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Abstract. We describe the notion of the dimension group for subshifts in terms of
symbolic dynamical system and show that the dimension group is a conjugacy invariant.
We will show that the the hereditary subsets invariant under the dimension group au-
tomorphism exactly corresponds to the gauge invariant ideals of the associated C*-algebra
(0, for the subshift (A4,0). As a result, we give the conditions that the C*-algebra ¢,
becomes simple and purely infinite in terms of symbolic dynamics.

1. Introduction.

The study of the dimension groups for topological Markov shifts was initiated by
W. Krieger in [Krl] and [Kr2]. He defined the notion of the dimension groups for
topological Markov shifts based on ideas in the theory of the C*-algebras. The di-
mension group has been playing an important role as a conjugacy invariant in the
theory of topological Markov shifts. For a square matrix 4 with entries in {0,1}, we
denote by 4,4 the topological Markov shift determined by the matrix 4. Let ¢4 be the
Cuntz-Krieger algebra for the matrix 4. Then the (future) dimension group DG(A,)
for the Markov shift 4, appears as the Kj-group of the AF-algebra consisting of the
fixed elements under the gauge action of the C*-algebra (¢4 ([CK], [C2], [Kr], [Kr2]).

In [Ma], the author has introduced and studied the C*-algebra ¢/, from a general
subshift 4 keeping in mind that the class of the topological Markov shifts is a subclass
of the class of the subshifts. In his studies, many structural properties of the Cuntz-
Krieger algebras have been generalized to the C*-algebras (0, associated with subshifts
(cf. [Ma], [Ma2], [Ma3]). In particular, as a generalization for the notion of the di-
mension group of the topological Markov shifts, he defined the (future) dimension group
for subshift A as the Ky-group Ko(Z#,) of the AF-algebra Z, consisting of the fixed
elements under the gauge action of the C*-algebra ¢, as an ordered group ([Ma2]).

In this paper, we first describe the dimension group for general subshifts in terms of
the symbolic dynamical system. For a (two-sided) subshift A4 over X = {1,2,...,n}
with shift transformation o, we denote by X, the set of all right-infinite sequences that
appear in 4. The dynamical system (X, o) is called the one-sided subshift for 4 and is
simply written by X,4. For a natural number / € NV, let 4; be the set of all words appearing
in the sequences in the subshift A4 of length less than or equal to /. Put A;(x) =
{ued;luxe X} for xe Xy. We define equivalence relations in the space X,. Two
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points x,ye X, are said to be /[-past equivalent if A;(x) = A;(y). We write this
equivalence as x ~;y. Let F/, i=1,2,...,m(l) be the set of the [-past equivalence
classes of X,. We write [;;41(i,j) =1 if Fjl+1 < F! otherwise 1;;41(i,j) =0. We
denote by 4;;.1(i,j) the cardinality of the set {he X|hxe F/! for some xe Fjl“}.
Hence we have two m(/) x m(/ + 1) matrices [; ;+; and A; ;4 with entries in {0,1} and
with entries in non-negative integers respectively. We denote by Z,,Z the inductive
limits

Zy=1im{lf,, : 2" — 2"y

Y

zZ = ligl{lzt,m : ZTU) - ZTUH)}

where Z_'f(l) is the vectors with entries in non-negative integers. The sequence 4; ., of
matrices induces an ordered homomorphism on Z, which we denote by 4,. We will
show

TueoreM 1.1 (Theorem 4.11).  The ( future) dimension group (Ko(F4), Ko(Z4)..) for
subshift A is realized to be the following ordered group (DG(A),DG(A),):

DG(A) =lim{As : Zs — Za},
DG(A), =lim{i,: Z} — Z}}.

The homomorphism 7, yields a natural automorphism on DG(A). We call it the
dimension group automorphism and write it as 64. The triple (DG(4),DG(A),,64) is
called the dimension triplet for (A,aq).

We will next introduce some properties for subshifts as symbolic dynamical systems.
They are condition (I), irreducibility and aperiodicity in some sense. If a subshift is a
topological Markov shift 4, determined by a matrix 4 with entries in {0, 1}, their
properties coincide with those of the matrix (condition (I) in the sense of Cuntz-Krieger
(cf. [CK]), irreducibility and aperiodicity) respectively.

DEFINITION.

(i) A subshift (X, o) satisfies the condition (1) if for any / € N and x € X, there
exists y € X, such that y # x and y ~;x.

A subshift (X, o) is irreducible in past equivalence if for any / € N, y € X4 and
a sequence (x¥), _y of X4 with x* ~; x**1 k e N, there exist a number N and a word u
of length N in a sequence of X, such that y ~;ux*V.

(i) A subshift (X, o) is aperiodic in past equivalence if for any / € N, there exists
a number N such that for any pair x, y e X, there exists a word u of length N in a
sequence of X, such that y ~;ux.

We know that if a subshift (X4, o) is aperiodic in past equivalence or irreducible in
past equivalence with an aperiodic point, then it satisfies the condition (I).

We will see that the dimension triplet is a conjugacy invariant under the hypothesis
of the condition (I):

THEOREM 1.2 (Theorem 5.4). Suppose that both one-sided subshifts (X,,,0) and
(X4,,0) satisfy the condition (1). If they are conjugate, there exists an isomorphism
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between (DG(A),DG(Ay), ) and (DG(A2), DG(A3), ) as ordered groups which intertwines
5/1] and 5/12.

It is well-known that the dimension group completely determines the algebraic
structure of the associated AF-algebra 7, (cf. [Br], [EI]). In particular, hereditary
subsets correspond to the ideals of the AF-algebra ([Br|). We will show that

THEOREM 1.3 (Theorem 6.8). There exists an inclusion preserving bijective corre-
spondences between the set of all o -invariant hereditary subsets of the dimension group
DG(A) and the set of all gauge invariant ideals of the C*-algebra 0O ,.

We will see that any nonzero ideal of (), contains a gauge invariant nonzero ideal
of @, under the hypothesis of the condition (I) for (X,,0). Hence we see that (X, o)
is irreducible in past equivalence if and only if there exists no gauge invariant ideal
of 04. Therefore we will obtain a description of the criterion that the C*-algebra O,
become simple and purely infinite in terms of the subshift as follows:

THEOREM 1.4 (Corollary 6.11). If a subshift X, is irreducible in past equivalence and
has an aperiodic point, then the C*-algebra O 4 is simple. In particular, if a subshift X 4 is
aperiodic in past equivalence, the C*-algebra (O, is simple and purely infinite.

The above theorem is a generalization of the result of the Cuntz-Krieger’s theorem
(ICK; 2.14 Theorem]).

We remark that the condition for X, to be irreducible in past equivalence written in
the paper is weaker than the corresponding condition in this paper. The former
is not sufficient for (4 to be simple.

2. Notation and Dimension groups.

Throughout this paper, a finite set 2 = {1,2,...,n} is fixed.

Let 24, XV be the infinite product spaces [[°_ X, [, 2 where X; =X, en-
dowed with the product topology respectively. The transformation ¢ on X%, XN given
by (o(x)), = xi+1,i€ Z,N 1is called the (full) shift. Let 4 be a shift invariant closed
subset of X4 ie. o(A4)=A. The topological dynamical system (A,0|,) is called a
subshift. We denote o], by o for simplicity. We denote by X, the set of all right-
infinite sequences that appear in 4. The dynamical system (X,,o) is called the one-
sided subshift for A.

A finite sequence p = (uy,..., 1) of elements u; € X is called a block or a word.
We denote by |u| the length k of . A block = (1,,..., ;) is said to occur or appear
inx=(x;))eX%if X,y = pty,..., Xmek—1 = i, for some me Z. For a subshift (4,c) and
a number k € N, let A* be the set of all words of length k in 2# occurring in some
xed. Put Ay =)} 4% 4" =), 4" where A° denotes the empty word.

For a one-sided subshift X, put

Ai(x)={pued|uxe Xy} forxeX,, leN.

We define equivalence relations in the space X,. For /e N, two points x, y € X, are
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said to be l-past equivalent if A;(x) = A;(y). We write this equivalence as x ~; y. We
denote by Q; = X,/ ~; the [-past equivalence classes of Xj,.

LEMMA 2.1. For x,y€ X, and e A,
(i) if x~;y, we have x ~,, y for m <.
(i) if x~;y and uxe X , we have uy € X, and ux ~;_uy for I > k.

Hence we have the following sequence of surjections in a natural way:
Ql<_vQ2<_> <_>Ql<_>Ql+1H

Set .
Q A= lim .Q[
<—
the projective limit as topological space of the above sequence of surjections.
Some properties of subshifts are characterized in terms of the sequences of the
spaces of [-past equivalence classes as follows:

LEmMA 2.2.  For a subshift (A,0), we have
(i) (4,0) is a topological Markov subshift if and only if Q) = Q, for all 1 € N.
(i) (4,0) is a sofic subshift if and only if Q; = Q.| for some [ € N.

For a fixed / e N, let Fl.l , i=1,2,...,m(l) be the set of the /-past equivalence classes
of X,. Hence X, is a disjoint union of the set F/, i=1,2,...,m(l). For he X and

i=1,2....m(), j=1,2,...,m(l+ 1), we know hx e F/ for some xeF/Jrl if and only
if hy e Fl for all ye F’+1 by Lemma 2.1. We write I;111(i, j) = 1 if F/*' = F/ other-

wise I; 1+1(1 j)=0. Let A;1+1(i, j) be the cardinality of the set {h e 2|hx e F! for some
xeF/“}. We have two sequences /; ;41 and A; ;41 of m(l) x m(l + 1)-matrices with

entries in {0,1} and with non-negative entries respectively.

A system of sequence {[A4;4+1(7, ])]l/ 1122““”1 m(f+) },eN of matrices is said to be

aperiodic if for any [ € N, there exists a number N € N such that the all entries of the
product A; 41 - Ari1.42 - Arsn—1,+n Of the matrices are strictly positive (cf. [Ev2]).
We then easily have

LemMma 2.3, For a subshift A, the following three assertions are equivalent:
(i) X4 is aperiodic in past equivalence.

(ii) The system {[A; +1(i, ])]1—1122 m 1+1

(iii) For any l € N, there exists a number N e N such that
Fl.lﬂa_N(x) @ fori=12,....m(l), xeXy.

}1 N Of matrices is aperiodic.

We denote by Z,,Z the inductive limits:
: m(l /
Zy=lim{l;,  :Z W zm Dy,

Z =tim{1},, : 27" — z""*Vy,

The sequence 4j,;,, of matrices induces an ordered homomorphism on Z, which we
denote by 4.

We now define an ordered abelian group DG(A) with positive cone DG(A), for
subshift 4 as follows:
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NoOTATION 2.4.
DG(A) = liLn{/lA Ly — Z 4},

DG(4), = ligl{/l/l 2= Z Y

The group DG(A) can be identified with the space of all sequences (xi,xz,...) for
x; € Z,4 such that A,(x;) = x;4; eventually for all / large, and two sequences which
eventually agree are identified. Then there is an induced homomorphism 0, acting on
DG(A) by shifting the sequences to the left:

5A(X1,XQ,X3, .. ) = (x2,X3, .. )
Since we see
521(x1,x2,X3, ) =(0,x1,x2,...),
04 yields an isomorphism on DG(A). We call it the dimension group automorphism.
The triple (DG(A), DG(A),,0,4) is called the dimension triplet for (A,0).
We will, in Section 4, see that the above group is actually isomorphic to the Kj-

group for the canonical AF-algebra %, inside of the C*-algebra (/,. Hence the di-
mension group for subshift 4 will be realized as the ordered group (DG(A),DG(A),).

REMARK. (i) If a subshift 4 is a topological Markov shift 4,, the dimension group
DG(A4) as a subshift coincides with the dimension group for Markov shift defined by

W. Krieger in and [Kr2].
The notion of the dimension group for general subshifts has appeared in

in terms of K-theory for the C*-algebras constructed from subshifts. Jungseob Lee
independently studied the dimension group for general subshifts in terms of symbolic

dynamics ([Le]).
3. AF-algebras from subshifts.
We henceforth fix a subshift (4, o). Take natural numbers /,k € N with / > k. Put
Af(i)y={ueA*|uxe X, for xe F'} fori=1,2,....m(l).
The set A/ (i) is independent of x € F/ such that uxe X,. Set
~ m(l)
Xyr = HA,"(Z) : disjoint union.
i=1
For i=1,2,...,m(l), j=1,2,....m(l+1), and he 2 = {1,2,...,n}, define
I if hxe F/ for xeF!

Al(i7h7j) = {

0 otherwise.

Thus one sees A; +1(i,7) = >y Ai(i, h, ).
Let us consider the following imbeddings.

(@) i ive (i () o)Xy, —ve (Af()) =) X if B < F
n:ue XAijl] —uphe Xy if pe Af (i), uh € AL(G), and A,(i,h, j) = 1.
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We set the projective limits as topological spaces:

XAk = llm( Ak,lk) forkeZ,, )?A( ) = lgn( Ak ) formeZ,.
Since the diagram
~ ez
XA/H»I —_— XAk+1

1+2 I+1
nl ln
~ 1k ~
XAk _— Alk

is commutative, we have an isomorphism of topological spaces:
We denote by X, the above projective limit.
Let m{ (i) = |Af(i)|: be the cardinality of the set A} (i). Now we define AF-algebras
as in the following way. Set
I _
My =My @ -+ @ Moy
Thus we have

D(.4}) = C(X )

where D(.#]) is the algebra of all diagonal elements of ./}.
The preceding two inclusions of the spaces {X /}k ~; yield the inclusions of the
algebras {,/%k}k<, as follows:

(i) %k — /" induced from i* : Xye =Xy
+
. e .
n* i M — 4 induced from 7 : X g = Xy

Take the 1nduct1ve limits of the sequences of the finite dimensional algebras as
follows:

M = lillg(,/%,l{,zk*) forkeZ,, Mg (m) = lim(4 ™ ") forme Z,.
—

As in a previous discussion, we have an isomorphism : liLn M= liLn M 4(m). We
denote this C*-algebra by .#%. One thus has

ProrosiTION 3.1.

(Ko(-4 ), Ko(M 1)) = (DG(A), DG(A),).

Proor. The ordered group (Ko(.#7),Ko(-#).) is isomorphic to the inductive
limit lgl(Ko(%f),Ko(%f) .) by the induced map #}. The natural imbedding

jbil} — 4 makes the following diagram commutative

A 111

Ko(AM}) Ko(1))

:l 1+1
s l J/Jk-#l

Ko() —"— Ko(M7).
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As the ordered group Ko(.#;°) is isomorphic to the ordered group Z,, we have
lii{l(Ko(ﬂzo),Ko(ﬂ}zo)+) is isomorphic to (DG(A4),DG(A),).

4. The C*-algebras associated with subshifts.

We will review the construction of the C*-algebra @, associated with subshift (A4, o).

Fix an orthonormal basis {ej,...,e,} of the n-dimensional Hilbert space C". Set

F% = Cey (ep: vacuum vector)

F /’1‘ = the Hilbert space spanned by the vectors e, =¢, ® --- ®e,, u=
(ﬂlw"muk) EAka

Fy=@,_,F% (Hilbert space direct sum)

We denote by T, (v e A") the creation operator on F, of e,,ve A™ (v # &) defined
by
e, ®ey, (vued”)

Tveo=e, and T,e, = {
0 else

which is a partial isometry. We put 7, =1 for v= J. Let Py be the projection onto
the vacuum vector e¢p. It immediately follows that > " K T:7+ Py=1. We then
easily see that for u,ve A", the operator T,PyT, is the partial isometry from the vector
e, to e,. Hence, the C*-algebra generated by elements of the form 7,P T, u,ve A" is
the C*-algebra #'(F,) of all compact operators on F,. Let 7, be the C*-algebra on
F, generated by the elements 7,,ve A".

DerINITION ([Ma]).  The C*-algebra O, associated with subshift (A, o) is defined as
the quotient C*-algebra T4/ H (Fp) of T4 by H (Fy).

We denote by S;, S, the quotient image of the operator 7;,ie X, T,,ue A*. Hence
(0, is generated by n partial isometries Si,...,S, with relation Zle SiST = 1.
If (4,0) is a topological Markov shift, the C*-algebra (/, is nothing but the Cuntz-

Krieger algebra associated with the topological Markov shift (cf. [CK], [EFW], [Ev]).
Put a, = S;Sﬂ,,ue/l*. Since 7,7 commutes with T;Tﬂ,,u,ve/l*, the following

identities hold
(*) a,S, = S,a,,, pved

For u,ve A" with |u[ = |v|, we have S;S, # 0 if and only if x=v.
We will use the following notation. Let k,/ be natural numbers with k < /.

A; = The C*-subalgebra of 0, generated by a,, u e 4;.
A4 = The C*-subalgebra of ¢/, generated by a,, ue A"

F | = The C*-subalgebra of ¢/, generated by S,aS’,

,u,ve/lk, ae A.

,u,ve/lk, aeAy.
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Z 4 = The C*-subalgebra of ¢, generated by S,asS,,
wveAd s, |ul=1|, aeAdy.

The projections {7;T,;u€ A"} are mutually commutative so that the C*-algebras
A;,l € N are commutative. Thus we easily see the following lemma (cf. [Ma; Section 3]).

LemmA 4.1.
(i) Ay is finite dimensional and commutative.
(i) A, is naturally embedded into Ay so that Ay = lill)lAl is a commutative AF-
algebra.
(i) Each element of F ]i is a finite linear combination of elements of the form
SﬂaSj,,u,veAk,aeA/. Hence 97116 is finite dimensional.
(iv) There are two embeddings in {F}}, _:
(iv-a) y:F|cF ,[(H through the embedding A; = Ay, and
(iv-b) 1« Fip < FH through the identity

K

SaS; =" S,;S7aS;Sy, wvedr, aed,.
j=1

(v) Both 7 =lim_,F ,1( and Fy = limy_,., F° are AF-algebras.

In the preceding Hilbert space F,, the transformation e, — zkeu,,ueAk,ze T =
{z € C;|z] =1} on each base ¢, yields a unitary representation which leaves 7 '(F,)
invariant. Thus it gives rise to an action o of T on the C*-algebra (/4. It is called the
gauge action and satisfies a.(S;) =zS;, i=1,2,...,n.

Each element X of the *-subalgebra of (/, algebraically generated by S,,S),
u,ve A" is written as a finite sum

X = Z XS]+ Xo + Z S, X, for some X_,, Xo, X, € 7,4
[v]>1 lu| =1
because of the relation (). The map E(X) = [ _,a-(X)dz, X € O, defines a projection
of norm one onto the fixed point algebra (% under o. We then have (cf. [Ma;
Proposition 3.11])

Lemma 4.2. 7,4 = 0.

We denote by D, the commutative C*-algebra of all diagonal elements of %,
that is the C*-algebra generated by elements of the form S,a,S;,u,v € A", Let D, be
the C*-subalgebra of D, generated by S,S;, € A", that is isomorphic to the C*-algebra
C(X,) of all complex valued continuous functions on the space X,. Put ¢,(X) =
Zle S; XS, X € D4 that corresponds to the shift ¢ on Xj.

Consider the following condition called (/) in [Mal.

(Ix): For any I,k e N with [ >k, there exists a projection ¢! in D, such that

(i) gqja #0 for any nonzero a € 4,

qid(ql) =0, 1 <m<k.

LemMa 4.3 ([Ma; Theorem 4.9 and 5.2]). Let </ be a unital C*-algebra. Suppose
that there is a unital *-homomorphism © from A, to o/ and there are n partial isometries
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S1y...,8, €. satisfying the following relations

n
(a) Zsjsj* =1,  s,5u8 = 88w, v E AT,
j=1
(b) SuSu = n(S;Sy), ped”
where s, =Sy, -+ Sy, 1= (ly,..., ). Then there exists a unital *-homomorphism &
from Oy to <f such that 7(S;) = s;,i = 1,...,n and its restriction to A, coincides with 7.

In addition, if the C*-algebra O, satisfy the condition (1), this extended homomorphism 7
becomes injective whenever w is injective.

We say the operator A, on A, (defined by A,4(X) = 27:1 S;XS;, X € Ay) to be
irreducible if there exists no non-trivial ideal of 4 4 invariant under 14. It is also said to
be aperiodic if for any number /, there exists N € N such that iflv (p) = 1 for any minimal
projection p € A;.

LeEMMA 4.4 (([Ma; Theorem 6.3 and Theorem 7.5)). If the C*-algebra O satisfies the
condition (I4) and A, is irreducible on A, then O, is simple. In addition, if A, is
aperiodic, O, is purely infinite.

We notice that the following:

LemMa 4.5 (cf. [Ma; Proposition 5.8] and [CK; 2.17 Proposition]). Let (A;,01) and
(Aa,02) be subshifts such that both the associated C*-algebras O, and 04, satisfy the
condition (14). If the associated one-sided subshifts (X,,,01) and (Xa,,02) are
topologically conjugate, then there exists an isomorphism @ from 0,4, onto 04, such
that ®oal =a?o® ze T where o is the gauge action on O4,i=1,2 respectively.
Furthermore @ maps © 4, and D4, onto Dy, and D4, respectively and satisfies @ o L4, =
/1/12 o® on D/ll'

We will here give a proof of for the sake of completeness. The proof is
based on the proof of [CK; 2.17 Proposition]

Proor. For a subshift (X,,0), a finite partition Z(1),Z(2),...,Z(m) of X, is
called a generator for ¢ if the characteristic functions of the sets o *(Z(i)), i =
1,2,...,m, k=0,1,2,..., generate the C*-algebra C(X,)(= D,). Put

U,U = {(X],Xz,...) EXA |X1 = U, X2 = Upy o5 X ::uk}
the cylinder set for u =y -y, € A*. We denote by Xu, the characteristic function of

U,. Ttis easy to see that the cylinder sets Z(i) = Uy, i =1,2,...,n form a generator
for ¢ in X4;. We indeed have

SuSy = Xz Ao\ (Z()) " Ao b0(Z ()

for = wpy--- 1. We may assume that the o, and o, act on the same space X and
that oj =0y =0. Let Z(i), ieXZ) and Z,(j),je X, be generators for g; and o,
respectively. Put W;; = Z,(i) N Z,(j) for (i,j) e Xy x £, =2". Then the non-empty
sets among the sets W;;, (i,j) € 2" form a generator for . We define a subshift
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(A,,,0) over 2" for which forbidden blocks are

0

U {Owi,wa, o cywi) € 2% x Z x oo x 2| Wy, Na (W) N - N~ & D) = &)
k=1

The subshift (X, ,0) may be identified with the original ones (X,,,0;), i=1,2. Let
Vij, (i, j) € 2" be the generating partial isometries of the C*-algebra (), associated with

the subshift 4,,. Put
Ty, = Z Vij, 1o = Z Vij€Uy,.
jeX, ieX

We first construct an isomorphism from ¢4, onto 0,4, . Since we know that V;; V', =0
for j # k, the operators T),,i € 2| are partial isometries satisfying the relations

T, =) ViV
JEZ

For u= (uy,..., 1) € AF, we have

* f— * DY * DY
TI/, Tlﬂ - E : V,uk,vk V,u],vl Vllm/l Vﬂkv"k

(Vs ey Vi) EA;

= Aok (Zi (g, s 1))

so that the correspondences S;S, < T f; T),, pe Ay gives rise to an isomorphism be-
tween the C*-algebra 4,, and the C*-algebra C*(Tf; T\,;ue A7) generated by Iy T,
peAf. Hence by [Lemma 4.3, the map @, :S;e 0y — Ty, €0y, yields an iso-
morphism from @, to the C*-algebra C*(Ty;ie X)) generated by Tj,ie ;. The
identities V;; =V ; Vi, hold. Since we know V; ; Vi is contained in the C*-algebra
C*(TlﬂTf;;,u € A7), which is regarded as the C*-algebra C(X,,)(= C(X)), hence O, is
generated by 7),,i e 2. Thus the map @, yields an isomorphism from ¢, onto O ,.
Similarly we have an isomorphism @, from ¢, onto 0, . Put @ =®; Yo, an
isomorphism from (4, onto (,,. As we see

TV, =z and 1o 15 = jz,0)

we know that the restriction of @ to D, coincides the isomorphism from
D, (= C(Xy,)) onto D, (= C(Xy,)) induced from the conjugacy from X4, to X,,. We
can show that Dy, =D NF,,i=12 as in [Ma5; Proposition 3.3] (cf. [CK; 2.18
Remark]), the isomorphism @ maps D4, onto D,,. Since the identity @ o Ay, = Ay, 0 @
holds on D,,, it does on D,.

We will next connect the discussions of Section 2 and Section 3 and the preceding
discussion on C*-algebras. The following lemma is key in our studies.

LemMA 4.6. Regard a minimal projection of A; as a characteristic function on the
subshift X4. Then the support of the function is one of the set {Fil}izl,z,...,m(l) of all I-past
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equivalence classes of X,. Hence the set of all minimal projection {El.l}l. exactly cor-
responds to the set {F!}. of all I-past equivalence classes Q.

COROLLARY 4.7. The C*-algebra A; is isomorphic to the C*-algebra C(;) of all
complex valued continuous functions on ;. Hence A, is isomorphic to C(Q,).

For a word y € A%, it belongs to 4/ (i) if and only if the inequality SySu = E! holds,
that is also equivalent to the condition SﬂEl.’S; #0. Thus we have

LemMma 4.8.

(i) k= M) @ -+ @ Mgy (= ).

(i) DF]) = C(Xy).

We easily have

Lemma 4.9. J,(E!) = ZZ(M)AZ (6, )E

ProOF. The assertion follows from the identity: S;E/S) = Zm(”l Ay(ih, HEM.

Since the identity S, E/ ’S "= Z ) Z/

n=

A;(i,h ])SﬂhE”lS* holds, we see
LemmA 4.10. We have F° =~ M° for ke N and hence 7, = M7 .

Therefore by [Proposition 3.1 and Lemma 4.9, we obtain

THEOREM 4.11.
(DG(A), DG(A) ,,61) = (Ko(F1), Ko(F)., 22).
The following proposition is deduced from and [Lemma 4.9.

ProposITION 4.12.
(1) (Xy4,0) is irreducible in past equivalence if and only if 1, is irreducible on A,.
(i) (Xy4,0) is aperiodic in past equivalence if and only if 1, is aperiodic on Ay.

Proor. (i) It is easy to see that A, is irreducible on A, if and only if for any
leN,i=1,2,...,m(l) and w e Q,, there exists an number N € N such that

(4.1) IN(EN(w) #0

where 1Y (E!) is regarded as a function on 4. We denote the element w by the
sequence (wy,ws,...) € Q (= hm Q) where w; € Q;. We may identify Q; with the set
{1,2,...,m(l)}. Then the cond1t10n [4.1] is equivalent to the condition: there exists a
word u e AN such that

px e F! forall xe FI'™N

Hence we have that A, is irreducible if and only if for any /e N,ye X, and
(w1, w,...) € 2y, there exist N e N and u e A" such that y ~; ux for all x e Fcf,t]x Let
X, be the set of all sequences (x*),_y of X, such that x*~; x**! for all

ke N. Hence each x = (xk), _y € X, gives rise to an element w(¥) = (wi(X)), .y of
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Q, that satisfy x* e F a’§k()_c). As the map from X 4 to Q is surjective, we easily see that
the irreducibility for subshift is equivalent to the irreducibility for A,.
The assertion is direct from [Lemma 4.9

RemARK. Y. Watatani informed the author that the C*-algebra @, associated with
subshifts can be regarded as C*-algebras constructed from Hilbert C*-modules con-
sidered in [K], [Pi], [KPW], [KT]. In[KT], Katayama-Takehana have recently defined
and studied an aperiodicity for Hilbert C*-modules that is a generalization of our
aperiodicity for subshifts.

5. Condition (I) for subshifts and conjugacy invariance for DG(A).

In this section, we introduce the condition (I) for subshifts, which is a generalization
of the condition (I) for topological Markov shifts in the sense of Cuntz-Krieger (cf.
|CK]). The condition (I) for subshift (A4,¢) is an equivalent condition to the condition
(I4) for the associated C*-algebra (/4. Hence we will show that, under the condition
(I), the dimension triple (DG(A4),DG(A),,04) (and in particular the dimension group
DG(A)) is a conjugacy invariant. We may always assume that all the letters
2 ={1,2,...,n} are admissible in the subshift 4 and n > 2. Hence the space X; may
not be a single point.

LemMA 5.1.  The following six conditions are equivalent:

(i) X, does not have an isolated point.

(ii) X4(m) does not have an isolated point for some me N.

(ili) X,(m) does not have an isolated point for all me N.

(iv) For any I,me N and x € X4, there exists y € X4 such that yy # xy for some
N>m, y;=x; for j=1,2,...,m and y ~x.

(v) For any l€e N and x € X,, there exists y € X, such that y # x and y ~;Xx.

(vi) For any pair I,k € N with | > k, there exists y; € F! for i =1,2,... . m(l) such
that a™(y;) # y; for all i,j=1,2,....m(l) and m=1,2,... k.

PrROOF. (iv) = (v): trivial.

(v) = (iv): For any x = (x;);.y € X4y and /;me N, put u= (x1,x2+,Xp) € 4",
X" = (Xmt1,Xmi2, - +) € X4. By the condition (v), there exists w € X such that x’ # w
and x’ ~;.,w. By putting y = uwe X, One sces that

xj=y; foralll <j<m, xy=yy forsomeN >m, andx~;y.

(iv) = (vi) We first show that for a fixed / >k and i =1,2,...,m(/), there exists
yeF! satisfying "(y) # y for 1 <n<k. Take an element xe F/ for some i=
1,2,....,m(l). If o(x)=x, we may find ye X, such that o(y) # y by the condition
(iv). Hence assume that o(x) # x. Now we suppose that ¢”(x) # x for all 1 <n < K.
Take k, e N such that xp, # x,4k,. Put M =Max{n+k,;n=12,.... K} >K+1.
By the condition (iv), there exists y € F/ such that

1

xj=y; forall1<j<M and xy# yy forsome N > M.

Hence we have ¢”(y) # y for all 1 <n < K. If both the condition ¢X*!(x) = x and
ck*+1(y) = y hold, it contradicts to the condition xy # yy for some N > M. Hence
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x(or y) e F/ satisfies ¢"(x) # x(or 6"(y) # y) for all 1 <n <K+ 1. Thus the induc-
tion is completed. By a similar argument to this, we can prove the condition (vi).
(vi) = (v) Suppose that there exist y e X,/ € N such that y ~;z e X, implies

y=z. Let Fl{,) be the equivalence class belonging y. As Fié,) = {y}, one sees Flz”m) =

for any m > 1. By the condition (vi), we have a(y) # y so that a(y) e F/™' for
{»} y y y)#y y)eF,

some j#i(/+1). Then for any zeF/H, we have y ~;y,z where y = (y, ,,...),
z=(z1,2z2,...) and y,z=(yy,21,22,...). Thus we obtain z=o(y) and see Fj[+1 =
{a(y)}. Since Fil(;r-«}l) ={y} and j#i(/+1), This contradicts to the condition (vi).
Other implications are easily proved.

DEFINITION. A subshift (X, 0) satisfies the condition (1) if it satisfies one of the six
equivalent conditions of the preceding lemma.

A topological Markov shift (X,,o) satisfies the Cuntz-Krieger’s condition (I) (cf.
[CK |) if and only if it satisfies the condition (I) in our sense.

PRrROPOSITION 5.2.

(i) If (X4,0) is aperiodic in past equivalence, it satisfies the condition (I).

(i) If (X4,0) is irreducible in past equivalence and has an aperiodic point, it satisfies
the condition (I).

Proor. (i) For IilmeN, put I'=14+m. As (X4,0) is aperiodic in past equiva-
lence, for the above /', there exists N € N satisfying the condition of the aperiodicity.
For an element x = (x;),.y € X4, put y = (x1,x2,...,x) € 4" and

/ "
X = (xn1+17xm+27 SER) )7 X = (xm+N+17xm+N+27 SRR ) € Xy

Take a point w € X4 such that x” # w. By assumption, there exists a word u € A" such
that x’ ~; uw so that one sees yx’ ~;yuw. Put y = puw, which satisfies the condition:

x~1y, x;=y forall<j<m, Xk # yx for some K > m.
For /,meN, put I'=/+m. For an element x = (x;),.y € X4, put

= (x1,X0, ..., Xm) €A™, X' = (Xpus1, Xma2s s )

Case 1: Xx 1s aperiodic.

Since (X4, 0) is irreducible in past equivalence, for the /' € N and x,x’ € X4, we can
find a word ue A* for some k such that x’ ~;ux. Put y=yuxe X, so that one
has x ~;y and x; = y;,1 <j<m. As x is aperiodic, we see that x # y. Thus the
condition (I) is satisfied.

Case 2: Xx is not aperiodic.

By the assumption, there exists an aperiodic point we X, . Since (X,,0) is
irreducible in past equivalence, for the I’ € N and w,x’ € X1, we can find a word v € A*
for some k such that x" ~yyw. Put y =ywe X, so that one has x ~; y and x; = y;,
1 <j<m. As wis aperiodic, we see that x # y. Thus the condition (I) is satisfied.

LEMMA 5.3. A subshift (X,,0) satisfies the condition (1) if and only if the C*-
algebra O, satisfies the condition (1,).
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ProoF. Suppose that (X, o) satisfies the condition (I). Fix / > k. We can find
yle F! with o"(y!) # y/.l for all i,j=1,2,....m(l) and n=1,2,...,k. Put Y =
{(ylli=1,2,....,m(l)} € X4. Since " (Y)NY =@, 1 <n<k and X, is Hausdorff,
we may find a clopen set V = X, containing Y such that VNo7(V) =, 1 <j <k.
We denote by ¢, the characteristic function of V. It satisfies the following conditions:

(i) qE'#0 for all i=1,2,...,m(l),

(i) qd’(qx) =0, 1 <m < k.

Thus O, satisfies the condition ().

Assume that (), satisfies the condition (I,). Fix / > k. There exists a projection
qr € D4(= C(X,)) satisfying the above conditions (i) and [ii]. Take elements y!e F/
contained in the support of ¢, that satisfy the condition (vi) of [Lemma 5.1.

Now we reach the following theorem:

THEOREM 5.4. Suppose that both one-sided subshifts (X,,,0) and (Xy,,0) satisfy the
condition (1). If they are conjugate, the dimension triples (DG(Ay), DG(A1),,04,) and
(DG(A2), DG(A3),,04,) are isomorphic.

Proor. The assertion is deduced from [Lemma 4.3, Mheorem 4.11 and [Lemma 3.3.

6. Gauge invariant ideals of (.

Throughout this section, we mean a closed two-sided ideal of a C*-algebra by an
ideal for simplicity. The term ‘‘gauge invariant” means (globally) invariant under
gauge action. In this section, we will see that the J -invariant hereditary subsets of
DG(A) corresponds to the gauge invariant ideals of (.

The following proposition is basic in our discussions.

PrROPOSITION 6.1. If I is a nonzero gauge invariant ideal of (4, we have IN A,  # 0
and IND, #0 where D, is the algebra of all diagonal elements of F,.

PrOOF. Let 7; be the canonical quotient map from ;4 to the quotient ¢4/I. Since
I is gauge invariant, the gauge action o naturally yields an action on (/I which we
denote by &. Hence the map E; defined by E;(X) = [, a,(X)dt, X € O4/I gives rise to a
faithful projection of norm one from ,/I onto %,/I. Now we suppose that
INA, ={0}. If #,NI # {0}, there exists an element S,E/S?(# 0) in %, NI for some
pveA¥and i=1,2,...,m(l). The identity E/ = S;SﬂEva*Sv holds so that E! belongs
to 1, a contradiction. Hence we have %, N[ = {0}. This means that the restriction of
n; to F, is injective. Take an element X € 04 with 7;(X)=0. Since one has
ny o E = Ejomy, one sees that 7;(E(X*X)) =0 so that E(X*X)=0. As E is faithful,
we obtain X =0. Thus we conclude that n; is injective and hence the ideal I is
trivial. This contradicts the hypothesis. Therefore we have TN A, # {0}. We also
conclude that 7N %, # {0} so that IN D, # {0} because 7, is an AF-algebra.

Recall that [1;41(i, j)]fjlllf::"rzq((llfl) is the m(I) x m(l + 1)-matrix with entries in {0, 1}
such that 7;,41(i,j) =1 if and only if Fj“rl — F!. Thus we know that
m(l+1)

El =Y I, )EM fori=1,... m(l).
J=1
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Set
y={GhHli=1,....m(l),le Z,}.

We define two kinds of partial orders > (<) and > (<) in I4 as follows:

(1) (ivl) = (jal+ 1) if Il,l+l(i7j) =1

(i,1) > (j,l+1) if A171+1(l',j) # 0.

For (i,/) and (j,/ + m), we define (i,1) > (j,] + m) if there exist (i;,/+ 1), (ir,/+2),...
e I'4 such that

(i,0) = (i, [ +1)= -+ = (j, [ +m).
Similarly (i,/) > (j,/ 4+ m) is defined.

A subset H < I’y is said to be hereditary in > (resp. >) if (i,/) > (resp. >)
(j,k)e Iy and (i,]) € H implies (j, k) € H. If H is hereditary in both the orders > and
>, it is said to be hereditary in [.

We will show that there exists a bijective correspondence between the set of all
hereditary subsets of I, and the set of all gauge-invariant ideals of (.

LeMMA 6.2. For a gauge invariant ideal I of 04, put

H;={(i,l)e4|E e 44NT}.
Then Hj is hereditary in I.

ProoF. We may assume that I # {0} so that INA, # {0} by the previous
proposition. As A, is an AF-algebra, we can find E' e IN A4, for some i =1,...,m(l).
Suppose that (j,/+ 1)< (i,]) and (i,]) e H;. As A4(E]) > Ejl“, it follows that Ejl+1
Ja(ED :c}“]f?j“rl for some c].l“(;é 0) a scalar. Hence Ej”rl belongs to I because
A (Eil ) belongs to 1. Hence H; is hereditary in >. It is clear that H; is hereditary in
>. Thus Hj is hereditary in Iy.

Conversely we have
LeMMA 6.3. For a hereditary subset H in Iy put
I = SpAn{S,E/S; | (i.]) € H}.
Then Iy is a gauge invariant ideal of O, generated by E!,(i,]) e H.

PrOOF. Since it is clear that Iy is gauge invariant, it suffices to show that Iy is an
ideal of (4. As in the discussions of Section 4, the C*-algebra (U, is spanned by linear
combinations of elements of the form Sea,S’,¢,n,{e A*. It is enough to show that
SeayS; - S,E!S’ belongs to Iy for u,ve A*, (i,1)e H. Since H is hereditary in I, by
the identities:

m(l+1) »n

SISy = " Y Aioh, j)SuE TSy,
h=1

Jj=1

m(l+1

SuE!S; =

j=1
we assume that |{] < [g| and || + |u], [{] + |u| < I. For Sza,S; - S,E1S* #0, we have

)
Il,l+l (17 j)S/lE']'l+1S;,
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S¢S, #0 so that S7S, = aS, = Syray for some u' e A=K with u=¢u'. Tt follows
that Sea,S; - S,ET' Sy = Sewayva,ElS) = SqvE!S;. Thus Sea,S: - S,E}™'S; belongs
to the ideal Iy.

LEMMA 6.4. For a gauge invariant ideal I of (4, we have Iy, = I.

Proor. The inclusion relation Iy, < I is clear. We will prove the other inclusion
relation. Let 7 be the canonical quotient map O,/Iy, — ,4/I. 1t is easy to see that
AyNIy, = A4NI. Hence the restriction of n to the AF-algebra F,/(F,NIy,) —
F4/(F4NI) is an isomorphism by a similar argument of the proof of
6.1. Now both the ideals 7 and Iy, are gauge invariant so that the gauge action «, on
(4 induces actions on the both quotients (¢,/Iy, and O4/I. We write these actions as
ol and o! respectively. We can define faithful expectations Ey, and E; from 0/,
onto F,/%,NIy, and O4/1 onto F,/F,NI by averaging the actions oc,H’ and oc,l
respectively. As one sees that n intertwines Ey, and Ej, one conclude that 7 is injective
and hence Iy, = 1.

COROLLARY 6.5. There exists a bijective correspondence between the set of all gauge
invariant ideals of Oy and the set of all hereditary subsets of I’y through the map I — Hj
and H — Iy.

We notice that any ideal I of (4 is invariant under both ¢, and 4,.
We will next describe gauge invariant ideals of (/4 in terms of the dimension group
for the subshift.

LEMMA 6.6. For a nonzero ideal I of 7, invariant under both ¢, and 1,4, we have
(i) INAy is a nonzero J4-invariant ideal of A,.

(i)
I = span{S,E}S; | El € 1N Ay, |u] = ).
Proor. (i) Put
P ={E'e A,|S,E'S: eI for any p,v with || = |v|, S,E!S* # 0}.
We can find a subalgebra | for some k </ such that /N %} # 0 so that there exists
& e AF such that SéEilS; € Iﬂﬁ,lc. Then for any u,ve A*, one sees
S.E[S} = S,E!S; - S:E[S; - S,E!S;.

Thus S,E!S; e INF}. Hence one has #; # . We then have 2; = {E/ e IN A4}
We indeed see that, for E'e #;, the element S,E!S’ belongs to I for some
lu| = |v| = k. As one has the identity E! = 2%(S,E/S*), E! belongs to I and TN A,
because I is A4-invariant. Conversely, for E/eIN Ay, one has Y .« S,E/S; el
because [ is ¢ -invariant. Hence by the identity

S.E!S; = S,E/S; - Y S:E/S:-S.E]S;,
Eedk

we obtain E' e #;. Thus 2#; = {E' e INA,} so that INA, # {0}.
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Put
I’ =span{S,E!S! |El e INAy,|ul = |}

The inclusion I’ = I is easily seen from the relation: #; = {E/ e IN A,}. Conversely,
as Z, 1s an AF-algebra, we may assume that any element of %, €[ i1s of the form:
S,E!S*. Hence E! belongs to 2;.

We conversely have

LemmA 6.7. For a nonzero ideal J of A, invariant under 1,4, Put
I; =span{S,E/S; | E/ € J,|u| = [v|}.
Then we have

(i) 1y is an ideal of #, invariant under both ¢, and 1,.
i) LiNAs=J.

ProoF. (i) The invariance of I; under ¢ , is clear. For u = gu',v = vv' € A* with
p,vi €2 and p',v' e A% it follows that

da(SE!SY) = S, E!S,.
This implies that [, is invariant under A,.
By the previous lemma, we know that #;, = {E! e ; N 4,}. As we easily see
that
Py, ={El € 44|10 # S,E!Sr e I;, forall u,ve A" with |u| = |v|},

we obtain that I; N A, = J.
We consequently have the following theorem.

THEOREM 6.8. There exist inclusion relation preserving bijective correspondences
between the following five sets:
(1) gauge invariant ideals of 0,
) ideals of #, invariant under both ¢, and A,
) order ideals of DG(A) invariant under 9 ,
(iv) Ag-invariant ideals of A,
) hereditary subsets in Ij.

Proor. The correspondence between and (iii) follows from a general theory of
K-theory of AF-algebras (cf. [Ef]). All other correspondences follow from the previous
discussions.

We will finally mention a relationship between simplicity for ¢, and the dimension
group DG(A).

LEMMA 6.9. Assume that (X4, o) satisfies the condition (1). Then any nonzero ideal
of (4 contains a nonzero gauge invariant ideal of 0.

ProoF. Let J be a nonzero ideal of ¢4. As (, satisfies the condition (1), we have
JN Ay #{0}. Hence we can find a projection E/ in JNA,. Set
I; = span{S,E/S’ | El e JN Ay, p,v € A™}.

It is clear that I; is a nonzero gauge invariant ideal of @, contained in J.
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Thus we conclude

PRrOPOSITION 6.10. Suppose that X, satisfies the condition (1). Then the following
five conditions are equivalent:
(1) 0Oy is simple.
) There exists no gauge invariant ideal of 0.
(iii) There exists no proper ideal of F, invariant under ¢, and 7,.
) There exists no 0 ,-invariant order ideal of DG(A).
) There exists no As-invariant ideal Ay.

Hence, by [Proposition 5.2, we have the following corollary, which is a generalization
of the Cuntz-Krieger’s theorem [CK; 2.14 Theorem].

COROLLARY 6.11.

(1) If a subshift (X4,0) is irreducible in past equivalence and X, has an aperiodic
point, the C*-algebra O, is simple.

(i) If in particular a subshift (X4, 0) is aperiodic in past equivalence, the C*-algebra
Oy is simple and purely infinite and the AF-algebra ¥, is simple.

REMARK. (i) The above corollary is also deduced directly from and
IProposition 4.12| and |Proposition 5.2

Very recently, C. Anantharaman-Delaroche presented a criterion for simplicity
and purely infiniteness of C*-algebras constructed from groupoids of subshifts ([An]).
The C*-algebras of the groupoids are definitely isomorphic to our C*-algebras. The
criterion are similar to ours.

(iii) Ideal structure of the Cuntz-Krieger algebras discussed in and recently in
[aHR]. A related topics is also seen in [H]. In [KPW], Kajiwara-Pinzari-Watatani
study ideal structure and simplicity condition of C*-algebras constructed from Hilbert
C*-modules.

7. Examples.

ExampLE 7.1 (Full shifts).

Let (4,,0) be the full n-shift over 2 = {1,2,...,n}. It is aperiodic hence satisfies
the condition (I). In fact, any two points in X,, are /[-past equivalent so that
the equivalence class €; is a singleton for each /e N. The matrix 4; ;41 1S n-times
multiplication on Z. Thus the dimension group is

lel...Lz[l/n]z{’T—k

m,keZ}.

and namely DG(A,) = Z[1/n] in R. The corresponding simple purely infinite C*-
algebra (0,4, is the Cuntz-algebra ¢, of order n (([C]). The AF-algebra #,, is the UHF-
algebra of type n™.

ExampLE 7.2 (Topological Markov shifts).

Let (A4,0) be the topological Markov shift defined by an n x n aperiodic matrix
A =1[A(, ))]; j=1.2. , with entries in {0,1}. It is aperiodic in our sense and hence
satisfies the condition (I). Then we may easily see that its dimension group is iso-
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morphic to the inductive limit:

zn oA A
and namely DG(4,) = lii)l’l(Z " A). The corresponding simple purely infinite C*-algebra
04, is the Cuntz-Krieger algebra 0, ([CK]).

ExampLE 7.3 (f-shifts).

For an arbitrary real number f > 1, let (4p,0) be the f-shift over 2 = {0,1,...,
n — 1} where n is the natural number satisfying n — 1 < < n (cf. [Pa], [Re]). We know
that it is aperiodic in past equivalence and hence satisfies the condition (I). Suppose
that the f-shift is sofic. As in [KMW], the corresponding AF-algebra %4 has a unique
tracial state. Put

ZN=Z+PZ+pZ+- - +pZ

for each /e N. By a discussion in [KMW], we see that the matrix 4, is identified
with f-times multiplication on Z(/). Thus the dimension group is isomorphic to the
inductive limit

mg+mp+ -+ mp
ﬂk

and namely DG(4p) = Z[1/f] in R. The dimension group automorphism Jg is the

multiplication by f on Z[1/p]. The corresponding C*-algebra, denoted by (g, is simple

and purely infinite. They are classified in by the sequences appearing in the
f-expansions of 1.

zyLzavrn L Loz :{

m,-,k,leZ}.

Note ADDED IN PROOF. Since the submission of this paper, the author has received
the following paper, in which an invariance of the dimension groups for subshifts under
topological conjugacy is proved by a method of symbolic dynamical systems. J. Lee,
Equivalence of subshifts, J. Korean Math. Soc. 33 (1996), 685-692.

It has been proved in that the stabilized C*-algebra ¢4 ® 4" of (,, where A
is the C*-algebra of all compact operators on a separable infinite dimensional Hilbert
space, with gauge action is invariant under topological conjugacy as two-side subshift.
Hence it is a direct consequence from this fact that the dimension triple is topological
conjugacy invariant as two-sided subshifts.
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