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Abstract. In this paper we give an explicit Fourier expansion of the Eisenstein series on
certain quaternion unitary groups of degree 2 by means of Shimura’s method. Moreover
using an explicit formula of the Fourier coefficients of holomorphic Eisenstein series and
Oda’s lifted cusp forms, we give some numerical examples.

0. Introduction.

In this paper, we study Eisenstein series on a quaternion unitary group of degree 2
and give some examples. Automorphic forms of our type were studied by Arakawa
[1]. We shall state an outline of this paper in the simplest case.

Though we treat totally real algebraic number fields as the basic field in this paper,
to give a brief account of this paper, we state only the case of rational number
field. Let B be an indefinite division quaternion algebra over Q and D the discriminant
of B over Q. Denote by o+ & (« € B) the canonical involution and put Trg/o(x) =
o+ d. We denote by O a maximal order of B. We define an algebraic group G over

0 by
(0 1\ [0 1
(7 a)= (1 o)}

> for g = ((;C ? ) € M,(B). Then the group G, of R-rational

where ¢g* = (

point, which is isomorphic to Sp(2, R), acts transitively on complex domain $ which is
isomorphic to the Siegel upper half-plane of degree 2. We define a discrete subgroup I”
of G, by
I = GQ N GL2(D)

(in this paper we treat a more general discrete subgroup defined in (1.2)). We denote by
M;(I") [resp. S;(I")], for a positive integer /, the space of holomorphic automorphic
forms [resp. cusp forms] on $ of weight /. It is known that S;(I") is a finite
dimensional vector space over C, and an explicit formula for the dimension of S;(I")
was obtained by Hashimoto [4]. For an even positive integer /, let

(0.1)  E(Z.s) = det(ImZ)> "4 3" det(CZ + D) '|det(CZ + D)~/
{C.D}

be the real analytic Eisenstein series for /. Here Z is a variable on &, s is a com-
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ok
1 iabl d
plex variable, an <C D

{(; *) c r}\]“, The right-hand side of (0.1) converges absolutely and locally

*

) runs over a complete system of representatives of

uniformly on
{(Z,s)|Z e H,Res > 3/2}.
Especially for / = 4
E(Z):=E(Z,1-3)2)
belongs to M;(I").

We have an explicit formula for the Fourier expansion by an application of the
Shimura’s method (cf. [17]).

THEOREM 0.1 (Theorem 3.4). For Res>3/2 and Z =X +iY € 9, the Eisenstein
series has the following expansion:

EI(Z’ S) = Za/(rl? sz)e[TrB/Q(nX)]v

a(n, ¥,s) = det(Y) > 2450y = 0)

. o . 2542043 2s—21+3
+ D det(Y)? 2’”)/452(.1 ly, g, 2 R - 1 )ocf(ms),

where n runs over the lattice defined in (1.3), 6((x)) means 1 or 0 according as the
0 1
-1 0
defined in (2.8), can be written by the confluent hypergeometric functions defined in
Shimura [16]. o is the singular series and its explicit form is given in Proposition 3.3.

condition (x) is satisfied or not, and put J = ( ) The function &, which is

From we prove the analytic continuation and a functional equation
without using Langlands’ theory [9].

THEOREM 0.2 (Theorem 3.7). The Eisenstein series Ej|(Z,s) has a meromorphic
continuation to the whole s-plane and

1/2—1
é<s+§>f<2s +1) [] (? +j> (2““: : +j> [[( 2 = p ) EZ,5)

Jj=0 p|D

is invariant under s+ —s. Here &(s) = n/*T'(s/2){(s) = &(1 —s).

The right-hand side of (0.1) is no guarantee of the absolute convergence if / =2 and
s =1/2. However, as in Shimura [17], we obtain the following result. Since E>(Z,s) is
regular at s =1/2, we can define E»(Z) := Ex(Z,5)|,y -
THEOREM 0.3 (Theorem 3.8).
E2 (Z) eM 2 (F )
We remark that in the case of Siegel modular forms of degree 2 the holomorphic
Eisenstein series of weight 2 can not be constructed in this way (see [8], [12], [17]).
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Moreover we give an explicit formula for the Fourier coefficients of the
holomorphic Eisenstein series Ej(Z) to compute numerical examples (cf.
3.10). By this formula, we verify that Fourier coefficients of E;(Z) are the rational
number whose denominators are bounded (cf. |[Corollary 3.11)) and satisfy the Maass
relation (cf. [Corollary 3.12)).

In the last section (§4), we consider the case of D = 6. We introduce Oda’s lifting
(cf. [13], [19]), and give some numerical examples of Fourier coefficients of the holo-
morphic Eisenstein series and lifted cusp forms. Moreover we construct cusp forms
which are not the lifted cusp form. For / = 5 we can know the value of dim S;(I") by
Hashimoto’s dimension formula (cf. [4]). As an application we prove the following
result.

THEOREM 0.4 (Theorem 4.4). If D =6, we have
dil’l’lc SQ(F) = 07 dlmc S4(F) =2.

The existence of the holomorphic Eisenstein series of weight 2 (Theorem 0.3) and
the structure of S¢(I") (cf. [4.4)) play a basic role in proving the above theorem.

The author would like to express his gratitude to Professor Takashi Sugano who
suggested him these problems and offered valuable advice and warm encouragement.

NotaTiON. We denote by Z, Q, R and C, respectively, the ring of integers, the
rational number field, the real number field, and the complex number field. For an
associative ring R with an identity element, R* denotes the group of all invertible
elements and M,,(R) the ring of all matrices size m with coefficients in R. We put
GL,(R)=M,,(R)*. If XeM,(R), 'X and Tr(X) stands for its transpose and
trace. If R is commutative, det(X) stands for its determinant, and we denote by
SL,,(R) the special linear group of degree m. For real symmetric matrices X and Y, we
write X > Y to indicate that X — Y is positive definite. If X > 0, we denote by X'/
its positive definite square root. Let & be a number field and o the ring of inte-
gers. For each place v of k, we denote by k, the v-completion of k, and by |x|, the
module of x for an x € k) . k4 [resp. k;] means the adele ring of k [resp. the idele group
of k] and for x = (x,) € k), put |x[, =[], |x,,. For an algebraic group G defined over
k, we denote by Gy the group of k-rational points of G. We abbreviate Gy, to G,. We
let oo and f denote the sets of archimedean primes and non-archimedean primes of k,
respectively. We denote by G4, G, and Gy the adelized group of G, the infinite part of
G4, and the finite part of G4, respectively. Similar notation are used for an algebra or
a vector space. Each prime ideal p of k is identified with the corresponding finite place,
and we denote by o, the ring of integer of k,. If there is no fear of confusion, the
maximal ideal po, of o, is written as p. We denote by 7, a prime element of k, and
put ¢y = |my,- When L is an o-module, put L, =L ® ,0,. For zeC, put e[z] =
exp(2ziz). For a quaternion algebra B over k, we denote by x+— X (xe€ B) the
canonical involution of B over k, and put Trp/;(x) = x+X and Np;(x) = xX. We
denote by B~ the set of pure quaternions, and any subset S of B we put
S™ =B NS. The disjoint union of sets Z,...,Z is denoted by [[_, Z;. For a€eR,
the symbol [a] denotes the integer not greater than a.
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1. Definition of Eisenstein series.

1.1. Preliminaries.

Let k be a totally real algebraic number field of degree n over Q, and let B be a
division quaternion algebra over k; and denote by D the product of prime ideals of k
such that B, is division, and we call this the discriminant ideal of B over k. We assume
that B is unramified at any infinite place of k. We denote by ooy,..., 00, all infinite
places of k. Then by the above assumption on B, By, = B®;ky, is isomorphic to
M>(R). So we identify B, with M>(R).

Let G be a linear algebraic group over k defined by

(1.1) Gy = {geGLz(B)‘g*(? (l))g=<(1) é)}

where ¢g* = (; g) for g = <: g) € My(B). Then G, is isomorphic to
0 12 0 12

t —

g(—lz 0>g_(—12 0>}

9 =1{Zj€ By, ®g C|Trp;(Z;) =0, (Im Z;)J ! is positive definite},

Put

0 1
-1 0
isomorphic to the Siegel upper half-plane of degree 2, and G, acts on §; transitively as
a group of holomorphic automorphisms via the mapping

where Im Z; means the imaginary part of Z;, and J = ( ) The domain §; is

_ A; Bj
2 02y = 42+ B)GZ+ D) g= (¢ ) e
] J

Put

Zjo =i, Cy :=1{gj€ Gy |9i<{Zj0> =Zj0}
The group C,, which is a maximal compact subgroup of G, is isomorphic to the
unitary group of degree 2, and $; is isomorphic to G.,/C.,. For g;= (2 3 )

€ Gy, and Z; € §;, we define a C-valued holomrophic automorphic factor J;(g;, Z;) on
G, x 9; by

Jilgj, Z;) = det(GZ;+ D;) (1 =j=n).

Let $ be the direct product of $; x---x9,. We put Zy=(Z,...,Zs0) and
Cy =Cqp, x---x Cy,. The action of G,, on $ is given componentwise, namely,

Q<Z> = (91<Zl>7 s 7gn<Zn>)a
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and the automorphic factor on G, x & is given by
J9.2) =] 9r2) e C,
=1

where g = (g1,...,9n) € Gy, Z=(Z1,...,Z,) € 9.
Now, we fix a maximal order O of B and a maximal two-sided ideal 2. Then it is
well-known that 2 is uniquely written as

A= H%;“,

pID

where B, is a maximal ideal of O,, e, =0 or 1. We denote Dy [resp. D] the product
of all primes such that p|® and e, =0 [resp. e, = 1].
For each prime ideal p, put

confo- ;)

where O, = 0 ®,0, and A, = A ®,0,. Then C, is a maximal compact subgroup of
G, and G, = P,C,, where P is a parabolic subgroup of G defined by

ninfom s a0}

We abbreviate Hp C, to Gy and C Gy to Cy.
Put

2,0 € O, fe A, yem;l},

(12)  Iy:= kaGoocf:{g:<“ /;)eGk
y

1,0eD, fe, yem—l}.
Then Iy is a discrete subgroup of G, such that the volume of I'y\G., is finite. We

denote by A the class number of k. Then the following lemma is easily seen (cf. [4],
[17]).

LeMMA 1.1.  There exist h elements f,...,B, of Gy such that

h
Ge = [ [ PuBiTa
i1

For a positive integer /, let M;(I'y) denote the space of automorphic forms of
weight / with respect to Iy

Mi(Iy) := {f(Z)

f(Z) is holomorphic on $ }

f(X2Z>) = J(9,2)'f(Z) for any y e I'y

and let S;(I"y) denote the space of cusp forms of weight / with respect to I'y;

Si(I'a) := {f(Z) € Mi(I'u)

|f(Z2)] H (det(Im Z,))"/* is bounded on 55}.

ve 0

The following fact is well-known ([2], [14]).
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PROPOSITION 1.2.  Let I'y be the discrete subgroup of G, given in (1.2) and let | be a
positive integer. Then f(Z) e M;(I'y) has the following Fourier expansion

f(Z)=a(0)+ Y a(&)elo(n2)],
ne(@)”
nJ>0

where o = Try g0 Trg) and nJ >0 means that n,J is positive definite for all ve co.
(AT)* is a lattice defined by

(1.3) (A)* :={xe B | Trpu(nx) ed" forall ne A},

where d is the different of k over Q. In particular, f(Z)e S/(I'a) is equivalent to
a(0) =0.

1.2. Fisenstein series.
For an even integer /, and a complex number s we define a function on G4 by

S) - Hﬁm(g?‘y)?flw(gas) = {

Ap(9)* if v=pef,
Ao, (9) T3 (Werys Zoj) ™ if v =00 € 0.

where A4,(g) = [Np/i(«)|, for g = (g _*l)wePAC, w=wguwse Cy,Cs. It can be
o

easily seen that this is well-defined because / is an even integer. Now our Eisenstein
series (as a function on G,4) is defined by

(1.4) Ef"(g,8):= > fi(y9,5+3/2),

7€ P\ Gy
The right-hand side of converges absolutely and locally uniformly on
{(9,5) e G4 x Clge Gy,Res >3/2}.
Then we easily see that
(1.5) E/ (ygw,s) = Elgr(g,s)J(woo,Zo)*l forye Gy, ge Gy, w=wowg € Co, Ci.
Notice that
G4 = GG, C

by virtue of the strong approximation theorem for G. Therefore we can define our
Eisenstein series on $ by

(1.6) E(Z,5) = E" (o0, 5) (g0, Z0)|  for Z = g {Zo.
By Lemma 1.1

h
El(goers) = > fi09ers+3/2)=> > filpge.s+3/2)

7€ P \Gk i=1l ye P\Piflu

:Z Zfl (79e,5+3/2),

i=1 yeT;
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where T; = (Py Nf;lyf;")\B;lo. Therefore we obtain

(1.7) E|(Z,5) (H det(Im Z,)*~ 2”3)/4)

veE O

ZHA ﬂl S+3/2 Z J y’ |J y’ )|fs+173/2.

i=1 vef yeT;

For / > 3 we define the holomorphic Eisenstein series by
E(Z):=E(Z,]1-13/2).

Then we can easily see E/(Z) € M;(I'y). For a rational prime p, let Q, denote the field
of p-adic numbers. We define a character y of the adele ring k4 by Y =[], ¥,, where

e [the fractional part of — Try o (x)] for x €k, if v|p,
(18) () = {e[ i

x| forxek, =R if ve 0.

We notice that  is trivial on k. Now we fix a Haar measure du,(x) =[], du,(x) on
B, such that

(19) [, awe=1 | w1
€A, B,/B
We put

= H du,.

ve

1

By the Fourier expansion of E;”((O

Egr g’ Z Egr

neB~

B =], E,(((l) ) U T ) e 0.

X .
1>g,s> as a function of x e B}, we have

(1.10)

By (1.5), we have

(1 x+u (1 X
(G0 7o) = (o 7))

for ueA;, ge Go,. Thus E 1;7(% s) # 0 only when e (A7)". Therefore we have

(1.11) El"(g,s)= Y El'(9,5), g€ Gu.
ne(A")

Since B is division, the following Bruhat decomposition is easily verified.
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LEMMA 13 We have
(; =1 | | ] WN w = 0 1
k k k ks 1 O )

1 *
where Nk:{(o 1>eGk}.

By [1.4), (1.10), and Lemma 1.3, we have

(1.12) E/"(g,s

5)
[0 5 23 o) Tomtmans

L/B{(( ’f

)
e A(w(y 1) (g 7)o+ ) R Tt f o)

ueB-

= (o )om=0r [ (| Jos+3)vt-Temetr duste

o5 43 W=Tra (1)

where 6((*)) = 0 or 1 according as the condition (x) is satisfied or not. Therefore we
obtain the following proposition.

ProprosITION 1.4. Let [ be an even integer and s a complex number such that
Res>3/2. If ge G, we have

Elgr(g’ S) _ Z E{]r (g’ )7
ne(A )"

EJ\(9.5) = fi(g.5+3/2)0(n = 0) + 1,0 (1. 9, )4 (1, 9),

where

Ofloo folbrl gv: ) O‘f(’?as):HaU(”7S)

VE 0 vef

0 1
1001 g0,8) = j B} 4 s +3 ) Tomalrm) o),

s =[ (D)) v T o

X

v

2. Local part.

For 0 #xn € B, we put K =k(y) and K, = K ®, k, for each prime p, and denote
by p the rational prime divided by p. We denote by y,(p) the Legendre symbol, i.e. it

equals —1, 0, or 1 according as p remains prime in K, ramifies in K, or splits in K. We
denote by ()" the dual lattice of 2

(U,)" = {xe B, |Trpu(xy) € p~° for any y € AT
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where p° is the different of k, over 0,. An element 7€ A, is said to be primitive if
T, Iy is not in As. We denote by (A, )p”m the set of all prlmltlve elements of A, . For
0#ne (AU, )", we define integers a, and f, by the condition:

ay, ) 2f,
(2.1) n=myne,  (2any)’ = dymy”,

where 7y € () ;, and d, is a generator of the discriminant of K, /ky.

prim

2.1. Ramified primes.

In this subsection p denotes a prime ideal of k dividing ©. Let Ky, be the unique
unramified quadratic extension field of k,. We realize B, as a cyclic algebra (K, 7,)
ie. By = Ko+ Koll,, I} =y, I, = —1I1,,, and I, XII;' = X for any X € Ko (T, is a
prime element of the division quaternion algebra B,). We denote by O the maximal
order of Ky: so O, = Oy + OplI, is the maximal order of B, and B, = 7,0y + Ool1, is
the maximal two-sided ideal of ©,. Take an element : of O; such that 7= —1.

Put
Ay (v) =B, NI, forveZ.

For A, (v) we define the lattice 2 (v) by
A (v) :=={xe B, | Trp;(xy) e p~° for any y e A, (v)}.

Then we easily see that

[v/2]—0 v+1)/2]-0 74— .
(2.2) m*<>={</2) ;" vt R T
(

J2)rl VAT, L Al ‘5 ;' if ey = 1.

Put
Lo, (v) = (v) =W (v+1) forveZ.

From we obtain the following lemma. (cf. [19])

Lemma 2.1, Let n be an element of Lq,(v) (ve Z).
(1) When e, =0, 5 is written as

= (1/2)n) 2 2x + VAP X (x e 0y, X € Dy).

If v is even, then X € Oy, X”(p) =0, and f,=—1. If v is an odd integer, then x € v;
1,(p) =—1, and f,=0. Here, f, is defined in (2.1).
(2) When e, =1, 5 is written as

p)

(/2) VJrl /2 -1 éx+n[v/2] 517 1X (xeop,XED()).

If v is an even integer, then x € oy, 1,(P) =—1,and f, = —1. If v is an odd integer, then
XeQg, x,(p) =0, and f, = —

For e B~ and te Z we put

23) V(o) = L{ () diy () = 001 € 2,0) L ()

The value of V,(n,t) is given as follows:
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LEMMA 2.2, For ne Ly, (v) (ve Z), we have the following.
(1) Let e, =0, then

e it y/2,
Vol 20) = { i 2+ 1<t
Vo264 1) {QS’“ if 1< (v 1)/2) - 1.
’ if [(v+1)/2] <t

(2) Let e, =1, then

gy if =2,
Vo(n,2t) = {O if v/2] +1<1
Vo(n,2t+1) gt i < (v 1)/2] -1,
' 0 if[v+1)/2g =0

Now we are ready to prove the following theorem:

THEOREM 2.3. Let the notation be as above. For p|D and Res > 3/2, we have the

following.
(1) If n=0, then

0 )_{a—q; Y1+, )1 = gy») ! if e =0,
p ) - 5- —5— s— _2s .

a1 =gy U+ =g i e =1
(2) If ne (W) satisfies " n e (A), ., then

(1.5) = { (1= a" 7)1 = 1,0 “ i (1, 5) if ey =0,
q;i”/z(l 0" )+ 4" (1 = 1,0 ) s ns) i ey =1,

where if e, =0

a, _
(2‘4) 5‘;»(’775) — qJ(Jztfap) +Xq Z (2t+1-ay) c+1/2
=0 pn
and if e, =1
(2.5) 6y (17, 8) = qzz ap)s _ Z (2+1-ay)s-1/2.
t=0 =0

ProoOF. In this proof we refer to the case e, = 0 [resp. e, = 1] as Case 0 [resp. Case

1]. Put
0 1 s+3/2
Ap<(1 )) if x e WA, (7),t=0,
X

O 1 S+3/2
AP<< )) if xeW,(r) — WU (r—-1),t =2 1.

1 x
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Then by
(/1 0\/0 1
01 (O 1)(1 x)ePpCp if x e A,(0)
(Case 0) (1 ) = 0y {0
~ (XO i)()‘cl 1)ePC if xeW,(r),t=21
\ X -
( (' 0 0 I
- ( P ><__1 Y >eppcp if x € 2, (0),
(Case 1) ( ) _ 0 m,)\mf, I, x
I x x—l -1 -1 0 )
( 0 x)(fcl _1>6P,,Cp if xeWy(1),t 21,
we obtain
Case 0 ny (1) = ¢+ for 1 >0,
( Y qp
(Case 1) ny(1) = qg HDEE32) for 12 0.

Hence, by |2.3) and Lemma 2.2, for # € Ly, (v) (0 < ve Z) we have

oy (77, 8) = ny(0)Vy(17,0) + i{np(Zt +2)Vo(n, 2t +2) — ny(2t +2) Vi (1,2t + 1)
i=0

+n,(2t+ 1) Vy(n,2t + 1) — ny (2t + 1)V (5, 20) }

v/2]
= Z{”p (20) Vo (n,2) — ny (2t + 1)V (1, 21) }

[(v+1)/2]—

+ 0y {np2z+ Vo, 2t + 1) — ny (2t +2) Vo (1,2t + 1)}
=0

Therefore by [Lemma 2.1 and [Lemma 2.2 we can obtain the following

/2]
(Case 0)  ap(17,8) = (1 — g, 3/2){ — s+1/2 qu (14 2,(0))d; 2[v/2]s— s+1/2},

[v/2]
(Case 1) %(% 5) = q;+3/2(1 a; s—3/2){(1 _ q;s—l/z) Zq;bt _|_X”(p)q;Z[Vﬂ]s—s—l/Z}.
=0

Notice that 7 € Lu, (2ay) [T L, (2a, + 1) if and only if 7,y € (), So we see the
second part of our theorem. The remaining part of our theorem can be proved by the

same way. ]

COROLLARY 2.4. Let the notation be the same as in the above theorem.

(1) For each ne (N,)", ay(n,s) can be continued as a meromorphic function to the
whole s-plane.

(2) Foreach 0 #ne (U,)", &y(n,s) is an entire function on the whole s-plane, and it
is invariant under s +— —s.
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2.2. Unramified primes.

In this subsection we assume that p is a prime ideal of k not dividing D: so
By = M(ky), Uy = My(0,). We denote n € ()" which satisfies by #,, . Then
we notice that

(2.6) f, =0

(cf. [19]). Shimura [17] treated o,(,s) in a more general situation. We calculate the
explicit form of ay(n,s) (cf. [6], [7]).

THEOREM 2.5. For p ¥ and Res > 3/2, we have the following.
(1) If n=0, then

O(p(O,S) — (1 qgi 3/2)(1 o q;2x—l)(1 . q;2s)—1(1 . q;s—&-l/2>—1
(2) If‘ﬂawj‘; e (A7), then

1 (—ay ﬁ)‘A
(4 08) = (1= 4" ) (1= ;> (1 = 1,0, ) gy o (1ay 1:+8)5

where

(2.7)
(BT a2 ) CELT ks 12 £y
. 142K)s+/2—(ay+ f,)s 42k 1)5+1/2—1/2—(ap+ £,)s
OREES I SR AR DI )
t=0 k=0 k=0

As a corollary we get

COROLLARY 2.6. The notations being the same as in the above theorem.
(1) For each n, 5 € ()", ap(ng,, f‘;,s) is continued as a meromorphic function to
the whole s-plane, and saisfies the local Maass relation

ap
—s+1/2
2 (Cap gy 8) = Y AP 0 (00,415 9)
=0
(2) For eachn,, 5 € ()", ap(n,,, fp ,8) is an entire function on the whole s-plane and
it is invariant under s —s.

2.3. Archimedean part.
Let W, be the set of real symmetric matrices of size m and du(x) the ordinary
Lebesgue measure on W,,. Set for 0 <ge W,, he W,

28) &g hiaf) = jW e[~ Tr(h)) det(x + ig) ™ det(x — ig) ™ du(x).

which is convergent for Re(o + ) > m. This integral was studied by Shimura [16] and
it is known that this can be expressed by generalized hypergeometric functions.

By the uniqueness of the Haar measure on B_, the following relation between du_,
and du:

(2.9) dt (x) =

<\/|dk DyD? 1T duts
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Here, d) denotes the discriminant k/Q, and

;=] low/pl (i=0,1).

pID;

By [2.8) and [2.9), the following proposition is obtained.

PROPOSITION 2.7. Let [ be an even integer and s a complex number. Then for Z =
9g{Zyy=X+iYeH (ge Gy),

o, (1,9,9)J (9, Zo)' =

1
(v/dk])’ Do D}

. H {det(YU)(2S2l+3)/4§2 <J_1 Yo, 1, 2s+21+3 ’2s -2/ + 3> }e[o(;yX)],

4 4

ve 0

where ¢ = Try g o Trpy.

I X,\/y, O
Proor. Put g, = 0 1 0 )7*1 e P,.

(2.10)  oy.4(n, gv, )

_ j Bu(((] 4 )0+ 3 ) Trman) d o)

X

=ettrun) || () (5 )4 )l Trmsn)du o)

To obtain an explicit description of (2.10), we take a decomposition

0 1 Yy 0 1 X1,v Yiw 0
2.11 = ’ ’ _ s € P,C,.
211 (1 x)(o ﬁl) (0 1>< 0 it)”c

Comparing the action of both sides of (2.11) for Z, and automorphic factors, we have

0 1\/y, O 3
(3 )0 5 )o+3)

= |det(x, 7, T vyt + p I3 )BT  det(iy, g + xy )

= (det(y,)""* det(J " w, + i'7,3,) 2 det(0 e, — iy p,) T

I X 0
Hence, by (2.8) and (2.9), for g = (0 : ><g . )w eP,Cyp =Gy,
y

1 I
O‘l,o@(’?agas) = J(W,Z())
(v/1di])* Do D}

s o 254+214+3 25s—2[43
-H{det(yv) +3/2éz(’yvyv,w; R )}e[a(nX)J

ve 0
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On the other hand
gv<ZO> - Xv + lJt)jbyl/

Therefore we obtain this proposition. O

3. Global part.

3.1. Hypergeometric functions.
In this section, we summarize some properties of hypergeometric functions which
appear in the Fourier coefficients of the Eisenstein series. Put

m—1 .
Fm — m(m—1)/4 T . l f C
(s):=mn H $=3 or se C,

where I'j(s) = I'(s) is the ordinary gamma function and we understand as I'y(s) = 1.
We put

k(m):=(m+1)/2 for0<meZ,
Wpni={xeMu(R)|'x=x}, W) :={xeW,|x>0}

For non-negative integers p, ¢ with p + ¢ = m, we denote by W,,(p,q) the subset of W,
consisting of the non-singular elements with p positive and ¢ negative eigenvalues. We
put for x e M,,(R)

04+ (x) := the product of all positive real eigenvalues of x,
O (x) = 0, (),
7(x) := the sum of all absolute values of real eigenvalues of x,

and denote by u(x) [resp. A(x)] the smallest [resp. largest] absolute value of non-zero
eigen-values of x. We note that g has only real eigenvalues, if g€ W, and he W,,.
For ge W), he W,, and (a,f) € C?, put

(-1 1,(9, 50, 5)

= det(g)* P J exp(—Tr(gx)) det(x + h)* " det(x — )P " du(x),

Win
+h>0

which is convergent for Re(a) > x(m) — 1, Re(f) > m. By [[16], (1.29), (4.3)]

(3.2) &g, hi o B) = exp(rim(f — 2)/2)2" "™ (o) T(B)™
-det(2g) "y (29, mh: o )

for Re(a) > x(m) — 1, Re(f) > m, and

(3:3) (9,050, B) = T(0 + f — 1c(m)).

We also use the following functions introduced by Shimura [[16], (4.6K)]: For ge W/,
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he Wu(p,q), and () € C?, put

(3:4) (g, i f) =277V (f — q/2) ' Tylo— p/2)™

04 (hg) "5 (hg) " (g, Bz, ),
and put
(3.5) wm(g,0;0,8) =1

The following theorem is one of the main results in [16].

TuroreM 3.1 (Shimura). (1) @, (g, h; o, 0) =w,(g, 1; 1c(m), B) = 270 exp(—Tr(gh))
if he W}.

(2) (g, ;o p) extends to a holomorphic function in (o, ) to the whole C*, and is
real analytic in (g,a,f) € W} x C?.

() om(g,h;0. ) = wm(g, hix(m) — B, x(m) — o) if det(h) # 0.

The following proposition, which is obtained from [16], will be used later (cf. [12]
Proposition 3.4).

ProposiTiON 3.2. (1) For g€ W, (p,q) with p+ q=m, the function

Ty(e—p/2)" ' Tp(B—q/2) ny (g, b, )
extends to a holomorphic function in (x,f) e C* which is real analytic in (g,o,p) €
Wi x C2
(2) Letge W, , and he W,(p,q)(p+q=m). Then, given a constant p > 0 and a

compact subset T of C*, there exist constants Ci, Cy, C3 > 0 depending only on m, p, and
T such that

[Tyl = p/2) "' Tp(B = q/2) " n;, (29, nhs o, B)|
< Cyexp(—1(hg))t(9) > (Alhg)® + ulhg)~ )
Jor (o,p) e T, u(g) =z p.

3.2. Singular series.

Here we write an explicit formula for the singular series o defined in
1.4. We denote by (i(s) the Dedekind zeta-function, and denote by Ly(s,y,) the L-
function for a quadratic character y, of k(n)/k. For Res>3/2 and 0 #ne (A", we
put

&f(ﬂ, S) = H &p(ﬂa S),

pef

where d,(7,s) is defined by [2.4), [2.5), and (2.7). The function &(z,s) is an entire
function in s and satisfies

(36) &f(l’],S) = &f(i’/, _S)'

Putting our results of [Theorem 2.3 and [Theorem 2.5 together, we have the following
proposition.
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ProposITION 3.3.  For Res > 3/2 we have

Ck(zs Ck 72Y+1 g+3/2 1 — €+1/2>
OCf(O;S>_£: (S—|— éf 2S—|— Hl 23 IH fs 1/2
k i P|33 Pl
if n=20, and
1/2 1/2
) = b)) (- @) B AOIS
’ Ge(s+ (25 + l)plbo 1 — gy
s+3/2
q n - N
Hpifsq/z 2"|di|* |dx| ™"\ /INkso(n? WIT @ [Taw]| G(ns)
PID 1 —qp p[Do pID1
7y (P)=0

if0#ne ()", Here K :=k(n) is a quadratic number field over k, d. [resp. dx] is the
discriminant of k [resp. K| over Q.

From above proposition the singular series a¢(#,s) has a meromorphic continuation to
the whole s-plane and we obtain the following facts. For an arbitrary sy € C, there
exist constants 0 >0 and 0 <t e Z depending only on sy such that the function

(s — o) 'oe (17, 5)

are holomorphic on Us(sy) for all ne (A)". Here Us(sy) := {se C||s— so| <}
Moreover let s, 0, and ¢ be as above. There exist positive constants C;, C, depending
only on sy, 0, and ¢ such that

(3.7) (s = s0) ‘2 (,5)| < C1[Niyo ()|
for all se Us(sp) and 5 e (A)".

3.3. Continuation and functional equation of E;(Z,s)
Hereafter we assume / be an even non-negative integer.

THEOREM 3.4. (1) For Res >3/2 and Z = X +iY € 9, the Eisenstein series Ei(Z,s)
has the following expansion;

(3.8) E(Z,5)= > aln, Y,s)elo(nX)),
ne (W)
where
o (25—21+3) /4 1 (=25—-21+3)/4
(3.9)  @(0,7,s) —Ugo(det(Yu)) +—( N bg{(det(Yv))

25 +2 52 -l
.2—zs+2n3p2(s+fl+3> pz(sfm) pz(s)}af((),s)
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if n=0, and

254+ 21+3\ "
(3.10)  a(n, Y,s) = 11 {(det(YU))(_25—21+3)/42—2s+2n3 r < 25421 +3 )

|
(\/ |dk‘>3D0D1 vE D 4

25—20+3\ " (. _ 254+21+3 25—21+3
FZ (f) P (2J lean;/]uJJ 4 ) 4 )}(xf(nJS)

if n#0.
(2) For any sy € C, there exist constants 0 >0 and 0 <t e Z depending only on |
and sy such that

(s —s0) ai(n, Y,s)

is holomorphic in s on Us(sy) for every ne (WU )", and the series

(3.11) Y (s—s0) ai(n, Y, s)e[Trgu (X)),
ne(W )"

converges absolutely and locally uniformly in (Z,s) € § x Us(sy). Thus (3.8)—(3.10) give
the analytic continuation of E;(Z,s) to the whole s-plane.

Proor. The first assertion follows from [Proposition 1.4 [Proposition 2.7, (3.2}, and
3.3). We shall prove the second assertion. By the assertion (1), [Proposition 3.2, and
IProposition 3.3, there exist positive constants 0 > 0 and 0 < ¢ € Z depending only on /
and sy such that

(s —s0) ai(n, Y,s)

is holomorphic in s on Us(sp) and real analytic in (Y,s) on

(H W;> x Us(sp).

vE 0

By [Proposition 3.2 and 3.7, for a given p > 0, there exist positive constants Cj, ..., Cg
depending only on p, [/, 5o, and ¢ such that

(3.12) (s —50)'a(0,Y,5)| < C [] (Trpp(J 7' ¥,) <

ve 0

Cy
(3.13)  |(s—s0)'a(n,Y,s)| < Cyexp (- > 1y, m) (H Trpu(J ! m)

ve 0 ve 0

: |Nk/Q(’72)|C5 (H /1(;711‘]) e + H ﬂ(rlv‘])_Cé>

ve o ve o

for u(J71Y,) = p (ve o) and se Us(sg). From (3.12) and (3.13), there exist positive
constants Cy,...,Cjy depending only on o, p, [, sp, and ¢ such that
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(3.14) D s—s50) a(n, Y, s)elo(nX))]

ne(A)*

<G [ (Trau(7! Yv>>C8{1 + Yy exp( = t(n, n)) [Neso(n™)|

VE D ,76(91*)* VE D

n70

: ( IT im0+ ] ﬂ(mJ)C”)}

ve 0 ve 0

for u(J='Y,)=p (ve o) and se Us(sy). If u(J~'Y,)=p >0, then

(3.15) (1, Y:) 2 2| Npyic(n,)|'"?
(3.16) t(n,Yy) = pA(n,J)
Hence (3.14), (3.15), (3.16), and the Schwarz’ inequality give

Ciz
Z (s — s0)'as(n, Y, s)ela(nX)]| £ Cny (H TrB/k(J—l Yv))

ne(A)" vE D

for u(J7'Y,) = p (ve o), so € Us(sp). Here the constants Cyj, Cy, depend only on , ¢,
so, p and 0. This completes the proof of the assertion (2) of our theorem. O

In the rest of this section, we present a proof of a functional equation of E;(Z,s) by
means of investigations of explicit Fourier coefficients given in [Theorem 3.4. Put

E(s) = |di] PP (5/2)" i (s).

Then &, (s) is continued as a meromorphic function in s on the whole complex plane
with only simple poles at s = 0,1 and satisfies the functional equation & (s) = &, (1 — s).
For 0 #£ne (A", ve o, we assume that 5,J € Wr(p,,q,) (p, + ¢, = 2) and put

A (s,2,) = |y /dic| 7 [ s+ 1= pg)/2)Li(s, x,)-
veE O
Since y, is non-trivial (cf. [Lemma 2.1), 4(s,y,) is continued as an entire function
and is invariant under s +— 1 —s. The following lemma is elementary.

LemMA 3.5. Let [ be an even non-negative integer and let p,q be non-negative
integers with p+q=2. Then

Ty((2s 420+ 3)/4) ', ((25 = 21+ 3)/4)"!

_ J2ms—1/2_—14pg/2.(P:2) I'((2s+3—2pq)/4)
= (_1)117(1 2ys—1/2,-1 pq/zelpq (s) 43 A+ 17
Here
15 (s +3)/4+ ) (@s+1)/a+ )" if p=2,4=0,
eV (s) =TI (<25 3)/4+ ) (=25 + 1) /4 +j)  if p=0,q=2,

15 (=25 + D)/4+ ) (s +3)/4+ /)" if p=1,q=1.
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Put
1/2—-1

(3.17) Oi(s) = J] ((2s+3)/4+/)((25+ 1)/4+ ).
Jj=0

Then we note that Q;(s)ggp 4) (s) is invariant under the substitution s+— —s.
We now introduce the normalized Eisenstein series

318 B2 =a(s+) s Do Tl - g

pIDo

(@ - ¢.°HE(Z,5).
p|D1

ProrosITION 3.6. Put

Ej(Z,s)= ) aj(n,Y,s)ela(nX)],
ne (W)
for Z=X+iY e$ and se C. Then aj(n,Y,s) extends to a meromorphic function in s
to the whole complex plane, and is invariant under the substitution s — —s. Precisely, if

n#0orl =2, then af(n,Y,s) is holomorphic in s on the whole complex plane. On the
other hand aj(0,Y,s) has only simple poles at s= +3/2 in the case of | = 0.

ProoF. First we assume 5 #0. By [3.4), (3.10), and [Proposition 3.3,

|D? _ _ - |
(3.19)  a/(n,Y,s) = D—(1)|Nk/Q(772)| 34| g |14 H {det(YU) 1/25+(,7UYU)(21+%)/4

vE O
25+ 2 25 — 2
. 5_ (}70 Yu)(72l+p,;)/4w2 (2]] YU, 7Z770J’ S ‘I‘ 41 + 3 : S 41 + 3) }
1 - K -5
- Oy y(8) Ak (s+§,;(,7) H {qpl/2(l +q +1/z)(1 +4, +1/2)}
»|Do
2y (p)=-1
3 (7, 5),
where #,J € W,(p,,q,), and we put
Qiyl H{ 1}7qu/22 2l(p,— qt)+ptql+3)/2 (Hpo—qv)— /2Ql( ) (Po:g0) (S)}

veE O

By Mheorem 3.1(3), [3.6), and [Lemma 3.3, we obtain results in this case. Secondarily
let #=0. From (3.9), [Proposition 3.3, and [3.3) we obtain the following:

(25-21+3) /2
(3.20) a; (0, Y,s) (H det( Y, ) ék(s-l— )ék(2s-|- 1)Oi(s)"

H(q;-i—l/Z q;s—l/Z) H(q q;A+3/2)

pIDo pID1




112 Y. Hiral

(—25-2143)/2 i
- (H det( Yv)> &k (s - 5) $(25)Qi(=s)"
Tl - T - )

pIDo pIDi

Notice that the number of prime ideals dividing D is even, since B is totally indef-
inite. So we get the functional equation. The possible poles are simple poles at s = 0,
+3/2 and double poles at s = +1/2. By virtue of the functional equation, 4; (0, Y,s)
is regular at s =0. Since DyD; (= D) has at least two prime divisors, a; (0, Y,s) is
regular at s = +1/2.  Furthermore if / =2, 0;(=3/2) =0. So 4;(0,Y,s) is regular at
s= +3/2. ]

From [Theorem 3.4(2) and [Proposition 3.6, we obtain the following theorem.

THEOREM 3.7. For any Z € 9, the normalized Eisenstein series E;(Z,s) is continued
as a meromorphic function in s on the whole complex plane and is invariant under
s+ —s.  Precisely, if | =22, then E;(Z,s) is the entire function on the whole complex
plane. On the other hand Ej(Z,s) has only simple poles at s = +3/2 in the case of
[=0.

The convergence of is not guaranteed if /=2 and s=3/2. However, as in
Shimura [17], we can construct the holomorphic Eisenstein series of weight 2 as follows:

THEOREM 3.8. We define
Ex(Z) = Ex(Z,1)2).
Then E(Z) is a holomorphic function in Z on 9.

Proor. Since the second term of vanishes at s = 1/2, the constant term of
E;(Z,1/2) does not depend on Z. By [Theorem 3.1(1),
@y (277 Yy, 1y, J;2,0) = 23e[Tr(iY,n,)] if 5, € W(2,0),

and

02(1/2)e5" % (1/2) = 0 if (p,, q0) # (2,0).

Therefore by (3.19) non-constant terms of E}(Z,1/2) are holomorphic in Z on . We
notice that the normalizing factor has neither zero nor pole at s = 1/2. Therefore the
Eisenstein series E>(Z,1/2) is holomorphic in Z on $. ]

REMARK. In the case of the Siegel modular form of degree 2, we can not construct
the Eisenstein series of weight 2 in this way ([8], [12], [17]).
By [Theorem 3.1(1), Mheorem 3.4(1), and [Theorem 3.8, we obtain the Fourier

expansion of the holomorphic Eisenstein series of weight / > 2.

COROLLARY 3.9. Let | be an even positive integer with [ = 2.
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E(Z)=1+ > a(ne[Trgu(nZ)),

ne ()"
nJ>0
aln) = Pl 2 o } (1= %P) D0 = 1,()45)
(21 -2)! 5 221

1 L1y,
J;[ gyt — 1 Ge(DG(20 = 2)

where K := k(n) is a quadratic number field over k, dy [resp. dx] is the discriminant of k
[resp. K| over Q, and F(n,l):=],; Fy(n,1) is a product of integers. Here

F(n,1),

W(1-3/2) - .
oy = {8 =32 it e,
PILE = () -3/2) -
ap op(n, 1 —3/2) if ptD.

3.4. Fourier coefficient of E;(Z).

In this section, we assume k is the rational number field Q. To calculate numerical
examples by the formula in |Corollary 3.9, we shall rewrite this formula in an easier
form.

THEOREM 3.10. Let [ be an even positive integer.

E(Z)=1+ > ane[Trgu(nZ2)),

ne(A )
nJ>0
4IB1-1 4, v (1 = 2,(P)p" (1 = 2,(P)p"?) 1
a() = - [ [ """ I L&D,
BiBai-2 pIDo pr-l oD P -1 p<oo

where y, is the Dirichlet character of Q(n) over Q, By, [resp. Bm%]] is the m-th Bernoulli
[resp. the generalized Bernoulli]| number. We take the definition from [11] p. 89 [resp. [11]
p. 94]. We define even positive integers a, [ as follows:

alnye (A7) i (2a~'n)* = d,f* (d, is discriminant of Q(n)/Q).

Then we have

4 a,—1
o) =D pP 4 (14 7,(p) 3 P!
=0 —0
if p|Do,
p a,—1
Ey(n.0) = p® =y, (p) Y pH !
=0 =0
if p|Dy, and
G (it aptfy—t—1
Fy(n,1) = Z pA=I=0E () Z PRI 1)ei=2
=0 | k=0 £

if pA D, where we put a, = ordy(a), f, = ord,(f).
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Since [],., Fp(n,1) is the finite product of integers, the following corollary easily
follows from this theorem.

CorROLLARY 3.11. We keep the above notation. Then a;(n) € Q, precisely there
exists a constant C € Z depending only on D and | such that Ca;(n) € Z for all 5.

Put
d is the discriminant of an imaginary quadratic number field
7 :={d,f)
f is a positive rational number satisfying (3.21)
d
(—) # 1 for p|D,
p
0 if p|D07 V4 * d>
(3.21) ord,f =< —1 if p|Dy, p|d,

—1 1fp|D1>

ord,f =20 1if pyD.
Then there exists an 7€ (), such that nJ >0 and (2n)% = df? for one (d, f) € 2.

Moreover the converse is also valid (cf. [Lemma 2.1, [2.6)). We say that a function

F(Z)= Y _ c(n)elTrgu(nx)] € My(Ty)
ne(A )"

satisfies the Maass relation, if there exists a function f, on Z.y x Z satisfying the
following condition.
1. If0<teZ and ne (A") . then

prim

c(tn) = fo(t; (d, [)),

where (27)% = df2.
2. The function f, satisfies the following recurrence formula:

itttz (0.1 = 32 (s (47 7)),

for positive integers ¢, t,, where all the prime factor of ¢ divides D and 7, is mutually
prime with D.

We denote by M, (I'y) the space of such functions. The subset M (I'y) of
M;(I'y) is the analogy of the Maass space in the case of the Siegel modular form of
degree 2 (cf. [10]). Put

Then we have the following corollary from [Corollary 2.6(1) and [Theorem 3.10.

COROLLARY 3.12. Let [ be a positive even integer. Then For 2 <le Z

El(Z) e M} (I'y).
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4. Example of the case Dy =6, D; = 1.

In this section we give some examples of cusp forms on a quaternion unitary group
of degree 2 over Q by using the Eisenstein series and Oda’s lifting [13].

4.1. Examples by Oda lifting.
Let N be an odd squarefree positive integer and x an odd positive integer. We put
M =4N. For a positive divisor 4 of N, we define a Dirichlet character (modulo M) by

)= ().

We denote by y, the trivial character. Put

ro(M) := {(Z‘ Z) € SLy(Z)

c=0 (mod.M)}

a b
For any y = (c J
S,(M, y,)] the space of holomorphic modular [resp. cusp] forms on the complex upper
half-plane by of weight /2, with respect to I'o(M) and with character y, (we use the
same definitions as in [18]). For a rational prime p, the Hecke operator T, (p?)
acting on M, (M,y,) is defined in [18].
Let B be an indefinite division quaternion algebra over Q, D its discriminant and O
a maximal order of B. Let G have the same meaning as in [I.I]. Let I" be the
intersection G and GL,(D) i.e. I := I'p in the notation of (1.2). M;(I") and S;(I"), for
a positive integer /, have the same meaning as in §1 respectively.
For each positive integer m we define Hecke operator 7;(m) acting on M;(I") by

) e I'y(M), we put y,(y) = x4(d). We denote by M,.(M,y,) [resp.

(Ti(m) )(Z) = m™ 7 >~ T, 2)7 f(X2),

ye'\Sn
01\ /01
I\ 1 0)97"™\1 o)

&ﬁz{geMxD>

A B
where for y = (C D) €Sy

WKZ> = (AZ+B)(CZ+ D)™, J(y,Z) := Npo(CZ + D).

For any prime number p there exists an element /7, € O such that Ny o(II,) = p, since
B is an indefinite quaternion algebra over Q. Let f be an element M;(I") such that

(4.1) SULZILY) = 4,(f)f(Z)  (4,(f) € C).

Then we notice that 4,(f) = —1 or 1, and particularly 4,(f) =1 for f e M;(I"). For
p|D and f e M)(I') satisfied [4.T], by the detail computation of Tj(p), the relation
between the Hecke operator 7;(p) and Fourier coefficients of f is given as follows:
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[(Z)=">" ane[Tryo(nZ)],
ne(®)"
nJ>0

(Tip)f(Z) = > bn)e[Trzo(nZ)),
ne(©7)"
nJ>0

where
(4.2) b(n) = p*a(p™"n) + p"'9,(f ma(n) + alpn),
0 if 7 is p-primitive and y,(p) =0,
5I7<f7 ’7) = . !
Ay(f) otherwise.

If 5 is p-primitive, we understand that a(p~'y) = 0.
In the rest of this section we assume D is an even positive integer. Put

D':=D)2.
For ne (97);

prim WE put
m, == —D'(2n)>.
An explicit form of Oda’s lifting S,p (2] — 1, yp,) — Si(I") is given as follows (cf. [19] §4):

PROPOSITION 4.1.  The notation being as above, let | be an even integer (I = 6), f an
element of Sy_1(2D, yp/) and (Tzzllzl,m (p2)f = w,f for all prime p. Let the Fourier
expansion of [ at ioco be

f(z):= Z a(n)e[nz]
n=1

and put
J()(Z) = Z G (n)e(Trz 0(n2)].
o
Here for ne (D7),
Cr(n) = Cr(my) = [ [(1 + ¢, (my)p"" @, Ya(my),
plD

where

1 lf‘ p 7£ 2 and p‘mm or p= 2 and m, = — D’ (m0d4),

0 otherwise.

bytm) = {

For general ne (O7)", we define Cs(n) by the following recurrence formula (1) (2).
(1) For p|D

Cr(pn) = (wp + p" (1 = 8,(n)) + P e, NV Cr(n) — p*' 7 Cr(p7 '),
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where
5,(n) = { 0 if nis p-primitive and z,(p) = 0,
1 otherwise.
(2) For nye (Di);rim and a positive integer t which is mutually prime with D

Cr(tny) = Zrl 1Cf t/r) my,).

i
Then J(f)e Sf(I"). Moreover, put F :=J(f) then F satisfies the following facts.
Ti(p)F = (w, + p" ' + p* P, )Fif p|D,
Ti(p)F = (o, + p"' + p*)F if p&D.
By [19], we know that w, # 0 if p|2D. Therefore we obtain the following (see [15]).
ProposSITION 4.2. If A and p divide D/2, the map

Tégﬁ(p) 1 Ck(2D, x4) — Sk(2D, x4x,) e (Z — Za nz]>

n=1 n=1

is an isomorphism and commutative with all Hecke operators.

To obtain Fourier coefficients of the lifted cusp form numerically by [Proposition 4. ]
and |[Proposition 4.2, we introduce some examples of modular forms with respect to
I'y(4). Notice that I'y(4) has three inequivalent cusps ico, 0, and 1/2. Let m =4 be
an even integer, we put

m E: mlkE:dman

n=1 dn’
d>0

where for n we define the pair of integers (n,k) by n=2kn' (n' is an odd positive
integer). This is the Eisenstein series of weight m with respect to I'o(4), which only
vanishes at cusps ioo and 0. On the other hand the classical theta-function 0(z) :=
S eln*z] € S1(4,y,) only vanishes at the cusp 1/2.

The rest of this subsection will be devoted examples of lifted cusp forms in the case
of D =6.

ExampLE 1 (/ =6) (cf. [20]).
Put D=6. By [3], we obtain dim &(12,y,) = 7. Basis of S;(12,y,) are given
as follows:

712 = EYR0E, A6 =155 {2566+ 378,094 .

£(2) = EY(E0062 i) =5 5T, 204E), £52) = EW(32)0(2)°,

fi2) = 3T, 004G, AE) :=E<4><z>9<z>0<3z>2.
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Using these basis, eigenbasis of S1;(12,y,) are given as follows:
oo+ 1560+ 37 =0,
B:p*—9B+ 128 =0,
y >+ 18y + 128 =0,

fy==8f+ (475, TF, Q06 =16f, T, G =af,

fﬁ = =841, +192f, — 1228+ 79) f5 — 3(p — 28) f4 + 26015 + 20 f, — 6015,
T\7 ) =281 TiE, (3% 15 =81/,

fy = 1681 — 3841, +24(y + 125) 15+ 3(y — 64) f4 + 8(y — 57) f5s — (y + 48) fs + 168 1,
T\, =21, T\, (% =-81f,

f =211 +48f, —387f; +27f4 +65f5+ 5/ — 1515,

Tlll%%o(zz)f - _16f’ Tlllzx ( Z)f = 81f
By [Proposition 4.1 and [Proposition 4.2, we obtain the lifted cusp forms which belong to

Se(I):
o i 3 o i, (3
Fai=d <3<aiz43>> =t (J—ﬁ>

_ i (3); (T, 0)f
Fy._J<+6y>, F._J<37T,

Their Fourier coefficients and eigenvalues with respect to T4(2) and Tg(3) are given in
Table I. From Table I eigenvalues of F,, Fg, F,, and F are distinct. By Hashimoto’s
dimension formula [4], we know dim Sg(I") =4. Therefore F, is independent on the
value of o and so are Fy and F,. So we obtain the following:

(4.4) Se(I) =J(S11(12,75) = F, ® Fs ® F, ® F.

ExampLE 2 (I =8) (cf. [20]).
Put D =6. By [3], we obtain dim 5(12, y,) = 11. Basis of S;5(12, ) are given
as follows:

(4.3)
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TaBLE I (Fourier coefficients of lifted cusp forms)

m, J(€7(12,73)) J(S11(12, 23)) J(@15(12, 23))
H, | H F, Fp F, F G, Gy
1 1 1 2 11 1 0 16
2 2 -1 3 —26 5 1 37
3 -12 0 —14 108 0 6 346 30
7 —4 —4 —14 28 140 —18 —1246 54
10 20 2 —-170 940 —106 18 —1390 2214
11 4 16 114 —1588 =272 —10 —8998 1694
14 —44 | —14 294 812 —98 50 —49462 —1906
17 —42 30 || —1332 3234 510 0 —71328 0
19 20 | —16 274 4012 —1648 -90 107978 —2322
22 —56 16 —388 —3304 —320 | 252 79948 —8316
23 56 8 || —1788 —4424 1640 28 38452 —4676
25 31 | -4l 2990 —9955 —689 0 || —669200 0
26 52 | 26 1014 11372 2698 50 || —136798 | —16042
30 —48 0 || —3080 | —41040 0| —696 76120 840
31 —100 44 754 5212 4892 270 || —244318 100278
34 68 14 || —1946 —6068 —2422 450 12218 17118
Ti(2) 2 20 80 50 —4 —16 320 —64
T:1(3) 63 -9 87 567 —81 567 3423 351
J(@15(12,13))
my
G, Gy G
1 5 1la+ 1320 2
2 17 —238a — 25320 -17
3 0 1620a 4 159408 0
7 1204 —16532a — 1824432 1012
10 —4706 —7340a — 589200 994
11 5104 81796a + 8717808 —1168
14 24094 9364a + 1145712 2
17 22230 —157806a — 13462416 | —17220
19 —16112 —26828a — 4342992 | —18032
22 3344 —567160a — 58735776 | —20368
23 60824 442520a+44608416 17176
25 —72925 188837a + 28134744 140558
26 —126902 174772a+23078640 | —28042
30 0 5947344a + 648036288 0
31 40708 —160052a — 17771568 | —29372
34 376498 | —1629212a — 170719440 | —30002
Ti(2) 116 —a+128 320
Ti(3) ~729 5103 | —729
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Using these basis, eigenbasis of Si5(12,y,) are given as follows:
oo’ — 12360+ 3" =0,
B+ 1836f + 3% =0,
y:y’ +12y+2% =0,
Aa): Ma)* + ak(a) +20 =0 for a® — 54a — 16992 = 0.

gy := 1038g; — (a0 — 1965)gs,
Tllsz,;{o(zz)goc = 64g,, Tlls%lo(32)ga = 0fq,
gp = 9092 + (B + 1107)ga,
)3, (2%)gp = —64gp, T3, (3%)gp = Bop,
g, == —58g1 — 80g3 — 4rgs + 75695 + 75196 + 16297 — 15193 — 120799 + 58410
+ 58g11  here 7:= (y+38)/3,
T2, 209, =19, T2, (3%)g, = ~7299,

11
9i(a) = Z cigi here:
i=1

¢1 :=99(23a +2976), ¢, := 10(5a(a) + 541a + 492A(a) + 58224),

¢3 1= 3960(a + 120), ¢4 := —60(5ai(a) + 541a + 492(a) + 58224),

¢s = —594(311a + 34512), ¢ := —31185(a+ 24(a) + 64), ¢7:=297(a+ 192),
= 4455(a + 24(a) + 64),  co := 990(al(a) + 146a + 174(a) + 14064),

c10 1= —297(a+192), ¢y := —1287(a + 192),

T3, 200 = Ma)gia, T3, (3%)94a) = 7299 1a),
g := 17391 + 180g3 — 9861g5 + 103897 — 173910 — 173911,

c

o0

T11527)(0(22)g = 6497 T115%X0(32)g = —7299

By [Proposition 4.1 and [Proposition 4.2, we obtain the lifted cusp forms which belong to

Sg(I):
T2 (3)g, T2 (3
IR B ACL R NP S AT |
3(o 4 2187) 3(B +2187)
-T2 (3 T2 (3,
(4.5) G, :=J ~ 5.9 L Gy =4 1570 (3)9(a) |
4(y+128) 90(Z(a) + 128)
G:=J M
' 4320 )
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Their Fourier coefficients and eigenvalues with respect to 7g(2) and T3(3) are given
in Table I. By the dimension formula [4], we know dim Sg(/") =8. From Table I we
have

(4.6) dim J(S5(12,13)) = 6.

ExampLE 3 (/ =4).
Put D=6. Put

5 3 2 s 4
ji(z) =) _gff) UCI O —98(2)0(32) |

J3(2) = Ts2 (22)ji(2),  Jal2) == Ts., (2%)a(2),

which belong to Ms(12,y,). From [3], we know that dim&s(12,%,) =1 and
dim S7(12,,) = 3. Therefore we can easily check that

(4.7) j(z) = —8/1(2) +24/5(2) + J3(2) — 3/a(2)

1 e Ss5(12, x)-

So basis of S7(12,y,) can be given as follows:

(2):=0(2))(2), ha(2):=0032)%)(z), ha(2) = T7, (2P (2).
Using this, eigenbasis of S7(12,y,) is given as follows:

aiar+6u+32=0

(—8 +4o)hy — (108 + 18x) /1y + (2 — o) 3
72
T2 (2% hy = ah,, T,
_ 5hy+9hy + hs
36
T, (2%)h=4h, T;’ (3*)h=—9h

hy =
(3%)h, = 9h,

h:

By [Proposition 4.2 we have

(4.8) T2

T, X0

(3)ha,  T77,(3)he €112, 13).

IProposition 4.1 does not guarantee of the justification if / =4. However we formally
apply this formula to 4.8, put

o - 6 Y : 3 Y

and calculate Fourier coefficients of H, and H. Their Fourier coefficients and eigen-
values with respect to 74(2) and Ty4(3) are given in Table L.
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4.2. Examples by FEisenstein series.
From Ibukiyama we obtain the following lemma.
LemMma 4.3.  Put
B:=0Q+0Qa+0b+Qab, a*=6, b>=5ab=—ba.

Then B is an indefinite division quaternion algebra over Q with discriminant D = 6. More-

over

D=Z+leb+za(l;b)+z(1+5a)b

is a maximal order of B.

The dual lattice (O7)" of O~ defined in (1.3) is given as follows:
(1+a)b —5a — 6b — ab 5a — 6b — ab
I
For #=x(1+a)b/10+ y(—5a — 6b — ab)/60 + z(5a — 6b — ab) /60 € (D7), we write
n = (x, y,z), and identify x > 0 and 3x? — y? — z2 > 0 with J > 0, where we note that

(O7) =2

—D'(2n)* =3x> — y* —z* (in this case D’ = 3).
In the formula of [Theorem 3.10, Q(#), a, and f is given as follows:

—3x2 24,2
Q<’7>=Q(V—3<3x2—y2—zz>), a = ged(x, ,2), fz\/ 3’“3;2”+

By virtue of this we can calculate the value of Fourier coefficients of E;. Put

BZBZI—2<22172 _ 1)(321—2 _ 1)
pl = = 4[ ‘

A few numerical examples of Fourier coefficients of p,E; are given in Table II.

4.3. Application.

In this section, using the Fourier expansion of Eisenstein series and lifted cusp forms
in Example I-III, we construct some examples of cusp forms which can not be obtained
by Oda’s lifting. Put

_ 13104(p,E2)* — 40p, Ey
B 288

From Table II and [Proposition 1.2, we know that

E272 . €M4(1_').

(4.9) E> 5 e Su(I).
We write the main result in this section.
THEOREM 4.4. (1)
dim S»(I") =

0
(2) .
dim S4(I") =2
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Table II (Fourier coefficients of holomorphic Eisenstein series)
my, ks PaEs PeEs pgEs
0 —1/12 91/40 —1144055/252 22854814717/240
1 -2 30 —1870 273910
2 -2 138 —39850 24410722
3 —4 420 —250100 341010740
7 —4 3156 —11186900 83950326404
10 —4 7620 —55668020 852862571540
11 —4 9636 —85463540 1584626701364
14 —4 17556 —252966740 7598121102404
17 -12 36180 —644308500 27260636135460
19 —4 37572 —999666740 55305953899028
22 -8 55416 —1935065800 143427712564024
23 -8 61896 —2363559400 191476975767784
25 -14 94530 —3653514370 334367073086410
26 —4 82212 —4100529140 424815354499508
30 —16 | 132720 —7907361680 1078359569005040
31 —4 | 127572 —9048707540 1332675604695428
34 —4 | 160692 —13712411540 2429329353708068
35 —8 | 175080 —15629222440 2933066230165960
38 —8 | 215832 —22634197000 5005851318884248
39 —16 | 253680 —25741692560 5934577730222960
41 —12 | 321300 —33831452820 8331092065760100
43 —12 | 296172 —39482459100 11179712346051228
46 —8 | 344712 —53447365480 17330075038944808
47 —8 | 366888 —58908370600 19930611848994952
49 —14 | 502770 —75456757090 26538836615617690
50 —10 | 427938 —77807164850 29797863235785722
55 —8 | 539976 | —119463364840 55365154158736744
57 —48 | 831600 | —150969363600 71023313863647600
58 —12 | 624492 | —151780110300 78192944865271068
59 —4 | 637188 | —163791868340 87379893572413652
62 —12 | 735228 | —204883755900 | 120623130915841932
65 —24 11031400 | —269212522920 | 166552173291995400
66 —16 | 939120 | —274625206160 | 181344498987181040
67 —12 | 895212 | —290485652700 | 199697131315230108
70 —8 | 987816 | —353642390440 | 265470814423644424
71 —8 |1018632 | —376854027880 | 291107744410228648
73 —24 11381320 | —453967146600 | 354173917179449640
Ti(2) 5 41 545 8321
Ti(3) 7 271 19927 1596511

123
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TaBLE III

; Sa(I") Ss(I7)

H, H, Gy
1, 1, 1) 1 1 1
(1, 1, 0) 2 -1 -2
(1, 0, 0) —-12 0 0
2,2, 1) -4 —4 —40
2,1, 1) 20 2 1316
(2, 1, 0) 4 16 —1312
(3, 3, 2) —44 | —14 1028
(3,3, 1) —42 30 126
(3, 2, 2) 20 | —16 15008
(3,2, 1) -56 16 —4256
(3, 2, 0) 56 8 —33584
(3, 1,1 31 | —41 7879
(3, 1, 0) 52 | =26 18284
T:1(2) 2 20 8
T:1(3) 63 -9 —729

Eigenbasis of S4(I') is given as follows:

_ 20E272 — T4(2)E272

H: 42

Ty(2)H, =2H,, T4(3)H, = 63H],

o . —2Ey 2+ T4(2)Es »
2 156 ’

T4(2)Hy = 20H,, T4(3)Hy = —9H,,

which the Fourier coefficients are given in Table III. (Note: dim Sy(I") = 2 is conjectured
by Hashimoto [4].)

The existence of the Eisenstein series of weight 2 ((Theorem 3.8) and the structure of
Se(I") (cf. [4.4)) play a basic role in proving the above theorem.
By [4.4), we can choose the following basis of Se(I"):

F,—2F,+7F —297F, + 14F3 + 440F, — 945F
=F =F =—F "V = = - ! .
el yy €2 , €3 78 , €4 33160

Their Fourier coefficients are given as the following table.
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m” €1l [5) es3 €4
1 1 0 0 0
2 0 1 0 0
3 5 6 1 0
7 140 | —18 | =15 | 1
Put
Ey )= Z c(n)e [Trp0(nZ)],
ne(97)
nJ>0
Tu(Q)E= Y P(n)e [Trgo(nZ)
ne(07)”
nJ>0
Then
(4.10) (L1, 1) =11, e((1,1,0) = =4, ¢((1,0,0)) = -2,
' c((2,2,1)) = —44, ¢((2,1,1)) =64, ¢((2,1,0)) = 148,
1) @((1,1,1)) =178, ¢P((1,1,0)) = —164, 2 ((1,0,0)) = —56,
4.
¢@((2,2,1)) = =712, ¢@((2,1,1)) =440, ¢?((2,1,0)) = 2792.

From we know that E, , and T4(2)E, » is linearly independent. Therefore
by virtue of dim Sg(I") =4 and the existence of E,, we have

(4.12) 2 <dimSy(I') <4
For f e S4(I") we put

f(Z):=">" clne[Trgo(n2)]
ne(®©7)"
nJ>0

LemMa 4.5. Let feS4(I'). 1If c((1,1,1)) = ¢r((1,1,0)) = ¢r((1,0,0)) =0, then
f=0.

ProOOF. For f e S4(I") we assume f # 0 and

cf((lv 1,1)) = cf((lv 1,0)) = cf((lvov 0)) =0.

Since E»f € S¢(I") and the Fourier coefficients which correspond to

ne (O m, = =3(27)%* = 1,2,3,

prim?
are zero, we may put

P Eyf = ey

Therefore we can find Fourier coefficients of f by the method of undetermined co-
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efficients.
So we put

we obtain

(4.13)

Y. Hiral

For each prime number p|D we have A4,(f) =1 since 4,(E>) = A,(es) = 1.

Tap)f(2)= Y e [Tryn2)),
ne(®7)"
nJ>0

{Cf((la L)) =0, ¢((1,1,0)) =0, ¢((1,0,0)) =0,
Cf((zvzv 1) =-12, Cf<(27 1,1)) =0, Cf<(27 1,0)) = 24,

(4.14) {C}Z)((l’l’l))@ ¢ ((1,1,0) =12, ¢7((1,0,0)) = -72,

(4.15)

¢?((2,2,1) = 5352, ((2,1,1)) = —18312, ¢7((2,1,0)) = 26136,

I ((1,1,1)) = —144,  ¢((1,1,0)) =432, ¢((1,0,0)) = 1440,
c((2,2,1)) = 9449388, ¢((2,1,1)) = —133419168,

¢’((2,1,0)) = 248756616,

By (4.10), (4.11), {4.13), (4.14), and [4.15), we know that E; », T4(2)E» 2, f, T4(2)f, and

T4(3)f are linearly independent. This contradicts [4.12). O

If feS,(I'), then fE, € S4(I') satisfies the condition of [Lemma 4.3. Therefore we
obtain the first assertion of [Theorem 4.4. Moreover by [4.12] and [Lemma 4.3 we know

that
(4.16)

2 < dim Sy(I") < 3.

LemMA 4.6. Let f(Z) e Ss(I'). If ¢r((1,1,1)) =¢,((1,1,0)) =0, then f =0

PRrOOF.

We assume f # 0 and

¢ ((1,1,1)) = ¢((1,1,0)) =0.

By the same trick as we used in the proof of Lemma 4.3, we may put

Erf =e3+tey, teC.

Therefore we can find Fourier coefficients of f by the method of undetermined co-

efficients.

we obtain

So we put

T2)f(2) = > 7 n)e [TraonZ)),
ne(©7)"
nJ>0

(4.17) {cf(“’l’l))zo, ¢ ((1,1,00) =0, ¢((1,0,0)) = —12,

¢r((2,2,1)) =180 — 121, ¢r((2,1,1)) =216, ¢((2,1,0)) = 36 + 241,
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P(1,1,1) = =124 61, P((1,1,0)) = =72+ 124,
(4.18) ¢?((1,0,0)) = 1344 — 721, ¢/((2,2,1)) = —6624 + 53521,

¢?((2,1,1)) = 2326032 — 183121, ¢/((2,1,0)) = 4817088 + 26136r.

By [4.10), (4.11), (4.17), and [4.18), we know that E»», T4(2)Es 2, f, and T4(2)f are
linearly independent. This contradicts (4.16). O

(4.16) and mean that dim S4(I") = 2. Hence we have proved the second
assertion of Theorem 4.4.

RemArRK 1. Comparing the Fourier coefficients we conjecture that
H =H, H,=H,
and H;, Hye S;(I") (cf. Table I and III).
REMARK 2. From Table I, we conjecture
dim J(S5(12, 75)) = 6.
We can obtain another cusp form of Sg(I”) (dim Sg(I") = 8 by Hashimoto [4]):

11791 13 169 45851 )
Gli=—— Gyt Gy— G+ GV - gD g B,
! 48440 T8 P T 153 U T 70 Y T 2520 T 2041 2 2

which Fourier coefficients are given in Table III. Here we put

1027 1188 13

gV ._ G0~ G o). G + Oia
AT ’ AT )
T 2VIT72 ~ 2

where G, [resp. Gy corresponds to a =27+ V17721 [resp. a =27 —+/17721]. It
seems that the cusp form G is an eigenfunction for all Tg(p) and G; does not satisfy the
Maass relation. But we could not obtain the last cusp form in Sg(I”) from lifted cusp
forms and the Eisenstein series.
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