g only if dim nU dimVðXÞ.

Bearing this remark in mind, we derive two interesting conclusions of the above

theorem. First, we find that the nilpotent Lie subalgebra nðOmaxÞ associated to a

maximal K ad
C -orbit Omax in VðXÞ realizes a maximal Lie subalgebra of g among those

having locally free action on X (Theorem 3.3). Second, let g ¼ kþ aþ nm be a
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complexified Iwasawa decomposition of g0. Then it can be shown that an irreducible

Harish-Chandra module X is large i.e., dimVðXÞ ¼ dim nm, if and only if X is a torsion

free UðnmÞ-module (Theorem 3.4).

(III) The organization of this paper is as follows.

In section 1, we first study certain fine structure on finite-dimensional SLð2;CÞ-

modules equipped with involutive linear transformations (see Proposition 1.2 and

Theorem 1.1). The properties (i) and (ii) stated in (I) for the nilpotent Lie subalgebra

nðOÞ of g are shown by applying Theorem 1.1 to the adjoint representation of s :¼

CX þ CH þ CY F slð2;CÞ on g.

Section 2 is devoted to giving a simple criterion for X to be a torsion free UðnÞ-

module. More precisely we shall consider a much more general situation, where g is an

arbitrary complex Lie algebra, k and n are any two Lie subargebras of g, and X is a

locally UðkÞ-finite, irreducible UðgÞ-module. Our criterion (Theorem 2.1) is given by

means of the Lie subalgebras k, n and the associated variety VðXÞ of X.

In section 3, the main result of this paper, Theorem 3.2, is established by using

Theorems 1.2 and 2.1. Then we deduce two important consequences (Theorems 3.3

and 3.4) of Theorem 3.2. In addition, the Lie subalgebras nðOÞ associated to the

holomorphic nilpotent K ad
C -orbits O are described explicitly in 3.3.

1. SLð2;CÞ-modules with involution ~ss.

In this section, we begin with investigating in 1.1–1.5 certain fine structure on finite-

dimensional SLð2;C Þ-modules V equipped with an involutive linear transformation

~ss A GLðVÞ, compatible with a nontrivial involution s of SLð2;C Þ. The results are

summarized as Proposition 1.2 and Theorem 1.1.

We then apply the results to Lie algebra case in 1.6, where V ¼ g is a complex

semisimple Lie algebra with an involution ~ss ¼ y, and SLð2;CÞ acts on g through the

adjoint representation of a y-stable, simple Lie subalgebra sF slð2;C Þ of g. This gives

us a new kind of decomposition of g (Theorem 1.2(3)), which is, in a sense, comparable

with the (complexified) generalized Iwasawa decompositions of g. The nilpotent Lie

subalgebra n of g appearing in this decomposition will play an essential role in §3 for

studying locally free UðnÞ-action on Harish-Chandra modules.

1.1. sl2-triples and Cayley transformation.

Let s ¼ CX þ CH þ CY F slð2;C Þ be a three-dimensional, complex simple Lie

algebra with commutation relation:

½H;X � ¼ 2X ; ½H;Y � ¼ ÿ2Y ; ½X ;Y � ¼ H:ð1:1Þ

We denote by SFSLð2;C Þ the simply connected Lie group with Lie algebra s. Setting

X 0 ¼
i

2
ðH ÿ X þ Y Þ; H 0 ¼ X þ Y ; Y 0 ¼ ÿ

i

2
ðH þ X ÿ Y Þ;ð1:2Þ

one gets another sl2-triple ðX 0
;H 0

;Y 0Þ in s which satisfies the same relation (1.1). If we

identify s with slð2;C Þ by

X ¼
0 1

0 0

� �

; H ¼
1 0

0 ÿ1

� �

; Y ¼
0 0

1 0

� �

;
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then

X 0 ¼
i

2

1 ÿ1

1 ÿ1

� �

; H 0 ¼
0 1

1 0

� �

; Y 0 ¼
i

2

ÿ1 ÿ1

1 1

� �

is a basis of the real form suð1; 1Þ of s, and the Cayley transformation:

~cc : s C Z 7! AdðcÞZ ¼ cZcÿ1
A s with c ¼

1

1þ i

1 ÿi

1 i

� �

A SLð2;C Þð1:3Þ

sends the sl2-triple ðX ;H;Y Þ to ðX 0;H 0;Y 0Þ. Note that the center of S contains a

unique nontrivial element e ¼ expðpiH 0Þ corresponding to the matrix
ÿ1 0

1 ÿ1

� �

.

Now let s be the involutive automorphism of s defined by

sX ¼ ÿX ; sH ¼ H; sY ¼ ÿY :ð1:4Þ

It then follows that sX 0 ¼ ÿY 0, sY 0 ¼ ÿX 0 and sH 0 ¼ ÿH 0. Extend s to an

automorphism of S through the exponential map, which we denote again by s. Let

w :¼ exp
p

2
ðX 0 ÿ Y 0Þ ¼ expX 0 � expðÿY 0Þ � expX 0ð1:5Þ

be the element of S corresponding to the matrix
i 0

0 ÿi

� �

which represents the

nontrivial element of the Weyl group of s with respect to the Cartan subalgebra CH 0.

Direct computation in SFSLð2;C Þ immediately gives the following lemma.

Lemma 1.1. One has the equalities:

(1) sðwÞ ¼ w, w2 ¼ e,

(2) sðsÞ ¼ wswÿ1 ðs A SÞ, and s equals AdðwÞ on s,

(3) AdðexpðÿiY 0ÞÞX ¼ iX 0=2.

1.2. Irreducible S-modules.

For each nonnegative integer d, let ðtd ;Vd Þ be an irreducible S-module of dimension

d þ 1. The Lie algebra s acts on Vd through di¤erentiation. Take a nonzero highest

weight vector v
ðd Þ
d A Vd such that

tdðH
0Þv

ðd Þ
d ¼ dv

ðd Þ
d ; tdðX

0Þv
ðd Þ
d ¼ 0;ð1:6Þ

and set

v
ðd Þ
dÿ2j ¼

1

j!
tdðY

0Þ jv
ðd Þ
d ð j ¼ 0; 1; . . . ; d Þ:ð1:7Þ

Then the vectors v
ðd Þ
dÿ2j ð0U jU d Þ form a basis of Vd . The action of X 0;H 0;Y 0 on Vd

is described respectively as

tdðX
0Þv

ðd Þ
dÿ2j ¼ ðd þ 1ÿ jÞv

ðd Þ
dÿ2ð jÿ1Þ;

tdðH
0Þv

ðd Þ
dÿ2j ¼ ðd ÿ 2 jÞv

ðd Þ
dÿ2j ;

tdðY
0Þv

ðd Þ
dÿ2j ¼ ð j þ 1Þv

ðd Þ
dÿ2ð jþ1Þ;

8

>

>

>

<

>

>

>

:

ð1:8Þ
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where v
ðd Þ
ÿdÿ2 ¼ v

ðd Þ
dþ2 ¼ 0. We note that the element w A S in (1.5) acts on Vd as

tdðwÞv
ðd Þ
dÿ2j ¼ ðÿ1Þdÿj

v
ðd Þ
ÿðdÿ2jÞ ð j ¼ 0; 1; . . . ; d Þ:ð1:9Þ

1.3. Extension ~ss and S-homomorphism J.

Let ðt;VÞ be any finite-dimensional S-module (and so s-module). A map ~ss :

V ! V is called an extension of s to V if it is an involutive linear isomorphism on V

satisfying

~sstðZÞ~ssÿ1 ¼ tðsZÞ ðZ A sÞ:ð1:10Þ

The totality of such extensions will be denoted by EV . If V ¼ Vd is irreducible, ~ss :¼

itðwÞ for d A 2Z þ 1; ~ss :¼ tðwÞ for d A 2Z, gives an extension of s to V, by Lemma

1.1(2).

In 1.6 we shall consider an extension ~ss arising from an involutive automorphism of

a semisimple Lie algebra g ¼ V , where s is a Lie subalgebra of g acting on V through

the adjoint representation.

Let FV denote the set of all S-homomorphisms J on V such that J 2 ¼ tðeÞ, where

w2 ¼ e is, as in Lemma 1.1, the nontrivial central element of S. Then,

Proposition 1.1. The assignment ~ss 7! J :¼ ~sstðwÞ gives a bijective correspondence

from EV onto FV .

Proof. Let ~ss be in EV . Then Lemma 1.1 together with (1.10) yields that

JtðZÞ ¼ ~sstðAdðwÞZÞtðwÞ ¼ ~sstðsZÞtðwÞ ¼ tðZÞJ

for every Z A s, and that

J 2 ¼ ð~sstðwÞ~ssÞtðwÞ ¼ tðsðwÞÞtðwÞ ¼ tðwÞ2 ¼ tðeÞ:

We thus find that J A FV , for the group S is connected.

Conversely, if J is in FV , then ~ss :¼ JtðwÞÿ1 belongs to EV . In fact, it follows from

Lemma 1.1 that

~ss
2 ¼ J 2

tðwÞÿ2 ¼ tðeÞtðeÞÿ1 ¼ idV ;

and that

~sstðZÞ~ssÿ1 ¼ tðwÞÿ1
tðZÞtðwÞ ¼ tðsZÞ

for Z A s, where idV denotes the identity operator on V. These two equalities show that

~ss is an extension of s to V. r

It should be noticed that

J~ss ¼ ~ssJ ¼ tðwÞ;ð1:11Þ

since ~ss is involutive and it commutes with tðwÞ.

We fix once and for all an extension ~ss of s to V, and the corresponding S-

homomorphism J ¼ ~sstðwÞ.
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1.4. The subspace U.

For an S-module ðt;VÞ with ~ss A EV and the corresponding J A FV in 1.3, let

V ¼ Vð~ss;þ1ÞlVð~ss;ÿ1Þ with Vð~ss;G1Þ :¼ fv A V j ~ssv ¼ Gvgð1:12Þ

be the eigenspace decomposition of V with respect to ~ss. The semisimple element H 0 A s

gives a weight space decomposition of V:

V ¼ 0
l AZ

VðlÞ with VðlÞ :¼ fv A V j tðH 0Þv ¼ lvg:ð1:13Þ

Let

V ¼ 0
dV0

½md � � Vd with ½md � � V FVd l � � � lVd ðmd -copiesÞð1:14Þ

be the irreducible decomposition of the S-module V, where md denotes the multiplicity

of simple S-module Vd (see 1.2) in V. Put

V ðkÞ
:¼ 0

d A IðkÞ

½md � � Vd HV ; IðkÞ :¼ fkþ 4n j n ¼ 0; 1; . . .g;ð1:15Þ

for k ¼ 0; 1; 2; 3. Then V ðkÞ is the S-submodule of V generated by all the maximal

weight vectors in V with weight l1 k ðmod 4Þ. Clearly it holds that

V ¼ 0
3

k¼0

V ðkÞ as S-modules;ð1:16Þ

and that

V ðkÞ ¼ 0
l AZ

V ðkÞðlÞ with V ðkÞðlÞ :¼ V ðkÞ VVðlÞð1:17Þ

gives the weight space decomposition of V ðkÞ, where V ðkÞðlÞ ¼ f0g if kÿ l B 2Z. Note

that any S-submodule W of V decomposes as

W ¼ 0
3

k¼0

W VV ðkÞ
;ð1:18Þ

since each irreducible constituent of W with highest weight d A IðkÞ is contained in V ðkÞ.

Using the S-homomorphism J on V such that J 4 ¼ tðeÞ2 ¼ tð1Þ ¼ idV , we decom-

pose the S-representation ðt;VÞ also as

V ¼ 0
3

h¼0

VðhÞ with VðhÞ :¼ fv A V j Jv ¼ ihvg:ð1:19Þ

Denote by VðhÞðlÞ :¼ VðlÞVVðhÞ the l-weight subspace of VðhÞ. We observe that VðhÞðlÞ

¼ f0g if hÿ l B 2Z, because J 2 ¼ tðeÞ ¼ expðpitðH 0ÞÞ acts on VðlÞ by the scalar ðÿ1Þ l .

Summarizing the above discussion, we immediately deduce the following lemma on

the compatibility of two decompositions (1.16) and (1.19).

Lemma 1.2. ðt;VÞ admits the decomposition:

V ¼ 0
3

k;h¼0

V k
h with V k

h :¼ V ðkÞ VVðhÞð1:20Þ

as S-modules, and V k
h equals f0g if kÿ h B 2Z.
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This lemma shows that the even part V even :¼ 0
l A 2Z

VðlÞ and the odd part V odd :¼

0
l A 2Zþ1

VðlÞ of V decompose respectively as

V even ¼ V ð0Þ lV ð2Þ ¼ Vð0Þ lVð2Þ ¼ V 0
0 lV 0

2 lV 2
0 lV 2

2 ;

V odd ¼ V ð1Þ lV ð3Þ ¼ Vð1Þ lVð3Þ ¼ V 1
1 lV 1

3 lV 3
1 lV 3

3 :

(

ð1:21Þ

We note that the involution ~ss acts on V in the following way.

Lemma 1.3. For k; h ¼ 0; 1; 2; 3, and l A Z, let V k

h
ðlÞ :¼ V k

h
VVðlÞ denote the l-

weight subspace of V k

h
. Then it holds that

~ssV k

h
¼ V k

h
; ~ssVðlÞ ¼ VðÿlÞ; and so ~ssV k

h
ðlÞ ¼ V k

h
ðÿlÞ:ð1:22Þ

Proof. It follows from (1.10) that, if W is any irreducible S-submodule of V, so is

~ssW and dimW equals dim ~ssW . This implies that each S-submodule V k is ~ss-stable.

We get ~ssVðhÞ ¼ VðhÞ by virtue of the commutativity (1.11). Thus we get the first

equality in (1.22). The second one follows from sH 0 ¼ ÿH 0, and the third one is an

immediate consequence of the former two. r

We now introduce a subspace U of V defined as follows:

U :¼ ðV 1
1 ð1ÞlV 3

3 ð1ÞÞl 0
lV2

VðlÞ

 !

:ð1:23Þ

Later in §3, this subspace U gives a nilpotent Lie subalgebra n of a semisimple Lie

algebra g which admits locally free action on Harish-Chandra modules for g.

The following proposition is one of the main ingredients to establish our main result

on locally free UðnÞ-action on Harish-Chandra modules.

Proposition 1.2. Let ðt;VÞ be a finite-dimensional S-module with ~ss, J A GLðVÞ as

in 1.3, and let U be the subspace of V defined above. Then V is expressed as a sum of

three subspaces as

V ¼ Vð~ss;þ1Þ þKer tðXÞ þU ¼ ~ssUþKer tðXÞ þU;ð1:24Þ

where Vð~ss;þ1Þ is the subspace of ~ss-fixed vectors as in (1.12), and Ker tðXÞ ¼ fv A V j

tðX Þv ¼ 0g denotes the kernel of tðXÞ.

Proof. Set M :¼ Vð~ss;þ1Þ þKer tðXÞ þU. First we see easily from Lemma 1.3

together with the definition of U that the sum Vð~ss;þ1Þ þU is decomposed as

Vð~ss;þ1Þ þU ¼ Uþ ~ssUþ Vð~ss;þ1Þ

¼ 0
jljV2

VðlÞ

( )

l fV 1
1 ð1ÞlV 1

1 ðÿ1Þgl fV 3
3 ð1ÞlV 3

3 ðÿ1Þg

l fðV 3
1 ð1ÞlV 3

1 ðÿ1ÞÞVVð~ss;þ1Þgl fðV 1
3 ð1ÞlV 1

3 ðÿ1ÞÞVVð~ss;þ1Þg

l fVð0ÞVVð~ss;þ1Þg:

Hence, for the proof of (1.24) it is enough to show that three subspaces:

Qk

h
:¼ ðV k

h
ð1ÞlV k

h
ðÿ1ÞÞVVð~ss;ÿ1Þ with ðk; hÞ ¼ ð1; 3Þ; ð3; 1Þ; and

R :¼ Vð0ÞVVð~ss;ÿ1Þ;

�

ð1:25Þ
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are contained in M. Before proving this, we remark that

MIKer tðXÞ ¼ ðexp itðY 0ÞÞ �Ker tðX 0Þð1:26Þ

by Lemma 1.1(3), and that the subspace Ker tðX 0Þ is exactly the linear span of all the

maximal weight vectors in V with respect to tðH 0Þ.

Now let ðk; hÞ be ð1; 3Þ or ð3; 1Þ, and let us show Qk

h
HM. Consider the irreducible

decomposition:

V k

h
¼ 0

s

p¼1

Vdpð1:27Þ

as an S-module, where Vdp is, as in 1.2, the irreducible S-module with highest weight

dp 1 k ðmod 4Þ.

For a while we fix any p A f1; 2; . . . ; sg, and take a nonzero highest weight vector

v
ðdpÞ
dp

A VdpðdpÞHKer tðX 0Þ. Then one gets

ðexp itðY 0ÞÞ � v
ðdpÞ
dp

¼
Xdp

j¼0

i j � v
ðdpÞ
dpÿ2j A M;ð1:28Þ

by (1.26), where v
ðdpÞ
dpÿ2j ¼ tðY 0Þ jv

ðdpÞ
dp

= j! A Vdp is a weight vector with weight dp ÿ 2j. Since

0jljV2
VðlÞHM, we find that v

ðdpÞ
1 þ iv

ðdpÞ
ÿ1 lies in M, and this vector can be calculated as

follows:

v
ðdpÞ
1 þ iv

ðdpÞ
ÿ1 ¼ v

ðdpÞ
1 þ ðÿ1Þðdpþ1Þ=2

itðwÞv
ðdpÞ
1 by ð1:9Þ

¼ v
ðdpÞ
1 þ ðÿ1Þðdpþ1Þ=2

i~ssJv
ðdpÞ
1 by ð1:11Þ

¼ v
ðdpÞ
1 þ ðÿ1Þðkþ1Þ=2

ihþ1
~ssv

ðdpÞ
1 since v

ðdpÞ
1 A V k

h

¼ v
ðdpÞ
1 ÿ ~ssv

ðdpÞ
1

for ðk; hÞ ¼ ð3; 1Þ or ð1; 3Þ. We thus conclude v
ðdpÞ
1 ÿ ~ssv

ðdpÞ
1 A M.

Considering this inclusion for all p ¼ 1; 2; . . . ; s, we get Qk

h
HM since the vectors

v
ðdpÞ
1 ÿ ~ssv

ðdpÞ
1 ðp ¼ 1; 2; . . . ; sÞ form a basis of Qk

h
by (1.22).

The inclusion RHM can be shown in the same (even easier) way. r

1.5. S-modules with JS-invariant form.

Let ðt;VÞ be, as in 1.3, a finite-dimensional S-module with extension ~ss A EV and

J ¼ ~sstðwÞ A FV . A bilinear form B on V is called J- and S-invariant, or JS-invariant

for short, if it satisfies

BðJv; Jv 0Þ ¼ BðtðsÞv; tðsÞv 0Þ ¼ Bðv; v 0Þ ðs A SÞ;ð1:29Þ

or equivalently,

Bð~ssv; ~ssv 0Þ ¼ Bðv; v 0Þ; and BðtðZÞv; v 0Þ þ Bðv; tðZÞv 0Þ ¼ 0 ðZ A sÞð1:30Þ

for all v; v 0 A V .

Now let us consider the subspaces Vð~ss;G1Þ, VðlÞ ðl A ZÞ and the S-submodules

V ðkÞ, VðhÞ ðk; h ¼ 0; 1; 2; 3Þ of V defined in (1.12), (1.13), and (1.15), (1.19) respectively.

If B is any JS-invariant bilinear form on V, these subspaces have the following
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orthogonality relations with respect to B:

Vð~ss;G1Þ?Vð~ss;H1Þ; VðlÞ?Vðl 0Þ if l þ l 0 6¼ 0;ð1:31Þ

V ðkÞ ?V ðk 0Þ if k 6¼ k
0; VðhÞ ?Vðh 0Þ if hþ h

0 6¼ 0 or 4;ð1:32Þ

which can be checked easily by the JS-invariance of B. (For the third relation, use the

fact that the Casimir element H 02 þ 2ðX 0Y 0 þ Y 0X 0Þ for s has distinct eigenvalues on

each V ðkÞ.) Here, for any subsets L1 and L2 of V, L1 ?L2 stands for Bðv1; v2Þ ¼ 0 for

every v1 A L1 and v2 A L2.

Now we get the following consequence of Proposition 1.2 for ðt;VÞ with JS-

invariant form.

Theorem 1.1. Assume that the S-module ðt;VÞ admits a JS-invariant, nondegenerate

symmetric bilinear form B on V. Then we get the following.

(1) dimU ¼ dim tðXÞVð~ss;þ1Þ ¼ dim tðXÞVð~ss;ÿ1Þ ¼ ðdim tðXÞVÞ=2.

(2) B is nondegenerate on tðX ÞVð~ss;þ1Þ �U.

(3) V ¼ ðVð~ss;þ1Þ þKer tðXÞÞlU (direct sum).

Here Vð~ss;G1Þ and U are the subspaces of V defined by (1.12) and in (1.23), respectively.

Proof. (1) We first prove the equality dim tðXÞVð~ss;þ1Þ ¼ dim tðXÞVð~ss;ÿ1Þ. This

can be done just in the same way as in the proof of [8, Prop. 5].

In fact, set ðv; v 0ÞX :¼ BðtðX Þv; v 0Þ ðv; v 0 A VÞ. Then we can see that ð�; �ÞX gives

a skew-symmetric bilinear form on V with kernel Ker tðX Þ. Hence this ð�; �ÞX naturally

induces a nondegenerate, skew-symmetric bilinear form on V=Ker tðX Þ which we denote

again by ð�; �ÞX . Note that the operator tðXÞ sends Vð~ss;G1Þ to Vð~ss;H1Þ since

sX ¼ ÿX . Hence we can identify V=Ker tðXÞ with the direct sum:

Vð~ss;þ1Þ=ðKer tðXÞVVð~ss;þ1ÞÞlVð~ss;ÿ1Þ=ðKer tðX ÞVVð~ss;ÿ1ÞÞ;

in the canonical way, and each constituent Vð~ss;G1Þ=ðKer tðX ÞVVð~ss;G1ÞÞ is totally

isotropic with respect to ð�; �ÞX by the first orthogonality in (1.31). This shows that the

bilinear form ð�; �ÞX gives a nondegenerate pairing on

Vð~ss;þ1Þ=ðKer tðX ÞVVð~ss;þ1ÞÞ � Vð~ss;ÿ1Þ=ðKer tðXÞVVð~ss;ÿ1ÞÞ:

We thus obtain

dim tðXÞVð~ss;þ1Þ ¼ dimVð~ss;þ1Þ=ðKer tðX ÞVVð~ss;þ1ÞÞ

¼ dimVð~ss;ÿ1Þ=ðKer tðX ÞVVð~ss;ÿ1ÞÞ ¼ dim tðXÞVð~ss;ÿ1Þ;

which is equal to ðdim tðX ÞVÞ=2.

Second, let us prove the first equality in (1), or equivalently dimU ¼ ðdim tðXÞVÞ=2

by the above result. Keeping (1.26) in mind, we can calculate dim tðX ÞV as

dim tðX ÞV ¼ dimV ÿ dimKer tðX 0Þ ¼ dimV ÿ ðdimVð0Þ þ dimVð1ÞÞ

¼ dimVð1Þ þ 2
X

lV2

dimVðlÞ:

Here we used the fact that dim Ker tðX 0Þ coincides with the number of (linearly in-

dependent) maximal weight vectors in the S-module V, which is given by dimVð0Þþ

Locally free UðnÞ-action 137



dimVð1Þ (see 1.2). In view of the definition of U, it is su‰cient for us to show

dimV
1
1 ð1Þ þ dimV

3
3 ð1Þ ¼

1

2
dimVð1Þ:ð1:33Þ

This is true because the bilinear form B gives nondegenerate pairings on

V
1
1 ð1Þ � V

1
3 ðÿ1Þ and V

3
1 ð1Þ � V

3
3 ðÿ1Þ;ð1:34Þ

because of (1.31) and (1.32). Thus the proof of (1) is over.

(2) For any subset L of V, let L? denote the orthogonal of L in V with respect to

B. Observe that ðKer tðX ÞÞ? ¼ tðX ÞV and that Vð~ss;G1Þ? ¼ Vð~ss;H1Þ. Then we get

ðVð~ss;þ1Þ þKer tðX ÞÞ? ¼ tðX ÞVð~ss;þ1Þ;ð1:35Þ

with tðXÞVð~ss;G1ÞHVð~ss;H1Þ in mind. Proposition 1.2 combined with this equality

(1.35) shows that U? \ tðXÞVð~ss;þ1Þ ¼ f0g. We thus get the assertion, because the

subspaces U and tðXÞVð~ss;þ1Þ have the same dimension as is already shown in (1).

(3) Because of (1) and (1.35), it su‰ces to show that the intersection of the two

direct summands of the right hand side is equal to zero. If v belongs to both

summands, then it follows that v A U, that v A ðtðX ÞVð~ss;þ1ÞÞ? by (1.35), and hence that

v ¼ 0 by (2). r

Remark. Since tðY 0ÞV k
h ð1Þ ¼ V k

h ðÿ1Þ, it follows from (1.31) and (1.32) that

BðtðY 0Þv; v 0Þ ¼ 0 for v; v 0 A UVVð1Þ ¼ V
1
1 ð1ÞlV

3
3 ð1Þ:ð1:36Þ

This combined with (1.33) shows that UVVð1Þ is a maximally totally isotropic subspace

for the skew-symmetric bilinear form Vð1Þ � Vð1Þ C ðv1; v2Þ ! BðtðY 0Þv1; v2Þ A C on

Vð1Þ.

1.6. An application of Theorem 1.1.

We conclude this section by an application of Theorem 1.1 to the case where g ¼ V

is a semisimple Lie algebra and ðt;VÞ is the adjoint representation on g of a Lie

subalgebra sF slð2;CÞH g.

To be more precise, let g be a complex semisimple Lie algebra, and y be an

involutive automorphism of g. We denote by g ¼ kþ p the eigenspace decomposition

of g with respect to y, where k :¼ gðy;þ1Þ and p :¼ gðy;ÿ1Þ are as in (1.12) with ~ss ¼ y.

Let ðX ;H;YÞ be an sl2-triple in g with commutation relation (1.1). Such a triple is

called normal (cf. [8]) if s ¼ y acts on the elements X ;H, and Y as in (1.4). Take an

arbitrary normal sl2-triple ðX ;H;Y Þ in g, and set s :¼CX þ CH þ CY ¼ CX 0 þ CH 0þ

CY 0 F slð2;CÞ. Here ðX 0
;H 0

;Y 0Þ is the Cayley transform of ðX ;H;YÞ defined by

(1.2).

We consider ðt;VÞ ¼ ðad j s; gÞ, the adjoint representation of s on g. Put J :¼

yAdðwÞ, where w is defined by (1.5). Then the involution y on g is actually an

extension of y j s (¼ the restriction of y to s) to g in the sense of (1.10), and that the

Killing form B of g gives a nondegenerate JS-invariant form on g (see 1.5 for the

definition). Let

n ¼ ns :¼ ðg11ð1Þl g33ð1ÞÞl 0
lV2

gðlÞ

 !

ð1:37Þ
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denote the subspace U of g defined in (1.23) for V ¼ g. Then it is easily seen that n is a

nilpotent Lie subalgebra of g.

Applying Theorem 1.1 to the above setting, we now get

Theorem 1.2. Let g ¼ kþ p be the symmetric decomposition of a complex semi-

simple Lie algebra g with respect to the involution y of g, and let ðX ;H;YÞ be a normal

sl2-triple in g. Then one gets the following properties (1)–(3) for the nilpotent Lie

subalgebra n ¼ ns of g given by (1.37):

(1) dim n ¼ dim adðXÞk ¼ dim adðXÞp ¼ ðdim adðX ÞgÞ=2,

(2) the Killing form B of g is nondegenerate on adðXÞk� n,

(3) g ¼ ðkþ zðX ÞÞl n as vector spaces.

Here zðX Þ :¼ Ker adðXÞ denotes the centralizer of X in g.

Remarks. (1) Set ~nn :¼ 0
lV1

gðlÞ, then ~nn is a nilpotent Lie subalgebra of g con-

taining n as its ideal. The Remark in 1.5 implies that our n is a polarizing subalgebra

(see e.g., [1, p. 28]) of ~nn for the linear form:

xY 0 : ~nn C Z 7! BðY 0;ZÞ A C

on ~nn, defined by the nilpotent element Y 0 A gðÿ2Þ through the Killing form. In

particular xY 0 gives a one-dimensional representation of n.

(2) Let GC be a complex semisimple Lie group with Lie algebra g, and NC ¼ exp n

be the analytic subgroup of g with Lie algebra n. Then, the character xY 0 of n gives

rise to an induced GC-module IndGC

NC
ðexp xY 0Þ, called the generalized Gelfand-Graev

representation of GC associated to the nilpotent orbit AdðGCÞY
0. ([6], see also [14, §1].)

2. Associated variety and a criterion for locally free UðnÞ-action.

Let g be any finite-dimensional complex Lie algebra, and UðgÞ be the universal

enveloping algebra of g. We now consider two Lie subalgebras k and n of g. In this

section we give a simple criterion (Theorem 2.1) for a locally UðkÞ-finite, irreducible

UðgÞ-module X to be a torsion free UðnÞ-module. Our criterion is described by means

of the Lie subalgebras k, n and the associated variety VðXÞ of X. It has, as we show in

§3, an interesting application when X is a Harish-Chandra module for a semisimple Lie

algebra g.

2.1. Associated variety for UðgÞ-modules.

First let us review the definition and some fundamental properties of the associated

variety for finitely generated UðgÞ-modules, which is one of the principal objects in the

present article. A basic reference is [12].

Denote by ðUkðgÞÞk¼0;1; ... the natural increasing filtration of UðgÞ, where UkðgÞ is

the subspace of UðgÞ generated by elements X1 � � �Xm ðmU kÞ with Xj 2 g ð1U jUmÞ.

By the Poincaré-Birkho¤-Witt theorem, we can identify the associated graded ring

grUðgÞ ¼ 0
kV0

UkðgÞ=Ukÿ1ðgÞ ðUÿ1ðgÞ :¼ ð0ÞÞ

with the symmetric algebra SðgÞ ¼ 0
kV0

S kðgÞ of g in the canonical way. Here S kðgÞ

denotes the homogeneous component of SðgÞ of degree k.
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Let X be a finitely generated UðgÞ-module. Take a finite-dimensional subspace

X0 of X such that X ¼ UðgÞX0. Setting Xk ¼ UkðgÞX0 ðk ¼ 1; 2; . . .Þ, one gets an

increasing filtration ðXkÞk of X, and correspondingly a finitely generated, graded SðgÞ-

module

M ¼ grðX;X0Þ :¼ 0
kV0

Mk with Mk ¼ Xk=Xkÿ1:ð2:1Þ

The annihilator AnnSðgÞM :¼ fD A SðgÞ jDv ¼ 0 ðEv A MÞg of M is a graded ideal of

SðgÞ, and it defines an algebraic cone in the dual space g� of g:

VðMÞ :¼ fl A g� jDðlÞ ¼ 0 ðED A AnnSðgÞ MÞg;ð2:2Þ

as the set of common zeros of elements of AnnSðgÞM. Here SðgÞ is regarded as the

polynomial ring over g� in the canonical way. It is then easily seen that the variety

VðMÞ does not depend on the choice of a generating subspace X0. Therefore we write

VðXÞ for VðMÞ.

Definition. (Cf. [12], see also [16]) For a finitely generated UðgÞ-module X, the

variety VðXÞH g� and its dimension dðXÞ :¼ dimVðXÞ are called respectively the

associated variety and the Gelfand-Kirillov dimension of X.

Remark. By the Hilbert-Serre theorem (cf. [16, Th. 1.1]), the map k ! dimXk

coincides with a polynomial in k of degree dðXÞ, for su‰ciently large k.

Let G ad
C :¼ IntðgÞ be the adjoint group of g. We write IðgÞ for the graded

subalgebra of SðgÞ consisting of all G ad
C -fixed elements in SðgÞ. Then IðgÞ has a unique

maximal graded ideal IðgÞþ :¼ 0
k>0

IðgÞVS kðgÞ.

Using the Schur lemma [13, Lemma 0.5.2] for irreducible UðgÞ-modules, one can

deduce the following.

Lemma 2.1. (Cf. [12, Cor. 5.4]) Suppose that X is a UðgÞ-module of finite length.

Then its associated variety VðXÞ is contained in the cone N
� defined by IðgÞþ:

N
� :¼ fl A g� jDðlÞ ¼ 0 ðED A IðgÞþÞg:ð2:3Þ

Notice that, if g is semisimple, the cone N
� is the totality of nilpotent elements in

g. Here g� is identified with g by the Killing form.

2.2. The variety VðXÞ for ðg; kÞ-module X.

Now let k be a Lie subalgebra of g. A UðgÞ-module X is said to be locally UðkÞ-

finite if the UðkÞ-submodule UðkÞv is finite-dimensional for every v A X. By a ðg; kÞ-

module is meant a locally UðkÞ-finite, finitely generated UðgÞ-module. Hereafter we

exclusively consider such ðg; kÞ-modules.

Let ~KKC denote the connected, simply connected Lie group with Lie algebra k. The

natural inclusion i : k ,! g gives rise to a Lie group homomorphism:

Ad : ~KKC C k 7! AdðkÞ A G ad
C HGLðgÞ;ð2:4Þ

from ~KKC into the group G ad
C of all inner automorphisms of g, in the canonical way. We

notice that, since ~KKC is simply connected, any ðg; kÞ-module X admits a ~KKC-module

structure compatible with the UðgÞ-action in the following sense:
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ðexpZÞ � v ¼
Xy

j¼0

1

j!
Z jv ðZ A kÞ;ð2:5Þ

k � ðDvÞ ¼ ðAdðkÞDÞ � kv ðD A UðgÞ; k A ~KKCÞ;ð2:6Þ

for every v A X. Here the sum in (2.5) converges because Z jv stay in a finite-dimensional

subspace UðkÞv for all jV 0.

By using this ~KKC-action, it is easy to deduce the following lemma on an orbital

structure of the associated variety of a ðg; kÞ-module.

Lemma 2.2. (Cf. [12, Cor. 5.13]) Let X be a ðg; kÞ-module. Then the associated

variety VðXÞ of X is a union of K ad
C -orbits contained in the orthogonal k? :¼ fl A g� j

lðZÞ ¼ 0 ðEZ A kÞg of k in g�. Here K ad
C :¼ Adð ~KKCÞHG ad

C denotes the analytic sub-

group of G ad
C with Lie algebra k, and it acts on g� through the coadjoint representation.

2.3. A criterion for locally free UðnÞ-action.

Let k and K ad
C be as in 2.2. Take another Lie subalgebra n of g (not necessarily the

one given by (1.37)). We shall give a criterion for an irreducible ðg; kÞ-module to have

locally free UðnÞ-action.

To do this, let p� be the surjective linear map from g� to n� defined by the re-

striction to n of each linear form on g. We say that an element l A g� satisfies the

condition ðPk;nÞ if the projection p� mapps the subspace ad�ðkÞl :¼ fad�ðZÞl jZ A kg

onto n�, i.e.,

p�ðad�ðkÞlÞ ¼ n�:ðPk;nÞ

Here ad�ðZÞl :¼ ðd=dtÞðexp tZ � lÞjt¼0, and ad�ðkÞl can be identified naturally with the

tangent space of K ad
C -orbit K ad

C � l at the point l.

This condition ðPk;nÞ for l has the following geometric interpretation.

Lemma 2.3. The image p�ðK ad
C � lÞ of K ad

C -orbit K ad
C � l under p� contains an open

neighbourhood of p�ðlÞ in n� if and only if l A g� satisfies the condition ðPk;nÞ.

Proof. The condition ðPk;nÞ implies that the di¤erential of

K ad
C C k 7! p�ðk � lÞ A n�

is surjective at the origin e A K ad
C , and vice versa. This immediately proves the claim.

r

Proposition 2.1. Let X be a cyclic ðg; kÞ-module generated by a vector v0 A X :

X ¼ UðgÞv0. For a Lie subalgebra n of g, the annihilator AnnUðnÞðv0Þ vanishes if there

exists an element l AVðXÞ satisfying the condition ðPk;nÞ.

Proof. Let M ¼ grðX;X0Þ ¼ 0
kV0

Mk, with X0 ¼ Cv0, be the graded SðgÞ-module

in (2.1). Write ~vv0 for the vector v0 viewed as an element of M0 HM. We remark that,

since M ¼ SðgÞ~vv0, an element D A SðgÞ lies in the annihilator AnnSðgÞ M of M if and

only if D~vv0 ¼ 0.

In order to prove the proposition, it su‰ces to show that the annihilator AnnSðnÞð~vv0Þ

vanishes. This can be done as follows.
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Suppose that l A VðXÞ satisfies the condition ðPk;nÞ, and that an element D A SðnÞ

annihilates the vector ~vv0. Then one sees from the above remark that

Dðp�ðmÞÞ ¼ DðmÞ ¼ 0 for all m A VðXÞ:

This combined with Lemmas 2.2 and 2.3 shows that the function D on n� is identically

zero on an open neighbourhood of p�ðlÞ. We thus get D ¼ 0 because D A SðnÞ is a

polynomial on n�. r

Now Proposition 2.1 yields the following criterion (su‰cient condition) for the

UðnÞ-action on an irreducible module X to be locally free.

Theorem 2.1. Let k, n be two Lie subalgebras of g, and let X be an irreducible ðg; kÞ-

module. Then, the action of the enveloping algebra UðnÞ on X is locally free, that is, X is

a torsion free UðnÞ-module, provided that the associated variety VðXÞ of X contains a

point l satisfying the condition ðPk;nÞ.

Remark. From the Remark in 2.1, it follows that

dim nU dðXÞ ¼ dimVðXÞ;ð2:7Þ

if a finitely generated UðgÞ-module X has a locally free UðnÞ-action.

3. Locally free UðnðOÞÞ-action on Harish-Chandra modules.

From now on, let g be a complex semisimple Lie algebra, and y be an involutive

automorphism of g. The associated symmetric decomposition of g is denoted by g ¼

kþ p with k :¼ gðy;þ1Þ and p :¼ gðy;ÿ1Þ as in 1.6. Then there exists a y-stable real

form g0 of g such that the restriction of y to g0 gives a Cartan involution of g0 (see [4,

Ch. III, Lemma 4.1]). We fix once and for all such a real form g0, and let g0 ¼ k0 þ p0
denote the corresponding Cartan decomposition of g0, where k0 :¼ kV g0 and p0 :¼ p

V g0.

By a Harish-Chandra module, we mean in this paper a ðg; kÞ-module X (see 2.2) of

finite length, associated with the symmetric pair ðg; kÞ. As is shown by Harish-Chandra,

the category of such ðg; kÞ-modules plays an essential role in the study of representations

of a real semisimple Lie group with Lie algebra g0.

For each irreducible Harish-Chandra module X, we construct in this section a family

of nilpotent Lie subalgebras nðOÞ of g for which X is locally free as a UðnðOÞÞ-module

(see Theorem 3.2), by using the associated variety VðXÞ of X and the Cayley

transformation of normal sl2-triples. The Lie subalgebras nðOÞ are parametrized by the

K ad
C -orbits O contained in VðXÞ.

The main result of this paper is Theorem 3.2. The proof is carried out by

combining Theorems 1.2 and 2.1. We shall give in 3.3 a concrete description of Lie

subalgebras nðOÞ associated to holomorphic orbits O when the real form g0 is a simple

Lie algebra of hermitian type.

3.1. Lie subalgebras nðOÞ associated with a nilpotent K ad
C -orbit O.

We denote by Np the totality of nilpotent elements of g contained in p. By [8, Th.

2], the variety Np is a union of finitely many K ad
C -orbits, where K ad

C is as in 2.2 the

connected Lie subgroup of Gad
C ¼ IntðgÞ with Lie algebra k.
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Let O be a K ad
C -orbit in Np. Let us attach to O a K ad

C -conjugacy class of nilpotent

Lie subalgebras nðOÞ of g. Suppose that O 6¼ f0g, and take any element X A O. A

strengthened version of the Jacobson-Morozov theorem [8, Prop.4] assures that X can be

embedded to a unique, up to K ad
C -conjugacy, normal sl2-triple ðX ;H;YÞ in g (see 1.6),

where H A k and X ;Y A p. Set s :¼ CX þ CH þ CY H g and define a nilpotent Lie

subalgebra n ¼ ns ¼ ðg11ð1Þl g33ð1ÞÞl ð0
lV2

gðlÞÞ just as in (1.37), through the Cayley

transform ðX 0;H 0;Y 0Þ of ðX ;H;YÞ defined by (1.2). Then it is immediate to check

that, up to K ad
C -conjugacy, the Lie subalgebra n is uniquely determined by O, inde-

pendently of the choice of an X in O and of the choice of an sl2-triple ðX ;H;YÞ. So

we take up such n, and denote it by nðOÞ.

We attach nðOÞ ¼ f0g for the zero orbit O ¼ f0g.

From Theorem 1.2(1), we get the following.

Lemma 3.1. It holds that dim nðOÞ ¼ dimO ¼ ðdim ~OOÞ=2, where ~OO :¼ G ad
C � X

denotes the nilpotent G ad
C -orbit in g containing O.

Now let g C Z ! Z A g be the complex conjugation of g with respect to the real

form g0. Sekiguchi’s result [10] enables us to choose a nice representative nðOÞ which is

compatible with this conjugation except the gð1Þ-part.

More precisely, take a normal sl2-triple ðX ;H;Y Þ in g with X A O. By virtue of

[10, Lemma 1.4], there exists an element k A K ad
C such that ðX1;H1;Y1Þ :¼ ðk � X ;

k �H; k � YÞ is a strictly normal sl2-triple in the following sense:

X1 ¼ Y1; H1 ¼ ÿH1; or equivalently X1 þ Y1; iðX1 ÿ Y1Þ A p0; iH1 A k0:ð3:1Þ

Then, as is checked immediately, the Cayley transform ðX 0
1 ;H

0
1;Y

0
1Þ of ðX1;H1;Y1Þ (see

(1.2)) lies in g0.

Theorem 3.1. (Kostant-Sekiguchi, see [10, Th. 1.9]) Under the above notation, the

assignment

O ¼ K ad
C � X 7! O

0
:¼ G ad � X 0

1ð3:2Þ

gives a bijection (Kostant-Sekiguchi correspondence) between the set of nilpotent K ad
C -

orbits in p and that of nilpotent Gad -orbits in g0. Here G ad HG ad
C denotes the adjoint

group of g0.

Note that dimR O
0 ¼ dimC

~OO is equal to 2 dimC O by Lemma 3.1.

As for our Lie subalgebra nðOÞ, we have the following advantage of choosing a

strictly normal sl2-triple ðX1;H1;Y1Þ.

Proposition 3.1. Let nðOÞ ¼ ðg11ð1Þl g33ð1ÞÞl ð0
lV2

gðlÞÞ be a Lie subalgebra of

g constructed as above from a strictly normal sl2-triple ðX1;H1;Y1Þ. Then one has

gðlÞ ¼ gðlÞ ðl A ZÞ; gð1Þ ¼ fnðOÞV gð1Þgl fnðOÞV gð1Þg;

where gðlÞ denotes as in 1.6 the l-eigensubspace of g for adðH 0
1Þ with H 0

1 ¼ X1 þ

Y1 A p0. In particular, nðOÞ is stable under the complex conjugation ��� if and only if

gð1Þ ¼ f0g, i.e., O is an even nilpotent orbit in p.
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Proof. Note that the real form g0 is stable under the linear operators adðH 0
1Þ and

stable also under J ¼ yAdðwÞ in 1.2 with V ¼ g, ~ss ¼ y. Here w is defined as in (1.5)

with X 0 and Y 0 replaced by X 0
1 and Y 0

1 respectively. Then the claim immediately

follows from (1.33) and from the definition of subspaces gðlÞ and gk
h ðlÞ ðk; h ¼

0; 1; 2; 3; l A ZÞ given in 1.4. r

3.2. Main result.

By virtue of Lemmas 2.1 and 2.2 we can see that the associated variety VðXÞ of

each Harish-Chandra module X is a K ad
C -stable algebraic cone in Np. Here we identify

the dual space g� with g itself through the Killing form B of g.

Now we are in a position to give a su‰cient condition for the locally freeness of

UðnðOÞÞ-action on Harish-Chandra modules.

Theorem 3.2. Let X be an irreducible Harish-Chandra module. The action of en-

veloping algebra UðnðOÞÞ of nðOÞ on X is locally free for every nilpotent K ad
C -orbit OH p

contained in the associated variety VðXÞ of X. Here nðOÞ is the nilpotent Lie subalgebra

of g constructed in 3.1.

Proof. Take an element X 2 OHVðXÞ, and construct the Lie subalgebra nðOÞ as

in 3.1. By Theorem 1.2(2), the Killing form B of g is nondegenerate on ½k;X � � nðOÞ.

This shows that X 2 VðXÞ satisfies the condition ðPk;nÞ in 2.3 with n ¼ nðOÞ. Hence

the UðnðOÞÞ-action on X is locally free by Theorem 2.1. Any K ad
C -conjugate k � nðOÞ of

nðOÞ also has locally free action on X, because the universal covering group ~KKC of K ad
C

acts on X as in (2.5), (2.6). r

We now deduce two important consequences of the above main result.

First, Theorem 3.2 together with the Remark in 2.3 allows us to derive the following

theorem by considering a K ad
C -orbit of VðXÞ of maximal dimension:

Theorem 3.3. Let X be as in Theorem 3.2, and let Omax be a nilpotent K ad
C -orbit in

VðXÞ of maximal dimension, that is, dimOmax ¼ dimVðXÞ. Then the corresponding

nðOmaxÞ is maximal (with respect to the inclusion relation) among the Lie subalgebras n of

g whose enveloping algebras UðnÞ act on X locally freely.

Second, let nm;0 be a maximal nilpotent Lie subalgebra of the real form g0 ap-

pearing in an Iwasawa decomposition of g0. We see from Proposition 3.1 that, for

every nilpotent K ad
C -orbit O in p, nðOÞ is conjugate to a Lie subalgebra of nm under the

action of K ad
C on g. Here nm denotes the complexification of nm;0 in g. Note that

dim nm ¼ dimNp. By Lemma 3.1 and Theorem 3.1, nðOÞ equals the whole nm up to

K ad
C -conjugacy if and only if the orbit O is open in Np (or equivalently, the corre-

sponding G ad -orbit O
0 is a principal nilpotent orbit in g0Þ.

A Harish-Chandra module X is called large if its associated variety VðXÞ contains

an open K ad
C -orbit in Np, or dimVðXÞ ¼ dimNp. Our main result yields a char-

acterization for an irreducible Harish-Chandra module to be large, as follows.

Theorem 3.4. An irreducible Harish-Chandra module X is large if and only if X is a

locally free UðnmÞ-module.
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Proof. Assume that an irreducible Harish-Chandra module X is large, and take a

K ad
C -orbit Omax in VðXÞ of maximal dimension. As we have observed above, the Lie

subalgebra nðOmaxÞ is conjugate to nm under the action of K ad
C on g. Thus Theorem 3.2

yields the locally freeness of the UðnmÞ-action on X. The converse follows immediately

from the Remark in 2.3. r

Remark. The largeness of an irreducible Harish-Chandra module X is charac-

terized also by the existence of Whittaker vectors for X. See for example [7, Th. K] and

[9, Cor. 2.2].

3.3. Lie subalgebras nðOtÞ for holomorphic orbits Ot.

Now suppose that g0 ¼ k0 þ p0 is a noncompact real simple Lie algebra of hermitian

type. We denote by o the unique (up to sign) k0-invariant complex structure on p0.

Extending o to p by complex linearity, one gets a triangular decomposition

g ¼ pÿ l kl pþ with pG :¼ fZ A p joZ ¼ GiZg;ð3:3Þ

of g such that

½k; pG�H pG; ½pþ; pÿ� � k; ½pþ; pþ� ¼ ½pÿ; pÿ� ¼ f0g:ð3:4Þ

It then follows that the subspaces pG are included in the nilpotent variety Np of p, since

ðadZÞ3 ¼ 0 for every Z A pG. A K ad
C -orbit O contained in pþ is called holomorphic, as

pþ is naturally identified with the holomorphic tangent space at the origin of the

hermitian symmetric space G/K with g0 ¼ Lie ðGÞ and k0 ¼ Lie ðKÞ.

We conclude this article by describing the nilpotent Lie subalgebras nðOÞ of g asso-

ciated with holomorphic K ad
C -orbits O.

3.3.1. In order to do this, we prepare after [14, 3.1] and [15, 9.1] refined structure

theorems for g, originally due to Harish-Chandra and Moore. Let t0 be a compact

Cartan subalgebra of g0 which is contained in k0. We denote by D the root system of g

with respect to the complexification t of t0. For g A D, the corresponding root subspace

is denoted by gðt; gÞ. A root g A D is called compact (resp. noncompact) if gðt; gÞH k

(resp. gðt; gÞH p), and Dc (resp. Dn) stands for the set of all compact (resp. noncompact)

roots. To each g A D we attach a nonzero vector Xg A gðt; gÞ satisfying

Xg ÿ Xÿg; iðXg þ XÿgÞ A k0 þ ip0; ½Xg;Xÿg� ¼ Hg:ð3:5Þ

Here Hg is the element of it0 corresponding to the coroot g4 :¼ 2g=ðg; gÞ through the

identification t� ¼ t by the Killing form B.

Take a positive system Dþ of D compatible with the decomposition (3.3):

pG ¼ 0
g ADþ

n

gðt;GgÞ with Dþ
n :¼ Dþ \ Dn;

and fix a lexicographic order on it�0 which yields Dþ. Using this order we define a

fundamental sequence ðg1; g2; . . . ; grÞ of strongly orthogonal (i.e., gi G gj B DU f0g for

i 6¼ jÞ noncompact positive roots in such a way that gk is the maximal element of Dþ,

which is strongly orthogonal to gkþ1; . . . ; gr.
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Now, put tÿ :¼
Pr

k¼1 CHgk H t, and denote by pðgÞ A ðtÿÞ� the restriction to tÿ of a

linear form g A t�. For integers k, m with 1Um < kU r, we define subsets Pkm, Pk, P0

of Dþ
n and subsets Ckm, Ck, C0 of Dþ

c respectively by

Pkm :¼ g A Dþ
n

�

�

�

�

pðgÞ ¼
pðgkÞ þ pðgmÞ

2

� �

;ð3:6Þ

Ckm :¼ g A Dþ
c

�

�

�

�

pðgÞ ¼
pðgkÞ ÿ pðgmÞ

2

� �

;ð3:7Þ

Pk :¼ g A Dþ
n

�

�

�

�

pðgÞ ¼
pðgkÞ

2

� �

; Ck :¼ g A Dþ
c

�

�

�

�

pðgÞ ¼
pðgkÞ

2

� �

;ð3:8Þ

P0 :¼ fg1; g2; . . . ; grg; C0 :¼ fg A Dþ
c j pðgÞ ¼ 0g:ð3:9Þ

Then, by Harish-Chandra the subsets Dþ
n and Dþ

c are expressed as

Dþ
n ¼ 6

1UkUr

Pk

 !

UP0 U 6
1Um<kUr

Pkm

 !

;ð3:10Þ

Dþ
c ¼ C0 U 6

1UkUr

Ck

 !

U 6
1Um<kUr

Ckm

 !

;ð3:11Þ

ð3:12Þ

where the unions are disjoint.

We set Hk :¼ Xgk þ Xÿgk A p0 for 1U kU r. Then

ap;0 :¼
X

r

k¼1

RHkð3:13Þ

turns out to be a maximal abelian subspace of p0. Let C denote the root system of g0
with respect to ap;0, and for each k let ck A a�

p;0 be the linear form on ap;0 defined by

ckðHmÞ ¼ 2dkm (m ¼ 1; . . . ; r; with Kronecker’s dkm). Moore’s restricted root theorem

describes C as follows.

Theorem 3.5. (Moore) The elements ck ð1U kU rÞ form a basis of a�
p;0, and there

exist only two possibilities for the root system C :

C ¼ G
ck ÿ cm

2

� ��

�

�

�

1Um < kU r

� �

U G
ck þ cm

2

� ��

�

�

�

1UmU kU r

� �

;

if the subsets Pk and Ck are empty for every k, or otherwise

C ¼ G
ck ÿ cm

2

� ��

�

�

�

1Um < kU r

� �

U G
ck þ cm

2

� ��

�

�

�

1UmU kU r

� �

U G
ck

2

�

�

�

�

1U kU r

� �

:

The former possibility occurs exactly when the corresponding hermitian symmetric space is

analytically equivalent to a tube domain.
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3.3.2. For each restricted root c A C , let gðap;cÞ denote the complexified root

subspace of g corresponding to c. We can now write down a basis of each gðap;cÞ by

means of the vectors Xg A gðt; gÞ ðg A DÞ defined in (3.5), as follows.

Proposition 3.2. (Hashizume, cf [15, Lemmas 9.1 and 9.2]) (1) For 1Um < kU
r, the vectors

EG
g :¼ Xg þ ½Xÿgk

;Xg�G ½Xÿgm
;Xg�G ½Xÿgm

; ½Xÿgk
;Xg��ð3:14Þ

form a basis of the root subspace gðap; ðck GcmÞ=2Þ, where g runs over the elements of

Pkm in (3.6).

(2) The element

Ek :¼ iðHgk ÿ Xgk þ Xÿgk Þ=2ð3:15Þ

lies in gðap;ckÞ and it holds that dim gðap;ckÞ ¼ 1 for every 1U kU r.

(3) The subspace gðap;ck=2Þ has a basis:

E1
g :¼ Xg þ ½Xÿgk

;Xg� ðg A Pk UCkÞð3:16Þ

for every 1U kU r, where Pk and Ck are as in (3.8).

3.3.3. Set X ðtÞ :¼
P

t<kUr Xgk A pþðX ðrÞ :¼ 0Þ for 0U tU r, and let Ot H pþ be the

holomorphic K ad
C -orbit through XðtÞ. The following well-known proposition para-

metrizes such K ad
C -orbits in Np.

Proposition 3.3. The subspace pþ splits into a disjoint union of rþ 1 number of

K ad
C -orbits Ot ð0U tU rÞ : pþ ¼

‘
0UtUr Ot, and the closure Ot of orbit Ot is equal to

6
sVt

Os for every t.

Remark. When g0 ¼ suðl; nÞ ðlV nÞ or spðn;RÞ, the real rank r of g0 is equal to n,

and Ot consists of all matrices in pþ of rank rÿ t (cf. [2, Prop. 12.1]).

Suggested by the above proposition, we want to describe the nilpotent Lie sub-

algebra nðOtÞ in terms of root vectors EG
g , Ek and E1

g in Proposition 3.2, for every

0U tU r.

This is achieved in the following way. Put

HðtÞ :¼
X

t<kUr

Hgk
; YðtÞ :¼

X

t<kUr

Xÿgk
:ð3:17Þ

Then it follows from (3.5) together with the strong orthogonality of gk’s that ðXðtÞ;HðtÞ;

Y ðtÞÞ is a strictly normal sl2-triple in g. We denote by ðX 0ðtÞ;H 0ðtÞ;Y 0ðtÞÞ the Cayley

transform of ðXðtÞ;HðtÞ;YðtÞÞ defined in (1.2). Noting that H 0ðtÞ ¼
P

t<kUr Hk, one

deduces from Theorem 3.5 the following.

Lemma 3.2. The Lie algebra g decomposes into a direct sum of the eigensubspaces

for adH 0ðtÞ as:

g ¼ gðÿ2Þl gðÿ1Þl gð0Þl gð1Þl gð2Þ;ð3:18Þ
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where

gðG2Þ ¼ 0
t<mUkUr

g ap; G
ck þ cm

2

� �� �

;

gðG1Þ¼ 0
1UmUt<kUr

g ap;G
ckþcm

2

� �� �

lg ap;G
ckÿcm

2

� �� �� �

l 0
t<kUr

g ap;G
ck

2

� �

 !

;

gð0Þ ¼ zgðaÞl 0
1UmUkUt

g ap;
ck þ cm

2

� �

l g ap;
ck ÿ cm

2

� �� �

 !

l 0
1UmUkUt

g ap;ÿ
ck þ cm

2

� �

l g ap;ÿ
ck ÿ cm

2

� �� �

 !

;

and z
g
ðaÞ denotes the centralizer of a in g. In particular, g

3
hðlÞ ¼ f0g for all h and l.

By using Proposition 3.2 and Lemma 3.2, we obtain the following complete de-

scription of Lie subalgebra nðOtÞ associated to the orbit Ot.

Theorem 3.6. Let Ot ¼ K ad
C � X ðtÞ with 0U tU r be a holomorphic K ad

C -orbit in pþ,

and let nðOtÞ be the Lie subalgebra of g constructed as in 3.1 from the Cayley transform

of ðXðtÞ;HðtÞ;YðtÞÞ. Then nðOtÞ is expressed as

nðOtÞ ¼ g
1
1ð1Þl gð2Þ;ð3:19Þ

with gð2Þ as in Lemma 3.2, and g
1
1ð1Þ is the subspace of gð1Þ having a basis:

Eþ
g ÿ Eÿ

g ðg A Pkm; 1UmU t < kU rÞ; E1
g ðg A Ck; t < kU rÞ:ð3:20Þ

Here EG
g and E1

g are as in Proposition 3.2.

Proof. The first claim (3.19) follows immediately from Lemma 3.2 since gð jÞ ¼

fZ A g j ½H 0ðtÞ;Z� ¼ jZg equals f0g for j jjV 3. Notice that the subspace g
1
1ð1Þ of gð1Þ

is given as

g
1
1ð1Þ ¼ fZ A gð1Þ j JZ ¼ iZg;ð3:21Þ

where J ¼ yw A GLðgÞ with

w ¼ exp
p

2
ðX 0ðtÞ ÿ Y 0ðtÞÞ ¼ exp

pi

2
HðtÞ A G ad

C ;ð3:22Þ

by definition (see 1.4 and 1.6). Then one finds by direct computation that the operator

J acts on vectors EG
g , E1

g respectively as

JEG

g ¼ ÿiEH

g if g A Pkm with k > tVm;ð3:23Þ

JE1
g ¼ ÿiE 1

g if g A Pk with k > t;ð3:24Þ

JE1
g ¼ iE 1

g if g A Ck with k > t:ð3:25Þ
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This combined with Proposition 3.2 and Lemma 3.2 shows that the vectors in (3.20)

form a basis of the subspace g
1
1ð1Þ. r

Theorem 3.2 implies that the (at most) two-step nilpotent Lie subalgebra nðOtÞ acts

locally freely on the Harish-Chandra module of a holomorphic discrete series for every t,

because its associated variety coincides with the whole pþ (cf. [17]). More generally, the

associated variety VðXÞ of any irreducible highest weight Harish-Chandra module X is

contained in pþ. By Theorem 3.2, Proposition 3.3 and the Remark in 2.3, the

UðnðOtÞÞ-action on X is locally free if and only if tV tX , where OtX is the unique open

orbit in VðXÞ. The integer lX :¼ rÿ tX gives a kind of rank for highest weight module

X (cf. [5, p. 136]; see also the Remark succeeding Proposition 3.3).
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