The Rohlin property for \boldsymbol{Z}^{2}-actions on UHF algebras

By Hideki Nakamura

(Received Jun. 28, 1996)
(Revised Sept. 3, 1997)

Abstract

We define a Rohlin property for \boldsymbol{Z}^{2}-actions on UHF algebras and show a non-commutative Rohlin type theorem. Among those actions with the Rohlin property, we classify product type actions up to outer conjugacy. We consider two classes of UHF algebras. For UHF algebras in one class including the CAR algebra, there is one and only one outer conjugacy class of product type actions and for UHF algebras in the other class, contrary to the case of \boldsymbol{Z}-actions, there are infinitely many outer conjugacy classes of product type actions.

1. Introduction.

A non-commutative Rohlin property was introduced by A. Connes for classification of (single) automorphisms of von Neumann algebras ([3], [4]), and this property was generalized for example by A. Ocneanu ([20], [21]) to systems of commuting automorphisms and further to actions of discrete amenable groups. On the other hand, this notion has also proved useful in the framework of C^{*}-algebras ([1], [6], [7], [12], [13], [15], [16]), and in [15], [16] Kishimoto established a non-commutative Rohlin type theorem for automorphisms of UHF algebras (and some AF algebras) and classified automorphisms (i.e., \boldsymbol{Z}-actions) with the Rohlin property up to outer conjugacy.

The purpose of the paper is to extend Kishimoto's work to \boldsymbol{Z}^{2}-actions. Motivated by [15], [16], in Section 2 we introduce notions of Rohlin property and uniform outerness of \boldsymbol{Z}^{N}-actions on unital C^{*}-algebras. In the UHF algebra case and $N=1$, the uniform outerness was shown to be the same as the ordinary outerness of the relevant automorphism on the GNS von Neumann algebra obtained via the trace ([15]). Our main theorem here says that for \boldsymbol{Z}^{2}-actions on UHF algebras the Rohlin property characterizes the uniform outerness. The main idea of the proof is similar to the one in [16], but to avoid additional technical problems we make use of the stability i.e., the vanishing of 1-cohomology obtained in [12].

In Section 3 we introduce three notions of conjugacy to \boldsymbol{Z}^{2}-actions, i.e., approximate conjugacy, cocycle conjugacy, and outer conjugacy. Using the generalized determinant introduced by P. de la Harpe and G. Skandalis ([14]), we show that approximate conjugacy implies cocycle conjugacy when a (unital) C^{*}-algebra is simple and possesses a unique trace.

In Section 4 we consider product type \boldsymbol{Z}^{2}-actions on UHF algebras, i.e., pairs (α, β) of commuting automorphisms

[^0]$$
\alpha \cong \bigotimes_{k=1}^{\infty} \operatorname{Ad} u_{k}, \quad \beta \cong \bigotimes_{k=1}^{\infty} \operatorname{Ad} v_{k} .
$$

Considering the case when the $n_{k} \times n_{k}$ matrices u_{k}, v_{k} commute at first, we show that the Rohlin property in this case is characterized by the property of uniform distribution of the joint spectral set $\operatorname{Sp}\left(\otimes_{k=m}^{n} u_{k}, \bigotimes_{k=m}^{n} v_{k}\right)(m \leq n)$. From this we show that any such pairs are approximately conjugate.

We then investigate two special classes of UHF algebras. The first one is of the form $\bigotimes_{k=1}^{\infty} M_{p_{k} i_{k}}$, where $p_{k}(k \in \boldsymbol{N})$ are primes and non-negative (finite) integers $i_{k}(k \in N)$ satisfy $\sum_{k=1}^{p_{k} \infty} i_{k}=\infty$. The second one is of the form $\bigotimes_{k \in K} M_{q_{k}^{\infty}}$ with primes $q_{k}(k \in K)$ (where $\# K \leq \infty$) and $M_{q_{k}^{\infty}}$ means the infinite tensor product of $M_{q_{k}}$. For algebras in the first class we construct infinitely many non-cocycle conjugate product type \boldsymbol{Z}^{2}-actions with the Rohlin property. We would like to emphasize that for \boldsymbol{Z}-actions this phenomenon does not occur. On the other hand, for algebras in the second class we show that all the product type \boldsymbol{Z}^{2}-actions with the Rohlin property are mutually approximately conjugate. Combining these results we get the classification of product type \boldsymbol{Z}^{2}-actions with the Rohlin property on UHF algebras up to outer conjugacy.

2. Rohlin type theorem.

Let N be a positive integer. We first define the Rohlin property for \boldsymbol{Z}^{N}-actions on unital C^{*}-algebras. As mentioned above this is a simple generalization of that in the case of $N=1$ [15]. Let ξ_{1}, \ldots, ξ_{N} be the canonical basis of \boldsymbol{Z}^{N} i.e.,

$$
\xi_{i}=(0, \ldots, 0,1,0, \ldots, 0)
$$

where 1 is in the i-th component, and let $I=(1, \ldots, 1)$ throughout this section. For $m=\left(m_{1}, \ldots, m_{N}\right)$ and $n=\left(n_{1}, \ldots, n_{N}\right) \in \boldsymbol{Z}^{N}, m \leq n$ means $m_{i} \leq n_{i}$ for each $i=1, \ldots$, N. We define

$$
m \boldsymbol{Z}^{N}=\left\{\left(m_{1} n_{1}, \ldots, m_{N} n_{N}\right) \mid\left(n_{1}, \ldots, n_{N}\right) \in \boldsymbol{Z}^{N}\right\}
$$

for $m=\left(m_{1}, \ldots, m_{N}\right) \in \boldsymbol{Z}^{N}$ and let \boldsymbol{Z}^{N} act on $\boldsymbol{Z}^{N} / m \boldsymbol{Z}^{N}$ by addition modulo $m \boldsymbol{Z}^{N}$.
Definition 1. Let α be a \boldsymbol{Z}^{N}-action on a unital C^{*}-algebra A i.e., α is a group homomorphism from \boldsymbol{Z}^{N} into the automorphisms $\operatorname{Aut}(A)$ of A. Then α is said to have the Rohlin property if for any $m \in \boldsymbol{N}^{N}$ there exist $R \in \boldsymbol{N}$ and $m^{(1)}, \ldots, m^{(R)} \in N^{N}$ with $m^{(1)}, \ldots, m^{(R)} \geq m$ and which satisfy the following condition: For any $\varepsilon>0$ and finite subset F of A, there exist projections

$$
e_{g}^{(r)} \quad\left(r=1, \ldots, R, g \in \boldsymbol{Z}^{N} / m^{(r)} \boldsymbol{Z}^{N}\right)
$$

in A satisfying

$$
\begin{equation*}
\sum_{r=1}^{R} \sum_{g \in \boldsymbol{Z}^{N} / m^{(r)} \boldsymbol{Z}^{N}} e_{g}^{(r)}=1, \quad\left\|\left[x, e_{g}^{(r)}\right]\right\|<\varepsilon, \quad\left\|\alpha_{\xi_{i}}\left(e_{g}^{(r)}\right)-e_{\xi_{i}+g}^{(r)}\right\|<\varepsilon \tag{1}
\end{equation*}
$$

for any $x \in F, r=1, \ldots, R, i=1, \ldots, N$ and $g \in \boldsymbol{Z}^{N} / m^{(r)} \boldsymbol{Z}^{N}$.

Remark 2. When A is a UHF algebra, using Christensen's perturbation argument ([5, Theorem 5.3.]), we can restate the definition of the Rohlin property as follows. For any $n, m \in \boldsymbol{N}$ with $1 \leq n \leq N$ there exist $R \in \boldsymbol{N}$ and positive integers $m^{(1)}, \ldots, m^{(R)} \geq m$ which satisfy the following condition: For any $\varepsilon>0$ and finite subset F of A there exist projections

$$
e_{0}^{(r)}, \ldots, e_{m^{(r)}-1}^{(r)} \quad(r=1, \ldots, R)
$$

in A satisfying

$$
\sum_{r=1}^{R} \sum_{j=0}^{m^{(r)}-1} e_{j}^{(r)}=1, \quad\left\|\left[x, e_{j}^{(r)}\right]\right\|<\varepsilon
$$

for each $r=1, \ldots, R, j=0, \ldots, m^{(r)}-1$ and $x \in F$, and

$$
\left\|\alpha_{\xi_{n}}\left(e_{j}^{(r)}\right)-e_{j+1}^{(r)}\right\|<\varepsilon, \quad\left\|\alpha_{\xi_{n^{\prime}}}\left(e_{j}^{(r)}\right)-e_{j}^{(r)}\right\|<\varepsilon
$$

for each $n^{\prime}=1, \ldots, N$ with $n^{\prime} \neq n, r=1, \ldots, R$ and $j=0, \ldots, m^{(r)}-1$, where $e_{m^{(r)}}^{(r)} \equiv e_{0}^{(r)}$.
For automorphisms of C^{*}-algebras a notion of uniform outerness was introduced in [15]. That is, an automorphism α of a unital C^{*}-algebra A is said to be uniformly outer if for any $a \in A$, any nonzero projection $p \in A$ and any $\varepsilon>0$, there exist projections p_{1}, \ldots, p_{n} in A such that

$$
p=\sum_{i=1}^{n} p_{i}, \quad\left\|p_{i} a \alpha\left(p_{i}\right)\right\|<\varepsilon \quad(i=1, \ldots, n)
$$

It was shown that this notion for automorphisms of UHF algebras is equivalent to the usual outerness for the automorphisms of the von Neumann algebras obtained through the GNS representations associated with the traces ([15, Theorem 4.5]). Based on this fact and the Rohlin type theorem for automorphisms of von Neumann algebras due to A. Connes ([4, Theorem 1.2.5]), a C^{*}-algebraic version of the theorem (for the UHF algebras) was shown by A. Kishimoto ([16, Theorem 1.3]). We extend Kishimoto's work to \boldsymbol{Z}^{2}-actions.

Theorem 3. Let α be a \boldsymbol{Z}^{2}-action on a UHF algebra A. Then the following conditions are equivalent:
(1) α has the Rohlin property.
(2) α_{g} is uniformly outer for each $g \in \boldsymbol{Z}^{2} \backslash\{0\}$.

Once we establish this theorem, we have immediately
Corollary 4. Let α be a \boldsymbol{Z}^{2}-action on a UHF algebra A. Then the following conditions are equivalent:
(1) α has the Rohlin property as a \boldsymbol{Z}^{2}-action on A.
(2) α_{g} has the Rohlin property as an automorphism of A for each $g \in \boldsymbol{Z}^{2} \backslash\{0\}$.

In Theorem 3 it is obvious that (1) implies (2). We devote the rest of this section to prove the converse in several steps.

Lemma 5. Let α be a \boldsymbol{Z}^{2}-action on a UHF algebra A. If the condition (2) in Theorem 3 holds then for any $m=\left(m_{1}, m_{2}\right) \in N^{2}, \varepsilon>0$ and any unital full matrix
subalgebra B of A, there exists an orthogonal family $\left(e_{g} \mid g \in \boldsymbol{Z}^{2}, 0 \leq g \leq m-I\right)$ of projections in $A \cap B^{\prime}$ such that

$$
\left\|\alpha_{\xi_{i}}\left(e_{g}\right)-e_{\xi_{i}+g}\right\|<\varepsilon
$$

for any $i=1,2$ and $g \in \boldsymbol{Z}^{2}$ with $0 \leq g, \xi_{i}+g \leq m-I$, and furthermore,

$$
1<(|m|+1) \tau\left(e_{0}\right),
$$

where τ is the unique tracial state of A and $|m| \equiv m_{1} \cdot m_{2}$.
Proof. Let $\left(\pi_{\tau}, H_{\tau}\right)$ be the GNS representation associated with τ. By the uniqueness of a trace we can extend each $\alpha_{g}\left(g \in \boldsymbol{Z}^{2}\right)$ to an automorphism of the AFD II_{1} factor $\pi_{\tau}(A)^{\prime \prime}\left(\subseteq B\left(H_{\tau}\right)\right)$ and we use the same symbol α_{g} for this extension. Since α_{g} is outer on $\pi_{\tau}(A)^{\prime \prime}$ for $g \in \boldsymbol{Z}^{2} \backslash\{0\}$ by [15, Theorem 4.5], it follows from [20, Theorem 2] that for any $m \in N^{2}$ there exists a strongly central sequence

$$
\left(\left(E_{g}^{(j)} \mid g \in \boldsymbol{Z}^{2}, 0 \leq g \leq m-I\right) \mid j \in \boldsymbol{N}\right)
$$

of orthogonal families of projections in $\pi_{\tau}(A)^{\prime \prime}$ such that

$$
\sum_{\substack{g \in \boldsymbol{Z}^{2} \\ 0 \leq g \leq m-I}} E_{g}^{(j)}=1
$$

for each $j \in N$ and

$$
\alpha_{\xi_{i}}\left(E_{g}^{(j)}\right)-E_{\xi_{i}+g}^{(j)} \rightarrow 0
$$

strongly as $j \rightarrow \infty$ for each $i=1,2$ and $g \in \boldsymbol{Z}^{2}$ with $0 \leq g \leq m-I$, where $\left(m_{1}, k\right) \equiv$ $(0, k),\left(k, m_{2}\right) \equiv(k, 0)$.

From this central sequence we shall construct a uniformly central sequence

$$
\left(\left(f_{g}^{(j)} \mid g \in \boldsymbol{Z}^{2}, \quad 0 \leq g \leq m-I\right) \mid j \in \boldsymbol{N}\right)
$$

of orthogonal families of projections in A such that

$$
\pi_{\tau}\left(\sum_{\substack{g \in \boldsymbol{Z}^{2} \\ 0 \leq g \leq m-I}} f_{g}^{(j)}\right) \rightarrow 1
$$

strongly as $j \rightarrow \infty$ and

$$
\left\|\alpha_{\xi_{i}}\left(f_{g}^{(j)}\right)-f_{\xi_{i}+g}^{(j)}\right\| \rightarrow 0
$$

as $j \rightarrow \infty$ for each $i=1,2$ and $g \in \boldsymbol{Z}^{2}$ with $0 \leq g, g+\xi_{i} \leq m-I$. To do this, let $\left(A_{j} \mid j \in N\right)$ be an increasing sequence of unital full matrix subalgebras of A such that $\cup_{j} A_{j}$ is dense in A. From [15, Lemma 4.7] we find a uniformly central sequence $\left(e_{j} \mid j \in N\right)$ of projections in A such that

$$
\pi_{\tau}\left(e_{j}\right)-E_{0}^{(j)} \rightarrow 0
$$

strongly as $j \rightarrow \infty$. Changing e_{j} slightly and taking a subsequence, we may assume
that $e_{j} \in\left(\cup_{k} A_{k}\right) \cap A_{j}^{\prime}$ for each j. Let $\varepsilon>0$. From [5, Corollary 6.8], by taking inner perturbations, there are $\alpha_{1}, \alpha_{2} \in \operatorname{Aut}(A)$ such that

$$
\left\|\alpha_{i}-\alpha_{\xi_{i}}\right\|<\varepsilon, \quad \alpha_{i}\left(\bigcup_{j \in N} A_{j}\right) \subseteq \bigcup_{j \in N} A_{j}
$$

for $i=1,2$. Set

$$
h_{j}=e_{j}\left(\sum_{\substack{g=\left(g_{1}, g_{2}\right) \in \boldsymbol{Z}^{2} \backslash\{0\} \\-(m-I) \leq g \leq m-I}}\left(\alpha_{1}\right)^{g_{1}}\left(\alpha_{2}\right)^{g_{2}}\left(e_{j}\right)\right) e_{j}, \quad k_{j}=e_{j}\left(\sum_{\substack{g \in \boldsymbol{Z}^{2} \backslash\{0\} \\-(m-I) \leq g \leq m-I}} \alpha_{g}\left(e_{j}\right)\right) e_{j},
$$

$\eta_{j}=\tau\left(h_{j}\right)$ and $\kappa_{j}=\tau\left(k_{j}\right)$. Then it follows that

$$
\left\|h_{j}-k_{j}\right\|<\varepsilon\left(m_{1}+m_{2}-2\right)\left\{\left(2 m_{1}-1\right)\left(2 m_{2}-1\right)-1\right\} .
$$

Furthermore, $\lim _{j \rightarrow \infty} \kappa_{j}=0$ since

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \kappa_{j} & =\lim _{j \rightarrow \infty} \tau\left(\sum_{\substack{g \in \boldsymbol{Z}^{2}\{\{0\} \\
-(m-I) \leq g \leq m-I}} \alpha_{g}\left(e_{j}\right)\right) \\
& \leq \lim _{j \rightarrow \infty} \sum_{\substack{g, h \in \boldsymbol{Z}^{2}, g \neq h \\
0 \leq g, h \leq m-I}} \tau\left(e_{j} \alpha_{g-h}\left(e_{j}\right)\right) \\
& \leq \lim _{j \rightarrow \infty} \sum_{\substack{g, h \in \boldsymbol{Z}^{2}, g \neq h \\
0 \leq g, h \leq m-I}} \tau\left(\alpha_{h}\left(e_{j}\right) \alpha_{g}\left(e_{j}\right)\right) \\
& =\lim _{j \rightarrow \infty} \sum_{\substack{g, h \in \boldsymbol{Z}^{2}, g \neq h \\
0 \leq g, h \leq m-I}} \tau\left(E_{h}^{(j)} E_{g}^{(j)}\right)=0 .
\end{aligned}
$$

Let p_{j} be the spectral projection of h_{j} corresponding to $\left(0, \eta_{j}^{1 / 2}\right)$. Then $p_{j} \in A$ since $\operatorname{Sp}\left(h_{j}\right)$ is finite. $p_{j} \leq e_{j}$ and $\eta_{j}^{1 / 2}\left(e_{j}-p_{j}\right) \leq h_{j}$ because $\eta_{j}^{1 / 2} \chi_{\left[\eta_{j}^{1 / 2}, \infty\right)}(t) \leq t(t \in[0, \infty))$, hence

$$
\tau\left(e_{j}\right)-\eta_{j}^{1 / 2} \leq \tau\left(p_{j}\right) \leq \tau\left(e_{j}\right)
$$

In addition

$$
\left\|p_{j}\left(\sum_{\substack{g=\left(g_{1}, g_{2}\right) \in \boldsymbol{Z}^{2} \backslash\{0\} \\-(m-I) \leq g \leq m-I}}\left(\alpha_{1}\right)^{g_{1}}\left(\alpha_{2}\right)^{g_{2}}\left(p_{j}\right)\right) p_{j}\right\| \leq\left\|p_{j} h_{j} p_{j}\right\| \leq \eta_{j}^{1 / 2} .
$$

So for any $g, h \in \boldsymbol{Z}^{2}$ with $0 \leq g, h \leq m-I$ and $g \neq h$, we have

$$
\begin{aligned}
\left\|\alpha_{g}\left(p_{j}\right) \alpha_{h}\left(p_{j}\right)\right\|^{2} & =\left\|\alpha_{g}\left(p_{j} \alpha_{h-g}\left(p_{j}\right)\right)\right\|^{2}=\left\|p_{j} \alpha_{h-g}\left(p_{j}\right)\right\|^{2} \\
& =\left\|p_{j} \alpha_{h-g}\left(p_{j}\right) p_{j}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|p_{j}\left(\sum_{\substack{g \in \boldsymbol{Z}^{2} \backslash\{0\} \\
-(m-I) \leq g \leq m-I}} \alpha_{g}\left(p_{j}\right)\right) p_{j}\right\| \\
& \leq \varepsilon^{\prime}+\eta_{j}^{1 / 2}
\end{aligned}
$$

where $\varepsilon^{\prime}=\varepsilon\left(m_{1}+m_{2}-2\right)\left\{\left(2 m_{1}-1\right)\left(2 m_{2}-1\right)-1\right\}$. Here $\lim \eta_{j}=0$ since $\lim \kappa_{j}=0$ and $\lim \left\|h_{j}-k_{j}\right\|=0$. Therefore taking a sufficiently large j for each $\varepsilon>0$, we obtain the required $f_{g}^{(j)}$ near $\alpha_{g}\left(p_{j}\right)$ by slight modification.

Noting that $\sum_{0 \leq g \leq m-I} \tau\left(f_{g}^{(j)}\right) \rightarrow 1$ and $\tau\left(f_{g}^{(j)}\right)=\tau\left(f_{h}^{(j)}\right)$, we have

$$
\tau\left(f_{g}^{(j)}\right) \rightarrow \frac{1}{|m|}
$$

Furthermore for any unital full matrix subalgebra B of A, taking a sufficiently large j, we may assume that $f_{g}^{(j)} \in A \cap B^{\prime}$ for any g. This concludes the proof.

In Ocneanu's result [20, Theorem 2], applied in the above proof, we have the cyclicity condition (under the action) of the projections ($\left.E_{g}^{(j)} \mid g \in \boldsymbol{Z}^{2}, 0 \leq g \leq m-I\right)$ in the von Neumann algebra $\pi_{\tau}(A)^{\prime \prime}$. However, when approximating these projections by the projections $\left(f_{g}^{(j)} \mid g \in \boldsymbol{Z}^{2}, 0 \leq g \leq m-I\right)$ in the C^{*}-algebra A, we lose the cyclicity condition. It is our next problem to restore this cyclicity condition. To do this we need a technical lemma from [16]. Let $K\left(l^{2}(\boldsymbol{Z})\right)$ be the compact operators on $l^{2}(\boldsymbol{Z})$ and let $\left(E_{i, j} \mid i, j \in \boldsymbol{Z}\right)$ be the canonical matrix units for $K\left(l^{2}(\boldsymbol{Z})\right)$. On $K\left(l^{2}(\boldsymbol{Z})\right)$ we define an automorphism σ by $\sigma\left(E_{i, j}\right)=E_{i+1, j+1}(i, j \in \boldsymbol{Z})$. For any $n, k, l \in \boldsymbol{N}$ with $1<k<l$, define

$$
\begin{gather*}
N=n(2 k+l-1) \\
f=\sum_{i=1}^{k-1}\left(\frac{i}{k} E_{n i, n i}+\frac{k-i}{k} E_{n(k+l+i), n(k+l+i)}+\frac{\sqrt{i(k-i)}}{k} E_{n i, n(k+l+i)}\right. \\
\left.+\frac{\sqrt{i(k-i)}}{k} E_{n(k+l+i), n i}\right)+\sum_{i=k}^{k+l} E_{n i, n i} \tag{2}\\
e_{i}=\sigma^{i-n}(f) \quad(i=0, \ldots, n-1) .
\end{gather*}
$$

Then $\left(e_{i} \mid i=0, \ldots, n-1\right)$ is an orthogonal family of projections in $K\left(l^{2}(\boldsymbol{Z})\right)$. Hence for any $\varepsilon>0$, there exist k, l with $1 \ll k \ll l$ such that

$$
\begin{aligned}
& \sum_{i=0}^{n-1} e_{i} \leq P_{N} \quad\left(P_{N} \equiv \sum_{i=0}^{N-1} E_{i, i}\right) \\
&\left\|\sigma\left(e_{i}\right)-e_{i+1}\right\|<\varepsilon \quad\left(i=0, \ldots, n-1, e_{n} \equiv e_{0}\right) \\
& \frac{n \operatorname{dim} e_{0}}{N}>1-\varepsilon
\end{aligned}
$$

(see [16, Lemma 2.1] for the detail). Using these estimates we have the next lemma.

Lemma 6. Let α be a \boldsymbol{Z}^{2}-action on a UHF algebra A. If α_{g} is uniformly outer for any $g \in \boldsymbol{Z}^{2} \backslash\{0\}$, then for any $m \in \boldsymbol{N}, \varepsilon>0$ and any unital full matrix subalgebra B of A there exists an orthogonal family $\left(e_{i} \mid i=0, \ldots, m-1\right)$ of projections in $A \cap B^{\prime}$ such that

$$
\left\|\alpha_{\xi_{1}}\left(e_{i}\right)-e_{i+1}\right\|<\varepsilon, \quad\left\|\alpha_{\xi_{2}}\left(e_{i}\right)-e_{i}\right\|<\varepsilon, \quad \tau\left(1-\sum_{i=0}^{m-1} e_{i}\right) \leq \varepsilon \tau\left(e_{0}\right)
$$

for $i=0, \ldots, m-1$, where $e_{m} \equiv e_{0}$.
Proof. Let $m \in N, \varepsilon_{1}>0$ and let B_{1} be a unital full matrix subalgebra of A. By the above statement there exist $k_{1}, l_{1} \in \boldsymbol{N}$ with $1 \ll k_{1} \ll l_{1}$ and an orthogonal family $\left(e_{i} \mid i=0, \ldots, m-1\right)$ of projections in $K\left(l^{2}(\boldsymbol{Z})\right)$ such that

$$
\begin{equation*}
\sum_{i=0}^{m-1} e_{i} \leq P_{N_{1}}, \quad\left\|\sigma\left(e_{i}\right)-e_{i+1}\right\|<\varepsilon_{1} \quad(i=0, \ldots, m-1), \quad \frac{m \operatorname{dim} e_{0}}{N_{1}}>1-\varepsilon_{1} \tag{3}
\end{equation*}
$$

where $N_{1} \equiv m\left(2 k_{1}+l_{1}-1\right)$ and $e_{m} \equiv e_{0}$. Similarly by the above statement (for $n=1$, ε_{1} and B_{1}), there exist $k_{2}, l_{2} \in \boldsymbol{N}$ with $1 \ll k_{2} \ll l_{2}$ and a projection e in $K\left(l^{2}(\boldsymbol{Z})\right)$ such that

$$
\begin{equation*}
e \leq P_{N_{2}}, \quad\|\sigma(e)-e\|<\varepsilon_{1}, \quad \frac{\operatorname{dim} e}{N_{2}}>1-\varepsilon_{1} \tag{4}
\end{equation*}
$$

where $N_{2} \equiv 2 k_{2}+l_{2}-1$.
Next by applying Lemma 5 to $\left(N_{1}, N_{2}\right) \in N^{2}$, any $\varepsilon_{2}>0$ and B_{1}, there exists an orthogonal family $\left(p_{g} \mid g \in \boldsymbol{Z}^{2}, 0 \leq g \leq\left(N_{1}-1, N_{2}-1\right)\right.$) of projections in $A \cap B_{1}^{\prime}$ such that

$$
\begin{equation*}
\left\|\alpha_{\xi_{i}}\left(p_{g}\right)-p_{\xi_{i}+g}\right\|<\varepsilon_{2}, \quad 1 \leq\left(N_{1} N_{2}+1\right) \tau\left(p_{0}\right) \tag{5}
\end{equation*}
$$

for any $i=1,2$ and $g \in \boldsymbol{Z}^{2}$ with $0 \leq g, \xi_{i}+g \leq\left(N_{1}-1, N_{2}-1\right)$.
If we put

$$
x_{1}=\frac{1}{N_{2}} \sum_{j=0}^{N_{2}-1}\left\{\sum_{i=0}^{N_{1}-2} p_{(i+1, j)} \alpha_{\xi_{1}}\left(p_{(i, j)}\right)+\left(1-\sum_{i=1}^{N_{1}-1} p_{(i, j)}\right)\left(1-\sum_{i=0}^{N_{1}-2} \alpha_{\xi_{1}}\left(p_{(i, j)}\right)\right)\right\},
$$

then we have

$$
x_{1} \alpha_{\xi_{1}}\left(p_{(i, j)}\right)=p_{(i+1, j)} x_{1}
$$

for any $i=0, \ldots, N_{1}-2, j=0, \ldots, N_{2}-1$ and
$x_{1}-1=\frac{1}{N_{2}} \sum_{j=0}^{N_{2}-1}\left\{\sum_{i=0}^{N_{1}-2} p_{(i+1, j)}\left(\alpha_{\xi_{1}}\left(p_{(i, j)}\right)-p_{(i+1, j)}\right)+\left(1-\sum_{i=1}^{N_{1}-1} p_{(i, j)}\right)\left(-\sum_{i=0}^{N_{1}-2} \alpha_{\xi_{1}}\left(p_{(i, j)}\right)\right)\right\}$.
Noting that $\left\|\alpha_{\xi_{1}}\left(p_{(i, j)}\right)-p_{(i+1, j)}\right\|<\varepsilon_{2}$, we have $\left\|x_{1}-1\right\|<2\left(N_{1}-1\right) \varepsilon_{2}$. So taking the polar decomposition $u_{1}\left|x_{1}\right|$ of x_{1} for a sufficiently small $\varepsilon_{2}>0$, we obtain a unitary u_{1} with $\left\|u_{1}-1\right\|<4\left(N_{1}-1\right) \varepsilon_{2}$. By the uniqueness of the polar decomposition we have

$$
\operatorname{Ad} u_{1} \circ \alpha_{\xi_{1}}\left(p_{(i, j)}\right)=p_{(i+1, j)}
$$

for $i=0, \ldots, N_{1}-2, j=0, \ldots, N_{2}-1$. Similarly for $\alpha_{\xi_{2}}$, we obtain a unitary u_{2} in A such that

$$
\left\|u_{2}-1\right\|<4\left(N_{2}-1\right) \varepsilon_{2}, \quad \operatorname{Ad} u_{2} \circ \alpha_{\xi_{2}}\left(p_{(i, j)}\right)=p_{(i, j+1)}
$$

for $i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-2$. Let $\alpha_{1}=\operatorname{Ad} u_{1} \circ \alpha_{\xi_{1}}$ and let $\alpha_{2}=\operatorname{Ad} u_{2} \circ \alpha_{\xi_{2}}$. Since $\left[p_{(0,0)}\right]=\left[p_{(1,0)}\right]$ it follows that there exists a partial isometry v_{1} of $A \cap B_{1}^{\prime}$ such that $v_{1}^{*} v_{1}=p_{(0,0)}$ and $v_{1} v_{1}^{*}=p_{(1,0)}$. Similarly there exists a partial isometry v_{2} of $A \cap B_{1}^{\prime}$ such that $v_{2}^{*} v_{2}=p_{(0,0)}$ and $v_{2} v_{2}^{*}=p_{(0,1)}$. Then $\operatorname{Ad} v_{2}^{*} \circ \alpha_{2}\left(p_{(0,0)}\right)=p_{(0,0)}$, so $\operatorname{Ad} v_{2}^{*} \circ \alpha_{2} \in$ $\operatorname{Aut}\left(p_{(0,0)} A p_{(0,0)}\right)$. On the other hand $\alpha_{\xi_{2}} \in \operatorname{Aut}(A)$ has the Rohlin property as a single automorphism, and hence so does $\operatorname{Ad} v_{2}^{*} \circ \alpha_{2}$. Therefore $\operatorname{Ad} v_{2}^{*} \circ \alpha_{2}$ is stable by [12], [7]. More precisely for any $\varepsilon_{3}>0$, any unital full matrix subalgebra B_{2} of A and the unitary $v_{2}^{*} \alpha_{2}\left(v_{1}\right)^{*} \alpha_{1}\left(v_{2}\right) v_{1} \in p_{(0,0)} A p_{(0,0)}$, if B_{1} is taken sufficiently large in advance, we have a unitary w in $A \cap B_{2}^{\prime}$ such that

$$
\left\|v_{2}^{*} \alpha_{2}\left(v_{1}\right)^{*} \alpha_{1}\left(v_{2}\right) v_{1}-\left(\operatorname{Ad} v_{2}^{*} \circ \alpha_{2}(w)\right) \cdot w^{*}\right\|<\varepsilon_{3}
$$

Let $w_{1}=v_{1} w$ and let $w_{2}=v_{2}$. Then w_{1} and w_{2} are partial isometries in $A \cap B_{2}^{\prime}$ such that $w_{1}^{*} w_{1}=w_{2}^{*} w_{2}=p_{(0,0)}, w_{1} w_{1}^{*}=p_{(1,0)}, w_{2} w_{2}^{*}=p_{(0,1)}$ and

$$
\begin{equation*}
\left\|\alpha_{1}\left(w_{2}\right) w_{1}-\alpha_{2}\left(w_{1}\right) w_{2}\right\|=\left\|v_{2}^{*} \alpha_{2}\left(v_{1}\right)^{*}\left(\alpha_{1}\left(v_{2}\right) v_{1} w-\alpha_{2}\left(v_{1} w\right) v_{2}\right) w^{*}\right\| \leq \varepsilon_{3} . \tag{6}
\end{equation*}
$$

Define

$$
E_{i, j}^{(k)}= \begin{cases}\alpha_{2}^{i-1}\left(\alpha_{1}^{k}\left(w_{2}\right)\right) \alpha_{2}^{i-2}\left(\alpha_{1}^{k}\left(w_{2}\right)\right) \cdots \alpha_{2}^{j}\left(\alpha_{1}^{k}\left(w_{2}\right)\right) & (i>j) \\ p_{(k, i)} & (i=j) \\ \alpha_{2}^{i}\left(\alpha_{1}^{k}\left(w_{2}\right)\right)^{*} \alpha_{2}^{i+1}\left(\alpha_{1}^{k}\left(w_{2}\right)\right)^{*} \cdots \alpha_{2}^{j-1}\left(\alpha_{1}^{k}\left(w_{2}\right)\right)^{*} & (i<j)\end{cases}
$$

for $k=0,1, i, j=0, \ldots, N_{2}-1$. Then we can easily see that $\left(E_{i, j}^{(k)} \mid i, j=0, \ldots, N_{2}-1\right)$ is a system of matrix units. For any unital full matrix subalgebra B_{3} of A, by taking a sufficiently large B_{2} including B_{3}, we may assume that $\left\{E_{i, j}^{(k)} \mid k=0,1 ; i, j=0, \ldots\right.$, $\left.N_{2}-1\right\} \subseteq A \cap B_{3}^{\prime}$. Let $C^{(k)}$ be the C^{*}-subalgebra of A generated by $\left\{E_{i, j}^{(k)} \mid i, j=0, \ldots\right.$, $\left.N_{2}-1\right\}$ and let Φ_{k} be the canonical isomorphism from $C^{(k)}$ onto $P_{N_{2}} K\left(l^{2}(\boldsymbol{Z})\right) P_{N_{2}}$. Define

$$
e^{(k)}=\Phi_{k}^{-1}(e)
$$

Since $\sigma \circ \Phi_{k}=\Phi_{k} \circ \alpha\left\lceil C^{(k)}\right.$, we have from (4) that

$$
\begin{equation*}
e^{(k)} \leq \sum_{i=0}^{N_{2}-1} p_{(k, i)}, \quad\left\|\alpha_{2}\left(e^{(k)}\right)-e^{(k)}\right\|<\varepsilon_{1}, \quad \tau\left(e^{(k)}\right)>\left(1-\varepsilon_{1}\right) N_{2} \tau\left(p_{(0,0)}\right) \tag{7}
\end{equation*}
$$

Furthermore define

$$
W_{1}=\left(\sum_{i=0}^{N_{2}-1} \alpha_{2}^{i}\left(w_{1}\right)\right) e^{(0)}, \quad e^{(1) \prime}=W_{1} W_{1}^{*} \leq \sum_{i=0}^{N_{2}-1} p_{(1, i)} .
$$

Again for any unital full matrix subalgebra B_{4} of A, by taking a sufficiently large B_{3} including B_{4}, we may assume that $W_{1} \in A \cap B_{4}^{\prime}$. Then recalling the formula (2), we
have

$$
\begin{equation*}
e^{(1) \prime}=\left(\sum_{i=0}^{N_{2}-1} \alpha_{2}^{i}\left(w_{1}\right)\right) X\left(\sum_{i^{\prime}=0}^{N_{2}-1} \alpha_{2}^{i^{\prime}}\left(w_{1}\right)\right)^{*} \tag{8}
\end{equation*}
$$

where X denotes

$$
\begin{aligned}
\sum_{j=1}^{k_{2}-1}\{ & \frac{j}{k_{2}} E_{j, j}^{(0)}+\frac{k_{2}-j}{k_{2}} E_{k_{2}+l_{2}+j, k_{2}+l_{2}+j}^{(0)}+\frac{\sqrt{j\left(k_{2}-j\right)}}{k_{2}} E_{j, k_{2}+l_{2}+j}^{(0)} \\
& \left.+\frac{\sqrt{j\left(k_{2}-j\right)}}{k_{2}} E_{k_{2}+l_{2}+j, j}^{(0)}\right\}+\sum_{j=k_{2}}^{k_{2}+l_{2}} E_{j, j}^{(0)} .
\end{aligned}
$$

On the right hand side of (8), the nonzero terms are calculated as follows:

$$
\begin{aligned}
& \alpha_{2}^{j}\left(w_{1}\right) E_{j, j}^{(0)} \alpha_{2}^{j}\left(w_{1}\right)^{*}=\alpha_{2}^{j}\left(w_{1}\right) p_{(0, j)} \alpha_{2}^{j}\left(w_{1}\right)^{*} \\
&=p_{(1, j)} \\
&=E_{j, j}^{(1)} \\
& \alpha_{2}^{j}\left(w_{1}\right) E_{j, k_{2}+l_{2}+j}^{(0)} \alpha_{2}^{k_{2}+l_{2}+j}\left(w_{1}\right)^{*} \\
&=\alpha_{2}^{j}\left(w_{1}\right) \alpha_{2}^{j}\left(w_{2}\right)^{*} \cdots \alpha_{2}^{k_{2}+l_{2}+j-1}\left(w_{2}^{*} \alpha_{2}\left(w_{1}\right)^{*}\right) \\
& \stackrel{\varepsilon_{3}}{\approx} \alpha_{2}^{j}\left(w_{1}\right) \alpha_{2}^{j}\left(w_{2}\right)^{*} \cdots \alpha_{2}^{k_{2}+l_{2}+j-1}\left(w_{1}^{*} \alpha_{1}\left(w_{2}\right)^{*}\right),
\end{aligned}
$$

where $x \stackrel{\varepsilon}{\approx} y$ means $\|x-y\|<\varepsilon$. Applying (6) repeatedly we have

$$
\alpha_{2}^{j}\left(w_{1}\right) E_{j, k_{2}+l_{2}+j}^{(0)} \alpha_{2}^{k_{2}+l_{2}+j}\left(w_{1}\right)^{*} \stackrel{\left(k_{2}+l_{2}\right) \varepsilon_{3}}{\approx} E_{j, k_{2}+l_{2}+j}^{(1)}
$$

We estimate the other nonzero terms similarly and obtain

$$
\left\|e^{(1)^{\prime}}-e^{(1)}\right\| \leq \sum_{j=1}^{k_{2}-1} \frac{\sqrt{j\left(k_{2}-j\right)}}{k_{2}}\left(k_{2}+l_{2}\right) \varepsilon_{3} .
$$

Let $c_{1}\left(k_{2}, l_{2}, \varepsilon_{3}\right)$ be the right hand side of the above inequality. Then we have

$$
\left\|\alpha_{2}\left(e^{(1) \prime}\right)-e^{(1)}\right\| \leq 2\left\|e^{(1) \prime}-e^{(1)}\right\|+\left\|\alpha_{2}\left(e^{(1)}\right)-e^{(1)}\right\| \leq 2 c_{1}\left(k_{2}, l_{2}, \varepsilon_{3}\right)+\varepsilon_{1}
$$

For any $\varepsilon_{4}>0$ and any unital full matrix subalgebra B_{5} of A, applying [15, Lemma 3.5] and taking a sufficiently large B_{4} including B_{5}, we have a partial isometry W_{1}^{\prime} of $A \cap B_{5}^{\prime}$ such that $\left(W_{1}^{\prime}\right)^{*} W_{1}^{\prime}=e^{(0)}, W_{1}^{\prime}\left(W_{1}^{\prime}\right)^{*}=e^{(1) \prime}$ and

$$
\begin{align*}
\left\|\alpha_{2}\left(W_{1}^{\prime}\right)-W_{1}^{\prime}\right\| & \leq\left\|\alpha_{2}\left(e^{(0)}\right)-e^{(0)}\right\|+\left\|\alpha_{2}\left(e^{(1) \prime}\right)-e^{(1)^{\prime}}\right\|+\varepsilon_{4} \\
& \leq \varepsilon_{1}+2 c_{1}\left(k_{2}, l_{2}, \varepsilon_{3}\right)+\varepsilon_{1}+\varepsilon_{4} . \tag{9}
\end{align*}
$$

Of course we can make the last quantity very small. By using this W_{1}^{\prime}, let D be the C^{*} -
subalgebra of A generated by

$$
\left\{\alpha_{1}^{i-1}\left(W_{1}\right) \alpha_{1}^{i-2}\left(W_{1}^{\prime}\right) \cdots \alpha_{1}^{j}\left(W_{1}^{\prime}\right) \mid N_{1}-1 \geq i>j \geq 0\right\}
$$

Here again for any unital full matrix subalgebra B_{6}, by taking a sufficiently large B_{5} including B_{6}, we may assume that $D \subseteq A \cap B_{6}^{\prime}$. As D is isomorphic to $P_{N_{1}} K\left(l^{2}(\boldsymbol{Z})\right) P_{N_{1}}$, let Ψ be the canonical isomorphism from D onto $P_{N_{1}} K\left(l^{2}(\boldsymbol{Z})\right) P_{N_{1}}$ and let

$$
f_{i} \equiv \Psi^{-1}\left(e_{i}\right)
$$

for $i=0, \ldots, m-1$. Then $\left(f_{i} \mid i=0, \ldots, m-1\right)$ is an orthogonal family of projections in $A \cap B_{6}^{\prime}$ such that

$$
\begin{gather*}
\left\|\alpha_{1}\left(f_{i}\right)-f_{i+1}\right\|<\varepsilon_{1}, \\
m \tau\left(f_{0}\right)>\left(1-\varepsilon_{1}\right) N_{1} \tau\left(e^{(0)}\right) \tag{10}
\end{gather*}
$$

for $i=0, \ldots, m-1$, where $f_{m} \equiv f_{0}$. Thus we have for $i=0, \ldots, m-1$,

$$
\begin{aligned}
\left\|\alpha_{\xi_{1}}\left(f_{i}\right)-f_{i+1}\right\| & \leq\left\|\alpha_{\xi_{1}}\left(f_{i}\right)-\alpha_{1}\left(f_{i}\right)\right\|+\left\|\alpha_{1}\left(f_{i}\right)-f_{i+1}\right\| \\
& \leq 2\left\|u_{1}-1\right\|+\varepsilon_{1} \\
& \leq 2 \cdot 4\left(N_{1}-1\right) \varepsilon_{2}+\varepsilon_{1} .
\end{aligned}
$$

Using the formula (2), the formula (9) and

$$
\begin{aligned}
\left\|\alpha_{1} \alpha_{2}-\alpha_{2} \alpha_{1}\right\| & \leq 2\left(\left\|\alpha_{1}-\alpha_{\xi_{1}}\right\|+\left\|\alpha_{2}-\alpha_{\xi_{2}}\right\|\right) \\
& \leq 4\left(\left\|u_{1}-1\right\|+\left\|u_{2}-1\right\|\right),
\end{aligned}
$$

we can also make $\left\|\alpha_{\xi_{2}}\left(f_{i}\right)-f_{i}\right\|$ very small. Finally we want to estimate $\tau\left(f_{0}\right)$. We have already three inequalities from (5), (7) and (10)

$$
\begin{gathered}
1 \leq\left(N_{1} N_{2}+1\right) \tau\left(p_{(0,0)}\right) \\
\tau\left(e^{(0)}\right)>\left(1-\varepsilon_{1}\right) N_{2} \tau\left(p_{(0,0)}\right) \\
m \tau\left(f_{0}\right)>\left(1-\varepsilon_{1}\right) N_{1} \tau\left(e^{(0)}\right)
\end{gathered}
$$

From these we obtain

$$
m \tau\left(f_{0}\right)>\left(1-\varepsilon_{1}\right)^{2} N_{1} N_{2} \frac{1}{N_{1} N_{2}+1}\left(m \tau\left(f_{0}\right)+\tau\left(1-\sum_{i=0}^{m-1} f_{i}\right)\right) .
$$

Since $1 \ll k_{i} \ll l_{i},\left(f_{i} \mid i=0, \ldots, m-1\right)$ satisfies the desired conditions.
Proof of Theorem 3. Let α be a \boldsymbol{Z}^{2}-action on a UHF algebra A which satisfies the condition (2). For any $m \in \boldsymbol{N}$ we take $m_{0}, m_{1} \in \boldsymbol{N}$ such that $m \ll m_{1} \ll m_{0}$ and m_{0} is divided by m_{1}. Furthermore for any $\varepsilon_{1}>0$ and finite subset F of A, we take a unital full matrix subalgebra B_{1} of A such that for any $x \in F$ there exists $y \in B_{1}$ with $\|x-y\|$ $<\varepsilon_{1}$. If we apply Lemma 6 to any $n \in \boldsymbol{N}$ and $\varepsilon_{2}>0$ then we have an orthogonal
family $\left(e_{i} \mid i=0, \ldots, m-1\right)$ of projections in $A \cap B_{1}^{\prime}$ satisfying

$$
\begin{gathered}
\left\|\alpha_{\xi_{1}}\left(e_{i}\right)-e_{i+1}\right\|<\varepsilon_{2}, \\
\left\|\alpha_{\xi_{2}}\left(e_{i}\right)-e_{i}\right\|<\varepsilon_{2} \\
\tau\left(e_{0}\right) \geq n \tau\left(1-\sum_{i=0}^{m_{0}-1} e_{i}\right)
\end{gathered}
$$

for $i=0, \ldots, m_{0}-1$, where $e_{m_{0}} \equiv e_{0}$. This is not sufficient because the sum $\sum_{i=0}^{m-1} e_{i}$ of the projections $\left(e_{i}\right)$ may not be 1 . We will cope with this problem now. Put

$$
\begin{array}{r}
x_{1}=\sum_{i=0}^{m_{0}-1} e_{i+1} \alpha_{\xi_{1}}\left(e_{i}\right)+\left(1-\sum_{i=0}^{m_{0}-1} e_{i}\right)\left(1-\sum_{i=0}^{m_{0}-1} \alpha_{\xi_{1}}\left(e_{i}\right)\right), \\
x_{2}=\sum_{i=0}^{m_{0}-1} e_{i} \alpha_{\xi_{2}}\left(e_{i}\right)+\left(1-\sum_{i=0}^{m_{0}-1} e_{i}\right)\left(1-\sum_{i=0}^{m_{0}-1} \alpha_{\xi_{2}}\left(e_{i}\right)\right)
\end{array}
$$

and let $u_{1}\left|x_{1}\right|$ and $u_{2}\left|x_{2}\right|$ be the polar decompositions of x_{1} and x_{2} respectively. As in the proof of Lemma 6 we can show that u_{1} and u_{2} are unitaries in A satisfying

$$
\begin{gathered}
\left\|u_{1}-1\right\|<4 m_{0} \varepsilon_{2}, \\
\operatorname{Ad} u_{1} \circ \alpha_{\xi_{1}}\left(e_{i}\right)=e_{i+1}
\end{gathered}
$$

for $i=0, \ldots, m_{0}-1$, where $e_{m_{0}} \equiv e_{0}$, and

$$
\begin{gathered}
\left\|u_{2}-1\right\|<4 m_{0} \varepsilon_{2} \\
\operatorname{Ad} u_{2} \circ \alpha_{\xi_{2}}\left(e_{i}\right)=e_{i}
\end{gathered}
$$

for $i=0, \ldots, m_{0}-1$. Let $\alpha_{1}=\operatorname{Ad} u_{1} \circ \alpha_{\xi_{1}}$ and let $\alpha_{2}=\operatorname{Ad} u_{2} \circ \alpha_{\xi_{2}}$. Then $\alpha_{1}^{m_{0}}$ and α_{2} are automorphisms of $e_{0} A e_{0}$. By Lemma 6 there are an orthogonal family $\left(p_{j} \mid j=\right.$ $0, \ldots, n-1)$ of projections in $A \cap B_{1}^{\prime}$ and a positive number $c_{1}\left(m_{0}, \varepsilon_{2}\right)$ which decreases to zero as $\varepsilon_{2} \rightarrow 0$ such that

$$
\begin{gathered}
\sum_{i=0}^{n-1} p_{i} \leq e_{0} \\
\left\|\alpha_{1}^{m_{0}}\left(p_{i}\right)-p_{i+1}\right\|<c_{1}\left(m_{0}, \varepsilon_{2}\right) \\
\left\|\alpha_{2}\left(p_{i}\right)-p_{i}\right\|<c_{1}\left(m_{0}, \varepsilon_{2}\right)
\end{gathered}
$$

for $i=0, \ldots, n-1$, where $p_{n} \equiv p_{0}$, and

$$
\tau\left(p_{i}\right)=\tau(1-e)
$$

where $e \equiv \sum_{i=0}^{m_{0}-1} e_{i}$. We have used the fact $\tau\left(e_{0}\right) \geq n \tau(1-e)$ here. For any $\varepsilon_{3}>0$ and any unital full matrix subalgebra B_{2} of A, by taking a sufficiently large B_{1} and by applying [15, Lemma 3.5], there exists a partial isometry $v \in A \cap B_{2}^{\prime}$ such that

$$
\begin{gathered}
v^{*} v=1-e, \quad v v^{*}=p_{0}, \\
\left\|\alpha_{2}(v)-v\right\| \leq\left\|\alpha_{2}\left(p_{0}\right)-p_{0}\right\|+\left\|\alpha_{2}(1-e)-(1-e)\right\|+\varepsilon_{3} \\
\leq c_{1}\left(m_{0}, \varepsilon_{2}\right)+m_{0} \varepsilon_{2}+\varepsilon_{3} .
\end{gathered}
$$

As before there also exists a unitary $u_{1}^{\prime} \in A$ satisfying that $\left\|u_{1}^{\prime}-1\right\|<4 c_{1}\left(m_{0}, \varepsilon_{2}\right)$ and

$$
\operatorname{Ad} u_{1}^{\prime} \circ \alpha_{1}^{m_{0}}\left(p_{i}\right)=p_{i+1}
$$

for $i=0, \ldots, n-1$. Let $\beta=\operatorname{Ad} u_{1}^{\prime} \circ \alpha_{1}^{m_{0}}$ and let $w=n^{-1 / 2} \sum_{i=0}^{n-1} \beta^{i}(v)$. Then we have

$$
\begin{gather*}
w^{*} w=1-e, w w^{*} \leq e_{0}, \\
\|\beta(w)-w\|<n^{-1 / 2} \cdot 2, \tag{11}\\
\left\|\alpha_{2}(w)-w\right\|<c_{2}\left(m_{0}, n, \varepsilon_{2}, \varepsilon_{3}\right)
\end{gather*}
$$

for some positive number $c_{2}\left(m_{0}, n, \varepsilon_{2}, \varepsilon_{3}\right)$ which we can make very small. Furthermore by taking B_{2} very large we may assume that $w \in A \cap B_{3}^{\prime}$ for any unital full matrix subalgebra B_{3} of A. Let

$$
E_{i, j}= \begin{cases}\alpha_{1}^{i-1}(w) \alpha_{1}^{i-2}(w) \cdots \alpha_{1}^{j}(w) & (\text { if } i>j) \\ \alpha_{1}^{i-1}\left(w w^{*}\right) & (\text { if } i=j) \\ \alpha_{1}^{i}(w)^{*} \alpha_{1}^{i+1}(w)^{*} \cdots \alpha_{2}^{j-1}(w)^{*} & (\text { if } i<j)\end{cases}
$$

for $0 \leq i, j \leq m_{0}$ and let C be the C^{*}-subalgebra of A generated by $\left\{E_{i, j} \mid 0 \leq i\right.$, $\left.j \leq m_{0}-1\right\}$. Then C is isomorphic to $M_{m_{0}+1}$ and we may assume that C is a subalgebra of $A \cap B_{4}^{\prime}$ for any unital full matrix subalgebra B_{4} of A if B_{3} is very large. Let

$$
U=\left[\begin{array}{ccccccc}
1 & & & & & & \\
& 0 & \cdot & \cdots & \cdot & 0 & 1 \\
& 1 & 0 & \cdots & \cdot & & 0 \\
& 0 & 1 & \cdot & & & \cdot \\
& \vdots & & \ddots & \ddots & & \vdots \\
& \cdot & & 0 & 1 & 0 & 0 \\
& 0 & & & 0 & 1 & 0
\end{array}\right] \in M_{m_{0}+1}
$$

By simple calculation $\alpha_{1}\lceil C=\operatorname{Ad} U$ and

$$
\operatorname{Sp}(U)=\{1\} \cup\left\{e^{2 \pi i k / m_{0}} \mid k=0, \ldots, m_{0}-1\right\} .
$$

Define orthogonal families $\left(e_{i}^{(1)} \mid i=0, \ldots, m_{1}-1\right),\left(e_{j}^{(2)} \mid j=0, \ldots, m_{1}\right)$ of projections in $A \cap B_{4}^{\prime}$ as follows:

$$
\begin{aligned}
e_{i}^{(1)} & \equiv \sum_{k=0}^{\left(m_{0} / m_{1}\right)-2} E_{m_{1}+i\left(\left(m_{0} / m_{1}\right)-1\right)+k, m_{1}+i\left(\left(m_{0} / m_{1}\right)-1\right)+k} \\
e_{j}^{(2)} & \equiv E_{j, j}
\end{aligned}
$$

Since $\left(E_{i, j} \mid 0 \leq i, j \leq m_{0}-1\right)$ is system of matrix units in $A \cap B_{4}^{\prime}$, there are canonical systems $\left(e_{k, l}^{(1)} \mid 0 \leq k, l \leq m_{1}-1\right),\left(e_{k, l}^{(2)} \mid 0 \leq k, l \leq m_{1}\right)$ of matrix units associated with $\left(e_{k}^{(1)}\right)$ and $\left(e_{k}^{(2)}\right)$ respectively. Define a partial isometry V in $A \cap B_{4}^{\prime}$ by

$$
V=\sum_{i=0}^{m_{1}-1} e_{i+1, i}^{(1)}+\sum_{j=0}^{m_{1}} e_{j+1, j}^{(2)},
$$

where $e_{m_{1}, m_{1}-1}^{(1)} \equiv e_{0, m_{1}-1}^{(1)}$ and $e_{m_{1}+1, m_{1}}^{(2)} \equiv e_{0, m_{1}}^{(2)}$. Then

$$
\begin{aligned}
& \sum_{i=0}^{m_{1}-1} e_{i}^{(1)}+\sum_{j=0}^{m_{1}} e_{j}^{(2)}=1_{C} \quad\left(=\sum_{i=0}^{m_{0}} E_{i, i}\right), \\
& \operatorname{Ad} V\left(e_{i}^{(1)}\right)=e_{i+1}^{(1)}, \quad \operatorname{Ad} V\left(e_{j}^{(2)}\right)=e_{j+1}^{(2)}
\end{aligned}
$$

for $i=0, \ldots, m_{1}-1$ and $j=0, \ldots, m_{1}$ where $e_{m_{1}}^{(1)} \equiv e_{0}^{(1)}$ and $e_{m_{1}+1}^{(2)} \equiv e_{0}^{(2)} . \quad$ By a simple calculation

$$
\operatorname{Sp}(V)=\left\{e^{2 \pi i k /\left(m_{0}-m_{1}\right)} \mid k=0, \ldots, m_{0}-m_{1}-1\right\} \cup\left\{e^{2 \pi i l /\left(m_{1}+1\right)} \mid l=0, \ldots, m_{1}\right\}
$$

Therefore $\operatorname{Sp}(V)$ is very close to $\operatorname{Sp}(U)$ if m_{0} and m_{1} are very large, i.e., V is almost unitarily equivalent to U. Consequently we can find orthogonal families $\left(f_{i}^{(1)} \mid i=\right.$ $\left.0, \ldots, m_{1}-1\right),\left(f_{j}^{(2)} \mid j=0, \ldots, m_{1}\right)$ of projections in $A \cap B_{4}^{\prime}$ and a small enough positive number $c_{3}\left(m_{0}, m_{1}, \varepsilon_{2}, \varepsilon_{3}\right)$ in such a way that

$$
\begin{gathered}
\sum_{i=0}^{m_{1}-1} f_{i}^{(1)}+\sum_{j=0}^{m_{1}} f_{j}^{(2)}=1_{C}, \\
\left\|\alpha_{1}\left(f_{i}^{(1)}\right)-f_{i+1}^{(1)}\right\|<c_{3}\left(m_{0}, m_{1}, \varepsilon_{2}, \varepsilon_{3}\right), \\
\left\|\alpha_{2}\left(f_{i}^{(1)}\right)-f_{i}^{(1)}\right\|<c_{3}\left(m_{0}, m_{1}, \varepsilon_{2}, \varepsilon_{3}\right), \\
\left\|\alpha_{1}\left(f_{j}^{(2)}\right)-f_{j+1}^{(2)}\right\|<c_{3}\left(m_{0}, m_{1}, \varepsilon_{2}, \varepsilon_{3}\right), \\
\left\|\alpha_{2}\left(f_{j}^{(2)}\right)-f_{j}^{(2)}\right\|<c_{3}\left(m_{0}, m_{1}, \varepsilon_{2}, \varepsilon_{3}\right)
\end{gathered}
$$

for $i=0, \ldots, m_{1}-1$ and $j=0, \ldots, m_{1}$, where $f_{m_{1}}^{(1)} \equiv f_{0}^{(1)}$ and $f_{m_{1}+1}^{(2)} \equiv f_{0}^{(2)}$. Then by considering (11), if n is very large,

$$
\left(f_{i}^{(1)} \mid i=0, \ldots, m_{1}-1\right), \quad\left(f_{j}^{(2)} \mid j=0, \ldots, m_{1}\right), \quad\left(e_{i}-\alpha_{1}^{i}\left(w w^{*}\right) \mid i=0, \ldots, m_{0}-1\right)
$$

satisfy the conditions appearing in Remark 2 (for $n=1$). Hence α has the Rohlin property.

3. Conjugacy.

In this section we introduce three notions of conjugacy for \boldsymbol{Z}^{N}-actions on C^{*} algebras and discuss their relationship. First we prepare some notations. For \boldsymbol{Z}^{N} -
actions α, β on a unital C^{*}-algebra A, we write $\alpha \stackrel{\nu, \varepsilon}{\approx} \beta$ when

$$
\left\|\alpha_{\xi_{i}}-\gamma \circ \beta_{\xi_{i}} \circ \gamma^{-1}\right\| \leq \varepsilon \quad(i=1, \ldots, N)
$$

for $\varepsilon \geq 0$ and $\gamma \in \operatorname{Aut}(A)$. For simplicity $\stackrel{\gamma_{0} 0}{\approx}$ will be denoted by $\stackrel{\gamma}{\cong}$ or \cong. Recall that a 1-cocycle for α means a mapping u from \boldsymbol{Z}^{N} into the unitaries $U(A)$ of A satisfying $u_{g+h}=u_{g} \alpha_{g}\left(u_{h}\right)$ for each $g, h \in \boldsymbol{Z}^{N}$.

Definition 7. Let α and β be \boldsymbol{Z}^{N}-actions on a unital C^{*}-algebra A.
(1) α and β are approximately conjugate if for any $\varepsilon>0$ there exists an automorphism γ of A such that $\alpha \stackrel{\gamma, \varepsilon}{\approx} \beta$.
(2) α and β are cocycle conjugate if there exist an automorphism γ of A and a 1cocycle u for α such that

$$
\operatorname{Ad} u_{g} \circ \alpha_{g}=\gamma \circ \beta_{g} \circ \gamma^{-1}
$$

for each $g \in \boldsymbol{Z}^{N}$.
(3) α and β are outer conjugate if there exist an automorphism γ of A and unitaries u_{1}, \ldots, u_{N} in A such that

$$
\operatorname{Ad} u_{i} \circ \alpha_{\xi_{i}}=\gamma \circ \beta_{\xi_{i}} \circ \gamma^{-1}
$$

for $i=1, \ldots, N$.
Cocycle conjugacy of course implies outer conjugacy, and we have
Proposition 8. Assume that A is a simple separable unital C^{*}-algebra with a unique tracial state. Then approximately conjugate \boldsymbol{Z}^{N}-actions on A are cocycle conjugate.

Our proof is based on the generalization of the determinant introduced by P. de la Harpe and G. Skandalis (see [14] for details) and the famous 2×2 matrix trick due to A. Connes (see [2]). We quickly review basic facts on the former. For a unital C^{*} algebra A, we let $G L_{n}(A)$ the group of the invertible elements in the $n \times n$ matrices $M_{n}(A)$ over A (equipped with the C^{*}-norm). The inductive limit of topological groups $\left(G L_{n}(A) \mid n \in N\right)$ with the usual embeddings $G L_{n}(A) \hookrightarrow G L_{n+1}(A)$ is denoted by $G L_{\infty}(A)$ and the connected component of the identity by $G L_{\infty}^{0}(A)$. Suppose that τ is a tracial state on A. If ξ is a piecewise continuously differentiable mapping from $[0,1]$ into $G L_{\infty}^{0}(A)$, we define

$$
\tilde{\Delta}_{\tau}(\xi)=\frac{1}{2 \pi i} \int_{0}^{1} \tau\left(\dot{\xi}(t) \xi(t)^{-1}\right) d t
$$

(note that the range of ξ is contained in $G L_{n}(A)$ for some n since $[0,1]$ is compact and that τ actually means $\tau \otimes \operatorname{tr}$ on $\left.A \otimes M_{n}=M_{n}(A)\right)$. The determinant $\Delta_{\tau}([14])$ associated with a tracial state τ is the mapping from $G L_{\infty}^{0}(A)$ into $C / \tau_{*}\left(K_{0}(A)\right)$ defined by

$$
\Delta_{\tau}(x)=p\left(\tilde{\Delta}_{\tau}(\xi)\right)
$$

Here p is the quotient mapping from \boldsymbol{C} onto $\boldsymbol{C} / \tau_{*}\left(K_{0}(A)\right)$, and ξ is a piecewise continuously differentiable mapping from $[0,1]$ into $G L_{\infty}^{0}(A)$ with $\xi(0)=1$ and $\xi(1)=x$.

A crucial fact here is that Δ_{τ} is a group homomorphism. For a unitary $x \in A$ with $\|x-1\|<1$, the logarithm $h=i^{-1} \log (x)$ (with the principal branch) makes sense and we can consider the path $\xi(t)=\exp (i h t)$ from 1 to x. Since $\dot{\xi}(t) \xi(t)^{-1}=i h$, we have

$$
\Delta_{\tau}(x)=\frac{1}{2 \pi i} p\left(\int_{0}^{1} \tau(i h) d t\right)=\frac{1}{2 \pi i} p(\tau(\log (x))) .
$$

Proof of Proposition 8. Let α and β be approximately conjugate \boldsymbol{Z}^{N}-actions on A. In general, if an automorphism of a simple unital C^{*}-algebra is close to the identity in norm then it is inner, and furthermore it is implemented by a unitary which is also close to the unit of the algebra. Hence for a sufficiently small $\varepsilon>0$ there exist unitaries u_{1}, \ldots, u_{N} in A and an automorphism γ of A such that

$$
\operatorname{Ad} u_{i} \circ \alpha_{\xi_{i}}=\gamma \circ \beta_{\xi_{i}} \circ \gamma^{-1}, \quad\left\|u_{i}-1\right\|<\varepsilon
$$

for $i=1, \ldots, N$. We want to show

$$
\begin{equation*}
u_{k} \alpha_{\xi_{k}}\left(u_{l}\right)=u_{l} \alpha_{\xi_{l}}\left(u_{k}\right) \tag{12}
\end{equation*}
$$

for any $k, l=1, \ldots, N$. From the commutativity of $\alpha_{\xi_{k}}$, and the simplicity of A, there exists $\lambda \in \boldsymbol{T}$ such that

$$
\left(u_{l} \alpha_{\xi_{l}}\left(u_{k}\right)\right)^{*} u_{k} \alpha_{\xi_{k}}\left(u_{l}\right)=\lambda 1 .
$$

Since u_{k}, u_{l} are close to 1 , we can set

$$
h_{k}=\frac{1}{2 \pi i} \log \left(u_{k}\right), \quad h_{l}=\frac{1}{2 \pi i} \log \left(u_{l}\right)
$$

and

$$
H(s)=\frac{1}{2 \pi i} \log \left\{\left(u_{l}^{s} \alpha_{\xi_{l}}\left(u_{k}^{s}\right)\right)^{*} u_{k}^{s} \alpha_{\xi_{k}}\left(u_{l}^{s}\right)\right\}
$$

for $s \in[0,1]$. Applying Δ_{τ} to the both sides of the equality

$$
e^{-2 \pi i \alpha_{\xi_{l}}\left(s h_{k}\right)} e^{-2 \pi i s h_{l}} e^{2 \pi i s h_{k}} e^{2 \pi i \alpha_{\xi_{k}}\left(s h_{l}\right)}=e^{2 \pi i H(s)},
$$

we have

$$
-p\left(\tau\left(\alpha_{\xi_{l}}\left(s h_{k}\right)\right)\right)-p\left(\tau\left(s h_{l}\right)\right)+p\left(\tau\left(s h_{k}\right)\right)+p\left(\tau\left(\alpha_{\xi_{k}}\left(s h_{l}\right)\right)\right)=p(\tau(H(s))) .
$$

The uniqueness of a trace shows that the left hand side of the above equality is zero, i.e., $\tau(H(s)) \in \tau_{*}\left(K_{0}(A)\right)$ for any $s \in[0,1]$. Since $\tau_{*}\left(K_{0}(A)\right)$ is discrete in \boldsymbol{C} and $\tau(H(0))=0$, we obtain $H(1)=0$ i.e., $\lambda=1$. Using these unitaries u_{1}, \ldots, u_{N}, we construct a desired 1 -cocycle by the method in [2]. We consider the \boldsymbol{Z}^{N}-action σ on $M_{2}(A)$ defined by

$$
\sigma_{\xi_{i}}=\operatorname{Ad}\left[\begin{array}{cc}
1 & 0 \\
0 & u_{i}
\end{array}\right] \circ \alpha_{\xi_{i}} .
$$

Since $\sigma_{\xi_{1}}, \ldots, \sigma_{\xi_{N}}$ commute with each others from (12), σ is indeed well-defined. Note that

$$
\sigma_{g}\left(\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]\right)=\left[\begin{array}{cc}
\alpha_{g}(x) & 0 \\
0 & \gamma \circ \beta_{g} \circ \gamma^{-1}(y)
\end{array}\right]
$$

for any $g \in \boldsymbol{Z}^{N}$ and $x, y \in A$. The identity

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & x
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

shows

$$
\gamma \circ \beta_{g} \circ \gamma^{-1}(x)=\operatorname{Ad} u_{g} \circ \alpha_{g}(x),
$$

where u_{g} is the desired 1-cocycle defined by

$$
\left[\begin{array}{cc}
0 & 0 \\
u_{g} & 0
\end{array}\right]=\sigma_{g}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)
$$

(see [22, Lemma 8.11.2]).
Remark 9. If α and β are outer conjugate automorphisms of a UHF algebra with the Rohlin property, then they are approximately conjugate by the stability property. Hence the three notions of conjugacy defined above are the same for those automorphisms. However outer conjugacy does not imply approximate conjugacy for \boldsymbol{Z}^{N} actions. See Remark 18 for a counter-example.

4. Product type actions.

In this section we discuss product type \boldsymbol{Z}^{2}-actions on UHF algebras. As in the case of single automorphisms, the Rohlin property for these actions is closely related to a notion of uniform distribution of points in \boldsymbol{T}^{2}. First we say the N-dimensional version of [1, Lemma 4.1]. It is shown as in the one-dimensional case, so we omit the proof.

Proposition 10. Let $\left(S_{k} \mid k \in \boldsymbol{N}\right)$ be a sequence of finite sequences in \boldsymbol{T}^{N} i.e.,

$$
S_{k}=\left(s_{k, p} \mid p=1, \ldots, n_{k}\right), \quad s_{k, p} \in \boldsymbol{T}^{N}
$$

for each $k \in \boldsymbol{N}$ and $p=1, \ldots, n_{k}$. Then the following conditions on $\left(S_{k} \mid k \in \boldsymbol{N}\right)$ are equivalent.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{p=1}^{n_{k}} f\left(s_{k, p}\right)=\int_{T^{n}} f(s) d s \tag{1}
\end{equation*}
$$

for any $f \in C\left(\boldsymbol{T}^{N}\right)$, where ds denotes the normalized Haar measure on \boldsymbol{T}^{N}.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}} \sum_{p=1}^{n_{k}} s_{k, p}^{l}=0 \tag{2}
\end{equation*}
$$

for any $l=\left(l_{1}, \ldots, l_{N}\right) \in \boldsymbol{Z}^{N} \backslash\{0\}$, where s^{l} denotes $s_{1}^{l_{1}} \ldots s_{N}^{l_{N}}$ for each $s=\left(s_{1}, \ldots, s_{N}\right) \in$ \boldsymbol{T}^{N}.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{n_{k}} v_{k}\left(\prod_{i=1}^{N}\left[\theta_{1}^{(i)}, \theta_{2}^{(i)}\right)\right)=(2 \pi)^{-N} \prod_{i=1}^{N}\left(\theta_{2}^{(i)}-\theta_{1}^{(i)}\right) \tag{3}
\end{equation*}
$$

for any $0 \leq \theta_{1}^{(i)} \leq \theta_{2}^{(i)}<2 \pi$, where v_{k} is defined by

$$
v_{k}(S)=\#\left\{p \mid 1 \leq p \leq n_{k} \text { and } \arg \left(s_{k, p}\right) \in S\right\}
$$

for each subset S of $\prod_{i=1}^{N}[0,2 \pi)$ and $\# F$ denotes the cardinality of the set F.
These conditions necessarily imply that $n_{k} \rightarrow \infty$. Moreover suppose that $\left(n_{k} \mid k \in \boldsymbol{N}\right)$ has the following asymptotic factorization into large factors: For any $n \in \boldsymbol{N}$ there exists positive integer k_{0} such that for any positive integer $k \geq k_{0}$ one has $n_{k}^{(1)}, \ldots, n_{k}^{(N)} \geq n$ where $n_{k}^{(i)}$ are the components of n_{k}, i.e., $n_{k}=n_{k}^{(1)} \cdots n_{k}^{(N)}$. Then the above conditions are also equivalent to
(4) For any $\varepsilon>0$ there exist positive integers k_{0} and n_{0} such that for any $k, n_{k}^{(1)}, \ldots$, $n_{k}^{(N)} \in N$ satisfying $k \geq k_{0}, n_{k}^{(1)}, \ldots, n_{k}^{(N)} \geq n_{0}$ and $n_{k}=n_{k}^{(1)} \cdots n_{k}^{(N)}$, there exists an bijection φ from $\left\{1, \ldots, n_{k}\right\}$ onto $\left\{1, \ldots, n_{k}^{(1)}\right\} \times \cdots \times\left\{1, \ldots, n_{k}^{(N)}\right\}$ such that

$$
\begin{equation*}
\left|s_{k, p}-\left(\exp \left(2 \pi i \cdot \frac{(\varphi(p))_{1}}{n_{k}^{(1)}}\right), \ldots, \exp \left(2 \pi i \cdot \frac{(\varphi(p))_{N}}{n_{k}^{(N)}}\right)\right)\right|<\varepsilon \tag{13}
\end{equation*}
$$

for any k and p, where $|s| \equiv \max \left\{\left|s_{p}\right|: 1 \leq p \leq N\right\}$ for each $s \in \boldsymbol{T}^{N}$ and $(\varphi(p))_{i}$ denotes the i-th component of $\varphi(p)$.

If S_{k} satisfies the estimate (13) for some φ as above, then S_{k} is said to be $\left(n_{k}^{(1)}, \ldots, n_{k}^{(N)} ; \varepsilon\right)$-distributed. If one of the conditions of the above proposition holds then $\left(S_{k} \mid k \in N\right)$ is said to be uniformly distributed.

Definition 11. Let α be a \boldsymbol{Z}^{N}-action on a UHF algebra A. Then α is said to be a product type action if there exists a sequence $\left(m_{k} \mid k \in \boldsymbol{N}\right)$ of positive integers such that $A \cong \bigotimes_{k=1}^{\infty} M_{m_{k}}$ and

$$
\alpha_{g}\left(A_{k}\right)=A_{k}
$$

for any $g \in \boldsymbol{Z}^{N}$ and $k \in \boldsymbol{N}$, where A_{k} denotes the C^{*}-subalgebra of A corresponding to $M_{m_{k}} \otimes\left(\bigotimes_{l \neq k} \boldsymbol{C} 1_{m_{l}}\right)$.

Remark 12. In the situation above, if $N=2$, then one finds unitaries $u_{k}^{(1)}, u_{k}^{(2)}$ in A_{k} and $\lambda_{k} \in \boldsymbol{T}$ such that

$$
\begin{gathered}
\alpha_{(p, q)}\left\lceil A_{k}=\operatorname{Ad} u_{k}^{(1)^{p}} u_{k}^{(2)^{q}},\right. \\
u_{k}^{(1)} u_{k}^{(2)}=\lambda_{k} u_{k}^{(2)} u_{k}^{(1)}
\end{gathered}
$$

for any $p, q \in \boldsymbol{Z}$. Since $u_{k}^{(1)}, u_{k}^{(2)}$ are unique up to a constant multiple, λ_{k} is unique. In addition $\lambda_{k}^{m_{k}}=1$. For if μ_{1} is an eigenvalue of $u_{k}^{(2)}$ with multiplicity r_{1} then $\mu_{1} \lambda_{k}^{-p}$ is also an eigenvalue of $u_{k}^{(2)}$ with multiplicity r_{1} for each $p \in N$. Since $M_{m_{k}}$ is finitedimensional, there exists $p_{0} \in N$ such that $\lambda_{k}^{p_{0}}=1$ and $\lambda_{k}^{p} \neq 1$ for any $p=1, \ldots, p_{0}-1$. If $\left\{\mu_{1} \lambda_{k}^{-p} \mid p=0, \ldots, p_{0}-1\right\}$ does not exhaust all the eigenvalues of $u_{k}^{(2)}$ then we take an eigenvalue μ_{2} of $u_{k}^{(2)}$ not belonging to $\left\{\mu_{1} \lambda_{k}^{-p} \mid p=0, \ldots, p_{0}-1\right\}$ and repeat the same process. Thus there exist eigenvalues μ_{1}, \ldots, μ_{s} of $u_{k}^{(2)}$ with multiplicity r_{1}, \ldots, r_{s} respectively. Since $m_{k}=\left(r_{1}+\cdots+r_{s}\right) p_{0}$, it follows that $\lambda_{k}^{m_{k}}=1$.

For $n \times n$ unitary matrices U and V with $U V=V U$, we define $\operatorname{Sp}(U)$ to be a sequence consisting of the eigenvalues of U, each repeated as often as multiplicity dictates and $\operatorname{Sp}(U, V)$ is a sequence consisting of the pairs of eigenvalues of U and V with a common eigenvector, each repeated as often as multiplicity dictates. Then the Rohlin property for the product type \boldsymbol{Z}^{2}-actions on A with $\lambda_{k}=1$ can be characterized as follows.

Proposition 13. Let α be a product type \boldsymbol{Z}^{2}-action on a UHF algebra A with $\left(m_{k} \mid k \in \boldsymbol{N}\right),\left(u_{k}^{(1)} \mid k \in \boldsymbol{N}\right),\left(u_{k}^{(2)} \mid k \in \boldsymbol{N}\right),\left(\lambda_{k} \mid k \in \boldsymbol{N}\right)$ as above. If $\lambda_{k}=1$ for each $k \in \boldsymbol{N}$ then the following conditions are equivalent:
(1) α has the Rohlin property.
(2) $\left(\operatorname{Sp}\left(\bigotimes_{k=m}^{n} u_{k}^{(1)}, \bigotimes_{k=m}^{n} u_{k}^{(2)}\right) \mid n=m, m+1, \ldots\right)$ is uniformly distributed for any $m \in \boldsymbol{N}$.

Proof. By Corollary 4, (1) is equivalent to the condition: $\alpha_{\xi_{1}}^{p} \alpha_{\xi_{2}}^{q}$ has the Rohlin property as a single automorphism of A for each $(p, q) \in \boldsymbol{Z}^{2} \backslash\{0\}$. By [16, Lemma 5.2] this condition is equivalent to the condition:

$$
\left(\operatorname{Sp}\left(\bigotimes_{k=m}^{n} u_{k}^{(1)^{p}} u_{k}^{(2)^{q}}\right) \mid n=m, m+1, \ldots\right)
$$

is uniformly distributed in \boldsymbol{T}. By Proposition 10 for $N=1$, the last condition is equivalent to the condition: for any $m \in N$

$$
\lim _{n \rightarrow \infty} \frac{1}{N(m, n)} \sum_{\left(\lambda_{1}, \lambda_{2}\right) \in \operatorname{Sp}\left(\bigotimes_{k=m}^{n} u_{k}^{(1)}, \bigotimes_{k=m}^{n} u_{k}^{(2)}\right)} \lambda_{1}^{p} \lambda_{2}^{q}=0
$$

where $N(m, n) \equiv \prod_{k=m}^{n} m_{k}$. Finally by Proposition 10 for $N=2$, the last condition is equivalent to (2).

In [16] A. Kishimoto showed the following for a UHF algebra A.
(1) Product type Z-actions on A with the Rohlin property are approximately conjugate.
(2) For any \boldsymbol{Z}-action α on A with the Rohlin property and $\varepsilon>0$, there exist a product type Z-action β on A with the Rohlin property and antomorphism γ of A such that $\alpha \stackrel{\gamma, \boldsymbol{z}}{\approx} \beta$.

In particular there is one and only one approximate conjugacy class of \boldsymbol{Z}-actions on A with the Rohlin property. In the case of $N=2$ we do not know whether (2) is valid or not. In the rest of this section we state several versions of (1) for \boldsymbol{Z}^{2}.

Theorem 14. Let α and β be product type \boldsymbol{Z}^{2}-actions on a UHF algebra A with the Rohlin property. Let α be determined by $\left(m_{k} \mid k \in \boldsymbol{N}\right),\left(\lambda_{k} \mid k \in \boldsymbol{N}\right)$ as in Definition 11 and Remark 12, and β by $\left(n_{l} \mid l \in N\right),\left(\mu_{l} \mid l \in N\right)$. If $\lambda_{k}=\mu_{l}=1$ for each $k, l \in N$, then α and β are approximately conjugate.

Proof. By patching several parts of the $M_{m_{k}}$'s and the $M_{n_{l}}$'s respectively there exist a sequence $\left(N_{k} \mid k \in \boldsymbol{N}\right)$ of integers satisfying $N_{0}=0$ and $N_{k}>0(k \geq 1)$ and sequences
$\left(U_{k}^{(1)} \mid k \in \boldsymbol{N}\right),\left(U_{k}^{(2)} \mid k \in \boldsymbol{N}\right)$ of unitary matrices such that

$$
\begin{gathered}
U_{k}^{(i)} \in U\left(M_{N_{k}} \otimes M_{N_{k+1}}\right) \\
U_{k}^{(1)} U_{k}^{(2)}=U_{k}^{(2)} U_{k}^{(1)}(i=1,2, k \in N), \\
\left(A, \alpha_{\xi_{1}}, \alpha_{\xi_{2}}\right) \cong\left(\bigotimes_{k=0}^{\infty} M_{N_{k}}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k}^{(1)}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k}^{(2)}\right), \\
\left(A, \beta_{\xi_{1}}, \beta_{\xi_{2}}\right) \cong\left(\bigotimes_{k=0}^{\infty} M_{N_{k}}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k+1}^{(1)}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k+1}^{(2)}\right) .
\end{gathered}
$$

Let $\varepsilon>0$. \quad Since $\left(\operatorname{Sp}\left(\bigotimes_{k=0}^{n} \operatorname{Ad} U_{2 k+1}^{(1)}, \bigotimes_{k=0}^{n} \operatorname{Ad} U_{2 k+1}^{(2)}\right) \mid n \in \boldsymbol{N}\right)$ is uniformly distributed by Proposition 13 and $U_{0}^{(1)} U_{0}^{(2)}=U_{0}^{(2)} U_{0}^{(1)}$, for a sufficiently large n there exist a unitary W_{1} in $\bigotimes_{k=0}^{2 n+2} M_{N_{k}}$ and unitaries $V_{2}^{(1)}, V_{2}^{(2)}$ in $\bigotimes_{k=2}^{2 n+2} M_{N_{k}}$ such that

$$
\begin{aligned}
& \left\|W_{1}\left(\bigotimes_{k=0}^{n} U_{2 k+1}^{(1)}\right) W_{1}^{*}-U_{0}^{(1)} \otimes V_{2}^{(1)}\right\|<2^{-2} \varepsilon \\
& \left\|W_{1}\left(\bigotimes_{k=0}^{n} U_{2 k+1}^{(2)}\right) W_{1}^{*}-U_{0}^{(2)} \otimes V_{2}^{(2)}\right\|<2^{-2} \varepsilon .
\end{aligned}
$$

Then replace $M_{N_{2}}$ by $\bigotimes_{k=2}^{2 n+2} M_{N_{k}}$ and $U_{1}^{(i)}$ by $\bigotimes_{k=0}^{n} U_{2 k+1}^{(i)}, U_{2}^{(i)}$ by $\bigotimes_{k=1}^{n+1} U_{2 k}^{(i)}(i=1,2)$ respectively, and further replace $M_{N_{k-2 n}}$ by $M_{N_{k}}(k \geq 2 n+3)$ and $U_{2(k-n)+1}^{(i)}$ by $U_{2 k+1}^{(i)}$, $U_{2(k-n)+2}^{(i)}$ by $U_{2 k+2}^{(i)}(i=1,2, k \geq n+1)$ respectively. Thereby $W_{1} \in U\left(M_{N_{1}} \otimes M_{N_{2}}\right)$ and $V_{2}^{(1)}, V_{2}^{(2)} \in U\left(M_{N_{2}}\right)$, which satisfy

$$
\begin{aligned}
& \left\|\operatorname{Ad} W_{1}\left(U_{1}^{(1)}\right)-U_{0}^{(1)} \otimes V_{2}^{(1)}\right\|<2^{-2} \varepsilon \\
& \left\|\operatorname{Ad} W_{1}\left(U_{1}^{(2)}\right)-U_{0}^{(2)} \otimes V_{2}^{(2)}\right\|<2^{-2} \varepsilon
\end{aligned}
$$

In the same way, after replacing $M_{N_{3}}, U_{2}^{(i)}, U_{3}^{(i)}$ etc. suitably, there exist a unitary W_{2} in $M_{N_{2}} \otimes M_{N_{3}}$ and unitaries $V_{3}^{(1)}, V_{3}^{(2)}$ in $M_{N_{3}}$ such that

$$
\begin{aligned}
& \left\|\operatorname{Ad} W_{2}\left(U_{2}^{(1)}\right)-V_{2}^{(1)} \otimes V_{3}^{(1)}\right\|<2^{-3} \varepsilon \\
& \left\|\operatorname{Ad} W_{2}\left(U_{2}^{(2)}\right)-V_{2}^{(2)} \otimes V_{3}^{(2)}\right\|<2^{-3} \varepsilon
\end{aligned}
$$

By repeating the above procedure for $k=3,4, \ldots$, we can construct a unitary W_{k} in $M_{N_{k}} \otimes M_{N_{k+1}}$ and unitaries $V_{k+1}^{(1)}, V_{k+1}^{(2)}$ in $M_{N_{k+1}}$ in such a way that

$$
\begin{aligned}
& \left\|\operatorname{Ad} W_{k}\left(U_{k}^{(1)}\right)-V_{k}^{(1)} \otimes V_{k+1}^{(1)}\right\|<2^{-(k+1)} \varepsilon, \\
& \left\|\operatorname{Ad} W_{k}\left(U_{k}^{(2)}\right)-V_{k}^{(2)} \otimes V_{k+1}^{(2)}\right\|<2^{-(k+1)} \varepsilon .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(A, \alpha_{\xi_{1}}, \alpha_{\xi_{2}}\right) & \cong\left(\bigotimes_{k=0}^{\infty} M_{N_{k}}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k}^{(1)}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k}^{(2)}\right) \\
& \stackrel{\gamma_{e}, \frac{1}{3} \varepsilon}{\approx}\left(\bigotimes_{k=0}^{\infty} M_{N_{k}}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} V_{k}^{(1)}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} V_{k}^{(2)}\right),
\end{aligned}
$$

where $\gamma_{e} \equiv \bigotimes_{k=1}^{\infty} \operatorname{Ad} W_{2 k}$ and

$$
\begin{aligned}
\left(A, \beta_{\xi_{1}}, \beta_{\xi_{2}}\right) & \cong\left(\bigotimes_{k=0}^{\infty} M_{N_{k}}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k+1}^{(1)}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} U_{2 k+1}^{(2)}\right) \\
& \stackrel{\gamma_{o} o \frac{2}{3_{2}} \varepsilon}{\approx}\left(\bigotimes_{k=0}^{\infty} M_{N_{k}}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} V_{k}^{(1)}, \bigotimes_{k=0}^{\infty} \operatorname{Ad} V_{k}^{(2)}\right)
\end{aligned}
$$

where $\gamma_{o} \equiv \bigotimes_{k=0}^{\infty}$ Ad $W_{2 k+1}$. This completes the proof.
As mentioned in the introduction, we discuss product type actions for two classes of UHF algebras. Let $\left(p_{k} \mid k \in N\right)$ be the prime numbers in the increasing order. For a sequence $\left(i_{k} \mid k \in \boldsymbol{N}\right)$ of nonnegative integers with $\sum_{k=1}^{\infty} i_{k}=\infty$, put $q_{k}=p_{k}^{i_{k}}$ and let $A=$ $\bigotimes_{k=1}^{\infty} M_{q_{k}}$. We regard $M_{q_{k}}$ as a C^{*}-subalgebra of A. We consider the class of product type \boldsymbol{Z}^{2}-actions α on this A. Assume that α looks like

$$
\begin{equation*}
\alpha_{(p, q)}\left\lceil M_{q_{k}}=\operatorname{Ad} u_{k}^{(1)^{p}} u_{k}^{(2)^{q}}\right. \tag{14}
\end{equation*}
$$

on $M_{q_{k}}$ with unitaries $u_{k}^{(1)}, u_{k}^{(2)}$ in $M_{q_{k}}$ and $\lambda_{k} \in \boldsymbol{T}$ satisfying $u_{k}^{(1)} u_{k}^{(2)}=\lambda_{k} u_{k}^{(2)} u_{k}^{(1)}$. Since $\lambda_{k}^{q_{k}}=1$, we may regard λ_{k} as an element of $G_{k} \equiv \boldsymbol{Z} / q_{k} \boldsymbol{Z}$. We let $[\alpha]$ be the sequence $\left(\lambda_{k} \mid k \in N\right)$ in $\prod_{k=1}^{\infty} G_{k}$. We define an equivalence relation in $\prod_{k=1}^{\infty} G_{k}$ by: $g \sim h$ if there is an n such that $g_{k}=h_{k}$ for all $k \geq n$. Let 0 be the trivial sequence $(0,0, \ldots)$. We note that for every $g \in \prod_{k=1}^{\infty} G_{k}$ there is an action α in the above class with $[\alpha]=g$.

Theorem 15. (1) If α is an action in the above class and $[\alpha] \nsim 0$, then α has the Rohlin property.
(2) If α and β are actions in the above class and satisfy the Rohlin property, then the following are equivalent:
(2.1) $[\alpha] \sim[\beta]$.
(2.2) α and β are outer conjugate.

Before proving Theorem 15 we introduce some notations and prepare a lemma. For a positive integer n and $\lambda \in \boldsymbol{T}$ with $\lambda^{n}=1$, we define the $n \times n$ unitary matrices $S(n)$ and $\Omega(n, \lambda)$ by

$$
S(n)=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \\
1 & \ddots & & 0 \\
& \ddots & \ddots & \vdots \\
& & 1 & 0
\end{array}\right], \quad \Omega(n, \lambda)=\left[\begin{array}{llll}
1 & & & \\
& \lambda^{-1} & & \\
& & \ddots & \\
& & & \lambda^{-(n-1)}
\end{array}\right]
$$

Lemma 16. Suppose that U and V are $n \times n$ unitary matrices such that

$$
U V=\exp (2 \pi i k / n) V U
$$

for some $k \in \boldsymbol{N}$. Let q / p be the irreducible form of k / n. Then there exist $\omega_{i}, \mu_{i} \in \boldsymbol{T}$ $(i=1, \ldots, n / p)$ such that (U, V) is conjugate to $\left(U_{1} \otimes U_{2}, V_{1} \otimes V_{2}\right)$, where

$$
\begin{gathered}
\lambda=\exp (2 \pi i k / n), \\
U_{1}=S(p), \quad V_{1} \equiv \Omega\left(p, \lambda^{-1}\right), \\
U_{2}=\bigoplus_{i=1}^{n / p} \omega_{i}, \quad V_{2}=\bigoplus_{i=1}^{n / p} \mu_{i} .
\end{gathered}
$$

Moreover each ω_{i}, μ_{i} are unique up to multiples of powers of λ.
Proof. Since $U^{p} V=V U^{p}$ we have a complete orthonomal system of C^{n} consisting of the common eigenvectors of U^{p} and V. We take such a system $\left(\xi_{(\kappa, \mu)} \mid \kappa, \mu\right)$ i.e.,

$$
\begin{aligned}
U^{p} \xi_{(\kappa, \mu)} & =\kappa \xi_{(\kappa, \mu)} \\
V \xi_{(\kappa, \mu)} & =\mu \xi_{(\kappa, \mu)}
\end{aligned}
$$

Then if $\omega^{p}=\kappa$, the space spanned by

$$
\xi_{(\kappa, \mu)}, \quad \omega U \xi_{(\kappa, \mu)}, \ldots, \quad \omega^{p-1} U^{p-1} \xi_{(\kappa, \mu)}
$$

is invariant under U, V and the matrix representation of (U, V) with respect to the above basis is $\left(\omega U_{1}, \mu V_{1}\right)$. Thus (U, V) is conjugate to the direct sum of $\left(\omega_{i} U_{1}, \mu_{i} V_{1}\right)$ for some sequences ω_{i}, μ_{i} in \boldsymbol{T}. Since $\left(\omega U_{1}, \mu V_{1}\right)$ is conjugate to $\left(\omega \lambda^{k} U_{1}, \mu \lambda^{j} V_{1}\right)$ for all k, j, the last statement is obvious.

Proof of Theorem 15. (1) Let α be given as in the theorem. Take unitaries $u_{k}^{(1)}$, $u_{k}^{(2)}$ in $M_{q_{k}}$ and $\lambda_{k} \in \boldsymbol{T}$ as in (14). By Corollary 4 it suffices to prove that $\alpha_{(p, q)}$ has the Rohlin property as a single automorphism for each $(p, q) \in \boldsymbol{Z}^{2} \backslash\{0\}$. From the assumption there is a subsequence $\left(p_{k_{n}} \mid n \in \boldsymbol{N}\right)$ of $\left(p_{k} \mid k \in \boldsymbol{N}\right)$ such that $\lambda_{k_{n}} \neq 1$ for any n. Applying Lemma 16 to $u_{k_{n}}^{(1)}, u_{k_{n}}^{(2)}$ we have a decomposition $\left(u_{k_{n}, 1}^{(1)} \otimes u_{k_{n}, 2}^{(1)}, u_{k_{n}, 1}^{(2)} \otimes u_{k_{n}, 2}^{(2)}\right)$ of $\left(u_{k_{n}}^{(1)}, u_{k_{n}}^{(2)}\right)$ up to conjugacy, where

$$
u_{k_{n}, 1}^{(1)} \equiv S\left(p_{k_{n}}^{j_{n}}\right), \quad u_{k_{n}, 1}^{(2)} \equiv \Omega\left(p_{k_{n}}^{j_{n}}, \lambda_{k_{n}}^{-1}\right)
$$

for some $1 \leq j_{n} \leq i_{k_{n}}$. Then it is easy to see that

$$
\left(\operatorname{Sp}\left(u_{k_{n}, 1}^{(1)^{p}} u_{k_{n}, 2}^{(2)^{q}}\right) \mid n \in \boldsymbol{N}\right)
$$

is uniformly distributed in \boldsymbol{T}. This ensures that

$$
\left(\operatorname { S p } \left({\left.\left.\left.\underset{k=k_{0}}{l} u_{k}^{(1)^{p}} u_{k}^{(2)^{q}}\right) \mid l \geq k_{0}\right), ~\right)}\right.\right.
$$

is also uniformly distributed for all k_{0}. Hence $\alpha_{(p, q)}=\bigotimes_{k=1}^{\infty} \operatorname{Ad} u_{k}^{(1)^{p}} u_{k}^{(2)^{q}}$ has the Rohlin property by [16, Lemma 5.2].

To prove Theorem 15 (2) we introduce an invariant as a slight generalization of that [9].

Definition 17. For $n \times n$ unitary matrices U, V and $\lambda \in T$ with $\lambda^{n}=1$, if $\|\lambda U V-V U\|<2$ then the closed complex path $\gamma(t)=\operatorname{det}((1-t) \lambda U V+t V U)(t \in[0,1])$ does not go through zero. We define $\omega_{\lambda}(U, V)$ as the winding number of the path γ around zero.

From $\|\lambda U V-V U\|<2$ we can define $\log \left(\lambda^{-1} V U V^{*} U^{*}\right)$, with \log the principal branch of the logarithm. As is shown in [10, Lemma 3.1]

$$
\omega_{\lambda}(U, V)=\frac{1}{2 \pi i} \operatorname{Tr}\left(\log \left(\lambda^{-1} V U V^{*} U^{*}\right)\right)
$$

with the nonnormalized trace Tr on M_{n}.
Proof of Theorem 15 (2). Take $u_{k}^{(1)}, u_{k}^{(2)} \in U\left(M_{q_{k}}\right), \lambda_{k} \in \boldsymbol{T}$ as in (14) for α, and $v_{k}^{(1)}, v_{k}^{(2)} \in U\left(M_{q_{k}}\right), \mu_{k} \in \boldsymbol{T}$ for β similarly, i.e.,

$$
\begin{aligned}
\beta_{(p, q)}\left\lceil M_{q_{k}}\right. & =\operatorname{Ad} v_{k}^{(1)^{p}} v_{k}^{(2)^{q}}, \\
v_{k}^{(1)} v_{k}^{(2)} & =\mu_{k} v_{k}^{(2)} v_{k}^{(1)} .
\end{aligned}
$$

First we show that (2.2) implies (2.1). To get a contradiction we assume that outer conjugate α, β satisfy $[\alpha] \nsim[\beta]$. Outer conjugacy means

$$
\operatorname{Ad} W_{i} \circ \alpha_{\xi_{i}}=\gamma^{-1} \circ \beta_{\xi_{i}} \circ \gamma \quad(i=1,2)
$$

for some unitaries $W_{1}, W_{2} \in A$ and automorphism γ of A. For any $\varepsilon>0$ we have a positive integer M and unitaries $W_{1}^{\prime}, W_{2}^{\prime}$ in $\bigotimes_{k=1}^{M} M_{q_{k}}$ with $\left\|W_{i}-W_{i}^{\prime}\right\|<\varepsilon(i=1,2)$ so that

$$
\left\|\operatorname{Ad} W_{i}^{\prime} \circ \alpha_{\xi_{i}}-\gamma^{-1} \circ \beta_{\xi_{i}} \circ \gamma\right\|<2 \varepsilon .
$$

By the assumption there exists a positive integer $K>M$ with $\lambda_{K} \neq \mu_{K}$. Further take a sufficiently large $N>K$ such that

$$
\gamma\left(M_{q_{K}}\right) \subseteq{ }_{\varepsilon} M_{q_{1}} \otimes \cdots \otimes M_{q_{N}},
$$

where $X \subseteq_{\varepsilon} Y$ means that for any $x \in X$ there is $y \in Y$ satisfying $\|x-y\| \leq \varepsilon\|x\|$. Here we use the perturbation theorem [5, Corollary 6.8], that is, for a sufficiently small $\varepsilon>0$ we have a unitary w_{1} in A such that

$$
\operatorname{Ad} w_{1} \circ \gamma\left(M_{q_{K}}\right) \subseteq M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}
$$

and $\left\|w_{1}-1\right\|<28 \varepsilon^{1 / 2}$. Set $\gamma_{1}=\operatorname{Ad} w_{1} \circ \gamma, B_{1}=\gamma_{1}\left(M_{q_{K}}\right)$ and $B_{2}=M_{q_{1}} \otimes \cdots \otimes M_{q_{N}} \cap$
B_{1}^{\prime}. Then

$$
\begin{gathered}
M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}=B_{1} \otimes B_{2}, \\
\gamma_{1} \circ \operatorname{Ad} W_{i}^{\prime} \circ \alpha_{\xi_{i}} \circ \gamma_{1}^{-1}\left(B_{1}\right)=B_{1}, \\
\gamma_{1} \circ \operatorname{Ad} W_{i}^{\prime} \circ \alpha_{\xi_{i}} \circ \gamma_{1}^{-1}\left\lceil B_{1}=\operatorname{Ad} \gamma_{1}\left(u_{K}^{(i)}\right)\right.
\end{gathered}
$$

for $i=1,2$. Since $\left\|\operatorname{Ad} W_{1}^{\prime} \circ \alpha_{\xi_{1}}-\gamma_{1}^{-1} \circ \beta_{\xi_{1}} \circ \gamma_{1}\right\| \leq C_{1} \varepsilon^{1 / 2}$ for some positive constant C_{1} independent of ε we have

$$
\beta_{\xi_{1}}\left(B_{1}\right) \subseteq C_{1 \varepsilon_{1} \varepsilon^{1 / 2}} B_{1} .
$$

Noting that $B_{1}, \beta_{\xi_{1}}\left(B_{1}\right) \subseteq M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}$, we can use [5, Corollary 6.8] again. So we have a unitary w_{2} in $M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}$ such that

$$
\begin{gathered}
\text { Ad } w_{2} \circ \beta_{\xi_{1}}\left(B_{1}\right) \subseteq B_{1}, \\
\left\|w_{2}-1\right\|<C_{2} \varepsilon^{1 / 4}
\end{gathered}
$$

for some positive constant C_{2}. As $M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}$ is finite-dimensional and
$\operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}\left(B_{1}\right)=B_{1}$,

$$
\operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}\left(M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}\right)=M_{q_{1}} \otimes \cdots \otimes M_{q_{N}}
$$

we have unitaries U_{1} in B_{1} and U_{2} in B_{2} such that

$$
\begin{aligned}
& \operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}\left\lceil B_{1}=\operatorname{Ad} U_{1}\right. \\
& \operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}\left\lceil B_{2}=\operatorname{Ad} U_{2} .\right.
\end{aligned}
$$

For these unitaries we have the following estimates:

$$
\begin{aligned}
\|\left(\operatorname{Ad} \gamma_{1}\left(u_{K}^{(1)}\right)-\operatorname{Ad} U_{1}\right)\left\lceil B_{1} \|\right. & =\|\left(\gamma_{1} \circ \operatorname{Ad} W_{1}^{\prime} \circ \alpha_{\xi_{1}} \circ \gamma_{1}^{-1}-\operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}\right)\left\lceil B_{1} \|\right. \\
& \leq\left\|\gamma_{1} \circ \operatorname{Ad} W_{1}^{\prime} \circ \alpha_{\xi_{1}} \circ \gamma_{1}^{-1}-\operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}\right\| \\
& \leq C_{4} \varepsilon^{1 / 4}, \\
\left\|\operatorname{Ad}\left(U_{1} \otimes U_{2}\right)-\bigotimes_{k=1}^{N} \operatorname{Ad} v_{k}^{(1)}\right\| & \leq\left\|\operatorname{Ad} w_{2} \circ \beta_{\xi_{1}}-\beta_{\xi_{1}}\right\| \\
& \leq C_{4} \varepsilon^{1 / 4}
\end{aligned}
$$

for some positive constant C_{4}. Thus we obtain scalars η_{1}, η_{2} of \boldsymbol{T} such that

$$
\begin{gathered}
\left\|\gamma_{1}\left(u_{K}^{(1)}\right)-\eta_{1} U_{1}\right\|<4 C_{4} \varepsilon^{1 / 4} \\
\left\|U_{1} \otimes U_{2}-\eta_{2} \bigotimes_{k=1}^{N} v_{k}^{(1)}\right\| \leq 4 C_{4} \varepsilon^{1 / 4}
\end{gathered}
$$

Consequently we have

$$
\left\|\gamma_{1}\left(u_{K}^{(1)}\right) \otimes U_{2}-\eta \bigotimes_{k=1}^{N} v_{k}^{(1)}\right\|<C_{5} \varepsilon^{1 / 4}
$$

for some $\eta \in \boldsymbol{T}$ and positive constant C_{5}. Similarly for the direction of ξ_{2} we obtain a unitary V_{2} in B_{2} such that

$$
\left\|\gamma_{1}\left(u_{K}^{(2)}\right) \otimes V_{2}-\zeta \bigotimes_{k=1}^{N} v_{k}^{(2)}\right\|<C_{6} \varepsilon^{1 / 4}
$$

for some $\zeta \in \boldsymbol{T}$ and positive constant C_{6}. To use an invariant in Definition 17, we set $\mu=\prod_{k=1}^{N} \mu_{k}$. Then there is a $\lambda \in \boldsymbol{T}$ such that $\lambda^{q_{1} \cdots q_{N}}=1$ and

$$
|\lambda \mu-1|+2\left(C_{5}+C_{6}\right) \varepsilon^{1 / 4}<2
$$

Note that ω_{λ} is invariant under homotopy of unitaries for which ω_{λ} is defined. From the above estimates we have

$$
\omega\left(\gamma_{1}\left(u_{K}^{(1)}\right) \otimes U_{2}, \gamma_{1}\left(u_{K}^{(2)}\right) \otimes V_{2}\right)=\omega\left(\eta \bigotimes_{k=1}^{N} v_{k}^{(1)}, \zeta \bigotimes_{k=1}^{N} v_{k}^{(2)}\right)
$$

for a sufficiently small $\varepsilon>0$. We now evaluate the both sides to get a contradiction. Let

$$
\lambda_{k}=\exp \left(2 \pi i \cdot \frac{s_{k}}{q_{k}}\right), \quad \mu_{k}=\exp \left(2 \pi i \cdot \frac{t_{k}}{q_{k}}\right), \quad \lambda=\exp \left(2 \pi i \cdot \frac{s}{q_{1} \cdots q_{N}}\right)
$$

for some $s_{k}, t_{k} \in\left\{0, \ldots, q_{k}-1\right\}$ and $s \in\left\{0, \ldots,\left(q_{1} \cdots q_{N}-1\right)\right\}$. Then

$$
\begin{aligned}
& \lambda^{-1}\left(\gamma_{1}\left(u_{K}^{(2)}\right) \otimes V_{2}\right)\left(\gamma_{1}\left(u_{K}^{(1)}\right) \otimes U_{2}\right)\left(\gamma_{1}\left(u_{K}^{(2)}\right) \otimes V_{2}\right)^{*}\left(\gamma_{1}\left(u_{K}^{(1)}\right) \otimes U_{2}\right)^{*} \\
& \quad=1_{q_{K}} \otimes \exp \left\{2 \pi i\left(\frac{-s}{q_{1} \cdots q_{N}}+\frac{-s_{K}}{q_{K}}\right)\right\} V_{2} U_{2} V_{2}^{*} U_{2}^{*} \\
& \quad=\exp \left(2 \pi i\left\{\bigoplus_{j=1}^{q_{K}}\left(\left(\frac{-s}{q_{1} \cdots q_{N}}+\frac{-s_{K}}{q_{K}}\right) 1_{q_{1} \cdots q_{K-1} q_{K+1} \cdots q_{N}}+H_{2}\right)\right\}\right)
\end{aligned}
$$

for some $H_{2} \in M_{q_{1} \cdots q_{k-1} q_{K+1} \cdots q_{N}}$ with $\operatorname{Tr}\left(H_{2}\right) \in \boldsymbol{Z}$. Thus

$$
\begin{aligned}
& \omega\left(\gamma_{1}\left(u_{K}^{(1)}\right) \otimes U_{2}, \gamma_{1}\left(u_{K}^{(2)}\right) \otimes V_{2}\right) \\
& \quad=\operatorname{Tr}\left\{\underset{j=1}{q_{K}}\left(\left(\frac{-s}{q_{1} \cdots q_{N}}+\frac{-s_{K}}{q_{K}}\right) 1_{q_{1} \cdots q_{K-1} q_{K+1} \cdots q_{N}}+H_{2}\right)\right\} \\
& \quad=-s-s_{K} q_{1} \cdots q_{K-1} q_{K+1} \cdots q_{N}+q_{K} \operatorname{Tr}\left(H_{2}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\omega\left(\eta \bigotimes_{k=1}^{N} v_{k}^{(1)}, \zeta \bigotimes_{k=1}^{N} v_{k}^{(2)}\right) & =\left(\frac{-s}{q_{1} \cdots q_{N}}+\sum_{k=1}^{N} \frac{-t_{k}}{q_{k}}+n\right)\left(\prod_{l=1}^{N} q_{l}\right) \\
& =-s-\sum_{k=1}^{N} t_{k} q_{1} \cdots q_{k-1} q_{k+1} \cdots q_{N}+n q_{1} \cdots q_{N}
\end{aligned}
$$

for some $n \in \boldsymbol{Z}$. Therefore

$$
\left(s_{K}-t_{K}\right) q_{1} \cdots q_{K-1} q_{K+1} \cdots q_{N}=q_{K} \operatorname{Tr}\left(H_{2}\right)+\sum_{\substack{k=1 \\ k \neq K}}^{N} \frac{-t_{k}}{q_{k}}+n q_{1} \cdots q_{N}
$$

Noting that $s_{K}-t_{K} \neq 0$ and $s_{K}-t_{K}$ is not divided by q_{K}, we have a contradiction.
Next we show that (2.1) implies (2.2). We assume $[\alpha] \sim[\beta]$. Then we may also assume that $\lambda_{k}=\mu_{k}$ for any k since inner perturbation does not change outer conjugacy classes. If there is a $k_{0} \in \boldsymbol{N}$ such that $\lambda_{k}=1$ for any $k \geq k_{0}$, then we have the result from Theorem 14. If there is no such k_{0}, we pick up all the k 's with $\lambda_{k} \neq 1$ and make the subsequence $\left(p_{k_{n}} \mid n \in \boldsymbol{N}\right)$ of $\left(p_{k} \mid k \in \boldsymbol{N}\right)$. Let $\lambda_{k}=\exp \left(2 \pi i s_{k} / q_{k}\right)$ as before. Then for any N

$$
\prod_{k=1}^{k_{N}} \lambda_{k}=\exp \left(2 \pi i \cdot \sum_{n=1}^{N} \frac{s_{k_{n}}}{q_{k_{n}}}\right) .
$$

By noting that $s_{k_{n}} \neq 0$ and $q_{k_{n}}$'s are relatively prime to the each others, $\sum_{n=1}^{N} s_{k_{n}} / q_{k_{n}}$ equals to

$$
\frac{S_{N}}{p_{k_{1}}^{j_{1}} \cdots p_{k_{N}}^{j_{N}}}
$$

in the irreducible form for some positive integers j_{1}, \ldots, j_{N} and S_{N}. Here we apply Lemma 16 to two pairs $\left(\bigotimes_{k=1}^{k_{N}} u_{k}^{(1)}, \bigotimes_{k=1}^{k_{N}} u_{k}^{(2)}\right),\left(\bigotimes_{k=1}^{k_{N}} v_{k}^{(1)}, \bigotimes_{k=1}^{k_{N}} v_{k}^{(2)}\right)$ of unitaries. Then for any $\varepsilon>0$, if we take a sufficiently large N, these pairs are almost conjugate i.e., there is a unitary w_{1} in $\bigotimes_{k=1}^{k_{N}} M_{q_{k}}$ such that

$$
\left\|\operatorname{Ad} w_{1}\left(\bigotimes_{k=1}^{k_{N}} u_{k}^{(i)}\right)-\bigotimes_{k=1}^{k_{N}} v_{k}^{(i)}\right\|<2^{-1} \varepsilon
$$

for $i=1,2$. We adopt the same method for $\bigotimes_{k=k_{N}+1}^{\infty} M_{q_{k}}$ and $2^{-1} \varepsilon$ in place of ε. Repeating this procedure as in the proof of Theorem 14, we have the result.

Remark 18. Let $A=M_{3} \otimes M_{2^{\infty}}$ and let $\omega_{n}=\exp (2 \pi i / n)$ for each $n \in \boldsymbol{N}$. We define \boldsymbol{Z}^{2}-actions α, β on A by

$$
\begin{gathered}
\alpha_{\xi_{1}}=\operatorname{Ad} \Omega\left(3, \omega_{3}\right) \otimes\left(\bigotimes_{k=1}^{\infty} \operatorname{Ad} \Omega\left(2^{k}, \omega_{2^{k}}\right)\right), \quad \alpha_{\xi_{2}}=\operatorname{Ad} S(3) \otimes\left(\bigotimes_{k=1}^{\infty} \operatorname{Ad} S\left(2^{k}\right)\right), \\
\beta_{\xi_{1}}=\operatorname{id}_{M_{3}} \otimes\left(\bigotimes_{k=1}^{\infty} \operatorname{Ad} \Omega\left(2^{k}, \omega_{2^{k}}\right)\right), \quad \beta_{\xi_{1}}=\operatorname{id}_{M_{3}} \otimes\left(\bigotimes_{k=1}^{\infty} \operatorname{Ad} S\left(2^{k}\right)\right) .
\end{gathered}
$$

Then the same arguments as in the first part of the above proof show that α, β have the Rohlin property and they are not approximately conjugate. However they are clearly outer conjugate.

Let $\left\{q_{k} \mid k \in K\right\}$ be a finite or infinite set of prime numbers. We next consider product type \boldsymbol{Z}^{2}-actions on the UHF algebra

$$
{\underset{k \in K}{ } \otimes_{q_{k}^{\infty}},}
$$

where $M_{q_{k}^{\infty}}$ is understood as $\bigotimes_{n=1}^{\infty} M_{q_{k}}$.
Theorem 19. For the above UHF algebra, any two product type \boldsymbol{Z}^{2}-actions with the Rohlin property are approximately conjugate.

Proof. From Theorem 14 it is enough to prove that for any product type \boldsymbol{Z}^{2} action α on A with the Rohlin property and $\varepsilon>0$, there exist an automorphism γ of A and a product type action β with the Rohlin property such that $\alpha \stackrel{\gamma, \varepsilon}{\approx} \beta$ and β has the same form as in Theorem 14 i.e., there exist a sequence $\left(n_{l} \mid l \in N\right)$ of positive integers and sequences $\left(v_{l}^{(1)} \mid l \in \boldsymbol{N}\right),\left(v_{l}^{(2)} \mid l \in \boldsymbol{N}\right)$ of unitary matrices such that

$$
\begin{gathered}
v_{l}^{(1)}, v_{l}^{(2)} \in M_{n_{l}} \\
v_{l}^{(1)} v_{l}^{(2)}=v_{l}^{(2)} v_{l}^{(1)}, \\
\left(A, \beta_{\xi_{1}}, \beta_{\xi_{2}}\right) \cong\left(\bigotimes_{l=1}^{\infty} M_{n_{l}}, \bigotimes_{l=1}^{\infty} \operatorname{Ad} v_{l}^{(1)}, \bigotimes_{l=1}^{\infty} \operatorname{Ad} v_{l}^{(2)}\right) .
\end{gathered}
$$

Let $\left(p_{k} \mid k \in \boldsymbol{N}\right)$ be the prime numbers in the increasing order. By definition we find a sequence $\left(N_{k} \mid k \in N\right)$ of positive integers in such a way that each $k \in N$ there are nonnegative integers $m_{k}^{(1)}, \ldots m_{k}^{\left(N_{k}\right)}$, unitaries u_{k}, v_{k} and $\lambda_{k} \in \boldsymbol{T}$ satisfying

$$
\begin{aligned}
& \left(A, \alpha_{\xi_{1}}, \alpha_{\xi_{2}}\right) \cong\left(\bigotimes_{k=1}^{\infty} M_{p_{1}^{m_{k}^{(1)}} \ldots p_{N_{k}}^{m_{k}^{(N)}}}, \bigotimes_{k=1}^{\infty} \operatorname{Ad} u_{k}, \bigotimes_{k=1}^{\infty} \operatorname{Ad} v_{k}\right), \\
& u_{k}, v_{k} \in U\left(M_{p_{1}^{m_{k}^{(1)} \ldots p_{N_{k}}^{\left(m_{k}\right)}}} \operatorname{m}_{k}\right), u_{k} v_{k}=\lambda_{k} v_{k} u_{k}, \\
& m_{k}^{(1)}+\cdots+m_{k}^{\left(N_{k}\right)} \neq 0 .
\end{aligned}
$$

Set $Q_{k}=p_{1}^{m_{k}^{(1)}} \cdots p_{N_{k}}^{m_{k}^{\left(N_{k}\right)}}$. By Remark 12, $\lambda_{k}^{Q_{k}}=1$ for each k. If $\lambda_{k}=1$ for any k, we are done, so we assume that $\lambda_{k} \neq 1$ for some $k \in \boldsymbol{N}$. Take $k_{1} \equiv \min \left\{k \in \boldsymbol{N} \mid \lambda_{k} \neq\right.$ $1\}$. For $n \geq k_{1}+1$ we define

$$
N(n)=\prod_{k=k_{1}+1}^{n} Q_{k}, \quad \lambda(n)=\prod_{k=k_{1}+1}^{n} \lambda_{k}
$$

and relatively prime integers $M(n)$ and $K(n)$ by

$$
\lambda(n)=\exp \left(2 \pi i \cdot \frac{K(n)}{M(n)}\right), \quad M(n) \leq N(n), K(n) \in\{0, \ldots, M(n)-1\}
$$

If we set $m^{(i)}(n)=\max \left\{m_{k}^{(i)} \mid k_{1}+1 \leq k \leq n\right\} \quad\left(i=1, \ldots, N_{k_{1}}\right)$ then for each i the exponent of the factor p_{i} in $M(n)$ is less than or equal to $m^{(i)}(n)$. Hence taking a sufficiently large n, we can make the exponent of the factor p_{i} in $N(n) M(n)^{-1}$ as large as we like if $m^{(i)}(n) \neq 0$. In particular $N(n) M(n)^{-1}$ is divided by $Q_{k_{1}}^{2}$ and $N(n)$ is much larger than $M(n)$.

We want to show that for any $\delta>0$, which is much smaller than ε, there exist positive integers n, m_{1}, m_{2} and unitary matrices $U_{i}, V_{i}(i=1,2,3)$ and W such that

$$
\begin{gather*}
n \geq k_{1}+1, \quad m_{1}, m_{2} \geq \delta^{-1}, \\
m_{1} m_{2}=N(n) M(n)^{-1} Q_{k_{1}}^{-2}, \\
U_{1}, V_{1} \in M_{Q_{k_{1}}}, \quad U_{2}, V_{2} \in M_{M(n) Q_{k_{1}}}, \\
U_{3}, V_{3} \in M_{N(n) M(n)^{-1} Q_{k_{1}}^{-2}}, \quad W \in M_{N(n)}, \\
U_{1} V_{1}=\lambda_{k_{1}}^{-1} V_{1} U_{1}, \quad U_{3} V_{3}=V_{3} U_{3}, \\
\operatorname{Sp}\left(U_{3}, V_{3}\right) \text { is }\left(m_{1}, m_{2} ; \delta\right) \text { distributed } \tag{15}
\end{gather*}
$$

and

$$
\begin{gathered}
\left(\bigotimes_{k=k_{1}+1}^{\otimes} M_{Q_{k}}, \bigotimes_{k=k_{1}+1}^{\bigotimes} \operatorname{Ad} u_{k}, \underset{k=k_{1}+1}{\otimes} \operatorname{Ad} v_{k}\right) \stackrel{n d}{W_{2}^{2-1} \varepsilon} \\
\left(M_{Q_{k_{1}}} \otimes M_{M(n) Q_{k_{1}}} \otimes M_{N(n) M(n)^{-1} Q_{k_{1}}^{-2}}\right. \\
\left.\operatorname{Ad}\left(U_{1} \otimes U_{2} \otimes U_{3}\right), \operatorname{Ad}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)\right)
\end{gathered}
$$

Suppose that we have shown this statement, then we can construct the required γ and β as follows. Set

$$
\begin{gathered}
n_{1}=\left(Q_{1} Q_{2} \cdots Q_{k_{1}}\right) \cdot Q_{k_{1}} \cdot N(n) M(n)^{-1} Q_{k_{1}}^{-2}, \\
v_{1}^{(1)}=\left(\bigotimes_{k=1}^{k_{1}} u_{k}\right) \otimes U_{1} \otimes U_{3} \\
v_{1}^{(2)}=\binom{\bigotimes_{k=1}^{k_{1}} v_{k}}{\underbrace{}_{k}} \otimes V_{1} \otimes V_{3} \\
W_{1}=W .
\end{gathered}
$$

Then $v_{1}^{(1)}, v_{1}^{(2)} \in U\left(M_{n_{1}}\right)$. Applying the same method to

$$
\left(M_{M(n) Q_{k_{1}}} \otimes\left(\bigotimes_{k=n+1}^{\infty} M_{Q_{k}}\right), \operatorname{Ad} U_{2} \otimes\left(\bigotimes_{k=n+1}^{\infty} \operatorname{Ad} u_{k}\right), \quad \operatorname{Ad} V_{2} \otimes\left(\bigotimes_{k=n+1}^{\infty} \operatorname{Ad} v_{k}\right)\right)
$$

and $2^{-1} \varepsilon$ in place of

$$
\left(\bigotimes_{k=1}^{\infty} M_{Q_{k}}, \bigotimes_{k=1}^{\infty} \operatorname{Ad} u_{k}, \bigotimes_{k=1}^{\infty} \operatorname{Ad} v_{k}\right)
$$

and ε, we get $n_{2}, v_{2}^{(1)}, v_{2}^{(2)}, W_{2}$. Repeating this procedure as in the proof of Theorem 14,
we obtain an automorphism γ as the infinite product of $\operatorname{Ad} W_{i}(i=1,2, \ldots)$ and an action β as

$$
\beta_{\xi_{i}}=\bigotimes_{l=1}^{\infty} \operatorname{Ad} v_{l}^{(i)} \quad(i=1,2) .
$$

This β also has the Rohlin property due to (15). Hence we have the required γ and β.
Now we show the remaining part of the proof, that is, the existence of $n, m_{1}, m_{2} \in \boldsymbol{N}$, unitary matrices $U_{i}, V_{i}(i=1,2,3)$ and W satisfying the prescribed conditions. By Lemma 16 we can decompose (up to conjugacy)

$$
\left(\bigotimes_{k=k_{1}+1}^{n} M_{Q_{k}}, \quad \bigotimes_{k=k_{1}+1}^{n} u_{k}, \quad \underset{k=k_{1}+1}{\bigotimes_{k}} v_{k}\right)
$$

into

$$
\left(M_{M(n)} \otimes M_{N(n) M(n)^{-1}}, U_{1}^{(n)} \otimes U_{2}^{(n)}, V_{1}^{(n)} \otimes V_{2}^{(n)}\right)
$$

where $U_{1}^{(n)}=S(M(n)), \quad V_{1}^{(n)}=\Omega\left(M(n), \lambda(n)^{-1}\right)$ and $U_{2}^{(n)}, V_{1}^{(n)}$ are some commuting unitary matrices. Furthermore we see

$$
\left(\operatorname{Sp}\left(U_{2}^{(n)}, V_{2}^{(n)}\right) \mid n \geq k_{1}+1\right)
$$

is uniformly distributed. Actually note that $\operatorname{Sp}\left(U_{2}^{(n)}, V_{2}^{(n)}\right)$ is unique up to piecewise multiples of $\left(\lambda(n)^{k}, \lambda(n)^{l}\right)$ for any $k, l \in \boldsymbol{N}$. So if $\sup \left\{M(n) \mid n \geq k_{1}+1\right\}=\infty$ then it is clearly uniformly distributed. If $\sup \left\{M(n) \mid n \geq k_{1}+1\right\}<\infty$ then there is a positive integer M such that M is divided by $M(n)$ for any $n \geq k_{1}+1$. Noting that

$$
\left(\underset{k=k_{1}+1}{n} u_{k}\right)\left(\bigotimes_{k=k_{1}+1}^{n} v_{k}\right)=\exp \left(2 \pi i \cdot \frac{K(n)}{M(n)}\right)\left(\underset{\substack{\bigotimes \\ k=k_{1}+1}}{n} v_{k}\right)\left(\bigotimes_{k=k_{1}+1}^{\otimes} u_{k}\right)
$$

we have

$$
\left(\underset{k=k_{1}+1}{\bigotimes_{k}} u_{k}^{M}\right)\left(\underset{k=k_{1}+1}{\bigotimes_{k}^{n}} v_{k}^{M}\right)=\left(\bigotimes_{k=k_{1}+1}^{\bigotimes_{k}} v_{k}^{M}\right)\left(\underset{k=k_{1}+1}{\bigotimes_{k}^{n}} u_{k}^{M}\right)
$$

for any $n \geq k_{1}+1$. This implies $u_{k}^{M} v_{k}^{M}=v_{k}^{M} u_{k}^{M}$ for any $k \geq k_{1}+1$. Hence by Proposition 13

$$
\left(\operatorname{Sp}\left(\bigotimes_{k=k_{1}+1}^{\stackrel{n}{*}} u_{k}^{M}, \quad \underset{k=k_{1}+1}{\bigotimes_{k}^{n}} v_{k}^{M}\right) \mid n \geq k_{1}+1\right)
$$

is uniformly distributed. Since
it follows that

$$
\left(\operatorname{Sp}\left(U_{2}^{(n)}, V_{2}^{(n)}\right) \mid n \geq k_{1}+1\right)
$$

should be uniformly distributed. Using this distribution of the joint spectrum, we can make for a sufficiently large n

$$
\left(M_{N(n) M(n)^{-1}}, U_{2}^{(n)}, V_{2}^{(n)}\right)
$$

close to (up to conjugacy)

$$
\left(M_{Q_{k_{1}}} \otimes M_{Q_{k_{1}}} \otimes M_{N(n) M(n)^{-1} Q_{k_{1}}^{-2}}, U_{3}^{\prime} \otimes U_{4}^{\prime} \otimes U_{5}^{(n)}, V_{3}^{\prime} \otimes V_{4}^{\prime} \otimes V_{5}^{(n)}\right)
$$

in norm, where

$$
U_{3}^{\prime}=V_{4}^{\prime}=S\left(Q_{k_{1}}\right), \quad U_{4}^{\prime}=V_{3}^{\prime *}=\Omega\left(Q_{k_{1}}, \lambda_{k_{1}}\right)
$$

and $\operatorname{Sp}\left(U_{5}^{(n)}, V_{5}^{(n)}\right)$ is $\left(m_{1}, m_{2} ; \delta\right)$-distributed for some $m_{1}, m_{2} \in \boldsymbol{N}$ satisfying

$$
m_{1}, m_{2} \geq \delta^{-1}, \quad m_{1} m_{2}=N(n) M(n)^{-1} Q_{k_{1}}^{-2} .
$$

Since $U_{4}^{\prime} V_{4}^{\prime}=\lambda_{k_{1}}^{-1} V_{4}^{\prime} U_{4}^{\prime}$, we obtain desired unitaries in such a way that

$$
\begin{array}{cl}
U_{1}=U_{4}^{\prime}, & V_{1}=V_{4}^{\prime}, \\
U_{2}=U_{1}^{(n)} \otimes U_{3}^{\prime}, & V_{2}=V_{1}^{(n)} \otimes V_{3}^{\prime}, \\
U_{3}=U_{5}^{(n)}, & V_{3}=V_{5}^{(n)} .
\end{array}
$$

We complete the proof.
Now we sum up the results we have shown so far. Let $\left(p_{k} \mid k \in N\right)$ be the prime numbers in the increasing order. By Glimm's theorem ([11]), for any UHF algebra A there exists one and only one sequence $\left(i_{k} \mid k \in \boldsymbol{N}\right)$ of nonnegative integers or ∞ such that $A \cong \bigotimes_{k=1}^{\infty} M_{p_{k}^{i_{k}}}$, where $M_{p_{k}^{\infty}}$ is understood as $\bigotimes_{n=1}^{\infty} M_{p_{k}}$. Then our classification of \boldsymbol{Z}^{2}-actions on A is as follows:

Theorem 20. Let A be a UHF algebra with the invariant $\left(i_{k} \mid k \in N\right)$ as above.
(1) If $\sharp\left\{k \in N \mid 1 \leq i_{k}<\infty\right\}=\infty$ then there are infinitely many outer conjugacy classes of product type \boldsymbol{Z}^{2}-actions on A with the Rohlin property.
(2) If $\sharp\left\{k \in N \mid 1 \leq i_{k}<\infty\right\}<\infty$ and A is infinite-dimensional then there is one and only one outer conjugacy class of product type \boldsymbol{Z}^{2}-actions on A with the Rohlin property.
(3) If A is finite-dimensional then there is no \boldsymbol{Z}^{2}-action on A with the Rohlin property.

Acknowledgements. The author would like to express his gratitude to Professor Akitaka Kishimoto for suggesting this line of the research and for helpful discussions. He also would like to thank the referees for the useful comments.

References

[1] O. Bratteli, D. E. Evans and A. Kishimoto, The Rohlin property for quasifree automorphisms of the Fermion algebra, Proc. London. Math. Soc. (3)71 (1995), 675-694.
[2] A. Connes, Une classification des facteurs de type III, Ann. Sci. Ec. Norm. Sup. 6 (1973), 133-252.
[3] A. Connes, Periodic automorphisms of hyperfinite factors of type II_{1}, Acta Sci. Math. 39 (1977), 3966.
[4] A. Connes, Outer conjugacy class of automorphisms of factors, Ann. Sci. Ec. Norm. Sup. 8 (1975), 383-420.
[5] E. Christensen, Near inclusion of C^{*}-algebras, Acta Math. 144 (1980), 249-265.
[6] G. A. Elliott, D. E. Evans and A. Kishimoto, Outer conjugacy classes of trace scaling automorphisms of stable UHF algebras, preprint.
[7] D. E. Evans and A. Kishimoto, Trace scaling automorphisms of certain stable AF algebras, preprint.
[8] R. Exel and T. A. Loring, Almost commuting unitary matrices, Proc. Amer. Math. Soc. 106 (1989), 913-915.
[9] R. Exel and T. A. Loring, Invariants of almost commuting unitaries, J. Func. Anal. 95 (1991), $364-$ 376.
[10] R. Exel, The soft torus and applications to almost commuting matrices, Pac. J. Math. 160 (1993), 207-217.
[11] J. Glimm, On certain classes of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
[12] R. H. Herman and A. Ocneanu, Stability for integer actions on UHF C^{*}-algebras, J. Func. Anal. 59 (1984), 132-144.
[13] R. H. Herman and A. Ocneanu, Spectral analysis for automorphisms of UHF C^{*}-algebras, J. Func. Anal. 66 (1986), 1-10.
[14] P. de la Harpe and G. Skandalis, Déterminant associé à une trace sur une algèbre de Banach, Ann. Inst. Fourier 34 (1984), 241-260.
[15] A. Kishimoto, The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras, J. Func. Anal. (to appear).
[16] A. Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. reine angew. Math. 465 (1995), 183-196.
[17] A. Kishimoto, A Rohlin property for one-parameter automorphism groups, preprint.
[18] A. Kishimoto and A. Kumjian, Crossed products Cuntz algebras by quasifree automorphisms, preprint.
[19] T. A. Loring, K-theory and asymptotically commuting matrices, Can. J. Math. 40 (1988), 197-216.
[20] A. Ocneanu, A Rohlin type theorem for groups acting on von Neumann algebras, Topics in Modern Operator Theory, Birkhäuser Verlag, (1981), 247-258.
[21] A. Ocneanu, Actions of Discrete Amenable Groups on von Neumann Algebras, Lec. Note in Math. 1138, Springer Verlag, (1985).
[22] G. K. Pedersen, C^{*}-algebras and their automorphism groups, Academic Press, (1979).
[23] D. Voiculescu, Almost inductive limit automorphisms and embedding into AF-algebras, Ergod. Th. \& Dynam. Sys. 6 (1986), 475-484.

Hideki NaKamura
Department of Mathematics
Hokkaido University
Sapporo 060-0810
Japan
E-mail: h-nakamu@math.sci.hokudai.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 46L40; Secondly 46L35, 46L80.
 Key Words and Phrases. UHF algebras, C^{*}-algebras, outer conjugacy.

