J. Math. Soc. Japan
Vol. 51, No. 3, 1999
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boundary conditions
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Abstract. We study the initial-boundary value problems and the corresponding sta-
tionary problems of the one-dimensional discrete Boltzmann equation in a bounded
region. The boundary conditions considered are of mixed type and involve both the
reflection and diffusion parts. It is shown that a unique solution to the initial-boundary
value problem exists globally in time under the general situation that the reflection parts
of both the boundary conditions do not increase the number of gas particles. Fur-
thermore, it is proved that stationary solutions exist under the restriction that the re-
flection part of the boundary condition on one side really decreases the number of gas
particles. This restriction plays an essential role in proving the existence result.

1. Introduction.

This paper is concerned with the study of the global existence and uniqueness
of solutions to the initial-boundary value problems for the one-dimensional discrete
Boltzmann equation in a bounded region 0 < x <1, and also of the existence of

solutions to the corresponding stationary problems.

We consider the following initial-boundary value problem for the one-dimensional

discrete Boltzmann equation in the region 0 < x < I:

( OF oF
o PV =AF), 0<x<l >0,
(1.1) F(x,0) = Fy(x), 0<x<]1,

FH(0,1)=B"F~(0,1) +b™ (1), >0,
F~(l,1)=B F*(1,t) +b (1), t>0,

where
F ] 0 A (F) Fio
F = ], V= , A(F) = ; . Fy= :
Fm 0 Um Am(F) FmO

—

1.1

1

1.1

2

—
—

w2

(1.1)
(1.1)
(1.1)
(1.1)

4

Here each F; = Fj(x,t) denotes the mass density of gas particles with the (constant) i-th
velocity at time ¢ and position x, v; is the x-component of the i-th velocity, and 4;(F) is

a collision term given explicitly as
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1

Ai(F) == _(A[jFiFi — A FiF), (1.2)
Ukl
where the summation is taken over all j, k,/ =1,...,m; ¢, is a positive constant and A},
are nonnegative constants. Let A ={1,... ,m} and put
Ay ={ied;jv; >0}, A_={iedv; <0}, Ay={ie v, =0} (1.3)

Then F* = (F));c ., BT = (Byj)icy, jeas With By being nonnegative constants, and
b* = (b);c4, Wwith b; = b;(t) being nonnegative functions. In what follows, without
loss of generality, we may assume that

Ay =A{1,...omy}, A_={my+1,....m.+m_}, Adg={my+m_+1,... m}

and put m' =my +m_ and m=m, +m_ +my. Also, we put A"’ =A,UA_ and

O Bt + F+
B = - , b= bﬁ , F'= ). (1.4)
B 0 b F
Throughout the paper we assume the following conditions (A) and (B) for the problem
(L1):
(A) The A,’cll are nonnegative constants satisfying
(A1) Af,=A4) = 4] foranyi,j k€4,

(A2) 4] = Al forany i, j,k,l € 4,

(A3) wvi4+v,—v—v, =0 foranyi,jk,/e A such that A,lj, # 0.

(B) The Bj are nonnegative constants such that

BT I
(clvl,...,cm/vm/)( 7 ) <0, (clvl,...,cm/vm/)(B_) > 0.

Here, for a k x n matrix 4, A > O (resp. A > O) means that every element of A is
nonnegative (resp. strictly positive). A4 > B and A > B are defined similarly. We note
that (A1) represents the indistinguishability of gas particles, (42) the reversibility of
collisions, and (A3) the conservation of momentum (in the x-direction) in the collision
process (or, in other words, v = (v;);. , is a collision invariant). The inequalities in (B)
are rewritten as

cjv; + Z civiB; <0 forany jed_, (1.5),
l.GA+

cjvj + Z civiB;j >0 forany je A.. (1.5),
ied_

These inequalities imply that the reflection parts of the boundary conditions (1.1); and
(1.1), do not increase the number of gas particles.
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The stationary problem corresponding to the above problem is

VZ—I;:A(F), 0<x<l, (1.6),
(1.6) F(0) = BYF~(0) + b", (1.6),
F~(1) = B-F+(1) +b". (L6),

For this stationary problem we assume, in addition to (A), the following condition that
is stronger than (B).

Bt 1
(B/) (Clvl7"'7cm’vm’>< I ) < 07 (Clvlu'”ucm/vm’)(B_) > 0.

The case where

Bt I
(0101,---,cmmmf)< / ) <O, (clvl,---,cm/vmf)<3) > 0

hold can be treated similarly. We note that the first inequality in (B’) implies that the
reflection part of (1.6), really decreases the number of gas particles. We also impose
the following technical condition that is introduced in [10].
(C) There exists a mapping 7z, which is a C*-mapping from (0,00)™ to (0,00)™
and is a C"-mapping from [0, 20)™ to [0, 00)™, such that FO = n(F’) satisfies
Ai(F) = 0 for any i€ Aj.

Here F° = (F;)
FO.

The initial-boundary value problems for the one-dimensional discrete Boltzmann
equation in a bounded region were discussed in [8], [9] when the boundary condition is
given by

This condition ensures the solvability of A;(F)=0,i€ Ay, w.r.t.

iedy*

F(0,6)=b"(>0), F (1,0)=b"(>0)
or
F0,0)=b"(>0), F (1,t)=B F"(1,1)

or
F™(0,t) = B"F~(0,¢), F (l,1)=B F"(L,1).

It is proved that for any case of these boundary conditions the corresponding problem
admits a unique global solution ([8], [9]). Similar global existence results are known
also for the half-space problems ([9]). The stationary problems are studied by Cer-
cignani, Illner, Shinbrot [3]. They proved the existence of stationary solutions in the
region 0 < x <1 when the boundary condition is given by

FT(0)=b"(>0), F (1)=5b(>0)

or
FT0)=b"(>0), F (1)=B F(1).
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They proved the result under the assumption that 4, is an empty set but this technical
assumption was removed by Kawashima [10]. In this paper we study the case where
the boundary condition is in a general form. Our boundary conditions are of mixed
type and involve both the reflection and diffusion parts. We prove the global existence
and uniqueness of solutions to the initial-boundary value problem in the general
situation that the reflection parts of both the boundary conditions do not increase the
number of gas particles (B). This is an improvement on the results in [8], [9] and the
precise statement is given in [Theorem 2.1. On the other hand, for the stationary
problem [I.6), we prove the existence (without uniqueness) of solutions under the
restriction that the reflection part of the boundary condition on one side really decreases
the number of gas particles (B’). This is a generalization of the results in [3], and is
stated in [Theorem 2.2l

The contents of this paper are as follows. In section 2, we state our main theo-
rems. In section 3, we prove the global existence and uniqueness of solutions to the
problem by a combination of the local existence result and the a priori esti-
mates. Our a priori estimates are derived essentially in the same way as in [8], [9] and
are based on the conservation equations and the Boltzmann H-theorem. In section 4,
we show the existence of solutions to the stationary problem by applying the fixed
point theorem of the Leray-Schauder type. The proof is similar to the one in but a
new technical consideration is needed in solving the linearized stationary problem.

Norations. For a nonnegative integer k and a region Q, we denote by C*(Q) the

space of k-times continuously differentiable functions on Q. We denote by 1, the
I ... 1

k x n matrix whose entries are all equal to one, i.e., 1, = | : - : |. We use the

I ... 1
abbreviation 1; =1;;. Let f = (f;) be an n - vector and let 4 = (a;) be a kxn

matrix. We put
fl = max|f], |4 = max T

Note that when 4 > O, we have |[4| = [41,] = max; }_; a;.

ACKNOWLEDGEMENT. The author would like to thank Prof. Shuichi Kawashima for
his suggestion and encouragement.

2. Main results.

First we formulate the compatibility conditions up to order one for the initial-
boundary value problem (1.1). The said conditions are

/l

F(0) = By (0)+57(0), Fy (1) = By (1) +5(0), 2.,
FO=BFHO+2 0, mm=8RO+S 0, @,

where
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dF,*
Ff=-vt —dgc + A% (Fy),

where V' * =diag(v;);.,,, and A* (F) = (4i(F));.,,. The initial-boundary value
problem is then solved globally in time as follows.

THEOREM 2.1. We assume (A) and (B). Suppose that Fy e C'[0,1] and Fy(x) > O
for xe[0,1] and that be C'[0,0) and b(t) > O,

Bl +b(1)> O (2.2)

for te[0,00), where B and b(t) are given in (1.4). Moreover, we assume the com-
patibility conditions (2.1). Then the problem (1.1) has a unique global solution F =
(F);c4 satisfying F e C'([0,1] x [0,0)) and F(x,t) > O for (x,1) €[0,1] x [0, o0).

Next, we state an existence theorem for the stationary problem [1.6], which is as
follows.

THEOREM 2.2. We assume (A), (B') and (C). Suppose that b > O and

(I-B)'b>o0. (2.3)
Then the stationary problem (1.6) has a solution F = (F;),_, satisfying F € C*[0,1] and
F(x) > O for xe0,1].

REMARK 2.1. That the matrix 7 — B is invertible follows from (B’). In fact, when
(B’) is assumed, the absolute value of any eigenvalue of B is strictly less than 1, which

will be proved in [Lemma 4.2

REMARK 2.2. Let b > O. Then the condition implies B1,, +b > O so that
2.3) is stronger than [2.2).
/l \ /l

In the proof of Theorems 2.1 and we make use of several basis properties in
discrete kinetic theory. Here we review these properties (see [2], [5], [7]). Let 4:(F,G)
be the bilinear form associated with the collision term A4;(F) in (1.2), that is,

I i .
Ai(F,G) = 5 -3 LA (FGi+ FiG) = A (FG + EG)}, i€,
ki

Put A(F,G) = (4i(F,G)),. 4. Then A(F,F)= A(F). We denote by .#, the space of
collision invariants; .#, consists of vectors ¢ = (¢;),. , € R™ satisfying

¢+ ¢ — ¢ —¢ =0 foranyi, j ke suchthatA,’z, # 0.

Note that 1,, and v = (v;),., belong to .#,, which is a consequence of (A3).
The following lemma is due to [5], [7].

Lemma 2.3. We assume (A). Then the following three conditions are equivalent to
each other.

(1) ¢ =(4)icq € Ao



762 Y. NIKKUNI and R. SAKAMOTO

(i) <¢,I.A(F,G)y =0 for all F,GeR".
(iii) <@, I.A(F)) =0 for all FeR".

Here 1. = diag(c;);,., and {, ) denotes the standard inner product of R™.

3. Global solutions.

In this section, we prove by showing a local existence theorem
([Proposition 3.8) and the a priori L*-estimates ([Proposition 3.7) to the problem {1.1).

3.1. Entropy estimates and L!'-estimates on characteristics.
We first note that, since 1,, and v = (v;);., are collision invariants, by virtue of

emma 2.3, we have the conservation equations:

% (Z c,-F,-) + % (Z c,-v,-E) =0, (3.1)
d G 5
E Z C,’U,’Fi + a Z CiU; Fl =0. (32)

Making use of these conservation equations, we have the following L'-estimates.

Lemma 3.1.  We assume (A) and (B). Let T >0 and let F = (F;),_, be a solution
to the problem (1.1) such that F e C'([0,1] x [0,T]) and F(x,t) > O for (x,t) € [0,1]x
[0, T]. Then we have

t t

F/(0,7)|de + j F/(1,7)|de
0

Jl F(x, 1) dx+J

0 0

< C(1+7) (Jot Ib(2)| dr + J; |Fo(x)| dx), te0,7], (3.3)

where C\ is a positive constant independent of T.

ProOOF. Put
1

L) = L: 1b(c)| d + Jo Fo(x)| d. (3.4)

We integrate (3.1) over [0, 1] x [0,7] and use the boundary conditions (1.1); and (1.1),,
obtaining

Jl > ciF(x, 1) dx + Jl > <c,-|v,-| - c,-v,-Bij>5(o,f) dr
0

OjeA, ied;

+J Z (¢jvj — Z cilvi| By)Fi(1,7) dt

OjeA+ ied_

_ J; S ailoibi(z) d + J; Z ¢:Fio(x) dx.

ied’
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Since the second and third terms on the left hand side are nonnegative by (1.5), we
have

J; F(x, 0)| dx < CL (1), (3.5)

where and what follows C denotes a positive constant. Next, we choose a function
2(x) € C(R) such that

and multiply (3.2) by y(x). This yields

0 0 Oy
= i — WAF | =2 02 F;. .
Py (}(ch >+8x (XZC’J: ) ach v; (3.6)

Integrating (3.6) over [0, 1] x [0, ] gives

1 1

F(x, 1)] dx + ”

0J0

J; F'(0,7)| de < C{Jl Fo(x)] dx + J

|F(x,7)| dxdr}
0 0

< C(1+ T)L(s), (3.7)

where we used (3.5). Furthermore, integrating (3.2) over [0, 1] x [0,7] and using (3.5)

and [3.7), we obtain

t 1 1 t
J F'(1,7)| de < c{J |F0(x)|dx+J |F(x,t)|dx-|-J |F/(o,f)|df}
0 0 0 0
< C(1+ T)Ii(1). (3.8)
Thus we have shown the desired estimate [3.3). This completes the proof. O

Secondly, we derive the entropy estimates associated with the Boltzmann H-
function. We multiply the i-th equation of (1.1); by ¢;(1 +logF;) and take the sum
over i€ A. Then, using (Al) and (A2), we obtain the equation for the Boltzmann
H-function:

% (Z ciFilog E) - % (Z civiF;log E-)

1 i FiF;
— 3 X al(rr - ) (log 1) <0. (39)
ikl

Making use of this inequality, we have the following entropy estimates.
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LemMA 3.2. Under the same condition of Lemma 3.1 we have

1
J max F(x, )| log Fi(x. )| dx
0 ied

< G(1+ T)2<J; |b(7)| |log b(7)| dr

+J1 IFo(x)] | log Fo(x)| dx + 1), te 0, 7], (3.10)
0

where C, is a positive constant independent of T.

Proor. Put

b(t) = JO 1b(2)| | log b(z)| dt + Jo |Fo(x)| | log Fo(x)| dx + 1. (3.11)

Because of the 1nequa11ty f < fllog f|+1 for f >0 we see that [,(¢) < (1 + T)L(t),
where I)(¢) is given by [3.4]. We now integrate over [0,1] x [0, 7], obtaining

JZC, i(x,1)) dx—l—Jchvg Fi(1,7)) dr—JZc,vg
< jizcigmo(x»dx, 312

where we put g(f) = flog f; g(f) is a strictly convex function of f > 0. We estimate
the second and third terms on the left hand side of (3.12). To this end, we put o; =
> jes By+1 for ieA,. This implies that

—ZBU—I——: . ied,.
lied_

Now, applying the relation g(o.f) = ag(f) + g(«)f and making use of the convexity of
g(f), we see that

5 cna(i0.0) = Y- an{og(LEO.0) +olo) 0.0}

iedy iedy

= Z c,~v,~{oc,~g< Z B;iF;(0,1) +— ! b()) + g(o) - ;l +(0, l)}

ied; ]eA

IA

> Civi{ > By g(F(0,0)) + g(bi(1)) + |log | Fi(0, t)},

iedy jeaA_

where we used (1.1);. By virtue of this inequality, we find that
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Zcivig(Fi(O, 1) < Z (Cj;vj + Z CiUiBz_'j> g(F;(0,1))

jeaA_ iedy

—+ Z civig(bi(t)) + Z C,'U,'| IOg O(i|Fi(O, t)
iedy iedy

< C(1+|b*(0)||logb™ (2)| + |FT(0,1)]), (3.13)

where we used (1.5), and g(f) = — 1/e. Similarly,
=Y cvig(F(1,0) < C(1+ [b=(1)] [logh™(1)] + |F~(1,1)]). (3.14)
Substituting (3.13) and (3.14) into (3.12) gives

Jl Z ciFi(x,t)log Fi(x,t)dx < C(1 + T)(L,(2) + (1)), (3.15)
0

where we used (3.7) and 3.8). Since f|log f| < g(f)+2/e, we have from (3.15) that

1

J max Fi(x, )| log Fi(x, )] dx < C(1+ T)(5i (1) + 1))
0 !€

which together with 7;(¢) < (1 + T)L(t) gives the desired estimate (3.10). This com-

pletes the proof. O

Thirdly, we make a preparation for showing the L!-estimates on the characteristics.
Let us fix constants ¥, and Ay such that max;|v;| < Vo and 2Vphy = 1. Letting 7 >0
and 0 < h < hy, we consider the rectangle

Q =10,1] x [tg, to + 4]

contained in [0,1] x [0, T]. Let (x1,#) be an arbitrary point in Q, and consider the
straight lines /. with the slope =+ V), respectively, which pass through the point (xj, 1),
that is, /4 : x =+ Vo(t— ;) + x;. Let (0,z,) be the intersection of /, and x =0, and
let (1,1..) be the intersection of /- and x = 1. Then we have the following L'-estimates
on /y.

LemmA 3.3. Under the same condition of Lemma 3.1 we have:
(1) In case when t, > to,

n
J F(Volt— 1) + x1,0)| de

Ly

I3l 1y
+ J |[F(=Vo(t—t1) + x1,0)| dt + J |F'(0,1)| dt

to to

1y —Vo(to—l1)+x1
<C J |b+(z)|dz+J

14}

|F(x, )] dx) : (3.16),

0
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(2) In case when t.. > t,

n
J F(Volt— 1) + x1, )| de

fo

s

n
[ v +xnldes [P0

. ty

< c(JlM b~ ()| dr + Jl F(x, 10)| dx>. (3.16),

to Vo(to—t1)+x1

(3) In case when t, <ty and t.. < b,

5] 141
| 1P ) ol | PGV ) ol d

to to

—Vo(to—11)+x1
< C(J |F(x, to)]dx) (3.16),

V()([()—tl )+x1

Proor. We prove the estimates only in the case (1) because the other cases can
be treated similarly. First we apply the Green formula to (3.1) over the trapezium
bounded by /;, /., x=0 and =1, and then use the boundary condition (1.1);,
obtaining

J” " (Vo — v Fi(Valt — 1) + 31, 1) di

I i

Pt
+ Y e(Vo+ v Fi(—Volt = 1) + x1, 1) dt
Jty g
[ [
+ D (C/|l’j| - c,-v,-Bi,-)F,-(O, 1) dr — J Y cvibi(t)di
J jed_ ied, 0jed,

— V()(l()—ll )+X1
J Z ciFi(x,ty) dx.
0 i

Since the third term on the left hand side is nonnegative by (1.5),, we have

15|

r |F(Vo(t— 1)) +x1,t)|dt—|—J |F(=Vo(t—t1) + x1,1)| dt

t, to

te —Volto—t1)+x1
< c(J \b+(z)|dz+J F(x, to)|dx). (3.17)
lo 0

Next, we apply the Green formula to (3.2) over the same trapezium used above. This
yields
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3|
J S (Vo — v)uiFi(Volt — 1) + x1, 1) di

1y i

13
+ J > Vo + v)oiFi(=Vo(t — 1) + x1, 1) dt

to i

L —Vo(to—t1)+x1
= J civl.zFi(O, t)dt+ J Z civiFi(x, tp) dx.
i

to 0 i
This equality together with shows that

A t —Volto—t1)+x
J F'(0, 1) di < C J |b+(z)|dt+j
0

to ty

F(x, )] dx> . (3.18)

Therefore the proof of is complete. O

Finally in this subsection we derive the L!-estimates on the characteristics. Let
o € A be arbitrary. We consider the v,-characteristics /, which pases through the point
(x1,1), that is, [, : x =v,(t — ;) +x;. When v, # 0, we denote by (0,1,.) the inter-
section of /, and x =0, and by (1, 7,.) the intersection of /, and x =1. We define 7,
by
max(ty., ty) (v, >0

Ty = MaX(tys, to) (v, <0)

We use the following equation
g Zc(u —v;)F; —|—i Zc-(v —v)viF; | =0 (3.19)
5[ l l o 4 1 ax - 1 ol 1 1 - b] .
that is obtained by subtracting (3.2) from v, times (3.1).

LemMA 3.4,  Assume the same condition of Lemma 3.1. For any o € A, we put A, =
{i € A;v; = v,}. Then we have:
(1) In case when t. > 1,

n
J > Fi(vy(t = 1) +x1,0) dt
g,

L —Vo(to—t1)+x1

<c J ]b+(t)|dt+J F(x, o) dx ). (3.20),
to 0

(2) In case when t.. > to,

Jh > Fi(vg(t = 1) + x1, 1) d

T ig A,

Lix 1
< c(J b (1)] dt+J IF(x, 10)| dx). (3.20),

1o Vo(to—11)+x
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(3) In case when t. <ty and t.. < 1,

Jll Z Fi(v,(t — 1) + x1, 1) dt

W i¢d,

*Vo(h)*tl)‘h’c]
<C J |F(x,t)|dx |. (3.20),

Vo(lo—l])+xl

ProOF. We show the estimates only in the case (1). First we consider the case
where v,(f) — t;) + x; < 0. Notice that v, >0 and 7, > 7, = t,. > fp in this case. We
apply the Green formula to over the trapezium defined by /,, I, x =0 and ¢ = 1,
obtaining

le > ci(vy — v) Fivy(t — 1) + x1, 1) dt
+ J’l Zc,-(va —0) (Vo + 0)Fi(=Vo(t —t1) + x1,1) dt

=" S ate - wF0.0 d

fo i

—Vo(to—t1)+x1
—|—J ci(vy — v))Fi(x, ty) dx.
X Z ( )Fi(x, 1)

This together with (3.16), gives the desired estimates (3.20),. Next, we consider the
case where v,(f) — ;) +x; > 0. Note that 7, = f) < t. in this case. We again apply
the Green formula to over the triangle defined by /,, /_ and ¢t = #;. Then we have

Jtl Z ci(vy — v,-)zFi(va(t — 1) + X1, ) dt

to i

+ J” S (e — 0)(Vo + 0) (= Va(t — 1) + x1, ) dr

to i

—Vo(lo—t1)+xl
= J Z C,’(Ua - Ui)E(xv to) dx’

vy (to—11)+2x1 i

which together with (3.16), gives (3.20),. Therefore the proof of [Lemma 3.4 is
complete. N

3.2. L% -estimates.
We want to show the a priori L®-estimates. We define

E()= sup |F(x,7)]. (3.21)

0<x<1,0<7<¢

For the data Fy(x) and b(¢), we put
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D(l) =Ey+ Bo(l), (3.22)

Eo= sup |Fo(x)|, Bo(t) = sup |b(7)|- (3.23)

0<x<l1 0<t<t

First, we drive a difference inequality for E(¢).

LemMma 3.5. We assume the same condition of Lemma 3.1. Then, for any 0 < h <
hy and t >0 with t+h < T, we have

E(t+h) < G[E(t) + Bo(t+h) + E(t + h){M(2,2Voh) + hBy(t + h)}], (3.24)
where C3 > 1 is a constant independent of T and h. Here we put
M(t,r) = supJ |F(x,1)|dx, (3.25)
(Ji<rdJ
where the supremum is taken over all the interval J < [0,1] with the length |J| <.

ProoF. We multiply the i-th equation of (1.1); by ¢; and add the resulting equation
over i € A,. This yields

ot * ox

= A,(F), (3.26)
where
Fulx,0) =) cFi(x,1), A (F)=>_ " A}(FF - FF).
ied, ied, k¢, j,l

Note that A~a(F ) does not contain the summation over ke A,. We consider the
vy-characteristics /, : x = x,(f) = v,(t — t;) + x;. Here we only discuss the case where
vy, >0 and 1) < 1, < t;. We integrate along the characteristics /, to obtain

Fy(x1,11) = Fy(0,1,,) + Jtl Ay (F)(x,(7),7) dx. (3.27)

Lo

From the boundary condition (1.1); we have

Fu0,1) = ) ci( > BiF(0,1,.) + bi(z“*)) (3.28)

ied, jed_

Let vy <0 and /[j; be the vg-characteristics passing through the point (0,7,), that
i8, Lyt x = Xop(t) = vp(t — 1yx). Noting that 0 < x,4(f9) < 1, we integrate with o
replaced by f along [, to obtain
toc* -
Fp(0, 1) = Fp(xop(t0), o) + J Ap(F)(xsp(7), 7) d. (3.29)

1)

Now, estimating each term in (3.27), (3.28) and (3.29), we see that
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Fot(-xla tl)

< C(E(ty) + Bo(to + h)) + CE(to + h)

4] os

« J S Flolo),0de+ Y J S Fuleg(n),0)dr b, (3.30)
losx k¢A, ped_ l ké/l/;

On the other hand, it follows from that both the integrals in (3.30) are

majorized by

1. —Vo(fo—[l)-‘rxl
c(J b (1) de +J

to

|F(X, l())| dx) < C{M(l(),2V()h) + hB()(lo + /’l)}
0

Substituting this estimate into (3.30), we arrive at the desired difference inequality |(3.24).
Thus we have proved [Lemma 3.3. ]

The following lemma concerning the estimate for M(¢,r) in is well known so
that the proof is omitted (see [I], [12], for example).

LemMmA 3.6. Under the same condition of Lemma 3.1 there exists a continuous
Sfunction 6(r) > 0 of re (0,1] with the property that 6(r) — 0 as r — 0, such that

M(t,r) <8(r) - M(1), €0, T], (3.31)
where
M(1) = Jl max Fi(x, 1] log Fi(x, )] dx + 1. (3.32)
0 ied

The estimate is crucial in solving the difference inequality (3.24). In fact,

making use of together with the entropy estimate {3.10), we can solve (3.24),
obtaining the following a priori L*-estimate.

PROPOSITION 3.7. Assume the same condition of Lemma 3.1. Then there exists a
constant K(T) depending only on T, Ey and By(T) such that

E(T) < K(T). (3.33)
Proor. We have from that

M(1) < (1 + T)’L(T) + 1 < C(1 + T)*(D(T)|log D(T)| + 1),

where D(T') is given by (3.22). Substituting together with the above estimate into
(3.24), we obtain

E(t+h) < C3(E(1) + Bo(T)) + E(t + h)Ko(T)(5(2Voh) + h),

where Ko(T) = C(1+ T)*(D(T)|log D(T)| + 1) with a suitable constant C independent
of T. Now we take h=h(T) with 0 < h < hy, such that Ko(T)((2Voh) +h) <1/2.
For this choice of h, we have

E(t+h) <2C5(E(t) + Bo(T)).
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Solving this simplified difference inequality, we obtain

E(f) < 2C)" "M Ey + 2By(T)), tel0,T).

This completes the proof of [Proposition 3.7. O

3.3. Proof of Theorem 2.1.
We need to show a suitable local existence result, which is as follows.

PropOSITION 3.8. We assume the same condition of Theorem 2.1. Let hy be a
positive constant determined in subsection 3.1. Then there exist positive constants Ty < hy
and Ky, which depend only on Ey and By(ho), such that the problem (1.1) admits a unique
solution F = (F,)._, satisfying Fe C'([0,1] x [0,To]), F(x,1)> O for (x,1)€]0,1]x
[0, To), and

E(To) < Kp. (3.34)

ProOOF. We give an outline of the proof. For a positive number v, we introduce a
new unknown function f = (f;),., by f; = Fyexp(vt) and transform the problem
into

'%—{+ V%:vf+e‘”A(f), O<x<l1, 1>0, (3.39),

(3.39) F(x,0) = Fy(x), 0<x<l, (3.35),
f7(0,0) = B f7(0,1) + e"b" (1), >0, (3.35),

L/ (L) =B fT(1,0)+e"b (1), t>0. (3.35),

We solve this equivalent problem by the standard iteration method. To this end, we
define the successive approximation sequence { "} as follows: Let f°(x,7) = Fy(x). For
n>1, let f"(x,7) be a unique solution to

( afn afn o n—1 —vt n—1
8I+Vax_vf +e A7), 0<x<1, >0,
f"(x,0) = Fy(x), 0<x<1,

F7(0,6) = BT f"(0,1) + e"b* (1), t>0,
" (1,6) = B~ f"(1,1) +e"'b (1), t>0,

where /" !(x,7) is assumed to be given. To ensure the positivity of f"(x,), we choose
v > 0 such that v=2MyM,D(hy), where D(hy) = Ey+ Bo(hy), and

My :max{l,grelix Z Bl-j,?eli)f Z Bi]}, M, = ZCLZA,’C’I

T jed, jed_ i Ukl

Then, for a suitable positive constant 7 < i depending only on Ej and By(hy), it is
proved that f"(x,) is strictly positive and uniformly bounded on [0, 1] x [0, T}], and
that f"(x,) converges to a strictly positive function f(x,¢) in the C!([0,1] x [0, To))-
topology. It turns out that the limit f(x,¢) is a desired solution to the equivalent
problem and hence the proof of [Proposition 3.8 is complete. ]
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PrOOF OF THEOREM 2.1. We have shown a local existence result (Proposition 3.§)
and the a priori L®-estimate ([Proposition 3.7). Therefore, the standard argument of
continuating a local solution is applicable and we obtain a desired global solution to the
problem [I.1]. We omit the details and refer the reader to [9]. The proof of
2.1 is complete. O]

4. Stationary solutions.

In this section, we prove by applying a fixed point theorem of the
Leray-Schauder type, which is stated in below.

4.1. Linearized problem.
We want to obtain a solution to the stationary problem as fixed point of a
suitable mapping depending on a parameter 4 € [0,1]. To define a desired mapping, we
\

consider the following linearized problem corresponding to the problem [1.6):
dF !

o =q"(G)—r"(G)F"), 0<x<I, (4.1),

(4‘1) FOZE(F ), 0<x<l, (4.1)2
F¥(0)=B*F~(0) +b™, (4.1),

| F~(1)=B Ft(1)+b", (4.1),

where A is a parameter with 4 € [0, 1] and 7 is the mapping in the condition (C). Here,
for A'=A4,UA_={ieAd;v; #0}, we put F' = (F),.,, V' =diag(vi);.,, q'(G) =
(6(G));e 4 and F'(G) =diag<n-<G>>,-eA/ with

1
ZA 1FeFr, i ):; ZA;;IF/* (4.2)
/kl Lkl
When the problem [4.T) has a solution F = F * depending on the parameter 1, we can
define a mapping ®* by F* = ®*[G]. Since (4.1); and (4.1), with G = F give
dF
V—=J1A4(F 4.3
= A(F), (43)
we see that a fixed point of @' becomes a solution to the stationary problem [1.6).
We prove the solvability of the problem (4.1). First, we note that the general
solution of the ordinary differential equations (4.1),, is given in the form

Fi(x) = ﬁ,exp( o] e (é))dé>

e |, ac@n e (= [ eman) e iean @),
) = o (~ 7 [ nioten )
" ﬁjl 4:(G(0)) p(—ﬁf ri(Gn)) dn) dg, A, (44),
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where f; are arbitrary constants. We put (4.4) into the boundary conditions (4.1), and
(4.1),. This yields the following system of linear algebraic equations for f = (f,),. 4

(I — BS*[G])p = BT*[G] + b, (4.5)

where B and b are given in (1.4), S*[G] = diag(S*[G))., and T*[G] = (T/G));. 4>
with

y) 1
HGl =exp| —— | e’ )
Si [G] =¢ p( |Ui| JO I(G(é)) dé)? ieA 9 (4 6)
- ——/1 1 i ——/1 1r~ i
Ti [G] - |Ui| JO ql<G<é))exp< ’Ui| Jﬁ l(G(I’]))d}’]) déa € A+7 (47)1
iigl= > [ o ol [, -
1716 = [ a6@yexn(- L [ o dn) de iean @,

Thus we have shown the following lemma.

LEMMA 4.1.  In order that there exists a unique solution F > O to the problem (4.1),
it is necessary and sufficient that there exists a unique solution 8 > O of the equation (4.5).

The next lemma plays a crucial role in solving the equation [4.5).

LEmMA 4.2. (i) Under the condition (B), any eigenvalue u of the matrix B verifies
uf < 1.
(i) When (B') is assumed, we have |u| < (1 —6)"*.  Moreover, we have

IB"| <ym'(1 =), n=1,2,..., (4.8),
2ym’

-1 14
(I -B) | < T (4.8),

1

00 max;. 4 ¢ilv;| .
where 0y = —  and y = ————————, with
max;e 1_¢;i|vi min; . 4 ¢;|v;|

00 :]1’2}11} (cj\vj\ — i; C[|U,‘|Bij> > 0. (49)

PrRoOF. We only prove (ii). Let P = diag(ci|vi|),., and put B= PBP~'. We

have
R R+
B-(g %)
B~ O
It then follows from (B’) that

_Bt I
tlm’( I )Zél‘tlma Zlm'(_é) > 0.

This implies that ’E*l,m <(1-9))1,_ and ‘B71, < 1,,., so that we have I'B| <
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1—6; and |'B7| < 1. In paticular, we know that

'Bl < 1. (4.10)
Also, since
B2 ‘B~ - 'B* 0
(B)" = 0 Bt . 1R ’
we see that
I('B)*| < |'BY||'B7| < 1-4. (4.11)

Now, let u be any eigenvalue of B. Then u is also an eigenvalue of ‘B, with the
corresponding eigenvector f : ‘Bf = uf. Then (‘B)*f = u2f. Therefore,

WPl < B/ < (1 =a)lf]

by (4.11). Thus we have proved that |u| < (1 —51)1/2. Next we show (4.8); and
(4.8),. A simple calculation, using (4.10) and (4.11), gives

‘B”’ < m’](tB)n\ — m”P(fB)nP—l‘ < ym1’<tg)2|[n/2] < Vn/l/(l _51>[n/2},
which is (4.8),, where we used the fact that |[P||P~!| <y. By virtue of (4.8),, we obtain

0 0 2 /
(-8 =Y B <2om' Y (1-6)F < g””
n=0 k=0 1
Thus the proof of is complete. O

Now, we consider the linear algebraic equation (4.5). Let 1€ 0,1] and suppose
that

O < G(x)<Rl,, xe]0,1], (4.12)
for some R > 0. Then
S(R) <S}G] <1, 0<T/G]<T(R), ied, (4.13)
where
S(R) = exp [— max i’z(‘lj_jm)} , T(R) = max qi(ﬁjm) .

LemMmA 4.3. We assume (B'). Moreover, we assume b > O and (2.3). Let A€
[0,1] and let Ge C°[0,1] satisfy (4.12) for some R>0. Then there exists a unique
solution f > O of the equation (4.5). This solution is given explicitly by

f = B*1G] = (I - BS*[G])"'(BT*[G] + b) (4.14)
and verifies the estimate

Jo(R) < 1G] < Ko(R), ied, (4.15)
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where 6o(R) and Ko(R) are positive constants depending on R, which is specified
below. In particular, when A =0, we have

g=p"=1-B)"b (4.16)

ProoF. Since BS*[G] < B by [4.13), we have (BS*[G])" < B", so that

es} o0
O<(I-BSYG) "= (BSYG))"<> B"=(I-B)"
n=0 n=0

Therefore, we have from (4.8) and that

B*1G)| = (I - BS*[G])™ (BT*[G] +b)|

< |(I - B)'||BT*G] + b
< 2 (' T(R) + 8 = Ko(R). (4.17)

This proves the upper estimate in (4.15). On the other hand, it follows from that

Sl <(I—B)"'b=Y_B"D, (4.18)
n=0

with a positive constant d,. By virtue of (4.8),, we can choose a large integer N such
that

o0

> B'b| =

n=N+1

2 !/
= B B) B < g (1 -0V Iy < 2
1

0
BN—H Z B"b
n=0
where we also used (4.8),. Substituting this in (4.18) gives
a 1
ZBnb > —orl,,.
n=0 2

Also, we have from that

N N
(I - BSY[G)) ' = ) (BS/[G S(R™Y _B".
n=0 n=0
Consequently, we obtain
A 1 N 02 N
B1G) = (I - BSHG]))'b = S(R)Y > B"h > 5 SR 1y = Go(R) L, (4.19)
n=0

which gives the lower estimate in [4.15). This completes the proof of [Lemma 4.3. []

Now, we put § = f*[G] in (4.4). This gives the formula Fi(x) = ®[G](x), i€ A,
where
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/1610 = 161 exp( ~ | (G e

0

[ ate@yen(~ [ nGunan) de. e @),

¢

v aterew(- L[ nema)de ica. @),

‘Uil X

Moreover, we put Fj(x) = ®}[G](x), ie A, in (4.1),, obtaining F;(x) = ®}G](x),
i € Ay, where

0/[G](x) = m((D[G](x))jeq), i€ Ao, (4.20),

Thus we arrive at the solution formula F(x) = ®*[G](x) = (®}[G](x)),., for the lin-
earized problem [4.T)]. This is summarized as follows:

ProrosiTION 4.4. We assume (B'), (C), b> O and (2.3). Let 2€]0,1] and let
G e C°)0,1] satisfy (4.12) for some R > 0. Then the linearized problem (4.1) admits a
unique solution F = (F;),_,> O satisfying F € C'[0,1]. This solution is given by the
formula F = ®*[G] and verifies the estimates

dF(x)

ﬂmmﬁFwéKmﬂm’jE—

< K'(R), (4.21)

for x €[0,1], where 6(R), K(R) and K'(R) are positive constants depending on R.

PrOOF. We show the estimates in (4.21). It follows from (4.20),, (4.20),, (4.13)
and (4.15) that

J1(R) < ®HG](x) < Ki(R), ied, (4.22)

for x € [0, 1], where J;(R) = do(R)S(R) and K (R) = Ko(R) + T(R). Also, we see that
7([01(R), K1 (R)]") = [02(R), K2(R)]™ by the condition (C), where d,(R) and K,(R) are
some positive constants depending on R. Therefore, substituting (4.22) into (4.20),
gives

52(R) < ®HG](x) < K2(R), i€ Ay, (4.23)

for x€[0,1]. Thus we have shown the first estimate in (4.21). Next we show the
estimate for the derivative. Since F’ = (®/[G]),. , saisfies (4.1);, we have from
and (4.22) that

d .,

—®/[G](x)

N <K/(R), ied, (4.24)

for x € [0, 1], where K{(R) is a positive constant depending on R. Also, differentiating
(4.20), with respect to x gives
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d on d ,
161 = 2 S (@610 ) L BIG100, e

We substitute (4.22) and (4.24) to this expression and conclude that

d

dxqsﬂ[G](x) < K;(R), i€ Ay, (4.25)
for x € [0, 1], where K;(R) is a positive constant depending on R. Thus we have shown
the second estimate in (4.21). This completes the proof of [Proposition 4.4 O

4.2. Proof of Theorem 2.2.
In this subsection we prove by applying the following fixed point
theorem that is due to Browder-Potter (see [11]).

THEOREM 4.5. Let S be a closed convex subset of a Banach space X. Let ®*[F] be
a continuous mapping of (F,A) € S x [0,1] into X such that

(i) Ule[O’l]di’l[S] is contained in a compact set in X,

(i) @°[0S] < S,

(iii) for 1€[0,1], ®*[-] has no fixed point on 0S.
Then @'[-] has a fixed point in S.

In the application of the fixed point theorem, the following proposition concerning
the a priori estimate plays an important role.

PROPOSITION 4.6.  We assume (A), (B'), (C), b> O and (2.3). Let 1€ 10,1] and let
F e C°0,1] with F > O be a fixed point of the mapping ®*|-] defined by (4.20). Then
we have the regularity F e C'0,1]. Moreover, there are positive constants d; and R,
such that

1Ly < F(x) < Ril,, xe[0,1]. (4.26)
Proor. Let Fe C°[0,1] with F> O and let F=®*F]. Then F belongs to

C'0,1] and is a solution to the problem with G = F. Consequently, F satisfies
(4.3). The conservation equations for are

/l

dxz civiF; = Z civi’F; =0, (4.27)

which correspond to (3.1) and (3.2), respectively. We integrate the first equation of
(4.27) over [0,1] and substitute the boundary conditions (4.1); and (4.1),, obtaining

> (CJ|UJ| -y CiUiBz‘j>Fj(0) + > (Cﬂ’j - Ci|vz‘|Bij>Fj(1) = cilulb:

jea_ iedy jedy ied_ ied’

This equality together with (B’) gives F;(0) < Cy, ie A_, with a positive constant
Co. It then follows from (4.1); that F;(0) < Cy, ie A;, where C; is some positive
constant. Next, we integrate the second equation of (4.27) over [0,x]. This yields

Z civizF,-(x) = Z CivizFi(O)a
i i
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which together with the estimate for (F;(0)),., obtained above gives
Filx) < G, ied, (4.28)

for x € [0, 1], where C, is some positive constant. On the other hand, the condition (C)
implies that #([0, C3]™ ) < [0, C5)™ for some positive constant Cs;. Therefore, sub-
stituting 0 < Fi(x) < Gy, ie A', into (4.1),, we conclude that

Fi(x) < G, i€, (4.29)

for x € [0,1]. Thus we have O < F(x) < R1,, for x€[0,1], where R, = max(C,, C3).
Now, we apply [Proposition 4.4 with G = F and obtain the lower bound d;1,, < F(x),
x € [0,1], where J; =J(R;). This completes the proof of [Proposition 4.6 O

PrOOF OF THEOREM 2.2. Let us consider the mapping @* = (&/),_, defined by
(4.20). Let X = C°[0,1] and

Sk={F = (Fj);.,€X; O<F(x)<Rl,, xe[0,1],ie A},

with R > R;, where R; is the constant in [4.26]. Obviously, Sg is a closed convex
subset of X, and ®*[F] is a mapping of (F,1) € Sg x [0,1] into C'[0,1] = X. In order
to apply [Theorem 4.3, we need to verify the conditions (i), (i) and (iii) in [Theorem 4.3.

(i) Let (F,A)eSgx[0,1]. Then we have from [Proposition 4.4 that ®*[F]e
C'[0,1] and

S(R)1,, < 7 [FI(x) < K(R)L,, \d%cbiwm < K'(R),

for x € [0,1]. This combined with the Ascoli—Arzela theorem shows that ( ) Py ]](pi [Sg]
is contained in a compact set in X. Therefore the condition (i) has been verified.

(i) Let F e Sg. Then
_ B
P°[F](x) =F = ,
e (n(ﬁ°)>

where $° is defined in [4.16)]. Since F > O, we see that ®°[Sg] = Sk if R is chosen such
that R > |F|. Thus we have verified the condition (ii).

(i) To verify the condition (iii), we assume that there exists a fixed point F € Sg
of ®@*[-] for some A€ [0,1]. Then we have from [Proposition 4.6 that

o011, < F(x) < Ri1,,

for x € [0, 1], where d; and R; are positive constants in , which are independent of
R. This implies that F ¢ 0Sg if R > R;. Thus the condition (iii) is verified.

Now, is applicable and we conclude the existence of a fixed
point F of ®!'[-] in Sz. This fixed point F is in C'[0,1], strictly positive, and is
a solution to the problem [1.6]. The regularity F e C*[0,1] follows from the
smoothing property of &*[-], and hence F is a desired solution. The proof of

Mheorem 2.2l is complete. n
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