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Abstract. We give a necessary condition for Galois covering singularities to be log-
terminal or log-canonical singularities, which is also sufficient under a certain restriction
on the branch loci of the covering maps. We also give a method constructing explicitly
resolutions of 2-dimensional Abel covering singularities.

Introduction.

Let Y be an open neighborhood of 0 in C” and let 7 : X — Y be a (branched) finite
Galois covering of Y, i.e., 7 is a proper finite holomorphic map from a normal analytic
space X to Y and Aut(n) := {g € Aut(X)|n o g = n} acts transitively on the fiber 7~!(y)
of n for each point y in Y. We assume that 7~ !(0) consists of only one point xo.
Professor Namba proposed to call such a singularity (X,xp) a Galois singularity and
to study it. Let By, Bs,..., B, be the irreducible components of branch locus {y € Y|
#n 1 (y) < deg n} = n({x € X | is not biholomorphic around x}) of = and let r; be
the ramification index of = along B;, ie., r; =degn/max{#n"'(y)|ye B;}. Here
we note that for any point x in 7= !(B;\Sing(B; + -+ By)), m is expressed as
(21,22, -y 2Zn) — (z? ,Z2,...,zy) by suitable local coordinate systems on neighborhoods
of x and 7(x) (see [2]). Let B, =rBy+rnB,+---+rB,. We are interested in the
following two problems.

PROBLEM 1. Describe the properties and invariants of the singularity (X,xo) using
those of B, and the covering transformation group Gal(X/Y) := Aut(n).

PROBLEM 2. Determine all Galois coverings n: (X,x9) — (Y,0) with B, = D for a
given divisor D on an open neighborhood Y of 0 in C".

Dimca showed that the set of all Abel coverings 7: X — Y of Y with B, =D is
completely described by D (Theorem 3.3 in [1]).

In this paper, we give a partial answer to these problems. In Section 1, we give a
necessary condition for (X, x() to be a log-terminal or log-canonical singularity, which is
also sufficient under a certain restriction on B;. In Section 2, we give some results on
Problem 2 in the non Abel covering case. In Section 3, we construct resolutions of 2-
dimensional Abel covering singularities. The self intersection number, the genus of
each irreducible component and the dual graphs of their exceptional sets are explicitly
obtained from the data on B, and Gal(X/Y). In Section 4, we give a necessary and
sufficient condition for a Galois covering singularity to be a quasi-Gorenstein singularity.
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I would like to thank the refree who pointed out me the existence of [1].

1. On Problem 1.

Let 7: X — Y be a finite Galois covering of an open neighborhood Y of 0 in
C" and assume that 7n7'(0) = {x0}. Let B,=rBj +rBy+ ---+rB;, be as in
Introduction.

ProposITION 1. (X, x0) is a Q-Gorenstein singularity, i.e., there exists a nowhere
vanishing holomorphic r-ple n-form on X\Sing(X), where r is the least common multiple of
ri,ra, ... and r.

Proofr. Let (z,22,...,2,) be a coordinate system of C”" and let

(dzy Adzy A -+ A dzy)'
flr(rl—l)/rlfzr("z—l)/rz N ,fr(rx—l)/r,,- ’
S

¢ =

where f|, f5,... and f; are defining equations of By, B,,... and By, respectively. Then
n*¢ is a nowhere vanishing holomorphic r-ple n-form on X\z~!(Sing(B; +--- + By)).
Since the codimension of Sing(B; +---+ By) is greater than 1, n*¢ is extended to
X\Sing(X), as a holomorphic r-ple n-form. O

By the above proposition, we can classify the singularity (X, x() into the following
three types (see [3]). Let A: (X,E) — (X,xo) be a resolution of (X, xp) and let \ be a
nowhere vanishing holomorphic r-ple n-form on X'\Sing(X).

I. (X,xo) is log-terminal, i.e., the vanishing order of A"y is greater than —r along
all irreducible components of the exceptional set E of A.

IT. (X, xp) is not log-terminal and log-canonical, i.e., the vanishing order of Ay is
not smaller than —r along all irreducible components of the exceptional set £ of A and
equal to —r along at least one irredubcible component.

II. (X,x) is not log-canonical and then lim,,_.., supd,,(X,xq)/m""! > 0.

For example, if a cone V over a projective manifold M is a Galois covering
singularity, then it is of type I, II or III, accordingly as x(M)= —oo, 0 or dim M.
While, if 0 < k(M) < dim M, then V never can be a Galois covering singularity.

For a holomorphic function f =3 . ¢,z" on Y, let Supp(f) = {ve Z%,|c, # 0}
and let I'.(f) be the Newton polytope of f, ie., the convex hull of ()

; . o o . veSupp(f)
(v+RY,), where z'(vy,v2,...,0,) = 2)'2,> - -z
DEFINITION.
1 1 1
I' (B;) = (1 —Z>r+(f1) + (1 —E>F+(fz) +-F (1 —r—)r+(fs),
S

where f, f,,... and f, are defining equations of Bj, B,,... and By, respectively.

For a face 4 of I'\(B;), there exists a point u in R, such that 4 = A(u) :=
{ve ' (B;)|<v,uy =d(u)}, where d(u) =min{<v,uy|ve ' (By)}. Let 4;={vel.
(/) [ <v,u> = dj(u)}, where d;(u) = min{<v,uy|ve I'\(f;)}. Then d(u)=73"7",(1—1/r)
di(u) and 4= (1—-1/rm)4; + (1 —1/r)4,+---+ (1 — 1/r;)4,. Here we note that 4;
are determined uniquely by 4, although u with 4 = A(u) are not unique.
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THEOREM 2. If (X, x0) is log-canonical (resp. log-terminal), then '(1,1,...,1)€
I’ (B;) (resp. Int(I"(By))).

Moreover, the converse holds, if fi,f5,... and f, satisfy the condition:

() For each proper face A of I'\(By), the varieties in (C*)" defined by f;; =0
are non-singular and cross transversally each other, where f;, are the partial sums

Z”eznzomﬁj €z Offl - Zvelio coz" on Aj‘

Proor. Let I'*(B,) be the dual Newton diagram of I',(B;), ie., I'*(B;) =
{47 |4 are faces of I'(B;)}, where 4" = {ue R%|4(u) > 4}. Let

A Tzremb(I"*(B;)) — Tz»emb({faces of RZ}) = C"

be the holomorphic map between toric varieties induced from the subdivision I'*(B;)

of {faces of RZ} and let Z = A7 1(Y). Let E, = orb(g) for 1-dimensional cones ¢ in
I'*(B;). Then the vanishing order o, along E, of the pull-back A*¢ of ¢ in the proof of

Proposition 1 is equal to

r<—1 + (1,1, 1), u) — S (1 —l) a}(u)),
=1 i

because the vanishing order of 1*(dz;/z1 A dzp/za A -+ A dzy/z,) is equal to —1 along
all E,, where u are the primitive elements in Z" spanning ¢. Hence a, > —r (resp.
> —r) for all 1-dimensional cones ¢ in I'*(B,), if and only if ‘(1,1,...,1) e " (By,)
(resp. € Int(L"(By))).

On the other hand, let W be the normalization of X xy Z, let 7: W — Z and
0: W — X be the projections. For any 1-dimensional cone ¢ in I"*(B;) and for any
irreducible component F, of 7~ !(E,), the vanishing order (o, + r)r, —r of (m00)*¢ =
(Lom)"¢ along F, is greater than (resp. equal to) —r, if and only if «, is so, where r, is
the ramification index of 7 along E,.

Next, assume that the condition (x) is satisfied. Take a subdivision X of I'*(B;)
consisting of non-singular cones and replace I"*(B;) with X' in the above definition of /.
Then Z is non-singular and A~'(B; 4+ B, +---+ B,) is normal crossing near A~ '(0).
Hence for any point p in 2~'(0), there exist an open neighborhood U, of p and a local
coordinate system (zj,z,...,z,) on U, such that /l_l(Bl +By+---+B)NU,
{z1z3---z, =0}. Then f = (/1*¢)|Up/(dzl/zl A -+ Adzy/z,)" is a holomorphic func-
tion on U, if the vanishing order o, of "¢ is not smaller than —r along all irreducible
components E, of A7'(0) and vanishes along A~'(B, + By +---+ B,)N Uy, if o, is
greater than —r. Therefore, W has only toric quotient singularities and for any toric
resolution w: V — W of W, the vanishing order of (lozow)¢$ is greater or not
smaller than —r along all irreducible components of (6o w) ' (xo), if that of A*¢ is so
along those of 47'(0), because (ﬁow)iﬁow)q(%)(dzl/zl A -+ Adzy/z,) has poles of
order 1 along all irreducible components of (o w) ' ({ziz2---z, = 0}). O

ExampLE 1. If n =2 and B, = ri By + r, B, + r3B3, where By, By, By are defined by
21=0, 22=0, z{ +z8 =0 (g.cd(a,b) =1), respectively and r,ry,r3 are positive
integers, then ’(1,1) € Int(I";(By)) (resp. 0I'+(By)), if and only if
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1 1 1
a—r1+b_r2+g>1 (resp.— 1).

Here, the case that r; =1 (resp. r; = r, = 1) implies that B, = r,B, + r3B3 (resp. r3B3).

ExampLE 2. If n=2 and B, =2{z/(z + z3)(z1 + ¢z3) =0} (¢ #0,1), then (1,1)
is on a l-dimensional face of I, (By).

ExampLe 3. If n=2 and B, =2{(z? +25)(z3 —z{) = 0} (p,q > 2), then (1,1) €
arJr(Bn)'

ExampLE 4. If n=3 and B, =2{(z} + 25+ 23)(z} + 23 + 23)(z} + 23 + z3) = 0},
then ’(1,1,1) is a vertex of 0I'y(By).

2. On Problem 2.

Let Y be a simply connected open neighborhood of 0 in C" and let D =r;D; +
roDy + - + 1Dy be a divisor on Y. Here, we assume that r; are integers greater than 1
and that D; are irreducible reduced. Let

f’:{(wl,wz,...,ws,y)eCsx Y wt = fi(y) = =wh — fi(y) =0},

where f, f5,... and f; are defining equations of Dy, D, ... and Dy, respectively, let o; be
the automorphisms of Y defined by

Gj: (Wiyoo oy We, 1) = (Wi, Wis 1, & W), Wi, -, Wy, ),

where ¢ = exp(2nv—1/r;) and let u: Y — Y be the projection. Then x is an Abel
covering of Y with B, =D and the covering transformation group Gal(Y/Y) is
generated by gy, a,...,0;.

ProrosiTION 3. Y is a normal.

Proor. First, we note that ¥; := u ' (Yy) is non-singular, where Yy = Y\Sing(Dyeq).

Let U be an open neighborhood of 0 € Y, let & be a holomorphic function on Uj :=
w ' (UNY,) and let

_ § —C1oq —Cs0ly oy O\ *
hcl,....,cs— 81 ...8S ‘3(0'1 ...O'S‘) h7

0<o<ryye..,0<og<ry

for 0<ci<ry,...,0<c¢,<r,. Then
Z hcl,...,cs =TI 'rsh

and o/ he, ..., zafthw_,cs. Hence h, . /(w'---w®) is a Gal(Y/Y)-invariant holo-

morphic function on Up. Since Y is non-singular and the codimension of Y\Y, =

Sing(Dreq) is greater than 1, there exists a holomorphic function 4., . on U the pull-

back p*h, .y, of whose restriction to Uy:= UNY) is equal to he, . /(w'---w).

Then h=1/(ry--r5) > the,_ewi' -~ w is a holomorphic function on x~!(U) and
hg = h. O
[Uo
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Let H be a subgroup of Gal(Y/Y) and let u; : Y/H — Y be the natural map
induced by u. Then uy is an Abel covering. Moreover, B, = D, if and only if
aj“f ¢ H for 1 <o; <r;. By Theorem 3.3 in [I], we have:

THEOREM 4. For any Abel covering m: X — Y with B, = D, there exist a subgroup
H of Gal(Y/Y) and a biholomorphic map ¢ : X — Y /H such that uy o ¢ = .

Next, let Yy = Y\Sing(Dyeq) and let Yy = u~'(Yy). Let A: W — Y, be a universal
covering.

PROPOSITION 5. uol: W— Y, is a Galois covering. The kernel of Gal(W/Y,) —
Gal(Y,/Yy) is the commutators group of Gal(W/Yp).

ProOF. There exists an automorphism § of W satisfying Aog=gol for each
element g in Gal(Y/Y), because 4 and g o A are both universal coverings of ¥;. Hence
the subgroup of Aut(W) generated by g for all g€ Gal(Y/Y) and n;(Y,) acts tran-
sitively on the fibers of wo /.

Next, let H be the commutators group of Gal(W/Y;). Since Gal(Y,/Y;) is an
abelian group, there exists a surjective homomorphism Gal(W/Y,)/H — Gal(Yy/Yy).
Suppose that this homomorphism is not isomorphic. Then the degree of the Abel
covering W /H — Y, induced by uo / is greater than deg(u) and the ramification index
along D; of the covering is equal to r;. However, replacing Y in the proof of
4 with Y, we see that the degree of any Abel covering ' of Yy with B, = Y, N D is not
greater than deg(u), a contradiction. O

THEOREM 6. For any Galois covering n : X — Y with B, = D, there exist a subgroup
H of Gal(W/Yy) and a biholomorphic map t©: W/H — Xy := n~'(Yy) such that mor:
W/H — Y, is equal to the natural map induced by po 1.

PrOOF. Let W' be an irreducible component of W x v, Xo. Then the composite of
the normalization of W' and the projection W’ — W is an unramified covering. Hence
W' — W is biholomorphic, because W is simply connected. Next, let G={ge
Gal(W/Y,) ® Gal(Xy/Yy) |gW' = W'} and let p,: G — Gal(W/Y,) (resp. p,: G —
Gal(Xp/Y,)) be the restriction to G of the projection Gal(W/Yy) ® Gal(X,y/Y,) —
Gal(W/Y,) (resp. Gal(Xy/Y;)). Then p, is an isomorphism and p, is a surjection.
Hence the map W/H — X, induced by the composite W ~ W' — X, is biholomorphic,
where H = p,(ker(p,)). O

ExampLE 5. Let D= B, in Example 1 in Section 1. Assume that 1/(ary)+
1/(bry) 4+ 1/r3 > 1. Then Y is log-terminal, by Theorem 2. Hence Y is a quotient
singularity because n =2 (see [4]). Therefore, Gal(W/Y,) is finite and W is biho-
lomorphic to the complement of a point of a non-singular surface. Indeed, there exists
a finite subgroup G of GL(2,C) isomorphic to Gal(W/Y;) such that C?/G is non-
singular and that B2 c2yq = D. In the table below, we show generators of the group

G. Let
.0 .0 0 1
(0 a3 ) ()
0 p, 0 p, I 0
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v—1
L[V 1y Y= BV
S = — V =
2 bl \/-—— b
1+vV-1 —1-+v-1 —1
—B— /=1y —5
where p, = exp(2nv/—1/r), f=(1—-+/5)/4 and y = (1 ++/5)/4.
a b 2] r» | r3 | Generators of G a | b | r | rn | rn | Generators of G
1 * 2 * 2 | Aa,Bay,, B, C 11412 1 3 | A¢, A1nBg, S
2 | odd | 1 * 2 | Aa,Ba,, By, C 213 2 1 2 | A4, Bg, S
1 * 2 1 2 | By, C 213 1 1 4 | A4, AgBg, S
2 | odd | 1 1 2 | By, C 314 1 1 2 | A4Bg, S
1 1 2 3 3 | Aip, By, S 1|1 2 3 5 | Ago, Bs, S, V
1 2 3 1 3 | Adg, By, S 11213 1 5 | Az, By, S, V
1 3 3 1 2 | A4, By, ApS 1|3 2 1 5 | Ay, By, S, V
2 3 1 1 3 | By, AgS 11512 1 3 | Aip, By, S,V
1 1 2 3 4 | Ay, Bg, S 2|3 1 1 5 | Ay, Bs, S, V
1 2 3 2 2 | Ap, Bs, S 215 1 1 3 | Ag, By, S, V
1 2 3 1 4 | Ap, AuBg, S 315 1 1 2 | A4, By, S,V
1 3 2 1 4 | Ag, Bg, S

For subgroups H of G such that Bicriycrya) = Bierm.cryaps i.e., H have no fixed points
on C*\{0}, the singularities C*>/H are rational double points of type Dj, Eg, E7, Es,
cyclic quotient singularities and a singularity with a resolution the dual graph of whose
exceptional set is the following:

When 1/(ar) +1/(bry) +1/r3 =1, Y is a simple elliptic singularity.

3. Resolutions of two-dimensional Abel covering singularities.

We keep the notations of the previous section. Let n =2 and let H be a subgroup
of Gal(Y/Y) satisfying the condition: af" ¢ H for 1 <o; <r;—1. Let X =Y/H and
let #=puy. Then m: X — Y is an Abel covering with B, = D. We may assume that
Yy = Y\{0}, by replacing Y with an open small neighborhood of 0. Let §:Z — Y be
an embedded resolution of D, i.e., 0 is a holomorphic map such that the restriction
O1p-1(vy) of 0 to 07'(Y,) is biholomorphic and that the reduced inverse image divisor
0 '(D),g = th:] E; of D is normal crossing. Here we may assume that E; are the
proper transformations of D; under the the map 0 for 1 <j<s and that E; are
irreducible for s+ 1< j <t Then 07'(0) = ZJ.’:SH E;, because Yy = Y\{0}. Let g;
be elements in 71(Y\D) rounding E; once in the positive direction and let 7; be their
images p(6;) under the quotient map p:m(Y\D) — F:= Gal(X/Y). Then t; are
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the images of o; under the quotient map Gal(Y/Y) —F for 1<j<s and
1/(2nv/-1) f df;/f; =05 for 1 <i, j <s. On the other hand, the zero divisors [0" f;] of
0" f; are expressed as E;+ Z _s+1CiiEj, where ¢; are positive integers. Then
1/@nv=1) [, df;/f; = cj. Hence ;=3 ¢ju; for s+1<j<t For each positive
integer k <t let Fi be the subgroup of F generated by 7, and all 7; with
E;NE, # . When k# [ and Ex N E; # I, let Fj; be the subgroup of F generated by
7% and 7;. Let v: W — Z (resp. A: W — X) be the composite of the normalization
W — X xy Z of X xy Z and the projection X xy Z — Z (resp. X). Then F naturally
acts on W and the restriction ;-1 of 4 to W\2"!(xy) is biholomorphic, where

{xo} =771(0).

PROPOSITION 7. The number of the irreducible components (resp. the points) of
v U(E) (resp. vi Y ELNE))) is equal to |F/Fy| (resp. |F/Ful).

Proor. Let k#/ and assume that E;NE; # ¢#. Then E;NE; consists of one
point. Let V' be a small neighborhood of the point E; N E; and let U be a connected
component of v-!(V). Since E; + E; is normal crossing, Gal(U/V) = Fy; and v~ !(Ey)
N Uisirreducible. Hence 1,E; = Ej for any irreducible component Ej of v! (Er). There-
fore, gE, = Ej. for all g in F,. Since the covering map Ej /Fr — Ej is unramified and
Ej is simply connected, {g € F | gE; = Ek} = F;. O

Next, we construct the dual graph of E:=/i"'(xo) = (0ov) '(0). Let 4 be the
dual graph of E’ := Z/ a1 B = v(E). For a vertex (resp. an edge) o of 4, let E/ be the
corresponding irreducible curve (resp. double point) of E’ and let F, = Fy (resp. Fy), if
E, = E; (resp. ExNE;). Let F,y = F,, Fy,...,F,p/p, be the conjugate classes of F, and
let oy, 00,...,0F/F, be copies of «. Then we obtain a complex A= U%AUWF‘ i
where o; is a face of f; if and only if o is a face of f and Fy > Fy.

PROPOSITION 8. A is homeomorphic to the dual graph of E.

PrOOF. Since 4 is a tree, we can choose an irreducible curve or a point E, of
v~ 1(E!) for each o € 4 so that Ep € E,j, if « is a proper face of § , i.e., § is an edge of 4
and « is a vertex which is an end of 8. Let E, = gE,; for ge F,;. Then Ej € E,;, if
and only if o is a proper face of f and F, o Fp,. ]

We note that v=!(Z,) is non-singular, where Zy = Z\(Ulsk<lszEk NE;). How-
ever, the inverse images of the double points Ej N E; of Z _; Ej under the map v may be
singular points on W. Let k # [ and assume that Ej N E; £ @&. Lety:Z*— F be the
homomorphism sending (a,b) to aty + br; and let N = ker(y).

PROPOSITION 9. For any point p in v (E; N E;) there exist an open neighborhood U,
of p and an inclusion i: U, — Ty emb({faces of R? 0}) such that i(p) = orb(R%,), that
i(U,Nv71(Ex)) <= orb(R>0 (1,0)) and that i(U, v Y(E;)) < orb(R=( '(0,1)).

ProOF. Let V be an open small neighborhood of the point Ej;NE;. Then
there exists an inclusion iy: V < T, emb({faces of RZ,}) such that io(V NE;)
orb(R > '(1,0)) and that io(V NE;) < orb(R5¢'(0,1)). Let U, be a connected com-
ponent of v=!(V) containning p. Then B, = |t|Ex +|ulE). Let V — V be the
Abel covering constructed as in Section 2 for Y =V and D =B Then we have an

V|Up .
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inclusion i : ¥ < Ty emb({faces of R ,}), where N’ = Z !(|tx|,0) ® Z '(0,]r;|) and an
isomorphism /4 : Gal(V/V) ~ Z*/N' such that ij0g=h(g)oi for all ge Gal(V/V).
Let H be the kernel of the homomorphism Gal(V/V) — F sending h~'((1,0)) and
h='((0,1)) to 74 and 7, respectively. Then U, ~ V/H and Ty emb({faces of R2})/
h(H) ~ Ty emb({faces of R ,}). O

Let © be the convex hull of (RZ,\{0}) NN, let {vy,...,v,} =00 NRZ NN, let vy
and v,y be the primitive elements in R ‘(1,0) NN and R, ‘(0,1) NN, respectively.
Here we may assume that v; and v;,; are adjacent on 0@ for 0<j<g. Then
Ovjvis1 NN = {0,v;,v;:1}. Hence {vj,v;41} are bases of N. Therefore, there exist
integers ¢; (1 < j<gq) such that v, +c¢jv; +vjy1 =0, if ¢>0. When ¢=0, U, is
non-singular.

PROPOSITION 10.  When q > 0, there exists a resolution w : U, — U, such that each
irreducible component C; of the exceptional set w !(p) = Z]‘": G is a non-singular
rational curve, that Ci2 =¢ for 1 <j<gq, that C; and Cjyy intersect at a point for
0<j<gq and that C;NCy =, if j<k—1, where Cy and Cyy1 are the proper
transformation of U, N\v~Y(Ey) and U,NvY(E)), respectively. Moreover, (vo w) Ex =

quo <l)/, (170)>C]

ProoF. Let 2 = {{0},R>ov;,R>00; + R>00j1 |0 <i<q+1,0<j<gq}, let W =
Tyemb(X) and let w’: W) — Tyemb({faces of R%,}) be the holomorphic map
induced by the subdivision X of {faces of Rzzo}. Then W) 1s non-singular. Let
Cj’ = orb(R-ov;) for 0 <j<g+1. Then Cj’ are non-singular rational curves with
(Cj’)zzcj for 1<j<gq, (@) '(i(p) = jqlej’ and C/ intersect C/,; at a point
for 0<j<gq. Let f, and f; be the holomorphic functions on W, :=
T ,» emb({faces of RZZO}) ~ C? and W), respectively, corresponding to (1,0)e N*N

(R%)". Then [fo] = orb(R=0(1,0)) and [f,] = 31 <v;, (1,0)>C/. O

Let C, =1, <v;,(1,0)>C; and let dy = <v1,(1,0))/<vo,(1,0)). Then Cy-C, =
|7k |dii, because vy = (|7x],0). Let

w=(w\ U v'&nE)|u U Gl
0<k<iI<t 0<k<i<t pevil(EkﬂE/)

where Up = U, if U, 1s non-singular and let  : W — W be the natural projec-
tion. Then Aoy : W — X is a resolution of X.

PROPOSITION 11. For each k > s+ 1 and for each irreducible component Ej of the
proper transformation of Ey under the map v o,

E} = K] <—kz - > Fl
|7k k£l Ep N E#g 1K

and

g(Ep) = _@4_@ Z (L_L>

ol 2 E g Tl [FR]
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Proor. First, we note that the degree of the covering E; — Ej is equal to |Fi|/|z/,
because Fy = {ge F|gE; = E;} and {(1;)> = {ge F|gx = x for all x€ E;}. Let Uy be
a small neighborhood of Ej;. Then there exists a holomorphic function f on Uy such
that the zero divisor [f] of f is Ey+ E’, that E'NE; = & for | # k and that E’
intersects Ej transversally at —E? points, because Ej is a non-singular rational curve and
E} <0. Let Uy be the connected component of (vo ¥) ' (Uy) containing E;. Then

(o)) = lulEx +E' + > G
ExNE#D pevy! . (ENE)
(T
and E' = (VOlﬁ)rUlk (E') intersects Ej transversally at —E?|Fy|/|t| points. Note that
v‘;/l(ﬁk)(Ek N E;) consists of |Fi|/|Fy| points. The first equality follows from these facts.
On the other hand, by Riemann-Hurwitz formula, we have

~ F F F
ity -2= 2l s IBL(RL )
Tl g AEee FHl\ Tk

This implies the second equality. O

We can obtain the weighted dual graph of the exceptional set of the resolution A o :
W — X, by Propositions 8, 10 and [1.

ExampLE 6. Let D= B, in Example 2 in Section 1. If H = {id}, {o10,) or
{a102,07203), then X is a simple elliptic singularity of multiplicity 4, 2 or 1. If
H = {g10203), then X is a log-canonical singularity with a resolution the dual graph of
whose exceptional set is the following:

ExampLE 7. Let n =2 and let D = 2D + 2D, + 2D3 + 2Dy, where D;, D,, D3 and
Dy are the divisors on Y = {(z1,23) € C?||z1|,|z2| < 1} defined by z; =0, z; + 23 =0,
22 =0 and z, —i—zf =0, respectively. If H = {0}, {og1020304) or {g107), then X is a
cusp singularity with a resolution the dual graph of whose exceptional set is the
following:

If H:<0'10'20'3>, <O'10'20'3,0’20’30’4> or <010’20‘3,0’10’20‘4>, then X 1s a log-canonical
singularity with a resolution the dual graph of whose exceptional set is the following:



44 H. TSuCHIHASHI

oL ooaoodo

4. Quasi-Gorensteiness.

Let Y be an open neighborhood of 0 in C”, let D be a divisor on Y and let

u:Y — Y be the Abel covering constructed as in Section 2. Since Y is the analytic
subset in C* x Y defined by w' — fi =---=wl — f{ =0,

w(dzy ndzy A -+ A dzy)

rn—1_rmn-1 re—1
Wl WZ ce Wy

¢ =

is a nowhere vanishing holomorphic n-form on Yy, =x '(Yy) and oip=
exp(2nv/—1/r;)¢, where (z1,z2,...,z,) is a local coordinate system of Y and
Yo = Y\Sing(D,q). Let A: W — Y, be a universal covering and let y: Gal(W/Y,)
— C* be the composite of the quotient map Gal(W/Y,) — Gal(Y,/Y,) and the ho-
momorphism Gal(Yy/Yy) — C* sending o; to exp(2nv/—1/r;). Then g*(1*¢) =
%(9)(2*¢) for g e Gal(W/Y,). On the other hand, for any Galois covering 7: X — Y
with B, = D, there exists a subgroup H of Gal(W/Y,) with 7 '(Y,) ~ W/H, by
Theorem 6. Then we have:

PROPOSITION 12. X is a quasi-Gorenstein singularity, if and only if H < ker(y).
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