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Abstract. We describe the notion of the dimension group for subshifts in terms of

symbolic dynamical system and show that the dimension group is a conjugacy invariant.

We will show that the the hereditary subsets invariant under the dimension group au-

tomorphism exactly corresponds to the gauge invariant ideals of the associated C �-algebra

OL for the subshift ðL; sÞ. As a result, we give the conditions that the C �-algebra OL

becomes simple and purely infinite in terms of symbolic dynamics.

1. Introduction.

The study of the dimension groups for topological Markov shifts was initiated by

W. Krieger in [Kr1] and [Kr2]. He defined the notion of the dimension groups for

topological Markov shifts based on ideas in the theory of the C �-algebras. The di-

mension group has been playing an important role as a conjugacy invariant in the

theory of topological Markov shifts. For a square matrix A with entries in f0; 1g, we

denote by LA the topological Markov shift determined by the matrix A. Let OA be the

Cuntz-Krieger algebra for the matrix A. Then the (future) dimension group DGðLAÞ

for the Markov shift LA appears as the K0-group of the AF-algebra consisting of the

fixed elements under the gauge action of the C �-algebra OA ([CK ], [C2], [Kr], [Kr2]).

In [Ma], the author has introduced and studied the C �-algebra OL from a general

subshift L keeping in mind that the class of the topological Markov shifts is a subclass

of the class of the subshifts. In his studies, many structural properties of the Cuntz-

Krieger algebras have been generalized to the C �-algebras OL associated with subshifts

(cf. [Ma], [Ma2], [Ma3]). In particular, as a generalization for the notion of the di-

mension group of the topological Markov shifts, he defined the (future) dimension group

for subshift L as the K0-group K0ðFLÞ of the AF-algebra FL consisting of the fixed

elements under the gauge action of the C �-algebra OL as an ordered group ([Ma2]).

In this paper, we first describe the dimension group for general subshifts in terms of

the symbolic dynamical system. For a (two-sided) subshift L over S ¼ f1; 2; . . . ; ng

with shift transformation s, we denote by XL the set of all right-infinite sequences that

appear in L. The dynamical system ðXL; sÞ is called the one-sided subshift for L and is

simply written by XL. For a natural number l A N , let Ll be the set of all words appearing

in the sequences in the subshift L of length less than or equal to l. Put LlðxÞ ¼

fm A Ll j mx A XLg for x A XL. We define equivalence relations in the space XL. Two
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points x; y A XL are said to be l-past equivalent if LlðxÞ ¼ LlðyÞ. We write this

equivalence as x@l y. Let F l
i ; i ¼ 1; 2; . . . ;mðlÞ be the set of the l-past equivalence

classes of XL. We write Il; lþ1ði; jÞ ¼ 1 if F lþ1
j HF l

i otherwise Il; lþ1ði; jÞ ¼ 0. We

denote by Al; lþ1ði; jÞ the cardinality of the set fh A S j hx A F l
i for some x A F lþ1

j g.

Hence we have two mðlÞ �mðl þ 1Þ matrices Il; lþ1 and Al; lþ1 with entries in f0; 1g and

with entries in non-negative integers respectively. We denote by ZL;Z
þ
L the inductive

limits

ZL ¼ lim
!

fI tl; lþ1 : Z
mðlÞ ! Z

mðlþ1Þg;

Z
þ
L ¼ lim

ÿ!
fI tl; lþ1 : Z

mðlÞ
þ ! Z

mðlþ1Þ
þ g

where Z
mðlÞ
þ is the vectors with entries in non-negative integers. The sequence At

l; lþ1 of

matrices induces an ordered homomorphism on ZL which we denote by lL. We will

show

Theorem 1.1 (Theorem 4.11). The ( future) dimension group ðK0ðFLÞ;K0ðFLÞþÞ for

subshift L is realized to be the following ordered group ðDGðLÞ;DGðLÞþÞ:

DGðLÞ ¼ lim
!

flL : ZL ! ZLg;

DGðLÞþ ¼ lim
ÿ!

flL : Z
þ
L ! Z

þ
Lg:

The homomorphism lL yields a natural automorphism on DGðLÞ. We call it the

dimension group automorphism and write it as dL. The triple ðDGðLÞ;DGðLÞþ; dLÞ is

called the dimension triplet for ðL; sÞ.

We will next introduce some properties for subshifts as symbolic dynamical systems.

They are condition (I), irreducibility and aperiodicity in some sense. If a subshift is a

topological Markov shift LA determined by a matrix A with entries in f0; 1g, their

properties coincide with those of the matrix (condition (I) in the sense of Cuntz-Krieger

(cf. [CK ]), irreducibility and aperiodicity) respectively.

Definition.

(i) A subshift ðXL; sÞ satisfies the condition (I) if for any l A N and x A XL, there

exists y A XL such that y0 x and y@l x.

(ii) A subshift ðXL; sÞ is irreducible in past equivalence if for any l A N ; y A XL and

a sequence ðxkÞk AN of XL with xk
@k x

kþ1
; k A N , there exist a number N and a word m

of length N in a sequence of XL such that y@l mx
lþN .

(iii) A subshift ðXL; sÞ is aperiodic in past equivalence if for any l A N , there exists

a number N such that for any pair x; y A XL there exists a word m of length N in a

sequence of XL such that y@l mx.

We know that if a subshift ðXL; sÞ is aperiodic in past equivalence or irreducible in

past equivalence with an aperiodic point, then it satisfies the condition (I).

We will see that the dimension triplet is a conjugacy invariant under the hypothesis

of the condition (I):

Theorem 1.2 (Theorem 5.4). Suppose that both one-sided subshifts ðXL1
; sÞ and

ðXL2
; sÞ satisfy the condition (I). If they are conjugate, there exists an isomorphism
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between ðDGðL1Þ;DGðL1ÞþÞ and ðDGðL2Þ;DGðL2ÞþÞ as ordered groups which intertwines

dL1
and dL2

.

It is well-known that the dimension group completely determines the algebraic

structure of the associated AF-algebra FL (cf. [Br], [El ]). In particular, hereditary

subsets correspond to the ideals of the AF-algebra ([Br]). We will show that

Theorem 1.3 (Theorem 6.8). There exists an inclusion preserving bijective corre-

spondences between the set of all dL-invariant hereditary subsets of the dimension group

DGðLÞ and the set of all gauge invariant ideals of the C �-algebra OL.

We will see that any nonzero ideal of OL contains a gauge invariant nonzero ideal

of OL under the hypothesis of the condition (I) for ðXL; sÞ. Hence we see that ðXL; sÞ

is irreducible in past equivalence if and only if there exists no gauge invariant ideal

of OL. Therefore we will obtain a description of the criterion that the C �-algebra OL

become simple and purely infinite in terms of the subshift as follows:

Theorem 1.4 (Corollary 6.11). If a subshift XL is irreducible in past equivalence and

has an aperiodic point, then the C �-algebra OL is simple. In particular, if a subshift XL is

aperiodic in past equivalence, the C �-algebra OL is simple and purely infinite.

The above theorem is a generalization of the result of the Cuntz-Krieger’s theorem

([CK; 2.14 Theorem]).

We remark that the condition for XL to be irreducible in past equivalence written in

the paper [Ma3] is weaker than the corresponding condition in this paper. The former

is not su‰cient for OL to be simple.

2. Notation and Dimension groups.

Throughout this paper, a finite set S ¼ f1; 2; . . . ; ng is fixed.

Let SZ , SN be the infinite product spaces
Q

y

i¼ÿy
Si,

Q
y

i¼1 Si where Si ¼ S, en-

dowed with the product topology respectively. The transformation s on SZ
;SN given

by ðsðxÞÞi ¼ xiþ1; i A Z;N is called the (full) shift. Let L be a shift invariant closed

subset of SZ i.e. sðLÞ ¼ L. The topological dynamical system ðL; sjLÞ is called a

subshift. We denote sjL by s for simplicity. We denote by XL the set of all right-

infinite sequences that appear in L. The dynamical system ðXL; sÞ is called the one-

sided subshift for L.

A finite sequence m ¼ ðm1; . . . ; mkÞ of elements mj A S is called a block or a word.

We denote by jmj the length k of m. A block m ¼ ðm1; . . . ; mkÞ is said to occur or appear

in x ¼ ðxiÞ A SZ if xm ¼ m1; . . . ; xmþkÿ1 ¼ mk for some m A Z. For a subshift ðL; sÞ and

a number k A N , let Lk be the set of all words of length k in SZ occurring in some

x A L. Put Ll ¼6 l
k¼0L

k
;L� ¼6y

k¼0L
k where L0 denotes the empty word.

For a one-sided subshift XL, put

LlðxÞ ¼ fm A Ll j mx A XLg for x A XL; l A N :

We define equivalence relations in the space XL. For l A N , two points x; y A XL are
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said to be l-past equivalent if LlðxÞ ¼ LlðyÞ. We write this equivalence as x@l y. We

denote by Wl ¼ XL=@l the l-past equivalence classes of XL.

Lemma 2.1. For x; y A XL and m A Lk,

(i) if x@l y, we have x@m y for m < l.

(ii) if x@l y and mx A XL, we have my A XL and mx@lÿk my for l > k.

Hence we have the following sequence of surjections in a natural way:

W1 -W2 - � � �  -Wl -Wlþ1 - � � � :

Set
WL ¼ lim

 
Wl

the projective limit as topological space of the above sequence of surjections.

Some properties of subshifts are characterized in terms of the sequences of the

spaces of l-past equivalence classes as follows:

Lemma 2.2. For a subshift ðL; sÞ, we have

(i) ðL; sÞ is a topological Markov subshift if and only if W1 ¼ Wl for all l A N .

(ii) ðL; sÞ is a sofic subshift if and only if Wl ¼ Wlþ1 for some l A N .

For a fixed l A N , let F l
i ; i ¼ 1; 2; . . . ;mðlÞ be the set of the l-past equivalence classes

of XL. Hence XL is a disjoint union of the set F l
i ; i ¼ 1; 2; . . . ;mðlÞ. For h A S and

i ¼ 1; 2; . . . ;mðlÞ, j ¼ 1; 2; . . . ;mðl þ 1Þ, we know hx A F l
i for some x A F lþ1

j if and only

if hy A F l
i for all y A F lþ1

j by Lemma 2.1. We write Il; lþ1ði; jÞ ¼ 1 if F lþ1
j HF l

i other-

wise Il; lþ1ði; jÞ ¼ 0. Let Al; lþ1ði; jÞ be the cardinality of the set fh A Sjhx A F l
i for some

x A F lþ1
j g. We have two sequences Il; lþ1 and Al; lþ1 of mðlÞ �mðl þ 1Þ-matrices with

entries in f0; 1g and with non-negative entries respectively.

A system of sequence f½Al; lþ1ði; jÞ�
j¼1;2; ...;mðlþ1Þ
i¼1;2; ...;mðlÞ gl AN of matrices is said to be

aperiodic if for any l A N , there exists a number N A N such that the all entries of the

product Al; lþ1 � Alþ1; lþ2 � � �AlþNÿ1; lþN of the matrices are strictly positive (cf. [Br] [Ev2]).

We then easily have

Lemma 2.3. For a subshift L, the following three assertions are equivalent:

(i) XL is aperiodic in past equivalence.

(ii) The system f½Al; lþ1ði; jÞ�
j¼1;2; ...;mðlþ1Þ
i¼1;2; ...;mðlÞ gl AN of matrices is aperiodic.

(iii) For any l A N , there exists a number N A N such that

F l
i V sÿNðxÞ0q for i ¼ 1; 2; . . . ;mðlÞ; x A XL:

We denote by ZL;Z
þ
L the inductive limits:

ZL ¼ lim
!
fI tl; lþ1 : Z

mðlÞ ! Z
mðlþ1Þg;

Z
þ
L ¼ lim

ÿ!
fI tl; lþ1 : Z

mðlÞ
þ ! Z

mðlþ1Þ
þ g:

The sequence At
l; lþ1 of matrices induces an ordered homomorphism on ZL which we

denote by lL.

We now define an ordered abelian group DGðLÞ with positive cone DGðLÞþ for

subshift L as follows:
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Notation 2.4.

DGðLÞ ¼ lim
!

flL : ZL ! ZLg;

DGðLÞþ ¼ lim
!

flL : Z
þ
L ! Z

þ
Lg:

The group DGðLÞ can be identified with the space of all sequences ðx1; x2; . . .Þ for

xl A ZL such that lLðxlÞ ¼ xlþ1 eventually for all l large, and two sequences which

eventually agree are identified. Then there is an induced homomorphism dL acting on

DGðLÞ by shifting the sequences to the left:

dLðx1; x2; x3; . . .Þ ¼ ðx2; x3; . . .Þ:

Since we see

dÿ1
L ðx1; x2; x3; . . .Þ ¼ ð0; x1; x2; . . .Þ;

dL yields an isomorphism on DGðLÞ. We call it the dimension group automorphism.

The triple ðDGðLÞ;DGðLÞþ; dLÞ is called the dimension triplet for ðL; sÞ.

We will, in Section 4, see that the above group is actually isomorphic to the K0-

group for the canonical AF-algebra FL inside of the C �-algebra OL. Hence the di-

mension group for subshift L will be realized as the ordered group ðDGðLÞ;DGðLÞþÞ.

Remark. (i) If a subshift L is a topological Markov shift LA, the dimension group

DGðLAÞ as a subshift coincides with the dimension group for Markov shift defined by

W. Krieger in [Kr] and [Kr2].

(ii) The notion of the dimension group for general subshifts has appeared in [Ma2]

in terms of K-theory for the C �-algebras constructed from subshifts. Jungseob Lee

independently studied the dimension group for general subshifts in terms of symbolic

dynamics ([Le]).

3. AF-algebras from subshifts.

We henceforth fix a subshift ðL; sÞ. Take natural numbers l; k A N with lV k. Put

Lk
l ðiÞ ¼ fm A Lk j mx A XL for x A F l

i g for i ¼ 1; 2; . . . ;mðlÞ:

The set Lk
l ðiÞ is independent of x A F l

i such that mx A XL. Set

~XXLk
l
¼

a

mðlÞ

i¼1

Lk
l ðiÞ : disjoint union:

For i ¼ 1; 2; . . . ;mðlÞ; j ¼ 1; 2; . . . ;mðl þ 1Þ, and h A S ¼ f1; 2; . . . ; ng, define

Alði; h; jÞ ¼
1 if hx A F l

i for x A F lþ1
j

0 otherwise.

(

Thus one sees Al; lþ1ði; jÞ ¼
Pn

h¼1 Alði; h; jÞ.

Let us consider the following imbeddings.

(i) ik : n A ðLk
lþ1ð jÞHÞ ~XXLk

lþ1
,! n A ðLk

l ð j
0ÞHÞ ~XXLk

l
if F lþ1

j HF l
j 0

(ii) h : m A ~XXLkþ1
lþ1

,! mh A XLk
l
if m A Lk

l ðiÞ; mh A Lkþ1
lþ1 ð jÞ, and Alði; h; jÞ ¼ 1.
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We set the projective limits as topological spaces:

~XXLk
y
¼ lim
 
ð ~XXLk

l
; ikÞ for k A Zþ;

~XXLðmÞ ¼ lim
 
ð ~XXLk

kþm
; hÞ for m A Zþ:

Since the diagram

~XXLkþ1
lþ2

����!
ikþ1

~XXLkþ1
lþ1

h

?
?
?
y

?
?
?
y

h

~XXLk
lþ1

����!
i k

~XXLk
l

is commutative, we have an isomorphism of topological spaces:

lim
 
ð ~XXLk

y
; kÞG lim

 
ð ~XXLðmÞ;mÞ:

We denote by ~XXL the above projective limit.

Let mk
l ðiÞ ¼ jL

k
l ðiÞj: be the cardinality of the set Lk

l ðiÞ. Now we define AF-algebras

as in the following way. Set

M
l
k ¼Mmk

l
ð1Þl � � � lMmk

l
ðmðlÞÞ:

Thus we have
DðM l

kÞGCð ~XXLk
l
Þ

where DðM l
kÞ is the algebra of all diagonal elements of M

l
k.

The preceding two inclusions of the spaces f ~XXL l
k
gkUl yield the inclusions of the

algebras fM l
kgkUl as follows:

(i) ik
�
: M

l
k ,!M

lþ1
k induced from ik : ~XXLk

lþ1
,! ~XXLk

l
.

(ii) h� : M l
k ,!M

lþ1
kþ1 induced from h : ~XXLkþ1

lþ1
,! ~XXLk

l
.

Take the inductive limits of the sequences of the finite dimensional algebras as

follows:

M
y
k ¼ lim

!
ðM l

k; i
k �Þ for k A Zþ; MLðmÞ ¼ lim

!
ðMkþm

k ; h�Þ for m A Zþ:

As in a previous discussion, we have an isomorphism : lim
!

M
y
k G lim

!
MLðmÞ. We

denote this C �-algebra by M
y
L . One thus has

Proposition 3.1.

ðK0ðM
y
L Þ;K0ðM

y
L ÞþÞG ðDGðLÞ;DGðLÞþÞ:

Proof. The ordered group ðK0ðM
y
L Þ;K0ðM

y
L ÞþÞ is isomorphic to the inductive

limit lim
!
ðK0ðM

y
k Þ;K0ðM

y
k ÞþÞ by the induced map h�� . The natural imbedding

j lk : M
l
k ,!M

y
k makes the following diagram commutative

K0ðM
l
kÞ ����!

Al; lþ1
K0ðM

lþ1
kþ1Þ

j l
k�

?
?
?
y

?
?
?
y

j lþ1
kþ1�

K0ðM
y
k Þ ����!

h �

K0ðM
y
kþ1Þ:
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As the ordered group K0ðM
y
k Þ is isomorphic to the ordered group ZL, we have

lim
!

ðK0ðM
y
k Þ;K0ðM

y
k ÞþÞ is isomorphic to ðDGðLÞ;DGðLÞþÞ.

4. The C �-algebras associated with subshifts.

We will review the construction of the C �-algebra OL associated with subshift ðL; sÞ.

Fix an orthonormal basis fe1; . . . ; eng of the n-dimensional Hilbert space C
n. Set

F 0
L ¼ Ce0 (e0: vacuum vector)

F k
L ¼ the Hilbert space spanned by the vectors em ¼ em1 n � � � n emk , m ¼

ðm1; . . . ; mkÞ A Lk,

FL ¼ 0y

k¼0
F k
L (Hilbert space direct sum)

We denote by Tn; ðn A L�Þ the creation operator on FL of en; n A L� ðn0qÞ defined

by

Tne0 ¼ en and Tnem ¼
en n em; ðnm A L�Þ

0 else

�

which is a partial isometry. We put Tn ¼ 1 for n ¼ q. Let P0 be the projection onto

the vacuum vector e0. It immediately follows that
Pn

i¼1 TiT
�
i þ P0 ¼ 1. We then

easily see that for m; n A L�, the operator TmP0T
�
n is the partial isometry from the vector

en to em. Hence, the C �-algebra generated by elements of the form TmP0T
�
n ; m; n A L� is

the C �-algebra KðFLÞ of all compact operators on FL. Let TL be the C �-algebra on

FL generated by the elements Tn; n A L�.

Definition ([Ma]). The C �-algebra OL associated with subshift ðL; sÞ is defined as

the quotient C �-algebra TL=KðFLÞ of TL by KðFLÞ.

We denote by Si;Sm the quotient image of the operator Ti; i A S;Tm; m A L�. Hence

OL is generated by n partial isometries S1; . . . ;Sn with relation
Pn

i¼1 SiS
�
i ¼ 1.

If ðL; sÞ is a topological Markov shift, the C �-algebra OL is nothing but the Cuntz-

Krieger algebra associated with the topological Markov shift (cf. [CK ], [EFW ], [Ev]).

Put am ¼ S�
mSm; m A L�. Since TnT

�
n commutes with T �

mTm; m; n A L�, the following

identities hold

amSn ¼ Snamn; m; n A L�:ð�Þ

For m; n A L� with jmj ¼ jnj, we have S �
mSn 0 0 if and only if m ¼ n.

We will use the following notation. Let k; l be natural numbers with kU l.

Al ¼ The C �-subalgebra of OL generated by am; m A Ll :

AL ¼ The C �-subalgebra of OL generated by am; m A L�:

F
l
k ¼ The C �-subalgebra of OL generated by SmaS

�
n ;

m; n A Lk; a A Al :

F
y
k ¼ The C �-subalgebra of OL generated by SmaS

�
n ;

m; n A Lk; a A AL:
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FL ¼ The C �-subalgebra of OL generated by SmaS
�
n ;

m; n A L�
; jmj ¼ jnj; a A AL:

The projections fT �
mTm; m A L�g are mutually commutative so that the C �-algebras

Al ; l A N are commutative. Thus we easily see the following lemma (cf. [Ma; Section 3]).

Lemma 4.1.

(i) Al is finite dimensional and commutative.

(ii) Al is naturally embedded into Alþ1 so that AL ¼ lim
!

Al is a commutative AF-

algebra.

(iii) Each element of F
l
k is a finite linear combination of elements of the form

SmaS
�
n ; m; n A Lk

; a A Al . Hence F
l
k is finite dimensional.

(iv) There are two embeddings in fF l
kgkUl :

(iv-a) il : F
l
k HF

lþ1
k through the embedding Al HAlþ1 and

(iv-b) hk : F l
k HF

lþ1
kþ1 through the identity

SmaS
�
n ¼

Xn

j¼1

SmjS
�
j aSjS

�
nj; m; n A Lk

; a A Al :

(v) Both F
y

k ¼ liml!yF
l
k and FL ¼ limk!y F

y

k are AF-algebras.

In the preceding Hilbert space FL, the transformation em ! zkem; m A Lk
; z A T ¼

fz A C ; jzj ¼ 1g on each base em yields a unitary representation which leaves KðFLÞ

invariant. Thus it gives rise to an action a of T on the C �-algebra OL. It is called the

gauge action and satisfies azðSiÞ ¼ zSi; i ¼ 1; 2; . . . ; n.

Each element X of the �-subalgebra of OL algebraically generated by Sm;S
�
n ;

m; n A L� is written as a finite sum

X ¼
X

jnjV1

XÿnS
�
n þ X0 þ

X

jmjV1

SmXm for some Xÿn;X0; Xm A FL

because of the relation ð�Þ. The map EðXÞ ¼
Ð
z AT

azðXÞdz;X A OL defines a projection

of norm one onto the fixed point algebra O
a
L under a. We then have (cf. [Ma;

Proposition 3.11])

Lemma 4.2. FL ¼ O
a
L.

We denote by DL the commutative C �-algebra of all diagonal elements of FL

that is the C �-algebra generated by elements of the form SmanS
�
m ; m; n A L�. Let DL be

the C �-subalgebra of DL generated by SmS
�
m; m A L�, that is isomorphic to the C �-algebra

CðXLÞ of all complex valued continuous functions on the space XL. Put fLðXÞ ¼Pn
j¼1 SjXS

�
j ; X A DL that corresponds to the shift s on XL.

Consider the following condition called ðILÞ in [Ma].

ðILÞ: For any l; k A N with lV k, there exists a projection q l
k in DL such that

(i) q l
ka0 0 for any nonzero a A Al ,

(ii) q l
kf

m
L ðq

l
kÞ ¼ 0; 1UmU k.

Lemma 4.3 ([Ma; Theorem 4.9 and 5.2]). Let A be a unital C �-algebra. Suppose

that there is a unital *-homomorphism p from AL to A and there are n partial isometries
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s1; . . . ; sn A A satisfying the following relations

Xn

j¼1

sjs
�
j ¼ 1; s�msmsn ¼ sns

�
mnsmn; m; n A L�

;ðaÞ

s�msm ¼ pðS �
mSmÞ; m A L�ðbÞ

where sm ¼ sm1 � � � smk ; m ¼ ðm1; . . . ; mkÞ. Then there exists a unital *-homomorphism ~pp

from OL to A such that ~ppðSiÞ ¼ si; i ¼ 1; . . . ; n and its restriction to AL coincides with p.

In addition, if the C �-algebra OL satisfy the condition ðILÞ, this extended homomorphism ~pp

becomes injective whenever p is injective.

We say the operator lL on AL (defined by lLðX Þ ¼
Pn

j¼1 S
�
j XSj;X A AL) to be

irreducible if there exists no non-trivial ideal of AL invariant under lL. It is also said to

be aperiodic if for any number l, there exists N A N such that lN
L ðpÞV 1 for any minimal

projection p A Al .

Lemma 4.4 ([Ma; Theorem 6.3 and Theorem 7.5]). If the C �-algebra OL satisfies the

condition ðILÞ and lL is irreducible on AL, then OL is simple. In addition, if lL is

aperiodic, OL is purely infinite.

We notice that the following:

Lemma 4.5 (cf. [Ma; Proposition 5.8] and [CK; 2.17 Proposition]). Let ðL1; s1Þ and

ðL2; s2Þ be subshifts such that both the associated C �-algebras OL1
and OL2

satisfy the

condition ðILÞ. If the associated one-sided subshifts ðXL1
; s1Þ and ðXL2

; s2Þ are

topologically conjugate, then there exists an isomorphism F from OL1
onto OL2

such

that F � a1z ¼ a2z �F; z A T where a i is the gauge action on OLi
; i ¼ 1; 2 respectively.

Furthermore F maps DL1
and DL1

onto DL2
and DL2

respectively and satisfies F � lL1
¼

lL2
�F on DL1

.

We will here give a proof of Lemma 4.5 for the sake of completeness. The proof is

based on the proof of [CK; 2.17 Proposition]

Proof. For a subshift ðXL; sÞ, a finite partition Zð1Þ;Zð2Þ; . . . ;ZðmÞ of XL is

called a generator for s if the characteristic functions of the sets sÿkðZðiÞÞ; i ¼

1; 2; . . . ;m; k ¼ 0; 1; 2; . . . ; generate the C �-algebra CðXLÞð¼ DLÞ. Put

Um ¼ fðx1; x2; . . .Þ A XL j x1 ¼ m1; x2 ¼ m2; . . . ; xk ¼ mkg

the cylinder set for m ¼ m1 � � � mk A Lk. We denote by wUm
the characteristic function of

Um. It is easy to see that the cylinder sets ZðiÞ ¼ Ufig; i ¼ 1; 2; . . . ; n form a generator

for s in XL. We indeed have

SmS
�
m ¼ wZðm1Þ � wsÿ1ðZðm2ÞÞ

� � � wsÿðkÿ1ÞðZðmkÞÞ

for m ¼ m1m2 � � � mk. We may assume that the s1 and s2 act on the same space X and

that s1 ¼ s2 ¼ s. Let Z1ðiÞ; i A S1 and Z2ð jÞ; j A S2 be generators for s1 and s2
respectively. Put Wi; j ¼ Z1ðiÞVZ2ð jÞ for ði; jÞ A S1 � S2 ¼ Sw. Then the non-empty

sets among the sets Wi; j; ði; jÞ A Sw form a generator for s. We define a subshift
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ðLw; sÞ over Sw for which forbidden blocks are

6
y

k¼1

fðw1;w2; . . . ;wkÞ A Sw � Sw � � � � � SwjWw1
V sÿ1ðWw2

ÞV � � � V sÿðkÿ1ÞðWwk
Þ ¼ qg:

The subshift ðXLw
; sÞ may be identified with the original ones ðXLi

; siÞ; i ¼ 1; 2. Let

Vi; j; ði; jÞ A Sw be the generating partial isometries of the C �-algebra OLw
associated with

the subshift Lw. Put

T1i ¼
X

j AS2

Vi; j ; T2j ¼
X

i AS1

Vi; j A OLw
:

We first construct an isomorphism from OL1
onto OLw

. Since we know that Vi; jV
�
i;k ¼ 0

for j0 k, the operators T1i ; i A S1 are partial isometries satisfying the relations

T1i
T �
1i
¼

X

j AS2

Vi; jV
�
i; j:

For m ¼ ðm1; . . . ; mkÞ A Lk
1 , we have

T �
1m
T1m ¼

X

ðn1; ...; nkÞ A Lk
2

V �
mk ; nk

� � �V �
m1; n1

Vm1; n1 � � �Vmk ; nk

¼
X

ðn1; ...; nkÞ A Lk
2

wskðWðm1 ; ...; mk Þðn1 ; ...; nk Þ
Þ

¼ wskðZ1ðm1; ...;mkÞÞ

so that the correspondences S �
mSm $ T �

1m
T1m ; m A L�

1 gives rise to an isomorphism be-

tween the C �-algebra AL1
and the C �-algebra C �ðT �

1m
T1m ; m A L�

1 Þ generated by T �
1m
T1m ;

m A L�
1 . Hence by Lemma 4.3, the map F1 : Si A OL1

! T1i A OLw
yields an iso-

morphism from OL1
to the C �-algebra C �ðT1i ; i A S1Þ generated by T1i ; i A S1. The

identities Vi; j ¼ Vi; jV
�
i; jT1i hold. Since we know Vi; jV

�
i; j is contained in the C �-algebra

C �ðT1mT
�
1m
; m A L�

1 Þ, which is regarded as the C �-algebra CðXL1
Þð¼ CðXÞÞ, hence OLw

is

generated by T1i ; i A S1. Thus the map F1 yields an isomorphism from OL1
onto OLw

.

Similarly we have an isomorphism F2 from OL2
onto OLw

. Put F ¼ Fÿ1
2 �F1 an

isomorphism from OL1
onto OL2

. As we see

T1m
T �
1m

¼ wZ1ðmÞ
and T2n

T �
2n
¼ wZ2ðnÞ

;

we know that the restriction of F to DL1
coincides the isomorphism from

DL1
ð¼ CðXL1

ÞÞ onto DL2
ð¼ CðXL2

ÞÞ induced from the conjugacy from XL2
to XL1

. We

can show that DLi
¼ D

0
Li
VFL; i ¼ 1; 2 as in [Ma5; Proposition 3.3] (cf. [CK; 2.18

Remark]), the isomorphism F maps DL1
onto DL2

. Since the identity F � lL1
¼ lL2

�F

holds on DL1
, it does on DL1

.

We will next connect the discussions of Section 2 and Section 3 and the preceding

discussion on C �-algebras. The following lemma is key in our studies.

Lemma 4.6. Regard a minimal projection of Al as a characteristic function on the

subshift XL. Then the support of the function is one of the set fF l
i gi¼1;2; ...;mðlÞ of all l-past
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equivalence classes of XL. Hence the set of all minimal projection fE l
i gi exactly cor-

responds to the set fF l
i gi of all l-past equivalence classes Wl .

Corollary 4.7. The C �-algebra Al is isomorphic to the C �-algebra CðWlÞ of all

complex valued continuous functions on Wl . Hence AL is isomorphic to CðWLÞ.

For a word m A Lk, it belongs to Lk
l ðiÞ if and only if the inequality S �mSm VE l

i holds,

that is also equivalent to the condition SmE
l
i S
�
m 0 0. Thus we have

Lemma 4.8.

(i) F
l
k GMmk

l
ð1Þl � � � lMm k

l
ðmðlÞÞð¼M

l
kÞ.

(ii) DðF l
kÞGCð ~XXLk

l
Þ.

We easily have

Lemma 4.9. lLðE
l
i Þ ¼

Pmðlþ1Þ
j¼1 Al; lþ1ði; jÞE

lþ1
j .

Proof. The assertion follows from the identity: S �hE
l
i Sh ¼

Pmðlþ1Þ
j¼1 Alði; h; jÞE

lþ1
j .

Since the identity SmE
l
i S
�
m ¼

Pmðlþ1Þ
j¼1

Pn
h¼1 Alði; h; jÞSmhE

lþ1
j S �mh holds, we see

Lemma 4.10. We have F
y
k GM

y
k for k A N and hence FL GM

y
L .

Therefore by Proposition 3.1 and Lemma 4.9, we obtain

Theorem 4.11.

ðDGðLÞ;DGðLÞþ; dLÞG ðK0ðFLÞ;K0ðFLÞþ; lL�Þ:

The following proposition is deduced from Lemma 4.6 and Lemma 4.9.

Proposition 4.12.

(i) ðXL; sÞ is irreducible in past equivalence if and only if lL is irreducible on AL.

(ii) ðXL; sÞ is aperiodic in past equivalence if and only if lL is aperiodic on AL.

Proof. (i) It is easy to see that lL is irreducible on AL if and only if for any

l A N ; i ¼ 1; 2; . . . ;mðlÞ and o A WL, there exists an number N A N such that

lN
L ðE

l
i ÞðoÞ0 0ð4:1Þ

where lN
L ðE

l
i Þ is regarded as a function on WL. We denote the element o by the

sequence ðo1;o2; . . .Þ A WLð¼ lim
 

WlÞ where ol A Wl . We may identify Wl with the set

f1; 2; . . . ;mðlÞg. Then the condition (4.1) is equivalent to the condition: there exists a

word m A LN such that

mx A F l
i for all x A F lþN

olþN
:

Hence we have that lL is irreducible if and only if for any l A N ; y A XL and

ðo1;o2; . . .Þ A WL, there exist N A N and m A LN such that y@l mx for all x A F lþN
olþN

. Let

XL be the set of all sequences ðxkÞk AN of XL such that xk
@k x

kþ1 for all

k A N . Hence each x ¼ ðxkÞk AN A XL gives rise to an element oðxÞ ¼ ðokðxÞÞk AN of
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WL that satisfy xk
A F k

okðxÞ
. As the map from XL to WL is surjective, we easily see that

the irreducibility for subshift is equivalent to the irreducibility for lL.

(ii) The assertion is direct from Lemma 4.9.

Remark. Y. Watatani informed the author that the C �-algebra OL associated with

subshifts can be regarded as C �-algebras constructed from Hilbert C �-modules con-

sidered in [K ], [Pi ], [KPW ], [KT ]. In [KT ], Katayama-Takehana have recently defined

and studied an aperiodicity for Hilbert C �-modules that is a generalization of our

aperiodicity for subshifts.

5. Condition (I) for subshifts and conjugacy invariance for DGðLÞ.

In this section, we introduce the condition (I) for subshifts, which is a generalization

of the condition (I) for topological Markov shifts in the sense of Cuntz-Krieger (cf.

[CK]). The condition (I) for subshift ðL; sÞ is an equivalent condition to the condition

ðILÞ for the associated C �-algebra OL. Hence we will show that, under the condition

(I), the dimension triple ðDGðLÞ;DGðLÞþ; dLÞ (and in particular the dimension group

DGðLÞ) is a conjugacy invariant. We may always assume that all the letters

S ¼ f1; 2; . . . ; ng are admissible in the subshift L and nV 2. Hence the space XL may

not be a single point.

Lemma 5.1. The following six conditions are equivalent:

(i) ~XXL does not have an isolated point.

(ii) ~XXLðmÞ does not have an isolated point for some m A N .

(iii) ~XXLðmÞ does not have an isolated point for all m A N .

(iv) For any l;m A N and x A XL, there exists y A XL such that yN 0 xN for some

N > m, yj ¼ xj for j ¼ 1; 2; . . . ;m and y@l x.

(v) For any l A N and x A XL, there exists y A XL such that y0 x and y@l x.

(vi) For any pair l; k A N with lV k, there exists yi A F l
i for i ¼ 1; 2; . . . ;mðlÞ such

that smðyiÞ0 yj for all i; j ¼ 1; 2; . . . ;mðlÞ and m ¼ 1; 2; . . . ; k.

Proof. (iv) ) (v): trivial.

(v) ) (iv): For any x ¼ ðx jÞj AN A XL and l;m A N , put m ¼ ðx1; x2 � � � ; xmÞ A Lm,

x 0 ¼ ðxmþ1; xmþ2; � � �Þ A XL. By the condition (v), there exists w A XL such that x 0
0w

and x 0
@lþm w. By putting y ¼ mw A XL, One sees that

xj ¼ yj for all 1U jUm; xN ¼ yN for some N > m; and x@l y:

(iv) ) (vi) We first show that for a fixed lV k and i ¼ 1; 2; . . . ;mðlÞ, there exists

y A F l
i satisfying snðyÞ0 y for 1U nU k. Take an element x A F l

i for some i ¼

1; 2; . . . ;mðlÞ. If sðxÞ ¼ x, we may find y A XL such that sðyÞ0 y by the condition

(iv). Hence assume that sðxÞ0 x. Now we suppose that snðxÞ0 x for all 1U nUK .

Take kn A N such that xkn 0 xnþkn . Put M ¼ Maxfnþ kn; n ¼ 1; 2; . . . ;Kg > K þ 1.

By the condition (iv), there exists y A F l
i such that

xj ¼ yj for all 1U jUM and xN 0 yN for some N > M:

Hence we have snðyÞ0 y for all 1U nUK . If both the condition sKþ1ðxÞ ¼ x and

sKþ1ðyÞ ¼ y hold, it contradicts to the condition xN 0 yN for some N > M. Hence
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xðor yÞ A F l
i satisfies snðxÞ0 xðor snðyÞ0 yÞ for all 1U nUK þ 1. Thus the induc-

tion is completed. By a similar argument to this, we can prove the condition (vi).

(vi) ) (v) Suppose that there exist y A XL; l A N such that y@l z A XL implies

y ¼ z. Let F l
iðlÞ be the equivalence class belonging y. As F l

iðlÞ ¼ fyg, one sees F m
iðmÞ ¼

fyg for any mV l. By the condition (vi), we have sðyÞ0 y so that sðyÞ A F lþ1
j for

some j0 iðl þ 1Þ. Then for any z A F lþ1
j , we have y@l y1z where y ¼ ðy1; y2; . . .Þ;

z ¼ ðz1; z2; . . .Þ and y1z ¼ ðy1; z1; z2; . . .Þ. Thus we obtain z ¼ sðyÞ and see F lþ1
j ¼

fsðyÞg. Since F lþ1
iðlþ1Þ ¼ fyg and j0 iðl þ 1Þ, This contradicts to the condition (vi).

Other implications are easily proved.

Definition. A subshift ðXL; sÞ satisfies the condition ðIÞ if it satisfies one of the six

equivalent conditions of the preceding lemma.

A topological Markov shift ðXA; sÞ satisfies the Cuntz-Krieger’s condition ðIÞ (cf.

[CK ]) if and only if it satisfies the condition ðIÞ in our sense.

Proposition 5.2.

(i) If ðXL; sÞ is aperiodic in past equivalence, it satisfies the condition ðIÞ.

(ii) If ðXL; sÞ is irreducible in past equivalence and has an aperiodic point, it satisfies

the condition ðIÞ.

Proof. (i) For l;m A N , put l 0 ¼ l þm. As ðXL; sÞ is aperiodic in past equiva-

lence, for the above l 0, there exists N A N satisfying the condition of the aperiodicity.

For an element x ¼ ðx jÞj AN A XL, put g ¼ ðx1; x2; . . . ; xmÞ A Lm and

x 0 ¼ ðxmþ1; xmþ2; . . . ; Þ; x 00 ¼ ðxmþNþ1; xmþNþ2; . . . ; Þ A XL:

Take a point w A XL such that x 00
0w. By assumption, there exists a word m A LN such

that x 0
@l 0 mw so that one sees gx 0

@l gmw. Put y ¼ gmw, which satisfies the condition:

x@l y; xj ¼ yj for all 1U jUm; xK 0 yK for some K > m:

(ii) For l;m A N , put l 0 ¼ l þm. For an element x ¼ ðx jÞj AN A XL, put

g ¼ ðx1; x2; . . . ; xmÞ A Lm
; x 0 ¼ ðxmþ1; xmþ2; . . . ; Þ:

Case 1: x is aperiodic.

Since ðXL; sÞ is irreducible in past equivalence, for the l 0 A N and x; x 0
A XL, we can

find a word m A Lk for some k such that x 0
@l 0 mx. Put y ¼ gmx A XL so that one

has x@l y and xj ¼ yj; 1U jUm. As x is aperiodic, we see that x0 y. Thus the

condition (I) is satisfied.

Case 2: x is not aperiodic.

By the assumption, there exists an aperiodic point w A XL. Since ðXL; sÞ is

irreducible in past equivalence, for the l 0 A N and w; x 0
A XL, we can find a word n A Lk

for some k such that x 0
@l 0 nw. Put y ¼ gnw A XL so that one has x@l y and xj ¼ yj;

1U jUm. As w is aperiodic, we see that x0 y. Thus the condition (I) is satisfied.

Lemma 5.3. A subshift ðXL; sÞ satisfies the condition ðIÞ if and only if the C �-

algebra OL satisfies the condition ðILÞ.
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Proof. Suppose that ðXL; sÞ satisfies the condition (I). Fix lV k. We can find

y l
i A F l

i with snðy l
i Þ0 y l

j for all i; j ¼ 1; 2; . . . ;mðlÞ and n ¼ 1; 2; . . . ; k. Put Y ¼

fy l
i ji ¼ 1; 2; . . . ;mðlÞgHXL. Since sÿnðYÞVY ¼ q; 1U nU k and XL is Hausdor¤,

we may find a clopen set V HXL containing Y such that V V sÿjðVÞ ¼ q; 1U jU k.

We denote by qk the characteristic function of V. It satisfies the following conditions:

(i) qkE
l
i 0 0 for all i ¼ 1; 2; . . . ;mðlÞ,

(ii) qkf
m
L ðqkÞ ¼ 0; 1UmU k.

Thus OL satisfies the condition ðILÞ.

Assume that OL satisfies the condition ðILÞ. Fix lV k. There exists a projection

qk A DLð¼ CðXLÞÞ satisfying the above conditions (i) and (ii). Take elements y l
i A F l

i

contained in the support of qk, that satisfy the condition (vi) of Lemma 5.1.

Now we reach the following theorem:

Theorem 5.4. Suppose that both one-sided subshifts ðXL1
; sÞ and ðXL2

; sÞ satisfy the

condition ðIÞ. If they are conjugate, the dimension triples ðDGðL1Þ;DGðL1Þþ; dL1
Þ and

ðDGðL2Þ;DGðL2Þþ; dL2
Þ are isomorphic.

Proof. The assertion is deduced from Lemma 4.5, Theorem 4.11 and Lemma 5.3.

6. Gauge invariant ideals of OL.

Throughout this section, we mean a closed two-sided ideal of a C �-algebra by an

ideal for simplicity. The term ‘‘gauge invariant’’ means (globally) invariant under

gauge action. In this section, we will see that the dL-invariant hereditary subsets of

DGðLÞ corresponds to the gauge invariant ideals of OL.

The following proposition is basic in our discussions.

Proposition 6.1. If I is a nonzero gauge invariant ideal of OL, we have I VAL 0 0

and I VDL 0 0 where DL is the algebra of all diagonal elements of FL.

Proof. Let pI be the canonical quotient map from OL to the quotient OL=I . Since

I is gauge invariant, the gauge action a naturally yields an action on OL=I which we

denote by a. Hence the map EI defined by EI ðXÞ ¼
Ð
T
atðXÞdt;X A OL=I gives rise to a

faithful projection of norm one from OL=I onto FL=I . Now we suppose that

I VAL ¼ f0g. If FL V I 0 f0g, there exists an element SmE
l
i S

�
n ð0 0Þ in FL V I for some

m; n A Lk and i ¼ 1; 2; . . . ;mðlÞ. The identity E l
i ¼ S �

mSmE
l
i S

�
n Sn holds so that E l

i belongs

to I, a contradiction. Hence we have FL V I ¼ f0g. This means that the restriction of

pI to FL is injective. Take an element X A OL with pI ðXÞ ¼ 0. Since one has

pI � E ¼ EI � pI , one sees that pI ðEðX
�X ÞÞ ¼ 0 so that EðX �XÞ ¼ 0. As E is faithful,

we obtain X ¼ 0. Thus we conclude that pI is injective and hence the ideal I is

trivial. This contradicts the hypothesis. Therefore we have I VAL 0 f0g. We also

conclude that I VFL 0 f0g so that I VDL 0 f0g because FL is an AF-algebra.

Recall that ½I l; lþ1ði; jÞ�
j¼1;...;mðlþ1Þ
i¼1;...;mðlÞ is the mðlÞ �mðl þ 1Þ-matrix with entries in f0; 1g

such that I l; lþ1ði; jÞ ¼ 1 if and only if F lþ1
j HF l

i . Thus we know that

E l
i ¼

Xmðlþ1Þ

j¼1

I l; lþ1ði; jÞE
lþ1
j for i ¼ 1; . . . ;mðlÞ:
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Set

GL ¼ fði; lÞ j i ¼ 1; . . . ;mðlÞ; l A Zþg:

We define two kinds of partial orders t ðsÞ and V ðUÞ in GL as follows:

(i) ði; lÞV ð j; l þ 1Þ if I l; lþ1ði; jÞ ¼ 1.

(ii) ði; lÞt ð j; l þ 1Þ if Al; lþ1ði; jÞ0 0.

For ði; lÞ and ð j; l þmÞ, we define ði; lÞV ð j; l þmÞ if there exist ði1; l þ 1Þ; ði2; l þ 2Þ; . . .

A GL such that
ði; lÞV ði1; l þ 1ÞV � � � V ð j; l þmÞ:

Similarly ði; lÞt ð j; l þmÞ is defined.

A subset HHGL is said to be hereditary in V (resp. t) if ði; lÞV (resp. t)

ð j; kÞ A GL and ði; lÞ A H implies ð j; kÞ A H. If H is hereditary in both the orders V and

t, it is said to be hereditary in GL.

We will show that there exists a bijective correspondence between the set of all

hereditary subsets of GL and the set of all gauge-invariant ideals of OL.

Lemma 6.2. For a gauge invariant ideal I of OL, put

HI ¼ fði; lÞ A GL jE l
i A AL V Ig:

Then HI is hereditary in GL.

Proof. We may assume that I 0 f0g so that I VAL 0 f0g by the previous

proposition. As AL is an AF-algebra, we can find E l
i A I VAL for some i ¼ 1; . . . ;mðlÞ.

Suppose that ð j; l þ 1Þs ði; lÞ and ði; lÞ A HI . As lLðE
l
i ÞVE lþ1

j , it follows that E lþ1
j

lLðE
l
i Þ ¼ c lþ1

j E lþ1
j for some c lþ1

j ð0 0Þ a scalar. Hence E lþ1
j belongs to I because

lLðE
l
i Þ belongs to I. Hence HI is hereditary in t. It is clear that HI is hereditary in

V. Thus HI is hereditary in GL.

Conversely we have

Lemma 6.3. For a hereditary subset H in GL put

IH ¼ spanfSmE
l
i S

�
n j ði; lÞ A Hg:

Then IH is a gauge invariant ideal of OL generated by E l
i ; ði; lÞ A H.

Proof. Since it is clear that IH is gauge invariant, it su‰ces to show that IH is an

ideal of OL. As in the discussions of Section 4, the C �-algebra OL is spanned by linear

combinations of elements of the form SxahS
�
z ; x; h; z A L�. It is enough to show that

SxahS
�
z � SmE

l
i S

�
n belongs to IH for m; n A L�

; ði; lÞ A H. Since H is hereditary in GL, by

the identities:

SmE
l
i S

�
m ¼

Xmðlþ1Þ

j¼1

Xn

h¼1

Alði; h; jÞSmhE
lþ1
j S �

mh;

SmE
l
i S

�
m ¼

Xmðlþ1Þ

j¼1

I l; lþ1ði; jÞSmE
lþ1
j S �

m ;

we assume that jzj < jmj and jhj þ jmj; jzj þ jmj < l. For SxahS
�
z � SmE

lþ1
h S �

n 0 0, we have
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S �
z Sm 0 0 so that S �

z Sm ¼ azSm 0 ¼ Sm 0am for some m 0 A Ljmjÿjzj with m ¼ zm 0. It follows

that SxahS
�
z � SmE

lþ1
h S �

n ¼ Sxm 0ahm 0amE
l
i S

�
n ¼ Sxm 0E l

i S
�
n . Thus SxahS

�
z � SmE

lþ1
h S �

n belongs

to the ideal IH .

Lemma 6.4. For a gauge invariant ideal I of OL, we have IHI
¼ I .

Proof. The inclusion relation IHI
H I is clear. We will prove the other inclusion

relation. Let p be the canonical quotient map OL=IHI
! OL=I . It is easy to see that

AL V IHI
¼ AL V I . Hence the restriction of p to the AF-algebra FL=ðFL V IHI

Þ !

FL=ðFL V IÞ is an isomorphism by a similar argument of the proof of Proposition

6.1. Now both the ideals I and IHI
are gauge invariant so that the gauge action at on

OL induces actions on the both quotients OL=IHI
and OL=I . We write these actions as

aHI
t and a I

t respectively. We can define faithful expectations EHI
and EI from OL=IHI

onto FL=FL V IHI
and OL=I onto FL=FL V I by averaging the actions aHI

t and a I
t

respectively. As one sees that p intertwines EHI
and EI , one conclude that p is injective

and hence IHI
¼ I .

Corollary 6.5. There exists a bijective correspondence between the set of all gauge

invariant ideals of OL and the set of all hereditary subsets of GL through the map I ! HI

and H ! IH .

We notice that any ideal I of OL is invariant under both fL and lL.

We will next describe gauge invariant ideals of OL in terms of the dimension group

for the subshift.

Lemma 6.6. For a nonzero ideal I of FL invariant under both fL and lL, we have

(i) I VAL is a nonzero lL-invariant ideal of AL.

(ii)

I ¼ spanfSmE
l
i S

�
n jE

l
i A I VAL; jmj ¼ jnjg:

Proof. (i) Put

PI ¼ fE l
i A AL jSmE

l
i S

�
n A I for any m; n with jmj ¼ jnj;SmE

l
i S

�
n 0 0g:

We can find a subalgebra F
l
k for some kU l such that I VF

l
k 0 0 so that there exists

x; h A Lk such that SxE
l
i S

�
h A I VF

l
k. Then for any m; n A Lk, one sees

SmE
l
i S

�
n ¼ SmE

l
i S

�
x � SxE

l
i S

�
h � ShE

l
i S

�
n :

Thus SmE
l
i S

�
h A I VF

l
k. Hence one has PI 0q. We then have PI ¼ fE l

i A I VALg.

We indeed see that, for E l
i A PI , the element SmE

l
i S

�
n belongs to I for some

jmj ¼ jnj ¼ k. As one has the identity E l
i ¼ lk

LðSmE
l
i S

�
n Þ, E l

i belongs to I and I VAL

because I is lL-invariant. Conversely, for E l
i A I VAL, one has

P
m ALk SmE

l
i S

�
m A I

because I is fL-invariant. Hence by the identity

SmE
l
i S

�
n ¼ SmE

l
i S

�
n �

X

x ALk

SxE
l
i S

�
x � SnE

l
i S

�
n ;

we obtain E l
i A PI . Thus PI ¼ fE l

i A I VALg so that I VAL 0 f0g.
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(ii) Put

I 0 ¼ spanfSmE
l
i S

�
n jE

l
i A I VAL; jmj ¼ jnjg:

The inclusion I 0 H I is easily seen from the relation: PI ¼ fE l
i A I VALg. Conversely,

as FL is an AF-algebra, we may assume that any element of FL A I is of the form:

SmE
l
i S

�
n . Hence E l

i belongs to PI .

We conversely have

Lemma 6.7. For a nonzero ideal J of AL invariant under lL, Put

IJ ¼ spanfSmE
l
i S

�
n jE

l
i A J; jmj ¼ jnjg:

Then we have

(i) IJ is an ideal of FL invariant under both fL and lL.

(ii) IJ VAL ¼ J.

Proof. (i) The invariance of IJ under fL is clear. For m ¼ m1m
0
; n ¼ n1n

0 A Lk with

m1; n1 A S and m 0
; n 0 A Lkÿ1, it follows that

lLðSmE
l
i S

�
n Þ ¼ Sm 0E l

i S
�
n 0 :

This implies that IJ is invariant under lL.

(ii) By the previous lemma, we know that PIJ ¼ fE l
i A IJ VALg. As we easily see

that

PIJ ¼ fE l
i A AL j 00SmE

l
i S

�
n A IJ ; for all m; n A L� with jmj ¼ jnjg;

we obtain that IJ VAL ¼ J.

We consequently have the following theorem.

Theorem 6.8. There exist inclusion relation preserving bijective correspondences

between the following five sets:

(i) gauge invariant ideals of OL

(ii) ideals of FL invariant under both fL and lL
(iii) order ideals of DGðLÞ invariant under dL
(iv) lL-invariant ideals of AL

(v) hereditary subsets in GL.

Proof. The correspondence between (ii) and (iii) follows from a general theory of

K-theory of AF-algebras (cf. [Ef ]). All other correspondences follow from the previous

discussions.

We will finally mention a relationship between simplicity for OL and the dimension

group DGðLÞ.

Lemma 6.9. Assume that ðXL; sÞ satisfies the condition ðIÞ. Then any nonzero ideal

of OL contains a nonzero gauge invariant ideal of OL.

Proof. Let J be a nonzero ideal of OL. As OL satisfies the condition ðILÞ, we have

J VAL 0 f0g. Hence we can find a projection E l
i in J VAL. Set

IJ ¼ spanfSmE
l
i S

�
n jE

l
i A J VAL; m; n A L�g:

It is clear that IJ is a nonzero gauge invariant ideal of OL contained in J.
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Thus we conclude

Proposition 6.10. Suppose that XL satisfies the condition ðIÞ. Then the following

five conditions are equivalent:

(i) OL is simple.

(ii) There exists no gauge invariant ideal of OL.

(iii) There exists no proper ideal of FL invariant under fL and lL.

(iv) There exists no dL-invariant order ideal of DGðLÞ.

(v) There exists no lL-invariant ideal AL.

Hence, by Proposition 5.2, we have the following corollary, which is a generalization

of the Cuntz-Krieger’s theorem [CK; 2.14 Theorem].

Corollary 6.11.

(i) If a subshift ðXL; sÞ is irreducible in past equivalence and XL has an aperiodic

point, the C �-algebra OL is simple.

(ii) If in particular a subshift ðXL; sÞ is aperiodic in past equivalence, the C �-algebra

OL is simple and purely infinite and the AF-algebra FL is simple.

Remark. (i) The above corollary is also deduced directly from Lemma 4.4 and

Proposition 4.12 and Proposition 5.2.

(ii) Very recently, C. Anantharaman-Delaroche presented a criterion for simplicity

and purely infiniteness of C �-algebras constructed from groupoids of subshifts ([An]).

The C �-algebras of the groupoids are definitely isomorphic to our C �-algebras. The

criterion are similar to ours.

(iii) Ideal structure of the Cuntz-Krieger algebras discussed in [C2] and recently in

[aHR]. A related topics is also seen in [H ]. In [KPW ], Kajiwara-Pinzari-Watatani

study ideal structure and simplicity condition of C �-algebras constructed from Hilbert

C �-modules.

7. Examples.

Example 7.1 (Full shifts).

Let ðLn; sÞ be the full n-shift over S ¼ f1; 2; . . . ; ng. It is aperiodic hence satisfies

the condition (I). In fact, any two points in XLn
are l-past equivalent so that

the equivalence class Wl is a singleton for each l A N . The matrix Al; lþ1 is n-times

multiplication on Z. Thus the dimension group is

Z !
n
Z !

n
� � � !

n
Z½1=n� ¼

m

nk

�

�

�

�

m; k A Z

� �

:

and namely DGðLnÞ ¼ Z½1=n� in R. The corresponding simple purely infinite C �-

algebra OLn
is the Cuntz-algebra On of order n ([C ]). The AF-algebra FLn

is the UHF-

algebra of type ny.

Example 7.2 (Topological Markov shifts).

Let ðLA; sÞ be the topological Markov shift defined by an n� n aperiodic matrix

A ¼ ½Aði; jÞ�i; j¼1;2;...;n with entries in f0; 1g. It is aperiodic in our sense and hence

satisfies the condition (I). Then we may easily see that its dimension group is iso-
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morphic to the inductive limit:

Z
n !

A
Z

n !
A

� � � !
A

and namely DGðLnÞ ¼ lim
!

ðZ n;AÞ. The corresponding simple purely infinite C �-algebra

OLA
is the Cuntz-Krieger algebra OA ([CK ]).

Example 7.3 (b-shifts).

For an arbitrary real number b > 1, let ðLb; sÞ be the b-shift over S ¼ f0; 1; . . . ;

nÿ 1g where n is the natural number satisfying nÿ 1U b < n (cf. [Pa], [Re]). We know

that it is aperiodic in past equivalence and hence satisfies the condition (I). Suppose

that the b-shift is sofic. As in [KMW], the corresponding AF-algebra Fb has a unique

tracial state. Put

ZðlÞ ¼ Z þ bZ þ b2
Z þ � � � þ b l

Z

for each l A N . By a discussion in [KMW ], we see that the matrix Al; lþ1 is identified

with b-times multiplication on ZðlÞ. Thus the dimension group is isomorphic to the

inductive limit

ZðlÞ !
b
Zðl þ 1Þ !

b
� � � !

b
Z½1=b� ¼

m0 þm1b þ � � � þmlb
l

bk

�

�

�

�

mi; k; l A Z

( )

:

and namely DGðLbÞ ¼ Z½1=b� in R. The dimension group automorphism db is the

multiplication by b on Z½1=b�. The corresponding C �-algebra, denoted by Ob, is simple

and purely infinite. They are classified in [KMW] by the sequences appearing in the

b-expansions of 1.

Note Added in Proof. Since the submission of this paper, the author has received

the following paper, in which an invariance of the dimension groups for subshifts under

topological conjugacy is proved by a method of symbolic dynamical systems. J. Lee,

Equivalence of subshifts, J. Korean Math. Soc. 33 (1996), 685–692.

It has been proved in [Ma4] that the stabilized C�-algebra OL nK of OL, where K

is the C�-algebra of all compact operators on a separable infinite dimensional Hilbert

space, with gauge action is invariant under topological conjugacy as two-side subshift.

Hence it is a direct consequence from this fact that the dimension triple is topological

conjugacy invariant as two-sided subshifts.
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