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Abstract. In both ordinary and equivariant 3-dimensional topology there are strong

uniqueness theorems for connected sum decompositions of manifolds, but in ordinary

higher dimensional topology such decompositions need not be unique. This paper

constructs families of manifolds with smooth group actions that are equivariantly almost

di¤eomorphic but have infinitely many inequivalent equivariant connected sum repre-

sentations for which one summand is fixed. The examples imply the need for restrictions

in any attempt to define Atiyah-Singer type invariants for odd dimensional manifolds with

nonfree smooth group actions. Applications to other questions are also considered.

The connected sum, which is essentially the simplest way of modifying the disjoint

union of two manifolds to make it connected, is one of the most fundamental con-

structions in geometric topology. A particularly striking di¤erence between low and

high dimensional topology is that connected sum decompositions are unique in low

dimensions but not in high dimensions (see [He, Ch. 7] and [JR] for low dimensional

cases and [BrSt ], [Wa, Cor. 1, p. 136] and the citations in [Br1, p. 23] for high

dimensional cases).

One basic property of connected sums is that the connected sum of an arbitrary

oriented n-manifold with an n-sphere is isomorphic to the original manifold, and a well

studied special case of the uniqueness question in ordinary di¤erential topology involves

connected sums of the form NaS where S is a so-called exotic sphere that is ho-

meomorphic but not di¤eomorphic to S n; special cases play an important role in the

classification of smooth simply connected manifolds with a given homotopy type (cf.

[Br3, Ch. V ]). The set of all oriented di¤eomorphism classes of exotic spheres forms an

abelian group Yn with respect to connected sum, and the extent to which such de-

compositions are unique is determined by a subgroup IðNÞHYn called the inertia group

of N n (cf. [Ko], [L1], [Wi1–3]). Since the groups Yn are finite [KM ], connected sums

of the special type yield a finite set of oriented di¤eomorphism classes.

In this paper we shall study equivariant analogs of these questions for smooth

actions of a compact Lie group G. Specifically, if N denotes a suitably equivariantly

oriented smooth G-manifold and x A N is a fixed point such that the G-representation

on the tangent space is equivalent to a fixed representation V, then one can form

equivariant connected sums at x with G-twisted V-spheres that are given by two copies

of the unit disk in V with the boundaries identified by an equivariant di¤eomorphism
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(cf. [MSc2, §2]). Once again the appropriately oriented G-twisted V-spheres form an

abelian group G
G
V with respect to connected sum if dimV G

V 2, and the extent to

which the equivariant connected sum decompositions are unique is determined by an

equivariant inertia group I GðN;AÞHG
G
V , where A denotes the component of NG

containing the point x.

Although this formally parallels the nonequivariant setting, one major di¤erence is

that the groups G
G
V are sometimes infinite, and therefore it is possible to obtain infinite

families of smooth G-manifolds in some cases (e.g., see [MSc2, Thm. 4.6]).

The main objective of this paper is to construct several families of G-manifolds N

for which G
G
V is infinite but there are only finitely many distinct oriented equivariant

di¤eomorphism classes of manifolds of the form NaS where S runs through all G-

twisted V-spheres. Here are more detailed statements of some main results.

Theorem 0.1. Let G ¼ S1, suppose that N k is a closed oriented k-manifold (with no

group action furnished) where kV 5 is odd, let mV 2, and let V ¼ R
k � C

m where G acts

trivially on the real coordinates and by complex multiplication on the complex coordinates.

Define a smooth action of G on N k � CP
m by taking the trivial action on the first factor

and the projectivization of the previously mentioned linear action over C
m on the second.

Then the group G
G
V is infinite, but there are only finitely many distinct oriented G-

equivariant di¤eomorphism classes of manifolds of the form N k � CP
m
aS where S

represents an element of G G
V . In fact, for each k and m it is possible to choose N k such

that there is only one oriented G-di¤eomorphism class.

Theorem 0.2. If H ¼ Zp where p is an odd prime and mV ðpþ 3Þ=2, then the

conclusions of Theorem 0.1 remain true with H replacing G provided k1 1 mod 4.

Numerous other examples of these sorts exist for actions of Zp, but the descriptions

require numerous digressions; for more details see Examples 2.6.1–2.6.3 and Theorems

2.7–2.9.

Although the existence of examples with infinitely many distinct representations as

equivariant connected sums has some interest in its own right, there is an independent

motivation from another direction; namely, these examples have negative implications

for any attempt to generalize the invariants of Atiyah and Singer [AS, p. 590] to odd

dimensional closed smooth G-manifolds with nonfree actions. If p is an odd prime,

then the results of [MSc2] yield a viable theory of such invariants for smooth Zp

manifolds whose equivariant tangent bundles have suitable stable triviality properties.

The examples of this paper show that one cannot form a nontrivial theory of generalized

Atiyah-Singer invariants unless some restrictions are placed on the class of manifolds

under consideration (see Theorem 3.1 and Examples 3.4.1–2); in fact, this is true even

when the value group for the invariants of [MSc2, §1] is highly nontrivial.

In the first two sections we construct examples with disconnected fixed point sets for

which nontrivial invariants of Atiyah-Singer type cannot be defined. The first section

describes some basic examples of equivariantly almost di¤eomorphic semifree S1-

manifolds for which there are only finitely many equivariant di¤eomorphism classes, and

the second section uses these examples and T. Yoshida’s work on surgery obstructions

of twisted products [Yo] to construct the various examples of smooth Zp-manifolds
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for which G G
V is infinite but there are only finitely many distinct oriented equivariant

di¤eomorphism classes of manifolds of the form NaS where S runs through all G-

twisted V-spheres. In Section 3 the negative implications for defining generalized

Atiyah-Singer invariants are discussed. Finally, Section 4 treats a related question;

specifically, we shall correct one case of the main theorem in [Sc6] using some examples

related to Section 1.
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1. Large S1-equivariant inertia groups.

Given a compact Lie group G and a finite dimensional G-representation V, we

define G G
V as in [MSc2, §2] to be the quotient of the group of all equivariant orientation

preserving self di¤eomorphisms of the unit sphere SðVÞ modulo those that extend to the

unit disk DðVÞ; as in [MSc2, Prop. 2.2], this set has a natural group structure that is

abelian if dimV G
V 2.

For the sake of clarity we shall review some material from [MSc2]. Given a class

a A G G
V one can construct an associated G-equivariantly twisted V-sphere SðaÞ by

choosing a representative h for a and gluing together two copies of the disk DðVÞ using

h. Elementary considerations show that the oriented equivariant di¤eomorphism type

of SðaÞ does not depend upon the choice of representative. If M is a closed oriented

smooth G-manifold containing a fixed point x for which the tangential representation of

G on the tangent space at x is equivalent to V, then one can form an equivariant

connected sum MaxSðaÞ of M with an arbitrary twisted G-sphere SðaÞ for an arbitrary

a A G G
V , at the point x. Letting A be the component of the fixed point set of M

that contains x, we define I GðM;AÞ to be the set of all a such that M and MaxSðaÞ

are orientation preservingly equivariantly di¤eomorphic such that A corresponds to

AaSðaÞG (this is automatic if there is only one fixed point component of the appro-

priate dimension). As in [MSc2] this set is a group that is called the equivariant inertia

group. By construction, I GðM;AÞ is trivial if and only if MaxSðaÞ and MaxSðbÞ
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are inequivalent for a0 b, and in general the equivariant inertia group measures the

nonuniqueness of equivariant connected sums.

If M is a closed smooth Zp-manifold (where p is an odd prime) and G ¼ Zp, then

[MSc2, Thm. 4.9] shows that the rank of an equivariant inertia group I GðM;AÞ is small

if the equivariant tangent bundle of M is equivariantly stably trivial. The results of the

next two sections will show that equivariant inertia groups can be relatively large if the

nonequivariant rational characteristic classes of M are nontrivial; in fact, we shall

construct examples for which I GðM;AÞ has finite index in G G
V . Since the construction

of such Zp-manifolds is based on a construction for semifree S1-manifolds with large

equivariant inertia groups, we shall construct the latter in this section and use them to

produce the examples of Zp-manifolds in Section 2. The results of this section are

closely related to those of [Ms4].

Preliminaries. We shall first summarize some basic properties of equivariant

Kervaire-Milnor groups for semifree S1 and S3 representations that will be needed.

If G is a compact Lie group, one can define equivariant Kervaire-Milnor groups YG
V

as in [Sc5, §5] or [Sc7, §II.3] for most representations V, and the G-twisted V-sphere

construction

½h� ! Sð½h�Þ :¼ DðVÞUh DðVÞ

defines a group homomorphism f from G G
V to YG

V . We shall prove that f is an

isomorphism if G ¼ S1 or S3, the action of G on V is semifree, and the dimension

restrictions

dimV G
V 5 dimV ÿ dimV G

V 2 � dimG þ 2

hold (see [Hs] for the case dimV ÿ dimV G ¼ dimG þ 1). This depends upon the

following geometric result:

Proposition 1.1. Let G ¼ S1 or S3, and let W be a compact smooth semifree G-

manifold such that

(1) qW splits into q0W
‘

q1W , and likewise for qW G,

(2) both W and W G are simply connected h-cobordisms,

(3) dimW G
V 6 and dimW ÿ dimW G

V 4 if G ¼ S1 and 8 if G ¼ S3.

Then W is G-di¤eomorphic to q0W � ½0; 1�.

The proof is analogous to Rothenberg’s proof of an equivariant s-cobordism

theorem [Rbg, Thm. 3.4, p. 291] (see also [Ha]): First one observes that W G
G q0W

G �

½0; 1� by the simply connected h-cobordism theorem, then one thickens this to a tubular

neighborhood N of W G, and finally one extends to all of W by applying the simply

connected h-cobordism theorem to ðW ÿ IntNÞ=G. r

Corollary 1.2. If G ¼ S1 or S3 and V is a semifree G-representation satisfying

dimV G
V 5 and dimV ÿ dimV G

V 2 dimG þ 2, then the map f determines an iso-

morphism from G G
V to YG

V . r

If G and V are as above and G acts semifreely on a closed oriented smooth manifold

M such that the tangential representation at a component A of MG is V, then one can
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define I GðM;AÞ as in [MSc2, §2] (see also the preceding discussion), and the proof that

I GðM;AÞ is a subgroup of YG
V goes through unchanged.

The main results. Since we are interested in examples of G-manifolds with infinite

equivariant inertia groups and the results of [BP ] imply that YG
V is finite if V is even-

dimensional, for the rest of this section we shall assume that dimV is odd.

Suppose as before that G ¼ S1 or S3, and let V be a semifree G-representation such

that dimV G
V 5 and dimV ÿ dimV G

V 2 � dimG þ 2 (i.e., 4 if G ¼ S1 and 8 if G ¼

S3). For each V as above we shall construct relatively simple examples of smooth

semifree S d -manifolds (where d ¼ 1 or 3) such that the tangent space representation at

points in the component AHMG is given by V and I GðM;AÞ has finite index in

YG
V . Since the groups YG

V nQ are often nonzero by the results of [BP ], it follows in

particular that I GðM;AÞnQ0 0 in these cases.

The statement of the result requires some notation. Let L denote the complex

numbers or quaternions and let d ¼ dimRLÿ 1, so that S d is the unit sphere in L.

Consider the linear action of S d on LPm defined by

g � ½w0 : � � � : wm� ¼ ½w0 : � � � : wmÿ1 : gwm�

where g A S d and ½ÿ : � � � : ÿ� denotes the standard homogeneous coordinates on

LPm
:¼ Lmþ1 ÿ f0gÞ=ðright mult: by Lÿ f0gÞ:

ÿ

The fixed point set of this action is the union of the standardly embedded LPmÿ1 (last

homogeneous coordinate ¼ 0) and the point ½0 : � � � : 0 : 1�. Let V be the semifree S d -

representation Rk lLm where S d acts trivially on the first coordinate and by scalar

multiplication on the second.

The statement of the main result requires some additional information about the

groups YG
V . Specifically, the exact sequence for YG

V (see [Sc4, (6.2)]) contains a map

gG : hSkþ1ðLP
mÿ1Þ ! YG

V

given by taking a homotopy equivalence

h : ðW ; qWÞ ! ðDkþ1 � LPmÿ1;S k � LPmÿ1Þ

such that hjqW is a di¤eomorphism, lifting h to a G-equivariant homotopy equivalence

of principal G-bundles

EðhÞ : ðW 0; qW 0Þ ! ðDkþ1 � Sðdþ1Þmÿ1;S k � Sðdþ1Þmÿ1Þ

such that EðhÞjqW 0 is an equivariant di¤eomorphism and forming

SðhÞ ¼ S k �Dðdþ1Þm UqEðhÞ W
0:

The results of [BP ] show that gG nQ is an isomorphism.

Theorem 1.3. In the setting above, suppose that mV 2 and kV 5, and let N k be

a closed oriented k-manifold. Then I GðLPm �N; fpt:g �NÞ contains the subgroup

gGðhSkþ1ðLP
mÿ1ÞÞ, where gG is given as above.
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Corollary 1.4. Under the given conditions I GðLPm �N; fpt:g �NÞ has finite

index in YG
V .

This follows because gG nQ is bijective by the results of [BP ]. r

Proof of Theorem 1.3. Let S represent an element of YG
V such that the

equivariant normal bundle of SG in S is (equivariantly) trivial. By construction every

class in the image of gG has such a representative; in fact, if dimV > 2 dimV G then all

classes have such representatives (cf. [Br2] if G ¼ S1, and modify the argument using

[BeS, §11] if G ¼ S3).

By Corollary 1.2 every S representing a class in YG
V is obtained by pasting two

copies of DðVÞ together by an equivariant self-di¤eomorphism of SðVÞ. If we assume

that the equivariant normal bundle of SG in S is equivariantly trivial, then one can

choose the equivariant di¤eomorphism f : SðVÞ ! SðVÞ within its equivariant isotopy

class so that f maps a tubular neighborhood of SðV GÞ �DðVGÞ, where VG ¼ V=V G

as usual, to itself by f G� identity.

Let N̊ be the closed complement of some smoothly embedded k-disk in N, and

attach DðVGÞ� N̊ to SðVÞ � ½0; 1� along DðVGÞ � S kÿ1 via the natural equivariant

embedding

DðVGÞ � S kÿ1 ,!SðVÞ ¼ SðVÞ � f1gJSðVÞ � ½0; 1�:

Suppose now that SG belongs to the nonequivariant inertia group IðNÞ. If

h : NaSG ! N is an orientation-preserving di¤eomorphism, it is well known that one

can find h 0 isotopic to h such that h 0 induces a di¤eomorphism of N̊ to itself such

that qh 0 ¼ f G (e.g., see [Kr, §11C, p. 108]). One can then define an equivariant self-

di¤eomorphism f1 on the resulting S d -manifold, say W1, by taking f� identity on SðVÞ�

½0; 1� and identity �h 0 on DðVGÞ� N̊; strictly speaking one must also round corners equiv-

ariantly, but this can be done by standard considerations. The boundary of W1 has

two components, one of which is SðVÞ � f0g and the other of which is a free S d -manifold

we shall call P. The orbit map P ! P=S d is a principal bundle projection, and thus we

can form W2 ¼ W1 Uq P�G Ddþ1. Clearly f1 induces an equivariant self-di¤eomorphism

of P, and one can extend this to P�G Ddþ1 by taking a balanced product with the identity;

using this extension we can also extend f1 to an equivariant self-di¤eomorphism f2 of W2

whose restriction to qW2 GSðVÞ � f0g is equal to f.

Elementary considerations show that the G-manifold W2 is equivariantly di¤eo-

morphic to LPm �N ÿ IntDðVÞ, where DðVÞ is a linear neighborhood of ðp0; yÞ with

p0 given by the isolated fixed point of the action on LPm and y arbitrary. Define an

equivariant orientation-preserving di¤eomorphism F : ðLPm �NÞaS ! LPm �N by

the following composite:

ðLPm �NÞaS ���!
F

LPm �N

A

?
?
?
y

A

x
?
?
?

W2 U f DðVÞ ����!
f2 U id

W2 UDðVÞ

If we choose a suitable equivariant orientation on LPm �N, then F will be equivariant

orientation preserving because h and h 0 preserve equivariant orientations. r
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A result related to Corollary 1.4 is obtained in [Ms4] by a di¤erent method.

The proof of Theorem 1.3 in fact yields a strengthening of Corollary 1.4.

Theorem 1.5. In the setting of Theorem 1.3, the equivariant inertia group

I GðLPm �N; fpt:g �NÞ

contains the subgroup Y
G
V ðNÞ of all classes hSi such that hSGi A IðNÞ and the

equivariant normal bundle of S
G in S is equivariantly trivial.

Corollary 1.6. If kV 5, IðNÞ ¼ Yk and either of the conditions

(1) G ¼ S1 and m ¼ 2

(2) ðd þ 1Þm > k,

holds, then IðLPm �N; fpt:g �NÞ ¼ Y
G
V .

Corollary 1.7. If ðd þ 1Þm > kV 5 then there is a 1-connected G-manifold N k

such that I GðLPm �N k
; fpt:g �N kÞ ¼ Y

G
V .

Proof that 1.6 implies 1.7. The results of Winkelnkemper [Wi1–3] prove the

existence of a closed 1-connected manifold N k such that IðN kÞ ¼ Yk (Note: The

subsequent proof in [Kr, §11C, pp. 108–109] is closely related to the argument proving

Theorem 1.3). Since we are assuming condition (2) in Corollary 1.6, we can apply the

latter to show that I GðLPm �N k
; fpt:g �N kÞ ¼ Y

G
V . r

Proof of Corollary 1.6. By Theorem 1.5 it su‰ces to show that Y
G
V ¼ Y

G
V ðNÞ.

Since IðN kÞ ¼ Yk it su‰ces to verify that the equivariant normal bundle of SG in S is

equivariantly trivial. If G ¼ S1 and m ¼ 2 this follows from [L2]. On the other hand,

if G ¼ S1 and 2m > k the result appears in [Br2], while if G ¼ S3 and 4m > k the result

can be found in [MSc1]. r

Derivation of Theorem 0.1. The results of [BP ] show that G G
V is infinite if G ¼ S1

and V ¼ Rk lC m where kV 5 and mV 2. The statement about finitely many ori-

ented equivariant di¤eomorphism types follows from Corollary 1.4, and the existence of

examples for which there is only one class follows from Corollary 1.7. r

2. Large Zp-equivariant inertia groups.

For general choices of G and V one has canonical restriction maps resH : G
G
V !

G
H
resðV ;HÞ where H is a closed subgroup and resðV ;HÞ is the restriction of the G-

representation to H. By Corollary 1.2 we can view resH as a homomorphism from Y
G
V

to Y
H; s

resðV ;HÞ if G and V satisfy the conditions of the corollary and H is a finite subgroup.

If G ¼ S3 and H ¼ S1 then results from [BP ] imply that resðS1 ! S3
;VÞnQ : Y

G
V nQ

! Y
H
resðV ;HÞ nQ is injective.

Suppose now that M is an equivariantly oriented G-manifold such that the

component A of the fixed point set MG has tangential representation V, where dimV G

V 1. If H is a closed subgroup of G such that V H ¼ V G, then A is also a component

of MH and there is an elementary but important relationship between the G- and H-

equivariant inertia groups of ðM;AÞ.
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Proposition 2.1. In the notation of the preceding paragraph the restriction map

resH : G G
V ! GH

resðV ;HÞ sends I GðM;AÞ into (but not necessarily onto) I HðM;AÞ.

If G acts semifreely and H is a nontrivial subgroup then the hypothesis on MH

automatically applies. Since the ranks of the S1-equivariant inertia groups of the

semifree S1-manifolds N k � CP
m are large by Theorem 1.3, it is natural to consider the

implications of Proposition 2.1 in this case if, say, H ¼ Zp where p is prime. Results of

T. Petrie [P ] on the restriction map yield the following conclusion:

Theorem 2.2. Let kV 5 be odd, let mV 2, let p be an odd prime, and assume that

mV ðpþ 3Þ=2. If N k is an arbitrary closed oriented manifold, H ¼ Zp, and V is the

restriction of the linear semifree S1-action on Rk lC m, then the codimension of

I HðN k � CP
m;N k � fpt:gÞnQ in Y

H; s
V nQ is

0 if k1 1 mod 4

U 1 if k1 3 mod 4.

�

Proof. If k þ 10 2m then by [MSc2, Prop. 3.2] it will su‰ce to show that

I HðN k � CP
m;N k � fpt:gÞnQ

contains the image of ~LLs
kþ2mþ1ðHÞnQ. Let G ¼ S1 and consider the following

commutative diagram

hSkþ1ðCP
mÿ1Þ ���!

gG
YG

V
?
?
?
y
B!

?
?
?
y
resH

~LLs
kþ2mþ1ðHÞ ���!

~DD
shSkþ1ðLðVHÞÞ ���!

gH
Y

H; s
V

in which B! is defined by taking the induced circle bundle whose first Chern class comes

from p times the generator in H 2ðCP
mÿ1;ZÞ. As in [MSc2], VH denotes the restriction

of the free S1 representation on C m and LðVHÞ is the lens space SðVHÞ=H. The results

of Petrie [P ] show that

ImageB! nQK Image ~DDnQ

if 2mV pþ 3. By Theorem 1.3 and Proposition 2.1 we know that the image of resH n

Q lies in I HðN � CP
m;N � fpt:gÞnQ, and therefore a diagram chase shows that the

image of gH
~DDnQ is also contained in I HðN � CP

m;N � fpt:gÞnQ. This completes

the proof if k þ 10 2m.

Suppose now that k þ 1 ¼ 2m. As noted in [MSc2, §3] the exact sequence in the

bottom row of the commutative diagram extends to the right with a term of the form

pkðFHðVHÞ;CHðVHÞÞlYk (notation as in [MSc2, §3]), and the proof of [MSc2, Prop.

3.2] is based on the finiteness of pkðFHðVHÞ;CHðVHÞÞ when k þ 10 2m. In particular,

if pkðFHðVHÞ;CHðVHÞÞ is finite whenever VH ¼ V=V H is C m and k ¼ 2mÿ 1, then one

can use the method of [MSc2, Prop. 3.2] to obtain the same conclusion as before; note

that CHðVHÞ is the unitary group Um in this case. Consider the following commutative
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diagram, in which the horizontal arrows are given by evaluation at the basepoint:

p2mÿ1ðUmÞ ���! p2mÿ1ðFHðC
mÞÞ

?
?
?
y
e�

?
?
?
y
e 0�

p2mÿ1ðS
2mÿ1Þ ���! p2mÿ1ðS

2mÿ1Þ

The results of [Sc2] imply that e 0� nQ is bijective, and basic results on the homotopy

theory of unitary groups also show that e� nQ is also bijective. Therefore pkðFHðVHÞ;

CHðVHÞÞ is finite, and by the remarks at the beginning of this paragraph this implies the

theorem in the exceptional case k þ 1 ¼ 2m. r

Corollary 2.3. In the setting above, if k1 3 mod 4 then there is an equivariantly

1-connected V-framable manifold M such that

I HðN � CP
maM;N � fpt:gaMHÞ

has finite index in Y
H; s
V .

Recall that a semifree G-space X is equivariantly 1-connected if both X and X G are

1-connected; see [MSc2, paragraph preceding Prop. 4.8] for the concept of V-framed

manifold.

Sketch of proof. Let M be an example with a connected fixed point set given by

[MSc2, Prop. 5.1], so that I HðM;MHÞnQ is not contained in the image of TV nQ,

where TV ¼ gH � ~DD in the first paragraph of the proof of Theorem 2.2. Since

I HðN � CP
m;N � fpt:gÞnQ contains the latter, one can use the elementary identity

I HðMaN;AaBÞK I HðM;AÞ þ I HðN;BÞ

to show that I HðN � CP
maM;N � fpt:gaMHÞ has finite index in Y

H; s
V . r

Examples with other tangential representations. Several features of the

examples in Theorem 2.2 lead naturally to further questions. In particular, since the

tangential representations at fixed points are restrictions of semifree S1-representations,

one can ask whether similar examples exist for other Zp-representations. Furthermore,

since one component of the fixed point set has codimension 2, one can ask whether

similar examples exist for which the Standard Gap Hypothesis holds. In a related

direction, since the fixed point sets consist of two components, one can ask whether

similar examples exist with connected fixed point sets.

We shall construct examples in such cases by combining Theorem 2.2 with results

of T. Yoshida [Yo] (and subsequent observations in [DS, §III.1] and [Ya]) together with

the following idea that is implicit in [RT2, §2]:

Proposition 2.4. Let G ¼ Zp where p is an odd prime, and let M be a closed 1-

connected smooth G-manifold such that M is odd dimensional, each component of MG has

dimension V5, the action is e¤ective, and M ÿMG is simply connected. Let V be the

tangential representation at some component A of MG for which dimV ÿ dimV G
V 4.

Then there is a commutative diagram of the form
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~LLs
nþ1ðGÞ ����!

j
L

s;BQ
nþ1 ðDðVÞ;SðVÞÞ ����!

c!
A

L
s;BQ
nþ1 ðMÞ

¼

?
?
?
y

D0ðVÞ

?
?
?
y

D0ðMÞ

?
?
?
y

~LLs
nþ1ðGÞ ����!

T 0
V

S
s;BQ
G ðDðVÞ;SðVÞÞ ����!

b!
A

S
s;BQ
G ðMÞ

¼

?
?
?
y

F

?
?
?
y

CLS

?
?
?
y

~LLs
nþ1ðGÞ ����!

TV
Y

G; s
V ����!

ðM;AÞa
DþðMÞ

in which

(1) j is the map in the Orbit Sequence for L
s;BQ
nþ1 ðDðVÞ;SðVÞÞ,

(2) c!A and b!A are maps from the Browder-Quinn simple surgery sequence for the pair

ðDðVÞ;SðVÞÞ to the corresponding sequence for M that are given by modifying a

structure on a closed linear disk neighborhood of a point in A,

(3) D0ðVÞ and D0ðMÞ are maps in the appropriate Browder-Quinn surgery sequences,

(4) TV is the composite described in the proof of Corollary 2.3,

(5) F is a forgetful (1restriction) homomorphism as in Section 1,

(6) DþðMÞ denotes the set of G-oriented equivariant di¤eomorphism classes of closed

smooth G-manifolds that are G-simple homotopy equivalent to M,

(7) CLS takes a Browder-Quinn structure to its oriented equivariant di¤eomorphism

class,

(8) ðM;AÞa denotes the connected sum construction.

Sketch of proof. For each subsequence the proof of commutativity is a fairly

straightforward exercise. The composite c!A � j is merely the canonical map in the orbit

sequence for L
s;BQ
nþ1 ðMÞ because M ÿMG is 1-connected, and therefore this map

does not depend on A; in other words, if X is another component of MG then

c!A � j ¼ c!X � j. r

The necessary input from [Yo] can be stated in a purely formal manner.

Theorem 2.5. Let G ¼ Zp where p is an odd prime, and let M be a closed 1-

connected smooth G-manifold such that M is odd dimensional, each component of MG has

dimension V5, the action is e¤ective, and M ÿMG is simply connected. Let V be the

tangential representation at some component A of MG for which dimV ÿ dimV G
V 4.

Let P be a closed 1-connected smooth G-manifold of dimension 4l > 0 such that

dimPÿ dimPG
V 4 and the equivariant Witt invariant of P is equal to that of the unit

form (Z, mult.) in the Witt ring of Z½G�. If B is a component of P with tangential

representation W and the image of TV nQ lies in I GðM;AÞnQ, then the image of

TVlW nQ lies in I GðM � P;A� BÞnQ.

As in [Yo], the equivariant Witt ring WþðZ½G�Þ is given by considering all

Gunimodular quadratic forms on torsion free finitely generated abelian groups, and then

factoring out by metabolic forms ðM; jÞ that contain a submodule K with rank equal to

half that of M such that the form is zero on K. Direct sum and tensor product make

this into a commutative ring with unit, and the multiplicative unit is given by (Z, mult.).
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Proof. Note first that the hypotheses of Proposition 2.4 for ðM;AÞ imply the

corresponding properties for ðM � P;A� BÞ provided we replace V by V lW . This

yields a commutative diagram as in 2.4 with nþ 4l replacing n, V lW replacing V,

and ðM � P;A� BÞ replacing ðM;AÞ. The methods of [BQ] yield the following

commutative diagram in which m is the Yoshida twisted product map for P as defined

in [Yo]:

~LLs
nþ1ðGÞ ����!

m ~LLs
nþ4lþ1ðGÞ

?
?
?
y

?
?
?
y

L
s;BQ
nþ1 ðMÞ ����!

�P
L

s;BQ
nþ4lþ1ðM � PÞ

?
?
?
y

?
?
?
y

S
s;BQ
G ðMÞ ����!

�P
S

s;BQ
G ðM � PÞ

Since the Witt invariant of P is the unit, the main result of [Yo] implies that m is an

isomorphism.

By hypothesis there is a subgroup EV H ~LL
s

nþ1ðGÞ of finite index such that TV ðEV Þ

lies in I GðM;AÞ. If a A EV let SV represent T 0
V ðaÞ A S

s;BQ
G ðDðVÞ;SðVÞÞ and let SVlW

represent T 0
VlW ðaÞ A S

s;BQ
G ðDðV lWÞ;SðV lWÞÞ. A chase of the diagram above

and the related diagrams from Proposition 2.4 (for both M and M � P) shows that

ðMaSV Þ � P is G-orientation preservingly equivariantly di¤eomorphic to ðM � PÞa

SVlW and that one has an equivariant di¤eomorphism of this type that sends ðAaSG
V Þ

�B to ðA� BÞaSG
VlW . Let

f1 : ðMaSV Þ � P ! ðM � PÞaSVlW

be such a map. Since ½SV � A I GðM;AÞ by our hypotheses, there is also an equivariant

di¤eomorphism f2 : ðM;AÞaSV ! M such that f2ðAaSG
V Þ ¼ A. If we define h to be

the composite ð f2 � idPÞ � f ÿ1
1 , then it follows immediately that h defines a di¤eo-

morphism from ðM � P;A� BÞaSVlW to M � P such that ðA� BÞaSG
VlW corre-

sponds to A� B. Since m is bijective it follows that mðEV Þ also has finite index in
~LL s
nþ4lþ1ðGÞA ~LL s

nþ1ðGÞ; if we combine these observations we see that the subgroup

I GðM � P;A� BÞnQ contains the image of TVlW nQ. r

Here are a few examples for Theorem 2.5 that are important for our purposes. More

precisely, we shall give examples of closed 1-connected smooth G-manifolds of di-

mension 4l > 0 such that dimPÿ dimPG
V 4 and the equivariant Witt invariant of P is

equal to that of the unit form (Z, mult.) in the Witt ring of Z½G�.

Example 2.6.1. If X is any smooth G-manifold, then as in [DS ] one can construct

a smooth G-manifold X " G by taking the product of jGj ¼ order of G copies of X with

itself and letting G act by permuting the coordinates cyclically. If P ¼ CP2 " G then

Theorem 2.5 applies to P by the results of [DS, §III.1] or [Ya]. Note that PG is the

diagonal copy of CP2. This gives an example for s ¼ jGj; one can obtain examples for

l ¼ t � jGj > jGj by using other examples of periodicity manifolds from [DS ], or more

simply one can just take a product of t copies of P.
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Example 2.6.2. Let jC j denote the trivial representation on C , let W be a 2l-

dimensional complex G-representation, and consider the G-manifold CPðWÞ on CP
2l ¼

SðWl jC jÞ=S1 given by factoring on the scalar multiplication of S1 from the linear G-

action on SðWl jC jÞ.—In general CPðWÞG has many components, one of which is

given by CPðWGÞ. The tangential representation for the latter is merely W, and because

of this we shall call CPðWGÞ the principal component of the fixed point set.

Example 2.6.3. Let W be the 3-dimensional complex representation given by

g � ðz1; z2; z3Þ ¼ ðgaz1; g
bz2; g

cz3Þ

where a; b; c are distinct integers between 0 and p (recall that p is prime, so they are

automatically relatively prime to p). Then the Zp-action on SðWÞ determines a well

defined action on the quotient CP
2 ¼ SðWÞ=S1 that we shall call CP

2ða; b; cÞ. This

action has three isolated fixed points, and the tangential representations at these fixed

points are R-equivalent to direct sums of irreducible representations on C of the form

ðg; aÞ ! grz, where r lies in the set fbÿ a; cÿ a; bÿ cg.

Realizing tangential representations. One can use Theorems 2.2 and 2.5 to

construct pairs

ðM;A ¼ component of MGÞ

with large equivariant inertia groups and more or less arbitrary normal representations

at A; by definition, the normal representation is the nontrivial part of the tangential

representation. As before let G ¼ Zp where p is an odd prime.

Notational convention. If r is an integer that is relatively prime to p (an odd

prime by assumption) and F is a Zp-action on an object Y, define a new action crF

on Y by the formula

c rFðg; yÞ ¼ Fðg r; yÞ:

It follows immediately that the fixed point sets of the new and old action are equal;

furthermore, if F is a smooth action on a manifold then so is c rF. This construction

merely yields the usual Adams operation if Y is a linear representation.

Theorem 2.7. Let G ¼ Zp where p is an odd prime, let the irreducible unitary

representations Wr ð1U rU ðpÿ 1Þ=2Þ be given by ðg; vÞ ! gr � v, and let V be an odd-

dimensional G-representation of the form

Rk l
P

mrWr

ðtrivial action on RkÞ

such that mrV ðpþ 3Þ=2 for at least one choice of r and the number of r for which mr is

odd is less than k=2. Then there is a closed oriented smooth G-manifold M such that MG

has a component A with tangential representation V and equivariant inertia group

I GðM;AÞ satisfying I GðM;AÞnQI Image TV nQ.

Note that Theorem 2.7 automatically applies if kV p and dimV ÿ dimV G
V

ðp2 þ 1Þ=2, for if V does not contain ðpþ 3Þ=2 summands of any irreducible repre-
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sentation then V contains at most ðpþ 1Þ=2 summands of each irreducible type. Since

there are ðpÿ 1Þ=2 di¤erent types this means that the decomposition of VG into ir-

reducible summands has at most ðp2 ÿ 1Þ=4 irreducible factors, and since each nontrivial

irreducible factor is 2-dimensional this implies that dimVG U ðp2 ÿ 1Þ=2.

Proof of Theorem 2.7. Choose a specific r0 such that mr0 V ðpþ 3Þ=2 and define

erðV ; r0Þ ¼

0 if r ¼ r0

0 if r0 r0 and mr is even

1 if r0 r0 and mr is odd.

8

>

<

>

:

Define lðk;V ; r0Þ ¼ k ÿ 2
P

r erðV ; r0Þ; for the sake of notational simplicity we shall call

this l. Form the product manifold

Nl �
Y

r

CPðmrWr þ erðV ; r0ÞjC jÞ

where Nl is an arbitrary closed oriented smooth manifold (with trivial Zp-action). If A

is the product of Nl with the principal components of the fixed sets of the G-manifolds

CPðmrWr þ erðV ; r0ÞjC jÞ then the tangential representation at A is equivalent to V.

Let W ¼ Rl lmr0Wr0 , and let U ¼ Rl lmr0W1. By construction W ¼ c�
r0
U , and

similarly Nl � CPðmr0Wr0Þ is equal to the smooth G-manifold c�
r0
ðNl � CPðmr0W1ÞÞ. By

Theorem 2.2 we know that I GðNl � CPðmr0W1Þ;N
l � fpt:gÞnQ contains ðImage TV Þ

nQ, and therefore the elementary properties

(1) M1 G GM2 ) c rM1 GG c rM2,

(2) ðc rM1;A1Þaðc rM2;A2ÞGG ðcrM1ac rM2;A1aA2Þ,

imply that I GðNl � CPðmr0Wr0Þ;N
l � fpt:gÞnQ contains ðImage TV ÞnQ. Repeated

applications of Theorem 2.5 to the examples of 2.6.2 now imply that I GðM;AÞnQ

contains image TV nQ. r

Realizing the Standard Gap Hypothesis. In the examples of Theorem 2.7 the

Standard Gap Hypothesis (e.g, see [DS ]) may hold for some components of MG, but

usually there are also components for which this condition does not hold. There are

several ways of modifying the preceding examples to realize the Standard Gap Hy-

pothesis. In particular, the results of [DS, §§III.1–2] suggest the following:

Theorem 2.8. Let G ¼ Zp where p is an odd prime, and let V be an odd dimensional

G-representation. Then for all su‰ciently large values of t there is a closed oriented

smooth G-manifold Mt such that MG
t has a component At with tangential representation

V l 4tR½G � (where R½G � is the regular representation) and equivariant inertia group

I GðMt;AtÞ satisfying I GðMt;AtÞnQI ImageTVl4tR½G � nQ.

Proof. For all su‰ciently large values of t the fixed point set of V l 4tR½G � is

at least 5-dimensional and every nontrivial irreducible G-representation has multiplicity

Vðpþ 3Þ=2 in V l 4tR½G �. Let s0 be a specific value of this type, and use Theorem 2.7

to construct ðM;AÞ so that the tangential representation at A is V l 4s0R½G �. By [DS,

Thm. III.3.4, p. 94] there is a positive integer s1 V s0 such that tV s1 implies that

M � ðCP
2 " GÞ t satisfies the Standard Gap Hypothesis, and by Theorem 2.5 and
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Example 2.6.1 we then have

I GðM � ðCP
2 " GÞ t;A� ðCP

2Þ tÞnQI ImageTVltR½G � nQ

for all t > 0. Therefore one has examples of the desired type provided tV s1. r

The preceding construction has an important disadvantage; namely, as t increases

the multiplicity of every irreducible representation in V l 4tR½G � also increases linearly

with t. We would like to have examples of representations Vt such that dimVt ! y

but the multiplicities of most irreducible representations in Vt do not change. This can

be done if one is willing to sacrifice one feature of the examples in Theorem 2.8. For

the examples constructed in that proof the number of components of MG is constant as

t ! y, and the following result shows that one can exchange control over the size of

p0ðM
GÞ for control over the multiplicities over most of the irreducible representations

that arise as summands of Vt.

Theorem 2.9. Let G ¼ Zp where pV 7 is prime. Then in all su‰ciently large odd

dimensions n there are closed smooth 1-connected G-manifolds M with the following

properties:

(1) All components of MG are simply connected and at least 5-dimensional.

(2) The Standard Gap Hypothesis holds.

(3) If F is a finite set of G-representations that consists of the tangential repre-

sentations from all components of MG, then there are at most three inequivalent

nontrivial irreducible representations of G that have nontrivial multiplicities in some

representation V A F.

(4) If A is an arbitrary component of MG and V is the tangential representations at

points of A, then I GðM;AÞnQ contains the image of TV nQ.

Proof. Take one of the G-manifolds S k � CP
m from Theorem 2.2 and form the

product

Xr ¼ S k � CPðmW1Þ � CP
2ð1; 2; 3Þr

for an arbitrary integer rV 1. If kV 5 it follows immediately that (1) holds, and the

construction also implies that (3) holds. To prove that the Standard Gap Hypothesis

holds if r is su‰ciently large, notice that all components of X G
r have dimensions equal

to k or k þ 2mÿ 2 and that dimXr ¼ k þ 2mþ 4r; this implies the Standard Gap

Hypothesis provided

rV
k þ 2mÿ 1

4
:

Thus the manifolds satisfy (1)–(3), and in addition their dimensions are all su‰ciently

large integers congruent to k þ 2m mod 4 if r satisfies the inequality. Thus everything

reduces to proving that (4) holds for the manifolds Xr.

Let p0 be one of the three isolated fixed points in CP
2ð1; 2; 3Þ, and let W be the

tangential representation at the component S k � fp0g
r
HXr. If we apply Theorems 2.2

and 2.5 to Example 2.6.3, it follows that I GðXr;S
k � fp0g

rÞnQ contains ImageTW n

Q. This proves (4) for at least one component of X G
r . The following result will allow

us to extend this to other components.
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Lemma 2.10. Let M be a closed smooth 1-connected G-manifold, where G ¼ Zp

(pV 3 prime), and suppose that each component of MG is at least 5-dimensional with

dimM ÿ dimMG
V 4. Let A and B be components of MG with tangential repre-

sentations V and W respectively. Then the following diagram is commutative:

~LL s
nþ1ðGÞ ����!

T 0
V

S
s;BQ
G ðDðVÞ;SðVÞÞ

T 0
W

?
?
?
y

ðM;AÞa

?
?
?
y

S
s;BQ
G ðDðWÞ;SðWÞÞ ����!

ðM;BÞa
S

s;BQ
G ðMÞ

Proof that Lemma 2.10 implies Theorem 2.9. Let W be given as in the paragraph

before the statement of Lemma 2.10. Then the validity of (4) for B ¼ S k � fp0g
r

implies that ~LL
s

nþ1ðGÞ contains a subgroup EW of finite index such that TW ðEW ÞH

I GðM;BÞ.

Let I G0 ðM;BÞ is the subgroup of I GðM;BÞ described in [MSc2, Prop. 2.4], which

consists of all S for which there is an oriented equivariant di¤eomorphism MaxS ! M

that induces the same map of fixed point components as a certain canonical equivariant

homeomorphism MaxS ! M. By the previously cited result and the finite generation

of Y
G; s
W there is a subgroup E 0

W HEW of finite index such that TW ðE 0
W ÞH I G0 ðM;BÞ.

Let a A E 0
W be arbitrary, let SW represent T 0

W ðaÞ A S
s;BQ
G ðDðWÞ;SðWÞÞ, let SV

represent T 0
V ðaÞ A S

s;BQ
G ðDðVÞ;SðVÞÞ, and let tðSW Þ and tðSV Þ be canonical almost

di¤eomorphisms as defined in [MSc2, §2]. By Lemma 2.10 there is a G-orientation

preserving equivariant di¤eomorphism

f : ðM;BÞaSW ! ðM;AÞaSV

such that tðSW Þ and tðSV Þ � f induce the same map from p0ðððM;BÞaSW ÞGÞ to

p0ðM
GÞ.

On the other hand, since TW ðaÞ lies in I G0 ðM;BÞ there is a G-orientation preserving

equivariant di¤eomorphism h : ðM;BÞaSW ! M such that tðSW Þ and h induce the

same map from p0ðððM;BÞaSW ÞGÞ to p0ðM
GÞ. Combining these, we obtain a G-

orientation preserving equivariant di¤eomorphism h � f ÿ1
: ðM;AÞaSV ! M such that

tðSV Þ and h � f ÿ1 induce the same map from p0ðððM;AÞaSV Þ
GÞ to p0ðM

GÞ; the last

assertion follows from a diagram chase. Therefore TV ðE
0
W Þ is contained in I G0 ðM;AÞ.

Finally, since E 0
W has finite index in EW and I G0 ðM;AÞ has finite index in I GðM;AÞ

[MSc2, Prop. 2.4], it follows that I GðM;AÞnQ contains the image of TV nQ. Thus

(4) also holds for every other component of X G
r . r

Proof of Lemma 2.10. In Proposition 2.4 we constructed commutative diagrams

~LL s
nþ1ðGÞ ����!

j1
L

s;BQ
nþ1 ðMÞ

?
?
?
y

?
?
?
y
D0ðMÞ

S
s;BQ
G ðDðUÞ;SðUÞÞ ����!

ðM;CÞa
S

s;BQ
G ðMÞ
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in which j1 comes from the Orbit Sequence for L s;BQ
� ðMÞ and fU ;Cg can denote either

fW ;Bg or fV ;Ag. The lemma follows by splicing the two diagrams along the

composite map CLS � D0ðMÞ � j1. r

Remark. Lemma 2.10 can also be used to extend the conclusions of Theorems 2.7

and 2.9 to other components of the fixed point sets in most cases.

Connected fixed point sets. Since the results of [RT2] and [MSc2] on classi-

fication up to finite ambiguity assume that the G-manifolds in question have connected

fixed point sets, the examples of Theorems 2.7–2.8 and 3.4.1–3.4.2 are not included in

the setting of [RT2, bottom of p. 762]. However, results of B. Fine [F ] and con-

structions of Dovermann and Rothenberg [DR] strongly suggest that the program of

[RT2] goes through if one merely assumes that all fixed point sets MH are unions of 1-

connected manifolds, where H runs through all subgroups of G except f1g; in particular,

it should be possible to extend the equivariant simple rational homotopy theory of [RT1]

to objects with disconnected fixed point sets using the combinatorial machinery of [DR].

Of course, given an odd-dimensional G-representation V (as usual, G ¼ Zp), it

would also be enlightening to have examples of closed, equivariantly 1-connected

smooth G-manifolds M such that V is equivalent to the tangent space at fixed points and

I GðM;MGÞ has finite index in G
G
V . In general this appears to be di‰cult, and the

ultimate solution seems likely to require an understanding of cobordism of equivariant

di¤eomorphisms along the lines of [Kr]. On the other hand, if V is an odd dimensional

G-representation such that k ¼ dimV G and every nontrivial irreducible representation

has multiplicity at least ðk þ 1Þ=2 in V, then the reduced G-signature defect for the set of

equivariantly V-framable G-manifolds (cf. [MSc2, definition before Prop. 4.8]) is trivial

[MSc2, (1.1) and Cor. 1.2B]. In such cases [MSc2, Prop. 3.2] implies that G G
V nQ has

dimension 0 or 1 depending on whether k is congruent to 1 or 3 mod 4. It follows that

in such cases I GðM;MGÞ has finite index in G
G
V if k1 1 mod 4; furthermore, if k1

3 mod 4 and the orientation class of MG maps to zero in HkðM;QÞ, then [MSc2, Thm.

4.6] implies that I GðM;MGÞ likewise has finite index in G
G
V . For smooth G-manifolds

satisfying these conditions and the other assumptions of [RT2] there are only finitely

many equivariantly oriented di¤eomorphism classes of smooth G-manifolds that are

equivariantly orientation preservingly almost di¤eomorphic to a given example, and

therefore in such cases the invariants of [RT2] are a complete set of oriented equivariant

di¤eomorphism classification invariants up to finite ambiguity.

3. Implications for generalized Atiyah-Singer invariants.

As indicated in the introduction, the examples of this paper show that one cannot

form a nontrivial theory of generalized Atiyah-Singer invariants unless some restrictions

are placed on the class of manifolds under consideration (see Theorem 3.1); in fact, this

is true even when the value group for the invariants of [MSc2, §1] is highly nontrivial.

The crucial di¤erence between the examples of Section 2 and the class of manifolds

treated in [MSc2] is that the former have nontrivial rational characteristic classes while

the latter have trivial rational characteristic classes if one restricts to invariant tubular

neighborhoods of the fixed point set.
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The precise statements of results require some notation from [MSc2]. If G is a

finite group then RðG Þ is the ring of complex valued functions on G ÿ f1g, and RGðG Þ

is the complex subspace of functions satisfying f ðgÿ1Þ ¼ G f ðgÞ. Suppose now that

G ¼ Zp where p is an odd prime, and let V be an odd-dimensional G-representation.

Then JðVÞHRGðG Þ is the complex subspace spanned by the equivariant signature

defects of the sphere SðV lRÞ with all possible choices of partial equivariant framings

(complete descriptions of these notions appear in [MSc2, §1]). If F is a family of odd-

dimensional G-representations with the same dimension, then JðFÞ is the sum of the

subspaces JðVÞ over all V A F.

The following result provides an abstract nonexistence criterion for generalized

Atiyah-Singer invariants on certain families of compact smooth G-manifolds; we shall

use the examples of Section 2 to show that the abstract condition holds in several

di¤erent cases.

Theorem 3.1. Let G ¼ Zp where p is an odd prime, let F be a finite family of n-

dimensional G-representations where n is odd, and let M be a family of closed oriented

smooth G-manifolds such that F consists of the tangent space representations at fixed

points for all manifolds representing classes in M. Suppose further that M contains a

closed smooth G-manifold N such that I GðN;AÞ has finite index in G
G
U , where A is a

component of N G and U is the tangent space representation at points of A. Then there is

no proper subspace J �
HRGðG Þ for which one can define an invariant of Atiyah-Singer

type from M to RGðG Þ=J �.

As in [MSc2, (1.3.A)–(1.3.B)] an invariant of Atiyah-Singer type is understood to

be additive with respect to disjoint unions and connected sums along fixed point sets

and to satisfy the following additional condition: If M0 A M and ðW ;M0;M1Þ is an

equivariantly oriented G-cobordism such that the fixed point sets satisfy W G
AMG

0 � I ,

then f ðM1Þ ¼ f ðM0Þ þ gsgnGsgnGðWÞ, where gsgnGsgnGðWÞ denotes the image of the G-signature

mod J �.

Proof. Let G ¼ Zp and suppose that one has an invariant of the type de-

scribed. If for each V A F the linear sphere SðV lRÞ belongs to M then by [MSc2,

paragraph following Proposition 1.1] we know that J � contains JðFÞ; in fact, an

elaboration of this argument implies the same conclusion even if these spheres do not

belong to F provided each V A F is equivalent to a tangent space representation for

some manifold in M. Since the latter is assumed, it follows that J � contains JðFÞ in all

cases.

Let N, A and U be given as in the statement of the theorem. The assumption on

I GðN;AÞ and the results of [MSc2, §3] imply the existence of classes ½S1�; . . . ; ½Sr� in

Y
G; s
U such that their reduced G-signature defects span RGðZpÞ=JðUÞ over the complex

numbers and ½Sj� A I GðN;AÞ for all j.

If f is the invariant of Atiyah-Singer type whose existence is assumed, then

NaSj GN ðall jÞ

implies that

f ðNÞ þ f ðSjÞ ¼ f ðNaSjÞ ¼ f ðNÞ
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so that f ðSjÞ must be trivial in RGðG Þ=J � for all j. On the other hand, since J �
I

JðUÞ it follows that the set f f ðS1Þ; . . . ; f ðSrÞg spans RGðG Þ=J � over the complex

numbers, and this in turn implies that the quotient is zero. r

Examples where RGðG Þ=JðFÞ is large. Of course Theorem 3.1 has nontrivial

content only if J � is a proper subspace of RGðG Þ and there are closed equivariantly

oriented smooth G-manifolds satisfying the conditions of the theorem. Therefore we

shall describe two classes of examples for which dimRGðG Þ=JðFÞ > 0. In the second

class of examples the Standard Gap Hypothesis holds. In both cases the verification of

the dimension inequality is an elementary exercise. As usual F will denote a finite set

of G-representations that consists of tangential representations from all components of

MG where M is given in the context.

(3.2) In the setting of Theorem 2.7, if only d types of nontrivial irreducible rep-

resentations appear as direct summands of V, where d � 2dþ1 < pÿ 1 and M is the

example constructed for V in the proof of Theorem 2.7, and F is given as above, then

RGðG Þ=JðFÞ is nontrivial.

(3.3) In the setting of Theorem 2.9, if pÿ 1 > 4 � 3rþ1, and Xr is one of the examples

S k � CPðmW1Þ � CP2ð1; 2; 3Þr constructed in that theorem, and let F is given as above,

Then RGðG Þ=JðFÞ is nontrivial.

In (3.3) the Standard Gap Hypothesis holds if r is greater than some linear ex-

pression in k and m, so for each choice of k and m this yields an infinite set of primes

for which (3.3) applies and the Standard Gap Hypothesis holds.

If we combine the preceding observations with the results of Section 2 (and

especially with Examples 2.6.1–2.6.3), we obtain very specific classes of smooth G-

manifolds for which dimRGðG Þ=JðFÞ > 0:

Example 3.4.1. Let F be a finite family of n-dimensional Zp-representations that

are restrictions of semifree S1-representations, and suppose that ðpÿ 1Þ=2 is greater than

the cardinality of F. Let M be a family of closed oriented smooth Zp-manifolds such

that F contains the tangent space representations at fixed points for all manifolds

representing classes in M and M contains one of the examples S k � CPm, where kV 5,

mV 2, and mV ðpþ 3Þ=2. Then by Theorem 2.2 all the conditions of the theorem

hold except perhaps the nontriviality of RG=JðFÞ. To see the latter, observe that the

formula for Lðg; xÞ shows that JðVaÞ is 1-dimensional if Va is the restriction of a

semifree S1-representation. Since JðFÞ ¼
P

JðVaÞ it follows that dim JðFÞ cannot

exceed the number of representations in F, and therefore the hypothesis implies that

JðFÞ is a proper subspace of RGðG Þ=JðFÞ.

Example 3.4.2. Suppose that F satisfies the assumptions of (3.2) or (3.3) and that

M contains the examples described in these results. Then the theorem applies and the

subspaces JðFÞ are proper subspaces of RGðG Þ.

The results and examples of [MSc2] and this paper lead naturally to the following.

Question. Let M be an equivariantly oriented closed smooth G-manifold, and let F
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be a family of representations giving the equivalence classes of all tangent space rep-

resentations at fixed points of M, let A be a component of MG, and let V be the tangent

space representation at points of A. To what extent can one describe the image of

I GðM;AÞ in RGðG Þ=JðFÞ in terms of the equivariant characteristic classes of M?

The techniques of [MSc2] show that the image is zero if all such classes vanish on a

tubular neighborhood of the fixed point set, but the examples of this paper show that the

image is the entire codomain in some cases where the rational characteristic classes do

not vanish. In particular, it would be interesting to know if the image could be a

nonzero proper subspace.

4. Nonequivariant inertia groups and semifree circle actions.

Theorem 1.3 implies that the conclusion of [Sc6, Prop. 3.5 and Thm. II] in the 9-

dimensional case is incorrect, and the purpose of this section is to correct both the

statement and the proof in that case. The statements and proofs of the results in [Sc6]

for all remaining cases are una¤ected.

If aG
V denotes the subgroup of YG

V represented by G-manifolds S such that SG
GS q

and the equivariant normal bundle of SG in S is equivariantly trivial (cf. [BP ]), then the

following result is an immediate consequence of Theorem 1.5:

Proposition 4.1. Let res1 : Y
G
V ! YdimV be the homomorphism defined by forgetting

the group action, where G and V are given as in Theorem 1.5. Then for every closed

oriented smooth manifold N q the nonequivariant inertia group IðLPm �N qÞ contains

res1ða
G
V Þ.

In this section we are mainly interested in G G
V when G ¼ S1 and V ¼ R

3
lC

2; in

this case the formal analog of the exact sequence of [MSc2, Prop. 3.7] is the following:

� � � ! hS4ðCP2Þ !
gG

G G
V ! p3ðFGðC

2Þ;U2Þ ! hS3ðCP2Þ

Strictly speaking the exactness of this sequence does not follow from the statement of the

result in [MSc2], but the proof extends to the case under consideration, the most notable

exceptions being that G G
V must be viewed as mapping into G3 l p3ðFGðC

2Þ;U2Þ rather

than Y3 l p3ðFGðC
2Þ;U2Þ because the fixed point set must be a twisted 3-sphere; since

G3 is trivial, it follows that we can forget about it in the exact sequence.

There is an obvious forgetful homomorphism res1 as noted before, and if aG
V JG G

V

is defined as in the paragraph preceding Proposition 4.1, then results of [Da, Thm. 3.3,

p. 69] (see also [Ms1]) imply that res1 maps aG
V onto Y7. If we combine this with

Proposition 4.1, we obtain the following conclusion:

Corollary 4.2. If N 3 is a closed oriented 3-manifold, then IðCP2 �N 3Þ ¼

Y7.

Correction to [Sc6]. The preceding result is inconsistent with one case of [Sc6,

Prop. 3.5 and Thm II], so we shall indicate the repairs needed for the latter. For

reasons of space we shall not attempt to discuss the entire background here; needless to
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say, this is all covered in [Sc6]. We begin by stating the correct version of [Sc6, Prop.

3.5].

Proposition 4.3. Let C be a homotopy self equivalence of S3 � CP
k ðkV 2Þ

induced by an element of p3ðFGðC
kþ1ÞÞ that is not in the image of p3ðUkþ1Þ. Then C is

not homotopic—in fact, not normally bordant—to the identity if kV 3. On the other

hand, if k ¼ 2 and M 7 generates Y7 AZ28, then the composite of C with the canonical

homotopy equivalence fM : S3 � CP
2
aM ! S3 � CP

2 is homotopic to a di¤eomorphism

S3 � CP
2
aM ! S3 � CP

2.

As noted in [Sc6] the group p3ðFGðC
kþ1Þ;Ukþ1Þ is isomorphic to Z2 if kV 2, and

the canonical map from p3ðFGðC
kþ1ÞÞ is split surjective.

Proof of Proposition 4.3. (Sketch) The argument of [Sc6] for kV 3 is correct;

the mistake arises in analyzing the case k ¼ 2. Corollary 4.2 implies the existence of

some homotopy equivalence ~hh of S2 � CP
2 such that ~hh � fM is homotopic to a dif-

feomorphism. On the other hand, a result of L. Taylor implies that fM itself is not

homotopic to a di¤eomorphism (cf. [Sc6, Thm. 2.1]). Finally, a case by case analysis of

all homotopy self equivalences of S3 � CP
2 shows that either C � fM is homotopic to

a di¤eomorphism or else there is no self equivalence h such that h � fM is homotopic to a

di¤eomorphism. The only consistent alternative is that C � fM is homotopic to a

di¤eomorphism. r

This correction forces a corresponding modification of [Sc6, Thm. II]. Before

stating the corrected result, we recall that the Rochlin invariant (¼ Eells-Kuiper invariant

or m-invariant) of an integral homology 3-sphere S3 is given by expressing S3 ¼ qW 4

for some parallelizable 4-manifold W 4 and taking the signature of W mod 16 (the

signature of W is always divisible by 8; cf. [HNK]).

Theorem 4.4. (i) Suppose that qV 5 is odd and the Rochlin invariant of S3 is

nonzero. Then S3 is not the fixed point set of a semifree di¤erentiable S1-action on a

homotopy ð2qþ 3Þ-sphere.

(ii) If the Rochlin invariant of S3 is nonzero, then S3 is the fixed point set of a

semifree di¤erentiable S1-action on a homotopy 9-sphere. Every such homotopy 9-sphere

bounds a spin manifold but does not bound a parallelizable manifold.

The first statement is identical to [Sc6, Thm. II] for the cases listed, and the proof

in [Sc6] is correct as written, so it is only necessary to prove the second part of the

theorem.

Proof of 4.4(ii). As noted in the proof of [Sc6, (3.1)] there is a cobordism W1 such

that

(1) qW1 GS3 � CP
2 ‘S3 � CP

2
aM 7,

(2) the inclusions of S3 � CP
2 and S3 � CP

2
aM 7 induce isomorphisms in in-

tegral homology,

(3) W1 is simply connected.

Let h : S3 � CP
2
aM 7 ! S3 � CP

2 be a di¤eomorphism homotopic to C � fM , as in

the previous proposition, let W 0
1 be the principal S1 bundle over W1 whose first Chern
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class generates H 2ðW1Þ, let h 0 be an S1 equivariant di¤eomorphism of principal S1

bundles covering h, and form the smooth semifree S1-manifold

X 9 ¼ ðS3 �D6ÞUj W
0
1 Uh 0 ðD4 � S5Þ

where j : S3 � S5 ! q0W
0
1 ¼ S3 � S5 is the identity. It follows immediately that X 9

is a homotopy sphere, and by construction the fixed point set is S3.

To determine the di¤erential structure on the exotic sphere X 9 we shall use the

methods of [Sc3]. The latter associates a knot invariant to the pair (X 9, semifree S1-

action) with values in p3ðFGðC
3Þ;U3ÞGZ2 and the explicit construction of X 9 shows

that the knot invariant is the nontrivial class. By the results of [Sc3, §3] for G ¼ S1 the

di¤erential structure on X is given implicitly as follows: Take the suspension of the

nontrivial class in p3ðFGðC
3ÞÞ=Image p3ðU3Þ, form its suspension in p3ðFGðC

4ÞÞ=

Image p3ðU4Þ and let C 0 be an associated homotopy self equivalence of S3�

CP
3. Then C 0 � fX is homotopic to a di¤eomorphism (in this connection also see

[Ms3]). By the proof of [Sc6, (5.7b)] the image of X 9 under the Pontryagin-Thom map

Y9 ! pS
9 =Image JGZ2 lZ2 is the nonzero class represented by n3 A pS

9 . It follows

that X 9 bounds a spin manifold but does not bound a parallelizable manifold.

Suppose now that Y 9 is a homotopy sphere supporting a semifree di¤erentiable S1

action with S3 as its fixed point set, where the Rochlin invariant of S3 is 1. General

considerations as in [Sc1] show that Y bounds a spin manifold. It remains to show that

Y cannot bound a parallelizable manifold. The first step is to show that the knot

invariant cannot be trivial. If it were, then the results of [Sc3, §4] imply that the image

of Y under the composite Y9 ! pS
9 =Image JJ p9ðF=OÞ must belong to the image of the

map

w�
: ½S4

CP
2;F=O� ! ½S4S5;F=O� ¼ p9ðF=OÞ

induced by the fourth suspension of the usual orbit space projection w : S5 ! CP
2.

Since F=O is an infinite loop space and stably w is given by the composite S5 !
2n

S2
JCP

2 (cf. [Sc3, (4.15)]) it follows that the image of n3 in p9ðF=OÞ does not lie in the

image of w�. Similarly, if the knot invariant is nontrivial then the images of X 9 and

Y 9 in p9ðF=OÞ di¤er by an element of the image of w�, and the same computations

show that this di¤erence cannot be n3; but this means that Y 9 cannot bound a

parallelizable manifold. r

The problem considered above is a special case of an extremely recalcitrant question

in surgery theory.

Problem 4.5. Let f : X ! X be a simple homotopy equivalence on a closed

manifold X such that f is normally cobordant to the identity. Is f homotopic to a

homeomorphism? In the smooth category, if f is smoothly normally cobordant to the

identity, is f homotopic to a di¤eomorphism?

Proposition 4.3 and other known results (e.g., see [CS ], [KS ]) suggest that the

answers to such questions are often unpredictable. In view of the successful use of M.

Weiss’ visible surgery theory [We] to study problems of this type in [CS ] and [KS ], it
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would be enlightening to have an alternate proof of Proposition 4.3 with a similar

approach.
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