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Abstract. The Wick product of operators on Fock space is introduced on the basis of

the analytic characterization theorem for operator symbols established within the

framework of white noise distribution theory. Existence and uniqueness of solutions are

proved for a certain class of ordinary di¤erential equations for Fock space operators.

Quantum stochastic di¤erential equations of Itô type and their generalizations involving

higher powers of quantum white noises enter into our consideration.

Introduction.

This paper aims at fusing the ideas of infinite dimensional analysis (in particular,

white noise distribution theory over Gaussian space) and quantum probability in order

to solve di¤erential equations for operators acting in a Boson Fock space. It is ex-

pected that our approach o¤ers not only an interesting aspect to quantum stochastic

di¤erential equations of Itô type but also a prototype of general theory of non-

commutative di¤erential equations on an infinite dimensional space.

The white noise distribution theory was initiated by Hida [15 ] and has been

discussed extensively in connection with stochastic analysis and harmonic analysis, see

e.g., [23 ], [28 ] for recent progress. The fundamental framework is an infinite di-

mensional analogue of Schwartz type distribution theory and is based on the Gelfand

triple:

ðEÞb HL2ðE �
; mÞGGðL2ðRÞÞH ðEÞ�b ; ð0:1Þ

where E � ¼ S
0ðRÞ and m is the standard Gaussian measure on it. The triple (0.1) is

referred to as the Hida-Kubo-Takenaka space [22 ] for b ¼ 0 and as the Kondratiev-

Streit space [20 ] for a general 0U b < 1. Note that elements of these spaces are

(generalized) functions on the infinite dimensional vector space E �. Since L2ðE �; mÞ is

canonically identified with the Boson Fock space GðL2ðRÞÞ through the Wiener-Itô-Segal

isomorphism, the white noise distribution theory has been applied to some questions in

quantum physics as well, see e.g., [37 ] and references therein.

Since the exponential vectors ffx; x A ECg span a dense subspace of ðEÞb, any

operator X A LððEÞb; ðEÞ
�
b Þ is determined uniquely by its action on exponential vectors,

see § 1. This leads us to the idea of the symbol of an operator, originally due to Berezin
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[8], [9 ], see also Krée-Ra̧czka [21 ]. The symbol calculus is very successful at least at an

algebraic level, see e.g. [12 ], where a certain non-commutative stochastic di¤erential

equation is solved by means of formal power series. It is therefore crucial to obtain

analytic properties of operators from their symbols. From that aspect the most re-

markable is that operators in LððEÞb; ðEÞ
�
b Þ are completely characterized by simple

analytic properties of their symbols, see Theorem 1.6. This result, known as the

analytic characterization theorem for operator symbols, was established in [27 ], [28 ]

with many applications, see e.g., [10 ], [14 ], [30 ], [31 ], [32 ]. In particular, it o¤ers a

natural method of defining a function of operators (generally speaking, there is no

canonical method of defining a function of non-commuting objects). We also note that

the idea of symbol shares a common spirit with those of pseudo-di¤erential operators,

see e.g., [26 ].

In this paper, keeping applications in mind, we discuss Hilbert space-valued white

noise functions based on the triple:

ðEÞb nHHL
2ðE �; mÞnHH ðEÞ�b nH; ð0:2Þ

where H is another Hilbert space. This scheme appears often in physical problems of

an interacting system such as ‘‘SystemþReservoir’’ model; whence H is called a system

Hilbert space. In Section 1 we assemble a few preliminary results and develop a general

theory of operators in L1LððEÞb nH; ðEÞ�b nHÞ along with [29 ]. In particular, we

obtain a criterion for continuity of a map t 7! Xt A L, t running over a locally compact

space, in terms of symbols (Theorems 1.8 and 1.9).

In Section 2 we introduce the Wick product G of operators by means of the

analytic characterization of symbols. This is an analytic extension of the well known

notion of the Wick product (or normal-ordered product) in physics. Moreover, we

prove (Theorems 2.5 and 2.8) that the Wick exponential function of X and the time-

ordered Wick exponential of fLtg converge in LððEÞb nH; ðEÞ�b nHÞ whenever X and

Lt are of finite degree U2=ð1ÿ bÞ.

In Section 3 we discuss unique existence of a solution to a linear di¤erential

equation of the form:

dX

dt
¼ Lt GX þMt; ð0:3Þ

where t 7! Lt A L, t 7! Mt A L are continuous. In fact, if degLt U 2=ð1ÿ bÞ for all t

there exists a unique solution in LððEÞb nH; ðEÞ�b nHÞ which is given by means of

the time-ordered Wick exponential function (Theorem 3.1 and its corollaries). In a

broad sense such an equation as in (0.3) might be called a quantum stochastic dif-

ferential equation.

A quantum stochastic di¤erential equation of Itô type is typically of the form

dU ¼ ðL1dLþ L2dAþ L3dA
� þ L4dtÞU ; ð0:4Þ

where Li are operators acting on H, and fAtg; fA
�
t
g; fLtg are the annihilation process,

the creation process and the number process, respectively. According to the standard

theory originally due to Hudson and Parthasarathy [18], the equation (0.4) is solved

by means of a quantum analogue of Itô theory where the role of infinitesimal increment
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of the Brownian motion dBt in the classical Itô theory is played by dAt, dA�
t

and dLt. The quantum Itô theory has been developed extensively by Attal [5], [6 ],

Belavkin [7 ], Lindsay [24 ], Meyer [25 ], Parthasarathy [35 ], among others. The angle

in this paper is di¤erent from them. From our point of view (0.4) is brought into a

normal form:

dU

dt
¼ L1a

�
t Uat þ L2Uat þ L3a

�
t U þ L4U

¼ ðL1a
�
t at þ L2at þ L3a

�
t þ L4ÞGU ; ð0:5Þ

which is, obviously, a particular case of (0.3). In the recent study of stochastic limit of

quantum theory [2 ], see also [3], there appears a new type of a quantum stochastic

di¤erential equation such as

dU

dt
¼ ðM1a

�2
t þM2a

2
t ÞU ; ð0:6Þ

which is highly singular from the usual aspect (though the above equation is understood

in a formal sense at the moment). Obviously, the normal form of (0.6) is a simple

example of our case (0.3).

In conclusion, having introduced a space of white noise distributions properly (that

is, the Kondratiev-Streit space), we are able to grasp a unique solution of a di¤erential

equation of the form (0.3). Moreover, our approach covers typical quantum stochastic

di¤erential equations of Itô type and their generalizations. The next steps in this line of

research are to study regularity properties of the solutions and to explore the possibility

of non-linear extension. These are now in progress.

Acknowledgements. The author is grateful for interesting conversation with

Professors L. Accardi, D. M. Chung and Yu. G. Kondratiev.

General Notation. Let X;Y;Z be locally convex spaces.

XC : the complexification of X when it is a real space.

LðX;YÞ: the space of continuous linear operators from X into Y; equipped with

the topology of bounded convergence.

BðX;Y;ZÞ: the space of continuous bilinear maps from X�Y into Z; equipped

with the topology of bi-bounded convergence.

X�: the space of continuous linear functionals on X; equipped with the strong dual

topology after our convention above.

XnY: the Hilbert space tensor product when both X;Y are Hilbert spaces.

Xnp Y: the completed p-tensor product. When there is no danger of confusion,

np is denoted byn for simplicity.

1. Preliminary results on white noise operators.

1.1. White noise distributions.

We start with the real Gelfand triple

E ¼ SðRÞHH ¼ L2ðR; dtÞHE � ¼ S
0ðRÞ:
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The norm of H is denoted by j � j0 and since compatible the real inner product of H and

the canonical bilinear form on E � � E are denoted by the same symbol h � ; � i. Let m

be the standard Gaussian measure on E � and L2ðE �; mÞ the Hilbert space of C-valued

L2-functions on E �. The celebrated Wiener-Itô-Segal theorem says that L2ðE �; mÞ is

unitarily isomorphic to the Boson Fock space GðHCÞ. The isomorphism is a unique

linear extension of the following correspondence between exponential functions and

exponential vectors:

fxðxÞ ¼ ehx;xiÿhx;xi=2  ! 1; x;
xn 2

2!
; . . . ;

xn n

n!
; . . .

 !

; x A EC :

If f A L2ðE �; mÞ and ð fnÞ
y
n¼0 A GðHCÞ are related through the Wiener-Itô-Segal iso-

morphism, we write

f@ ð fnÞ

for simplicity. It is then noted that

kfk20 ¼
X

y

n¼0

n!j fnj
2
0 ; ð1:1Þ

where kfk0 is the L2-norm of f A L2ðE �; mÞ.

In order to introduce white noise distributions we need a particular family of

seminorms defining the topology of E ¼SðRÞ. By means of the di¤erential operator

A ¼ 1þ t2 ÿ d 2=dt2 we introduce a sequence of norms in HC in such a way that jxjp ¼

jApxj0. The numbers:

0 < r ¼ kAÿ1kOP ¼
1

2
< 1; d ¼ kAÿ1kHS

are frequently used. Let Ep be the Hilbert space obtained by completing E with respect

to the norm j � jp. Then it is known that

EG proj lim
p!y

Ep; E �G ind lim
p!y

Eÿp:

The norms j � jp are naturally extended to the tensor products En n and their

complexification E
n n
C

. The canonical bilinear form h � ; � i is also extended to a

C-bilinear form on ðEn n
C
Þ� � E

n n
C

.

Let b be a fixed number with 0U b < 1. For f A L2ðE �; mÞ we introduce a new

norm

kfk2p;b ¼
X

y

n¼0

ðn!Þ1þbj fnj
2
p; f@ ð fnÞ: ð1:2Þ

For any pV 0, ðEpÞb ¼ ff; kfkp;b < yg becomes a Hilbert space. We put

ðEÞb ¼ proj lim
p!y

ðEpÞb;

which becomes a countable Hilbert nuclear space. In fact,
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Lemma 1.1. For any pV 0 the canonical map ip : ðEpþ1Þb ! ðEpÞb is of Hilbert-

Schmidt type with kipkHS ¼ kGðAÞÿ1kHS , where GðAÞ is the second quantization of A

acting in GðHC Þ.

The proof is straightforward modification of [28, Lemma 3.1.2]. We next consider

the dual spaces. For 0U b < 1 and pV 0 we put

kfk2ÿp;ÿb ¼
Xy

n¼0

ðn!Þ1ÿbj fnj
2
ÿp; f@ ð fnÞ: ð1:3Þ

Then k � kÿp;ÿb is a Hilbertian norm on L2ðE �; mÞ and we denote by ðEÿpÞÿb the

completion. The dual space of ðEÞb is obtained as

ðEÞ�b G ind lim
p!y

ðEÿpÞÿb ¼ 6
pV 0

ðEÿpÞÿb;

and we come to a complex Gelfand triple:

ðEÞb HL2ðE �
; mÞH ðEÞ�b : ð1:4Þ

This is called the Kondratiev-Streit space [20 ], see also [23 ]; while the case of b ¼ 0 is

referred to as the Hida-Kubo-Takenaka space [22 ] and is denoted simply by ðEÞH
L2ðE �; mÞH ðEÞ�. Obviously, ðEÞb H ðEÞ and ðEÞ� H ðEÞ�b . The canonical bilinear

form on ðEÞ�b � ðEÞb will be denoted by d � ; �e . Then

dF; fe ¼
Xy

n¼0

n!hFn; fni; F@ ðFnÞ A ðEÞ�b ; f@ ð fnÞ A ðEÞb: ð1:5Þ

We note that (1.1), (1.2), (1.3) and (1.5) are all compatible.

Let H be another Hilbert space with norm j � j
H
. We assume that H ¼ HR þ

iHR, where HR is a real Hilbert space with real inner product h � ; � i0, and that H is

equipped with the canonical C-bilinear form h � ; � iH induced from h � ; � i0. This

rather curious assumption, which can be in fact removed, is posed in order to avoid

notational trouble; thus both d � ; �e and h � ; � iH are C-bilinear forms. Then (1.4) is

extended to a triple of H-valued white noise functions:

ðEÞb nHHL2ðE �
; mÞnHH ððEÞb nHÞ� G ðEÞ�b nH; ð1:6Þ

where H and H
� are identified. The canonical C-bilinear form on ðEÞ�b nH�

ðEÞb nH is denoted again by d � ; �e . Note that ðEÞb nH is nuclear if and only if

dimH < y.

1.2. White noise operators.

On the basis of (1.6) we study operators in the class LððEÞb nH; ðEÞ�b nHÞ. We

first note the following

Proposition 1.2. The canonical correspondence ~XX $ X given by

d ~XXðfn uÞ;cn ve ¼ hXðfncÞu; viH; f;c A ðEÞb; u; v A H; ð1:7Þ

Wick product and quantum stochastic di¤erential equations 617



yields a topological isomorphism:

LððEÞb nH; ðEÞ�b nHÞGLððEÞb n ðEÞb;LðHÞÞ: ð1:8Þ

Proof. It is immediate that (1.8) holds in the algebraic sense. We shall prove that

their topologies coincide. Let B1;B2 be two bounded subsets of ðEÞb and put

C1 ¼ ffn u; f A B1; jujH U 1g; C2 ¼ fcn v;c A B2; jvjH U 1g:

Obviously, C1;C2 are bounded subsets of ðEÞb nH. In view of (1.7) we obtain

kXðfncÞkOP ¼ supfjd ~XXðfn uÞ;cn ve j; u; v A H; juj
H
U 1; juj

H
U 1g;

and hence

supfkXðfncÞkOP; f A B1;c A B2g ¼ supfjd ~XXðoÞ;o 0 e j;o A C1;o
0 A C2g: ð1:9Þ

In general, any bounded subset of XnY, where X is a Fréchet space and Y is a nuclear

Fréchet space, is contained in the closed convex balanced hull of a set of the form

B1 nB2 1 ffnc; f A B1;c A B2g where B1 and B2 are bounded subsets of X and Y,

respectively, see e.g., [36, Chapter IV, § 9.8]. In other words, uniform convergence on

any bounded subset of XnY follows from uniform convergence on any set of the form

B1 nB2, where B1 and B2 are bounded subsets of X and Y, respectively. Then we see

from (1.9) that the topologies of both sides of (1.8) coincide. r

We need mutual estimates of norms of ~XX and X.

Proposition 1.3. We keep the notations as in Proposition 1.2.

(1) For each X A LððEÞb n ðEÞb;LðHÞÞ there exist CV 0 and pV 0 such that

kXðoÞkOP UCkokp;b; o A ðEÞb n ðEÞb;

where kokp;b is the Hilbertian norm of ððEÞb n ðEÞbÞp. In that case

k ~XXð ~ffÞkÿðpþ1Þ;ÿb UCkGðAÞÿ1k2HSk
~ffkpþ1;b;

~ff A ðEÞb nH:

(2) For each ~XX A LððEÞb nH; ðEÞ�b nHÞ there exist CV 0 and pV 0 such that

k ~XXð ~ffÞkÿp;ÿb UCk ~ffkp;b;
~ff A ðEÞb nH:

In that case we have

kXðoÞkOP UCkGðAÞÿ1k2HSkokpþ1;b; o A ðEÞb n ðEÞb:

Proof. This is a simple consequence of Lemma 1.1 and a general relation between

Hilbert space tensor product and p-tensor product, see [29, Proposition A.9]. r

For simplicity we put

L1LððEÞb nH; ðEÞ�b nHÞGLððEÞb n ðEÞb;LðHÞÞG ððEÞb n ðEÞbÞ
�
nLðHÞ;

where the second isomorphism is due to the kernel theorem, see (A.2) in the Ap-

pendix. From now on, we use the same symbol for corresponding elements under the
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isomorphism above. We shall introduce a stratification of LGLððEÞb n ðEÞb;LðHÞÞ.

For pV 0 we put

kXk
Lp

¼ supfkXðoÞkOP;o A ðEÞb n ðEÞb; kokp;b U 1g; X A L:

Then Lp ¼ fX A L; kXk
Lp

< yg becomes a Banach space with norm k � k
Lp
. It

follows from Proposition 1.3 that

L ¼ 6
pV 0

Lp:

By definition for any X A Lp we have

kXðoÞkOP U kXk
Lp
kokp;b; o A ðEÞb n ðEÞb;

kXðfn uÞkÿp;ÿb U kXk
Lp
kfkp;bjujH; f A ðEÞb; u A H:

1.3. Integral kernel operators and Fock expansion.

We have in [28 ], [29 ] established the theory of Fock space operators based on the

Hida-Kubo-Takenaka space i.e., the case of b ¼ 0. Most results obtained there admit

straightforward generalization to the case of Kondratiev-Streit space, i.e., for general

0U b < 1, in this connection see also [23 ].

The annihilation operator at a point t A R, denoted by at, is a unique operator in

LððEÞb; ðEÞbÞ having the property

atfx ¼ xðtÞfx; x A EC :

The adjoint operator a�
t A LððEÞ�b ; ðEÞ

�
b Þ is called the creation operator at a point t. It

is known that both t 7! at A LððEÞb; ðEÞbÞ and t 7! a�
t A LððEÞ�b ; ðEÞ

�
b Þ are C

y-maps.

For k A ðE
n ðlþmÞ
C

Þ� nLðHÞGLðE
n ðlþmÞ
C

;LðHÞÞ we put

kkkp ¼ sup
X

i

jhkðeðiÞÞu; viHj2 jeðiÞj2p; jujH U 1; jvj
H
U 1

( )1=2

;

where feðiÞg is the canonical orthonormal basis of Hn ðlþmÞ, see [29, § 3]. For such a k

we associate an integral kernel operator whose formal integral expression is given by

X l;mðkÞ ¼

ð

R
lþm

kðs1; . . . ; sl ; t1; . . . ; tmÞa
�
s1
� � � a�

sl
at1 � � � atmds1 � � � dsldt1 � � � dtm;

where at stands for at n I . It is known that X l;mðkÞ A LððEÞb nH; ðEÞ�b nHÞ for any

0U b < 1. In fact, we have

Proposition 1.4. Put

Dr ¼
ð1ÿ bÞ1ÿb

d

rr=2ðÿe logðd2rrÞÞ1ÿb
; r0 ¼ inffr > 0; logðd2rrÞU 0g:

Then, for any p > r0=2 with kkkÿp < y it holds that

kX l;mðkÞ ~ffkÿðpþ1Þ;ÿb U rÿpdÿ1ðl lmmÞð1ÿbÞ=2
D
ðlþmÞ=2
2p kkkÿpk

~ffkpþ1;b; ð1:10Þ

Wick product and quantum stochastic di¤erential equations 619



for ~ff A ðEÞb nH. Moreover,

kX l;mðkÞkLpþ2
U rÿpdÿ1kGðAÞÿ1k2HSðl

lmmÞð1ÿbÞ=2
D
ðlþmÞ=2
2p kkkÿp: ð1:11Þ

Proof. Inequality (1.10) is a simple generalization of [29, Theorem 3.9]. Then

(1.11) follows from (1.10) with the help of Proposition 1.3. r

Moreover,

Theorem 1.5. Any operator X A LððEÞb nH; ðEÞ�b nHÞ admits an infinite series

expansion in terms of integral kernel operators:

X ¼
Xy

l;m¼0

X l;mðkl;mÞ; kl;m A ðE
n ðlþmÞ
C

Þ� nLðHÞ; ð1:12Þ

where the series converges in LððEÞb nH; ðEÞ�b nHÞ.

Expansion (1.12) is referred to as Fock expansion in [28 ] and has wide applica-

tions. In fact, such an expansion has appeared often in physical literatures since Haag

[13 ]. In view of (1.12) we put

degX ¼ supfl þm; kl;m 0 0gUy:

Remark. By definition, for any 0U b < 1 we have

LððEÞnH; ðEÞ� nHÞHLððEÞb nH; ðEÞ�b nHÞ:

However, any operator in LððEÞb nH; ðEÞ�b nHÞ with finite degree belongs auto-

matically to LððEÞnH; ðEÞ� nHÞ. The parameter b is essential when we consider

infinite series of integral kernel operators such as (1.12), see the sequel.

1.4. Operator symbols.

For X A L1LððEÞb nH; ðEÞ�b nHÞ an LðHÞ-valued function X̂X on EC � EC

defined by

hX̂Xðx; hÞu; viH ¼ dXðfx n uÞ; fh n ve ; x; h A EC ; u; v A H;

is called the symbol of X. By means of the isomorphism (1.8) we may write X̂Xðx; hÞ ¼

Xðfx n fhÞ. In case of H ¼ C the symbol is reduced to a C-valued function. Since

ffx n u; x A EC ; u A Hg spans a dense subspace of ðEÞb nH, an operator X A L is

determined uniquely by the symbol. Note here simple relations:

cX �X �ðx; hÞ ¼ X̂Xðh; xÞ�; X A L;

ðX1 nLÞ^ðx; hÞ ¼ X̂X1ðx; hÞL; X1 A LððEÞb; ðEÞ
�
b Þ; L A LðHÞ;

where X̂X1ðx; hÞ is a complex number.

Remark. There is a similar notion called the Wick symbol also due to Berezin [8 ],

[9], which is given by eÿhx;hiX̂Xðx; hÞ for X A L. Although the Wick symbol has an

advantage in some contexts, we do not use the Wick symbol in this paper just to avoid

confusion.
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The next assertion is known as the analytic characterization of symbols.

Theorem 1.6. An LðHÞ-valued function Y defined on EC � EC is the symbol of an

operator X A LððEÞb nH; ðEÞ�b nHÞ if and only if

(i) for any x; x1; h; h1 A EC and u; v A H the function

ðz;wÞ 7! hYðzxþ x1;whþ h1Þu; vi

is entire holomorphic on C � C ;

(ii) there exist constant numbers CV 0, KV 0 and pV 0 such that

kYðx; hÞkOPUC expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; x; h A EC :

In that case, X A Lpþqþ3 for q > q1 ¼ q1ðp; bÞ > 0 and

kXk
Lpþqþ3

UCLð1ÿMÞÿ2; ð1:13Þ

where L ¼ Lðp; qÞ > 0 and 0 < M ¼ Mðp;K ; qÞ < 1 are constant numbers defined for

q > q1.

Proof. In case of b ¼ 0 a complete proof is given in [28 ], [29 ]. The proof for

general 0U b < 1 is a simple modification. In fact, given a function Y : EC � EC !

LðHÞ satisfying (i) and (ii), we can construct X A L by an infinite series as in (1.12)

where kl;m satisfies

kkl;mkÿðpþ1ÞUCeðl lmmÞÿð1ÿbÞ=2fedð2eðK þ 1ÞÞð1ÿbÞ=2g lþm: ð1:14Þ

Then, in view of (1.11) we have

kX l;mðkl;mÞkLpþqþ3
U rÿðpþqþ1Þdÿ1kGðAÞÿ1k2HSCM

lþm;

where

M ¼ MðqÞ ¼ rqD
1=2
2ðpþqþ1Þedð2eðK þ 1ÞÞð1ÿbÞ=2:

Keeping in mind that limq!y MðqÞ ¼ 0, we put

q1 ¼ q1ðp; bÞ ¼ inffq > 0;MðqÞU 1g:

Then for q > q1 the infinite series
Py

l;m¼0 kX l;mðkl;mÞkLpþqþ3
is convergent and we obtain

(1.13) with L ¼ rÿðpþqþ1Þdÿ1kGðAÞÿ1k2HS and M above. r

Theorem 1.7. Let X A Lp with Fock expansion (1.12). Then

kkl;mkÿðpþ1ÞU 2beðl lmmÞð1ÿbÞ=2
K lþm

b kXk
Lp
;

where

Kb ¼ edf2eðð1ÿ bÞ2ð2bÿ1Þ=ð1ÿbÞ þ 1Þgð1ÿbÞ=2:

Proof. For an exponential vector fx we have

kfxkp;bU 2b=2 expfð1ÿ bÞ2ð2bÿ1Þ=ð1ÿbÞjxj2=ð1ÿbÞ
p g; x A EC ; ð1:15Þ
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see [23, § 5.2]. Then for any X A Lp it holds that

kX̂Xðx; hÞkOP U 2bkXk
Lp
expfð1ÿ bÞ2ð2bÿ1Þ=ð1ÿbÞðjxj2=ð1ÿbÞ

p þ jhj2=ð1ÿbÞ
p Þg: ð1:16Þ

The assertion follows by combining (1.14) and (1.16). r

1.5. Convergence of operators.

The convergence of operators in LððEÞb nH; ðEÞ�b nHÞ is rephrased in terms of

convergence of symbols.

Theorem 1.8. Let T be a locally compact space. Then for the map t 7! Xt A L,

t A T , the following four conditions are equivalent:

(i) t 7! Xt A L is continuous;

(ii) for any t0 A T there exist pV 0 and an open neighborhood U of t0 such that

fXt; t A UgHLp and lim
t!t0

kXt ÿ Xt0kLp
¼ 0:

(iii) for any t0 A T there exist an open neighborhood U of t0, a set of positive

numbers fet; t A Ug converging to 0 as t ! t0, constant numbers K V 0 and pV 0 such

that

kX̂Xtðx; hÞ ÿ X̂Xt0ðx; hÞkOP U et expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; x; h A EC ; t A U :

(iv) for any t0 A T there exist CV 0, KV 0, pV 0 and an open neighborhood U of

t0 such that

kX̂Xtðx; hÞkOP UC expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; x; h A EC ; t A U ; ð1:17Þ

and

lim
t!t0

kX̂Xtðx; hÞ ÿ X̂Xt0ðx; hÞkOP ¼ 0; x; h A EC :

Proof. ðiÞ , ðiiÞ The proof is deferred to the Appendix.

ðiiÞ ) ðiiiÞ In view of (1.16) we have

kX̂Xtðx; hÞ ÿ X̂Xt0ðx; hÞkOP U 2bkXt ÿ Xt0kLp
expfð1ÿ bÞ2ð2bÿ1Þ=ð1ÿbÞðjxj2=ð1ÿbÞ

p þ jhj2=ð1ÿbÞ
p Þg;

from which the assertion is clear.

ðiiiÞ ) ðivÞ is obvious.

ðivÞ ) ðiÞ Let t0 be fixed and we shall prove the continuity of t 7! Xt at t ¼ t0.

For that purpose it may be assumed without loss of generality that Xt0 ¼ 0. Applying

Theorem 1.6, we see from (1.17) that there exist q > 0 and M > 0 such that

kXtkLpþq
UM; t A U : ð1:18Þ

On the other hand, by assumption

kXtðfx n fhÞkOP ¼ kX̂Xtðx; hÞkOP ! 0; t ! t0: ð1:19Þ

Since the exponential vectors span a dense subspace of ðEÞb, for any o A ðEÞb n
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ðEÞb and e > 0 there exists a finite linear combination of exponential vectors o 0 ¼
P

i fxi n fhi such that koÿ o 0kpþq;b < e. Then by the triangle inequality

kXtðoÞkOPU kXtðoÿ o 0ÞkOP þ kXtðo
0ÞkOP

U kXtkLpþq
koÿ o 0kpþq;b þ









X

i

Xtðfxi n fhiÞ









OP

U ekXtkLpþq
þ
X

i

kX tðfxi n fhiÞkOP;

and in view of (1.18) and (1.19) we come to

lim sup
t!t0

kXtðoÞkOPU eM:

Consequently,

lim
t!t0

kXtðoÞkOP ¼ 0; o A ðEÞb n ðEÞb:

It then follows from the Banach-Steinhaus theorem that X t converges to 0 uniformly

on any compact subset of ðEÞb n ðEÞb, and hence on any bounded subset due to the

nuclearity of ðEÞb n ðEÞb. r

Theorem 1.9. For n ¼ 1; 2; . . . let Xn A L be given. Then the sequence Xn converges

to some X in L if and only if

(i) there exist CV 0, KV 0 and pV 0 such that

kX̂Xnðx; hÞkOPUC expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; x; h A EC ; n ¼ 1; 2; . . . :

(ii) for any x; h A EC the limit Yðx; hÞ1 limn!y X̂Xnðx; hÞ exists in LðHÞ.

Proof. The ‘‘only if ’’ part is straightforward by Theorem 1.8. We shall prove the

‘‘if ’’ part. Given x; x1; h A EC and u; v A H, we consider

gnðzÞ ¼ hX̂Xnðzxþ x1; hÞu; viH; gðzÞ ¼ hYðzxþ x1; hÞu; viH; z A C :

Then gðzÞ is entire holomorphic by Theorem 1.6 and gðzÞ ¼ limn!y gnðzÞ by assumption.

We shall prove that gðzÞ is holomorphic on C . Let g be a smooth closed curve in C .

Since g is a compact set, by assumption (i) there exists some M > 0 such that

jgnðzÞjUCjuj
H
jvj

H
expKðjzxþ x1j

2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p ÞUM; z A g; n ¼ 1; 2; . . . :

It then follows from the bounded convergence theorem that

0 ¼ lim
n!y

ð

g

gnðzÞ dz ¼

ð

g

gðzÞ dz:

Therefore gðzÞ is holomorphic by Morera’s theorem. Since Y satisfies the same

condition as in (i), by Theorem 1.6 there exists X A L such that X̂X ¼ Y. Thus condition

(iv) in Theorem 1.8 is satisfied and, consequently, Xn converges to X in L. r
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1.6. Quantum stochastic processes.

A one-parameter family of operators fXtgt AT HL1LððEÞb nH; ðEÞ�b nHÞ,

where t runs over an interval T HR, might be called a quantum stochastic process in full

generalities. In this paper, following the previous work [31 ] a quantum stochastic

process is always assumed to be continuous, i.e., the continuity of t 7! Xt A L. This

seemingly strong (in fact, rather weak) assumption is useful to avoid minor technical

consideration though weakened trivially in many contexts.

Lemma 1.10. (1) If fXtgHLððEÞb; ðEÞ
�
b Þ is a quantum stochastic process, so is the

amplification fX t n IgHLððEÞb nH; ðEÞ�b nHÞ.

(2) If fLtgHLððEÞb nH; ðEÞ�b nHÞ is a quantum stochastic process, so are

fLtat ¼ Ltðat n IÞg and fa�
t Lt ¼ ða�

t n IÞLtg.

Proof. One may check condition (iv) in Theorem 1.8 easily. r

When there is no danger of confusion, the amplification Xt n I is denoted simply by

Xt. We use this convention particularly for fatg, fa
�
t g and fWt ¼ at þ a�

t g, where the

pair ðat; a
�
t Þ or Wt is referred to as the quantum white noise process.

Let fLtgHLððEÞb nH; ðEÞ�b nHÞ be a quantum stochastic process. It then

follows from Theorem 1.8 that for any compact interval ½0; t� there exists pV 0 such

that s 7! Ls is a continuous map from ½0; t� into Lp. Then one may introduce the

(Riemannian) integral:

Xt ¼

ð t

0

Ls ds

in an obvious manner. Clearly, fXtg becomes a quantum stochastic process which is

di¤erentiable in Lp, hence in L as well:

d

dt
Xt ¼ Lt:

Moreover, in view of Lemma 1.10 (2) we may define quantum stochastic processes:ð t

0

a�
s Ls ds;

ð t

0

Lsas ds:

These are called quantum stochastic integrals against the creation and the annihilation

processes, respectively. In particular,

At ¼

ð t

0

as ds; A�
t ¼

ð t

0

a�
s ds; Lt ¼

ð t

0

a�
s as ds; ð1:20Þ

are respectively the annihilation process, the creation process and the number process of

Hudson-Parthasarathy [18 ].

2. Wick product of white noise operators.

2.1. Definition.

We start with

Lemma 2.1. For two operators X1;X2 A LððEÞb nH; ðEÞ�b nHÞ there exists

X A LððEÞb nH; ðEÞ�b nHÞ uniquely determined by
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X̂Xðx; hÞ ¼ eÿhx;hiX̂X1ðx; hÞX̂X2ðx; hÞ; x; h A EC : ð2:1Þ

Proof. For simplicity we denote by Yðx; hÞ the right hand side of (2.1). It is

su‰cient to show that Y satisfies conditions (i) and (ii) in Theorem 1.6. In fact, (i) is

obvious. As for (ii) we note that

kX̂X iðx; hÞkOPU 2bkX ikLp
expfð1ÿ bÞ2ð2bÿ1Þ=ð1ÿbÞðjxj2=ð1ÿbÞ

p þ jhj2=ð1ÿbÞ
p Þg; i ¼ 1; 2; ð2:2Þ

for some pV 0, see (1.16). Using an obvious inequality a2U 1þ a2=ð1ÿbÞ we have

jeÿhx;hijU exp
r2p

2
ðjxj2p þ jhj2pÞU er

2p

exp
r2p

2
ðjxj2=ð1ÿbÞ

p þ jhj2=ð1ÿbÞ
p Þ: ð2:3Þ

Then from (2.2) and (2.3) we obtain

kYðx; hÞkOPUCkX1kLp
kX2kLp

expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; ð2:4Þ

where C ¼ 22ber
2p

and K ¼ ð1ÿ bÞ2b=ð1ÿbÞ þ r2p=2. This proves (ii). r

The operator X defined in Lemma 2.1 is denoted by

X ¼ X1 GX2

and is called the Wick product. For X;X i A LððEÞb nH; ðEÞ�b nHÞ it holds that

XG I ¼ I GX ¼ X;

ðX1 GX2ÞGX3 ¼ X1 G ðX2 GX3Þ;

ðX1 GX2Þ
� ¼ X �

2 GX �
1 :

Moreover, if H ¼ C we have

X1 GX2 ¼ X2 GX1; X i A LððEÞb; ðEÞ
�
b Þ;

that is, equipped with the Wick product LððEÞb; ðEÞ
�
b Þ becomes a commutative algebra.

However, the Wick product is not commutative whenever dimH > 1. In fact,

ðX1 nL1ÞG ðX2 nL2Þ ¼ ðX1 GX2Þn ðL1L2Þ; X i A LððEÞb; ðEÞ
�
b Þ; Li A LðHÞ:

Proposition 2.2. For an operator W A LððEÞb nH; ðEÞ�b nHÞ the following

conditions are equivalent:

(i) XGW ¼ XW for any X A LððEÞ�b nH; ðEÞ�b nHÞ;

(ii) W�
GX ¼ W�X for any X A LððEÞb nH; ðEÞb nHÞ;

(iii) the Fock expansion of W contains only annihilation operators, i.e., is of the form:

W ¼
Xy

m¼0

X0;mðk0;mÞ: ð2:5Þ

Assume that W satisfies one of the above conditions and belongs to LððEÞbnH;

ðEÞbnHÞ. Then XGW¼ XW holds for any X ALððEÞb nH; ðEÞ�b nHÞ.
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Proof. ðiÞ , ðiiÞ is obvious by duality.

ðiÞ ) ðiiiÞ For z A EC we put

Dz ¼

ð

R

zðtÞat dt:

It is known that Dz belongs both to LððEÞb; ðEÞbÞ and to LððEÞ�b ; ðEÞ
�
b Þ. Then for

X ¼ Dz n I , where I is the identity operator on H, we have

XGW ¼ WX: ð2:6Þ

We shall prove (2.6) by symbols. Since X̂Xðx; hÞ ¼ e
hx;hihz; xiI , we have

ðXGWÞ^ðx; hÞ ¼ e
ÿhx;hiX̂Xðx; hÞŴWðx; hÞ ¼ hz; xiŴWðx; hÞ: ð2:7Þ

On the other hand, since

hdWXWXðx; hÞu; viH ¼ dWXðfx n uÞ; fh n ve

¼ dWðhz; xifx n uÞ; fh n ve

¼ hz; xihŴWðx; hÞu; viH;

we have

dWXWXðx; hÞ ¼ hz; xiŴWðx; hÞ: ð2:8Þ

Then (2.6) follows from (2.7) and (2.8). Now taking the assumption into account, we

see that XW ¼ WX, i.e., W commutes with any Dz n I , where z runs over EC . In case

of H ¼ C an operator commuting with all Dz contains no creation operators in its Fock

expansion, see [30 ]. This fact admits a straightforward generalization to the case of an

arbitrary H and we obtain the desired assertion.

ðiiiÞ ) ðiÞ We first note that

X0;mðk0;mÞðfx n uÞ ¼ fx n k0;mðx
nmÞu; x A EC ; u A H;

and hence

ðX0;mðk0;mÞÞ
^ðx; hÞ ¼ e

hx;hik0;mðx
nmÞ; x; h A EC :

We now assume that W ¼
Py

m¼0 X0;mðk0;mÞ. Then for X A LððEÞ�b nH; ðEÞ�b nHÞ,

hðXWÞ^ðx; hÞu; viH ¼
Xy

m¼0

dXX0;mðk0;mÞðfx n uÞ; fh n ve

¼
Xy

m¼0

dXðfx n k0;mðx
nmÞÞu; fh n ve

¼
Xy

m¼0

hX̂Xðx; hÞk0;mðx
nmÞu; viH
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¼
Xy

m¼0

hX̂Xðx; hÞeÿhx;hiðX0;mðk0;mÞÞ
^ðx; hÞu; viH

¼ hX̂Xðx; hÞeÿhx;hiŴWðx; hÞu; viH:

This implies that XW ¼ XGW.

For the last part we need only to repeat similar computation as above keeping in

mind that the expansion (2.5) converges in LððEÞb nH; ðEÞb nHÞ. r

A relevant result appears in Huang-Luo [17 ] where the case of H ¼ C is in

consideration.

Corollary 2.3. For any X A LððEÞb nH; ðEÞ�b nHÞ it holds that

a�
s1
� � � a�

sl
Xat1 � � � atm ¼ XG ða�

s1
� � � a�

sl
at1 � � � atmÞ ¼ ða�

s1
� � � a�

sl
at1 � � � atmÞGX:

In particular,

a�
s X ¼ XG a�

s ¼ a�
s GX; Xat ¼ XG at ¼ at GX;

as G at ¼ asat; a�
s G at ¼ a�

s at; as G a�
t ¼ a�

t as; a�
s G a�

t ¼ a�
s a

�
t ; ð2:9Þ

where at and a�
t are short hand notations for the amplifications as usual.

As for topological properties of Wick products we only mention the following

Proposition 2.4. The Wick product is a separately continuous bilinear map from

LððEÞb; ðEÞ
�
b Þ �LððEÞb; ðEÞ

�
b Þ into LððEÞb; ðEÞ

�
b Þ.

Proof. Suppose X1;X2 A LððEÞb; ðEÞ
�
b Þ and put X ¼ X1 GX2. It follows from

(2.4) that

jX̂Xðx; hÞjUCkX1kLp
kX2kLp

expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ

for some CV 0 and KV 0. Then, applying Theorem 1.6, we see that there exist L > 0,

0 < M < 1 and q > 0 such that

kX1 GX2kLpþqþ3
UCLð1ÿMÞÿ2kX1kLp

kX2kLp
; X1;X2 A Lp: ð2:10Þ

Suppose X2 is fixed. Then (2.10) means that X1 7! X1 GX2 is a continuous linear map

from Lp into Lpþqþ3, and hence into L. Since

LG ððEÞb n ðEÞbÞ
�
G ind lim

p!y
ððEÞb n ðEÞbÞÿp G ind lim

p!y
Lp;

X1 7! X1 GX2 is a continuous linear map from LððEÞb; ðEÞ
�
b Þ into itself. r

Remark. The Wick product of white noise functions has been actively discussed,

see [19 ], [23 ] and references therein; see also [16 ] for relevant topics. Recall that each

F A ðEÞ�b gives rise to a multiplication operator XF A LððEÞb; ðEÞ
�
b Þ. For two white

noise functions F;C A ðEÞ�b we denote by FGC the Wick product. It is then easy to

see that XFGC ¼ XF GXC .
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2.2. Wick exponential function.

For simplicity we put

XG n ¼ XG . . . GX
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n times

; XG 0 ¼ I :

Theorem 2.5. Let X A LððEÞnH; ðEÞ� nHÞ. If degXU 2=ð1ÿ bÞ, the infinite

series

Xy

n¼0

1

n!
XG n ð2:11Þ

converges in LððEÞb nH; ðEÞ�b nHÞ. In particular, (2.11) converges in LððEÞnH;

ðEÞ� nHÞ if degXU 2.

Proof. Let SN denote the N-th partial sum of (2.11). We note that by definition

ŜSNðx; hÞ ¼ ehx;hi
XN

n¼0

1

n!
ðeÿhx;hiX̂Xðx; hÞÞn;

and hence

lim
N!y

ŜSNðx; hÞ ¼ expðhx; hiþ eÿhx;hiX̂Xðx; hÞÞ; x; h A EC :

Then by Theorem 1.9, SN converges in LððEÞb nH; ðEÞ�b nHÞ if and only if there

exist some constant numbers CV 0, KV 0 and pV 0 such that

kŜSNðx; hÞkOPUC expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; N ¼ 1; 2; . . . : ð2:12Þ

Since the factor ehx;hi does not contribute to the estimate, (2.12) is equivalent to






XN

n¼0

1

n!
ðeÿhx;hiX̂Xðx; hÞÞn





OP

UC expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; N ¼ 1; 2; . . . : ð2:13Þ

We shall prove that condition (2.13) is satisfied if d1 degXU 2=ð1ÿ bÞ.

Given X A LððEÞnH; ðEÞ� nHÞ with d ¼ degX < y we put

X ¼
X

lþmU d

X l;mðkl;mÞ:

Choose pV 0 such that

K 0 ¼ max
lþmU d

kkl;mkÿp < y:

In view of

X̂Xðx; hÞ ¼ ehx;hi
X

lþmU d

kl;mðh
n l n xnmÞ;

we have
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keÿhx;hiX̂Xðx; hÞkOPU

X

lþmU d

kkl;mðh
n l n xnmÞkOP

U

X

lþmU d

kkl;mkÿpjhj
l
pjxj

m
p

UK 0
X

lþmU d

jhj lpjxj
m
p : ð2:14Þ

Since

X

lþm¼k

jhj lpjxj
m
p U

X

lþm¼k

ðjhj lþm
p þ jxj lþm

p Þ ¼ ðk þ 1Þðjhjkp þ jxjkpÞ;

which follows from an obvious inequality a lbm
U a lþm þ b lþm, a; bV 0, we see that

(2.14) becomes

keÿhx;hiX̂Xðx; hÞkOPUK 0
X

d

k¼0

X

lþm¼k

jhj lpjxj
m
p

UK 0
X

d

k¼0

ðk þ 1Þðjhjkp þ jxjkpÞ

UK 0ðd þ 1Þ
X

d

k¼0

ðjhjkp þ jxjkpÞ: ð2:15Þ

In view of the inequality 1þ aþ a2 þ � � � þ ad
U 1þ d þ dad , aV 0, (2.15) becomes

UK 0ðd þ 1Þð1þ d þ djhjdp þ 1þ d þ djxjdpÞ

¼ 2K 0ðd þ 1Þ2 þ K 0ðd þ 1Þdðjhjdp þ jxjdpÞ: ð2:16Þ

Since dU 2=ð1ÿ bÞ, we have jhjdpU 1þ jhj2=ð1ÿbÞ
p . Hence (2.16) becomes

U 2K 0ðd þ 1Þ2 þ K 0ðd þ 1Þdð2þ jhj2=ð1ÿbÞ
p þ jxj2=ð1ÿbÞ

p Þ:

Therefore,

keÿhx;hiX̂Xðx; hÞkOPUC 0 þ Kðjhj2=ð1ÿbÞ
p þ jxj2=ð1ÿbÞ

p Þ;

where C 0 ¼ 2K 0ðd þ 1Þð2d þ 1Þ and K ¼ K 0ðd þ 1Þd. Consequently, we obtain









X

N

n¼0

1

n!
ðeÿhx;hiX̂Xðx; hÞÞn









OP

U

X

N

n¼0

1

n!
keÿhx;hiX̂Xðx; hÞkn

OP

U eC
0

expKðjhj2=ð1ÿbÞ
p þ jxj2=ð1ÿbÞ

p Þ;

as desired. r
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Remark. The condition degXU 2=ð1ÿ bÞ seems almost best possible to have the

convergence in LððEÞb nH; ðEÞ�b nHÞ. In fact, in case of H ¼ C , it can be proved

that (2.12) implies degXU 2=ð1ÿ bÞ. Letting N ! y in (2.12) we have

jexpðeÿhx;hiX̂Xðx; hÞÞjUC expKðjhj2=ð1ÿbÞ
p þ jxj2=ð1ÿbÞ

p Þ:

For simplicity we put

yðzÞ ¼ eÿzhx;hiX̂Xðx; zhÞ; z A C :

Then F ðzÞ ¼ eyðzÞ becomes an entire holomorphic function without zeroes of order

U2=ð1ÿ bÞ, i.e.,

lim sup
r!y

log logMðrÞ

log r
U

2

1ÿ b
; MðrÞ ¼ max

jzj¼r
jFðzÞj:

Applying Hadamard’s factorization theorem for entire holomorphic functions (see e.g.,

[4]), we see that yðzÞ is a polynomial of degree U2=ð1ÿ bÞ. From

yðzÞ ¼ eÿzhx;hi
X

y

l;m¼0

X l;mðkl;mÞ
^ðx; zhÞ ¼

X

y

l;m¼0

kl;mðh
n l n xnmÞz l

we see that X l;mðkl;mÞ ¼ 0 whenever l > 2=ð1ÿ bÞ. Similarly, X l;mðkl;mÞ ¼ 0 whenever

m > 2=ð1ÿ bÞ, and hence d1 degX < y. We shall show that dU 2=ð1ÿ bÞ. By

definition kl;m 0 0 for some l;m with l þm ¼ d. Hence there exist x; h A EC such that

o1
X

lþm¼d

kl;mðh
n l n xnmÞ0 0:

We may assume without loss of generality that o > 0. Replacing x and h in (2.13) with

zx and zh, respectively, we obtain

exp
X

lþmU d

kl;mðh
n l n xnmÞz lþm

( )�

�

�

�

�

�

�

�

�

�

UC expKjzj2=ð1ÿbÞðjhj2=ð1ÿbÞ
p þ jxj2=ð1ÿbÞ

p Þ; z A C ;

consequently,

jexpfozd þ Pdÿ1ðzÞgjUC expðo 0jzj2=ð1ÿbÞÞ; z A C ; ð2:17Þ

where o 0 ¼ Kðjhj2=ð1ÿbÞ
p þ jxj2=ð1ÿbÞ

p Þ > 0 and Pdÿ1ðzÞ is a polynomial in z of degree at

most d ÿ 1. Then (2.17) holds for any z A C only when dU 2=ð1ÿ bÞ.

The convergent series introduced in Theorem 2.5 is called the Wick exponential

function of X and is denoted by

wexpX ¼
X

y

n¼0

1

n!
XG n:

Note that X 7! wexpX is not continuous. In fact, the Wick exponential is defined only

for X with finite degree and such operators do not constitute an open set in

LððEÞnH; ðEÞ� nHÞ.
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The symbol of wexpX was already obtained during the proof of Theorem 2.5:

ðwexpXÞ^ðx; hÞ ¼ expðhx; hiþ eÿhx;hiX̂Xðx; hÞÞ: ð2:18Þ

Using this one can deduce immediately the following

Lemma 2.6. For i ¼ 1; 2 let X i A LððEÞnH; ðEÞ� nHÞ with finite degrees. If

X1 GX2 ¼ X2 GX1, it holds that

ðwexpX1ÞG ðwexpX2Þ ¼ wexp ðX1 þ X2Þ: ð2:19Þ

In particular, for any X A LððEÞnH; ðEÞ� nHÞ with finite degree we have

wexpXGwexp ðÿXÞ ¼ I :

Moreover, with the help of Theorem 1.8 (iv) we can prove the following lemma

without di‰culty.

Lemma 2.7. Assume that X A LððEÞnH; ðEÞ� nHÞ is of finite degree

U2=ð1ÿ bÞ. Then z 7! wexp ðzXÞ A LððEÞb nH; ðEÞ�b nHÞ is entire holomorphic and

d

dz
wexp ðzXÞ ¼ XGwexp ðzXÞ

holds in LððEÞb nH; ðEÞ�b nHÞ.

Remark. In their recent paper Cochran-Kuo-Sengupta [11 ] introduced a further

generalization of white noise functions. It is plausible that the Wick exponential

wexpX converges for any X A LððEÞ; ðEÞ�Þ in a suitably extended space of operators.

A further detailed study in this connection has been initiated in [34 ].

2.3. Time-ordered Wick exponential function.

We shall discuss a generalization of Wick exponential function introduced in the

previous section.

Theorem 2.8. Let fLtgt AT HLððEÞnH; ðEÞ� nHÞ be a quantum stochastic

process, where T HR is an interval containing 0. Assume that degLt U 2=ð1ÿ bÞ for

some 0U b < 1. Then the infinite series

Xt ¼ I þ
Xy
n¼1

ð t

0

dt1

ð t1

0

dt2 � � �

ð tnÿ1

0

dtn Lt1 GLt2 G � � � GLtn ; ð2:20Þ

converges in LððEÞb nH; ðEÞ�b nHÞ.

Proof. We may assume that T is a compact interval. We put

Yn ¼ YnðtÞ ¼

ð t

0

dt1

ð t1

0

dt2 � � �

ð tnÿ1

0

dtn Lt1 GLt2 G � � � GLtn :

Then by the definition of Wick product we obtain
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ŶYnðx; hÞ ¼ ehx;hi
ð t

0

dt1

ð t1

0

dt2

� � �

ð tnÿ1

0

dtn e
ÿhx;hiL̂Lt1ðx; hÞe

ÿhx;hiL̂Lt2ðx; hÞ

� � � eÿhx;hiL̂Ltnðx; hÞ:

Consider the Fock expansion:

Lt ¼
X

lþmU d

X l;mðkl;mðtÞÞ; degLtU d < y;

where d ¼ maxfdegLt; t A Tg < y by assumption. Then we have

L̂Ltðx; hÞ ¼ ehx;hi
X

lþmU d

kl;mðtÞðh
n l n xnmÞ:

Since t 7! Lt is continuous, so is t 7! kl;mðtÞ, see Theorem 1.7. Therefore there exist

K 0
V 0 and pV 0 such that

kkl;mðtÞkÿpUK 0; t A T ; l;m ¼ 0; 1; 2; . . . : ð2:21Þ

Then in a similar manner as in the proof of Theorem 2.5, we may find C1V 0 and

K2V 0 such that

keÿhx;hiL̂Ltðx; hÞkOPUC1 þ K1ðjxj
2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ; t A T ; x; h A EC;

where C1 ¼ 2K 0ðd þ 1Þð2d þ 1Þ and K1 ¼ K 0ðd þ 1Þd. Thus

kŶYnðx; hÞkOPU jehx;hij
tn

n!
fC1 þ K2ðjxj

2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þgn;

and

Xy
n¼0

kŶYnðx; hÞkOPU jehx;hijexp tfC1 þ K2ðjxj
2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þg

UC expKðjxj2=ð1ÿbÞ
p þ jhj2=ð1ÿbÞ

p Þ ð2:22Þ

for some CV 0 and KV 0. It follows from Theorem 1.9 that Xt 1
Py

n¼0 Yn converges

in LððEÞb nH; ðEÞ�b nHÞ. r

The infinite series (2.20) is called the time-ordered Wick exponential function.

Similarly we may define the reversed time-ordered Wick exponential function:

I þ
Xy
n¼1

ð t

0

dt1

ð t1

0

dt2 � � �

ð tnÿ1

0

dtn Ltn GLtnÿ1
G � � � GLt1 ;

which is the adjoint of (2.20).

If fLtg is a commuting (with respect to the Wick product) family of operators, we

have
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ð t

0

dt1

ð t1

0

dt2 � � �

ð tnÿ1

0

dtn Lt1 GLt2 G � � � GLtn ¼
1

n!

ð t

0

Lsds

� �G n

:

Namely, the time-ordered Wick exponential (2.20) is reduced to the usual Wick

exponential function; this case is discussed in [33 ].

3. Application to di¤erential equations.

3.1. Ordinary di¤erential equations.

Theorem 3.1. Let fLtg be a quantum stochastic process, where t runs over an

interval T HR. Assume that there exists some 0U b < 1 such that degLt U 2=ð1ÿ bÞ

for all t. Then the initial value problem

dX

dt
¼ Lt GX; X

��
t¼0

¼ X0 A LððEÞnH; ðEÞ� nHÞ; ð3:1Þ

has a unique solution in LððEÞb nH; ðEÞ�b nHÞ which is given by

Xt ¼ I þ
Xy

n¼1

ð t

0

dt1

ð t1

0

dt2 � � �

ð tnÿ1

0

dtn Lt1 GLt2 G � � � GLtn

 !

GX0: ð3:2Þ

Proof. During the proof of Theorem 2.8 we have established a local uniform

estimate (with respect to t) of the symbol of (3.2), see (2.22). Then for the assertion we

need only to prove that the symbol of (3.2) is a unique solution to

d

dt
X̂Xtðx; hÞ ¼ eÿhx;hibLLtðx; hÞX̂Xtðx; hÞ; X̂Xtðx; hÞ

��
t¼0

¼ X̂X0ðx; hÞ;

of which the verification is straightforward. r

Remark. If we take the initial data X0 from LððEÞg nH; ðEÞ�g nHÞ, the solution

lies in LððEÞa nH; ðEÞ�a nHÞ with a ¼ maxfb; gg. We do not go into this kind of

trivial remarks below.

Corollary 3.2. Let fLtg and fMtg be quantum stochastic processes in LððEÞnH;

ðEÞ� nHÞ and consider

dX

dt
¼ Lt GX þMt; Xjt¼0 ¼ X0: ð3:3Þ

Assume that fLtg is a family of operators commuting with respect to the Wick product

and that there exists some 0U b < 1 such that degLt U 2=ð1ÿ bÞ for all t. Then the

solution to (3.3) lies in LððEÞb nH; ðEÞ�b nHÞ and given by

Xt ¼ Wt G

ð t

0

WG ðÿ1Þ
s GMs dsþ X0

� �
;

where

Wt ¼ wexp

ð t

0

Lsds; W
G ðÿ1Þ
t ¼ wexp ÿ

ð t

0

Lsds

� �
:
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Proof. We first note that Wt is defined due to the fact:

deg

ð t

0

Ls dsU
2

1ÿ b
;

which follows from commutativity of the Fock expansion and the integral. Then

translating the initial value problem (3.3) into a di¤erential equation of symbols, we

obtain the assertion by the standard argument known as the method of variation of

constants. r

Corollary 3.3. Let fLtgHLððEÞnH; ðEÞ� nHÞ be a quantum stochastic

process. Assume that fLtg is a family of operators commuting with respect to the Wick

product and that there exists some 0U b < 1 such that degLt U 2=ð1ÿ bÞ for all t. Then

the initial value problem:

dX

dt
¼ Lt GX Xjt¼0 ¼ X0; ð3:4Þ

has a unique solution in LððEÞb nH; ðEÞ�b nHÞ which is given by

Xt ¼

 

wexp

ð t

0

Lsds

!

GX0:

Here are a few examples, some of which have appeared in Huang-Luo [17 ] taking

no notice of convergence of Wick products or existence of solutions.

Example 1. Let fLtg A LððEÞnH; ðEÞ� nHÞ be a quantum stochastic pro-

cess. Assume that degLt U 2=ð1ÿ bÞ and that the Fock expansion of Lt contains

only annihilation operators. Then Lt A LððEÞnH; ðEÞnHÞ follows automatically.

Consider the initial value problem:

dX

dt
¼ XLt; Xjt¼0 ¼ X0; ð3:5Þ

where the right hand side is a usual product. Since XLt ¼ XGLt by Proposition 2.2, it

follows from Theorem 3.1 that there exists a unique solution in LððEÞbnH; ðEÞ�bnHÞ.

If in addition fLtg is a commuting family with respect to the Wick product, the solution

is given by

Xt ¼ X0 Gwexp

ð t

0

Ls ds:

A similar argument is applied to

dX

dt
¼ L�

t X;

which is dual to (3.5).

In the following examples we assume that H ¼ C .

Example 2. As a particular case of Example 1 we take Lt ¼ at. Then one may

consider

dX

dt
¼ Xat;

dX

dt
¼ a�

t X;
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and their linear combination:

dX

dt
¼ o1Xat þ o2a

�
t X; o1;o2 A C : ð3:6Þ

Equation (3.6) appears in a problem of stochastic limit of an interacting quantum system

[1]. Since

o1Xat þ o2a
�
t X ¼ XG ðo1at þ o2a

�
t Þ ¼ ðo1at þ o2a

�
t ÞGX

and deg ðo1at þ o2a
�
t ÞU 1, it follows from Theorem 3.1 that equation (3.6) has a unique

solution in LððEÞ; ðEÞ�Þ.

Example 3. Since a�
t Xat ¼ XG ða�

t atÞ and deg a�
t at ¼ 2,

dX

dt
¼ a�

t Xat; Xjt¼0 ¼ X0; ð3:7Þ

admits a unique solution in LððEÞ; ðEÞ�Þ which is expressed as

X t ¼ X0 GwexpLt; Lt ¼

ð t

0

a�
s as ds;

where Lt is the number process, see also (1.20).

Example 4. There is no di‰culty of discussing equations involving higher powers

of quantum white noises such as

dX

dt
¼ Xa2t þ a�2t X: ð3:8Þ

In fact, since Xa2t þ a�2t Xt ¼ XG ða2t þ a�2t Þ and deg ða2t þ a�2t Þ ¼ 2, equation (3.8) has a

unique solution in LððEÞ; ðEÞ�Þ and is given by

Xt ¼ X0 Gwexp

ð t

0

ða2s þ a�2s Þ ds:

3.2. Quantum stochastic di¤erential equations.

Following [18 ] we recall quantum stochastic di¤erential equations of Itô type. For

i ¼ 1; 2; 3; 4 let fL
ðiÞ
t gHLððEÞnH; ðEÞ� nHÞ be an adapted quantum stochastic

process and consider

dX ¼ ðL
ð1Þ
t dLt þ L

ð2Þ
t dAt þ L

ð3Þ
t dA�

t þ L
ð4Þ
t dtÞX; Xjt¼0 ¼ X0; ð3:9Þ

where fLtg, fAtg, fA
�
t g are defined in (1.20). In fact, equation (3.9) is understood as a

formal representation of the integral equation

X t ¼ X0 þ

ð t

0

ðLð1Þ
s XsdLs þ Lð2Þ

s XsdAs þ Lð3Þ
s XsdA

�
s þ Lð4Þ

s XsdsÞ; ð3:10Þ

where the integrals are Itô type quantum stochastic integrals of adapted processes. As a

result, the solution should be an adapted process. (In short, the role of an infinitesimal

increment of the Brownian motion dBt in the classical Itô theory is played by dAt, dA
�
t
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and dLt. For a comprehensive account see [25 ], [35 ].) Equation (3.9) is brought into

a usual di¤erential equation by means of symbols:

d

dt
cXtXtðx; hÞ ¼ xðtÞhðtÞðL

ð1Þ
t XtÞ

^ðx; hÞ þ xðtÞðL
ð2Þ
t XtÞ

^ðx; hÞ

þ hðtÞðL
ð3Þ
t XtÞ

^ðx; hÞ þ ðL
ð4Þ
t XtÞ

^ðx; hÞ: ð3:11Þ

In fact, taking the symbols of the both sides of (3.10) we obtain an integral equation

for X̂Xtðx; hÞ, where x; h A EC are fixed. Then (3.11) follows immediately. On the other

hand, we can consider the initial value problem:

dX

dt
¼ ða�

t L
ð1Þ
t at þ L

ð2Þ
t at þ a�

t L
ð3Þ
t þ L

ð4Þ
t ÞGX; Xjt¼0 ¼ X0: ð3:12Þ

Contrary to (3.9), equation (3.12) is a readily well-posed di¤erential equation for

operators. Obviously, in terms of operator symbols (3.12) becomes

d

dt
cXtXtðx; hÞ ¼ eÿhx;hifxðtÞhðtÞ

d
L
ð1Þ
tL
ð1Þ
t ðx; hÞ þ xðtÞ

d
L
ð2Þ
tL
ð2Þ
t ðx; hÞ

þ hðtÞ
d
L
ð3Þ
tL
ð3Þ
t ðx; hÞ þ

d
L
ð4Þ
tL
ð4Þ
t ðx; hÞgcXtXtðx; hÞ: ð3:13Þ

Then equations (3.11) and (3.13) coincide if

ðL
ðiÞ
t XtÞ

^ðx; hÞ ¼ eÿhx;hidL
ðiÞ
tL
ðiÞ
t ðx; hÞcXtXtðx; hÞ; i ¼ 1; 2; 3; 4;

or equivalently if

L
ðiÞ
t Xt ¼ L

ðiÞ
t GX t; i ¼ 1; 2; 3; 4: ð3:14Þ

Then, in view of the results in the previous section (in particular, Example 1) we obtain

Theorem 3.4. For i ¼ 1; 2; 3; 4 let fL
ðiÞ
t gHLððEÞnH; ðEÞ� nHÞ be an adapted

quantum stochastic process. Assume

(i) fL
ðiÞ
t gHLððEÞnH; ðEÞnHÞ;

(ii) L
ðiÞ
t X ¼ L

ðiÞ
t GX for any X A LððEÞnH; ðEÞ� nHÞ;

(iii) there exists some 0U b < 1 such that degL
ðiÞ
t U 2=ð1ÿ bÞ for all t.

Then (3.9) has a unique solution in LððEÞb nH; ðEÞ�b nHÞ.

The quantum stochastic di¤erential equation with coe‰cients being adapted

(constant) processes defined by L
ðiÞ
t ¼ I nLi, Li A LðHÞ, is a typical one first discussed

by Hudson-Parthasarathy [18 ]. That L
ðiÞ
t satisfies the conditions in Theorem 3.4 il-

lustrates that our approach bears some possibility of generalizing the theory of quantum

stochastic di¤erential equations of Itô type.

Appendix.

Throughout this appendix let X be a countable Hilbert nuclear space over C or R.

Then there exists a sequence of Hilbert spaces fHpg
y
p¼ÿy such that

� � � HHpþ1 HHp H � � � HH0 H � � � HHÿp HHÿðpþ1Þ H � � � ;
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where the natural injection Hpþ1 ! Hp is of Hilbert-Schmidt type for any pV 0, and

XG proj lim
p!y

Hp; X�
G ind lim

p!y
Hÿp:

We denote by j � jp the norm of Hp. Let Y be a Banach space with norm j � jY. The

topology of XnY is given by the seminorms:

kzkp ¼ inf
X

i

jxijpjhij; ðA:1Þ

where the infimum is taken over the possible expression of z ¼
P

i xi n hi, x A X, hi A Y.

By the kernel theorem there is a canonical isomorphisms:

X� nY�
G ðXnYÞ� GLðX;Y�Þ: ðA:2Þ

The topology of X� nY� is given by the seminorms

k f kB ¼ sup
z AB

jhf ; zij; f A X� nY�
;

where BHXnY runs over all bounded subsets. For f A X� nY� we put

k f kÿp ¼ supfjh f ; zij; kzkp U 1g: ðA:3Þ

Note that (A.1) and (A.3) are compatible. By definition for each f A X� nY� there

exists pV 0 such that k f kÿp < y.

Proposition A.1. We keep the notations and assumptions as above and let T be a

locally compact space. Then for a map f : T ! X� nY� the following two conditions

are equivalent:

(i) f is continuous;

(ii) for any t0 A W there exists pV 0 such that k f ðt0Þkÿp < y and

lim
t!t0

k f ðtÞ ÿ f ðt0Þkÿp ¼ 0:

In that case for any compact subset T0 HT there exists pV 0 (di¤erent from above) such

that f : T0 ! Hÿp np Y
� is continuous.

Proof. ðiÞ ) ðiiÞ Given t0 we take an open neighborhood V HT of t0 with

compact closure. Since f is cotinuous, f ðVÞHX� nY� is compact and hence equi-

continuous. Therefore there exist MV 0 and pV 0 such that

jh f ðtÞ; zijUMkzkp; z A XnY; t A V :

In particular,

k f ðtÞkÿp UM; t A V : ðA:4Þ

With each h A Y we associate a function gh : T ! X� by the formula:

hghðtÞ; xi ¼ h f ðtÞ; xn hi; x A X:

Then for t A V ,

jhghðtÞ; xijU k f ðtÞkÿpkxn hkp ¼ k f ðtÞkÿpjxjpjhjY
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and, in view of (A.4) we come to

jghðtÞjÿp U k f ðtÞkÿpjhjY UMjhjY; t A V : ðA:5Þ

Note also that ghðtÞ A Hÿp for t A V , h A Y.

Let fejgyj¼1 be a complete orthonormal basis of Hpþ1. Then by definition,

jghðtÞ ÿ ghðt0Þj2ÿðpþ1Þ ¼
X

y

j¼1

jhghðtÞ ÿ ghðt0Þ; ejij2: ðA:6Þ

We shall estimate the above sum by dividing into two parts. First in view of (A.5) we

obtain

jhghðtÞ ÿ ghðt0Þ; ejij � jghðtÞ ÿ ghðt0Þjÿpjejj p U 2MjhjYjejjp; t A V :

Given e > 0 we choose N such that

4M 2
X

j>N

jejj2p <
e2

2
;

which is possible since Hpþ1 ! Hp is of Hilbert-Schmidt type and
Py

j¼1 jejj
2
p < y. Then,

(A.6) becomes

jghðtÞ ÿ ghðt0Þj2ÿðpþ1Þ U
X

N

j¼1

jhghðtÞ ÿ ghðt0Þ; ejij2 þ
e2

2
jhj2Y

¼
X

N

j¼1

jh f ðtÞ ÿ f ðt0Þ; ej n hij2 þ e2

2
jhj2Y: ðA:7Þ

Put

B ¼ fej n h; j ¼ 1; 2; . . . ;N; jhjY U 1g:

Obviously, BHXnY is a bounded subset. Since f is continuous by assumption, there

exists an open neighborhood U HW of t0 such that

k f ðtÞ ÿ f ðt0ÞkB <
e
ffiffiffiffiffiffiffi

2N
p ; t A U :

Then, for t A U and 1U jUN we have

jh f ðtÞ ÿ f ðt0Þ; ej n hijU jhjYk f ðtÞ ÿ f ðt0ÞkB U
e
ffiffiffiffiffiffiffi

2N
p jhjY:

Thus (A.7) becomes

kghðtÞ ÿ ghðt0Þk2ÿðpþ1Þ UN � e
ffiffiffiffiffiffiffi

2N
p jhjY

� �2

þ e2

2
jhj2Y ¼ e2jhj2Y; t A U VV ;

that is,

kghðtÞ ÿ ghðt0Þkÿðpþ1Þ U ejhjY; t A U VV : ðA:8Þ
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Finally we shall prove

k f ðtÞ ÿ f ðt0Þkÿðpþ1Þ U e; t A U VV : ðA:9Þ

For z ¼
P

i xi n hi A Xn algY it follows from (A.8) that

jh f ðtÞ ÿ f ðt0Þ; zijU
X

i

jh f ðtÞ ÿ f ðt0Þ; xi n hiij

U

X

i

jhghiðtÞ ÿ ghiðt0Þ; xiij

U e
X

i

jxijpþ1jhijY:

Taking the infimum over the possible expressions of z, we see that

jh f ðtÞ ÿ f ðt0Þ; zijU ekzkpþ1; t A U VV :

From this we obtain (A.9).

ðiiÞ ) ðiÞ Let BHXnY be an arbitrary bounded subset. Then we have

k f ðtÞ ÿ f ðt0ÞkB U sup
z AB

k f ðtÞ ÿ f ðt0Þkÿpkzkp

¼ kBkpk f ðtÞ ÿ f ðt0Þkÿp ! 0

as t ! t0 by assumption. This shows that f is continuous at t0.

The rest of the statement is already clear. r

We now prove the equivalence ðiÞ , ðiiÞ in Theorem 1.8.

Proposition A.2. Let T be a locally compact space. Then for the map t 7! Xt A

L1LððEÞb nH; ðEÞ�b nHÞ, t A T , the following two conditions are equivalent:

(i) t 7! Xt A L is continuous;

(ii) for each t0 A T there exist pV 0 and an open neighborhood U of t0 such that

fXt; t A UgHLp and lim
t!t0

kXt ÿ Xt0kLp
¼ 0:

Proof. Let TðHÞ be the space of trace class operators on H; then TðHÞ� ¼

LðHÞ. Setting X ¼ ðEÞb n ðEÞb and Y ¼ TðHÞ, we apply Proposition A.1. For the

assertion it is su‰cient to show that the norm k � kÿp used in Proposition A.1 coincides

with k � k
Lp
. Note first that

kXðoÞkOP ¼ supfjhXðoÞ; tij; t A TðHÞ; ktkTR U 1g

¼ supfjhX;on tij; t A TðHÞ; ktkTR U 1g

U supfkXkÿpkon tkp; t A TðHÞ; ktkTR U 1g

¼ kXkÿpkokp:

Hence

kXk
Lp

¼ supfkXðoÞkOP;o A ðEÞb n ðEÞb; kokp U 1gU kXkÿp:
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We shall prove the converse. Consider z A XnY of the form:

z ¼
X

i

oi n ti ðfinite sumÞ.

Then,

hX; zi ¼
X

i

hX;oi n tii ¼
X

i

hXðoiÞ; tii;

and

jhX; zijU
X

i

kXðoiÞkOPktikTRU
X

i

kXk
Lp
koikpktikTR:

Using (A.1) we obtain

jhX; zijU kXk
Lp
kzkp;

i.e.,

kXkÿpU kXk
Lp
: r

Proposition A.3. Let fxng be a sequence in X� and let x A X�. Then xn converges

to x in X� if and only if there exists pV 0 such that limn!y jxn ÿ xjÿp ¼ 0.

Proof. Consider T ¼ f0; 1; 1=2; 1=3; . . .g equipped with the relative topology

induced from [0, 1]. Set f ð1=nÞ ¼ xn, f ð0Þ ¼ x and apply Proposition A.1. r
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