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Abstract. First we give a formula of spherical functions on certain spherical homo-
geneous spaces. Then, applying it, we complete the theory of the spherical functions
on the space X of nondegenerate unramified hermitian forms on a p-adic number
field. More precisely, we give an explicit expression for the spherical functions, prove
theorems on the spherical Fourier transforms on the space of Schwartz-Bruhat functions
on X, and parametrize of all spherical functions on X. Finally, as an application, we give
explicit expressions of local densities of representations of hermitian forms.

§0. Introduction.

The aim of the present paper is to complete the theory of the spherical functions on
the space of nondegenerate unramified hermitian forms on a p-adic number field, which
has been studied in a series of papers [H1-4], and to apply it to calculate local densities
of unramified hermitian forms.

Let k be a nonarchimedian local field of characteristic 0, (/; the ring of integers
in k, and % an involution on k. We assume that k is unramified over the fixed field kg
by the involution *. For a matrix v = (v;) € My (k), we denote by v* the matrix (vj;) €
M, (k). For a positive integer n, we denote G = GL,(k), K = GL,(0x) and X =
{xeG|x*=x}. G acts on X by g-x=gxg* (ge G, xeX).

Denote by #(G, K) the Hecke algebra of G with respect to K. Let ¥ (K\X) be
the space of all K-invariant complex valued functions on X and & (K\X) be the
subspace of #*(K\X) consisting of all compactly supported functions in ¢ (K\X).
They are #(G,K)-modules by the action

U*wmngwww*mm (f € #(G.K), ¥ € 4% (K\X)).

A nonzero function ¥ in €*(K\X) is called a spherical function on X if it is an
# (G, K)-common eigenfunction. We consider a typical one introduced in [H1}:

oxis) = | T[ 1tk
i=1

where | | is the normalized absolute value on ky. Our main results are the following:

dk (xeX,s=(s1,...,5)€C"),
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[1] To give an explicit formula for w(x;s) (Theorem T).
[2] Employing spherical functions as kernel functions, we give an #(G, K)-module
isomorphism (spherical Fourier transform)

S(K\X) = Clg*™,...,q %)%,
where z = (zy,...,z,) is a variable related to s by
v —1 )
Si=—zi+ziy1 — 1 — Tog 7 (1<i<n-1)
n—1 nv-1
Sp = —Z, + - .
2 log g

Especially, &(K\X) is a free #(G,K)-module of rank 2" (Theorem 2).

[3] To give the Plancherel measure and the inversion formula for the spherical
Fourier transform (Theorems 3 and 4).

[4] To parametrize all spherical functions on X (Theorem 5).

[5] As an application, to give explicit expressions for local densities and primitive
local densities (Theorems 6 and 7).

Similar results have been obtained in [HS1] for alternating forms, which are rather
easy, since (K \X) is generated by only one element as (G, K)-module. As for the
present hermitian case, the rank of (K \X) as #(G, K)-module is 2" according to the
size n, so it is greater than 1, and things become more complicated than the previous
case. We cannot use a similar method as before, and we need to decompose spherical
functions according to the orbit decomposition of X by the action of a minimal
parabolic subgroup of G. Then a method of representation theory based on W.
Casselman [Cas| is useful to investigate spherical functions on spherical homogeneous
spaces. W. Casselman and J. Shalika [CasS] carried forward this methods to obtain
explicit expressions of Whittaker functions associated to p-adic reductive groups. In a
similar method, S. Kato, A. Murase and T. Sugano obtained expressions for spherical
functions of certain spherical homogeneous spaces (cf. [K2], [KMS]). For the spaces
they investigated, the dimension of the space of the spherical functions is 1. On the
other hand, in this paper we will give an expression of spherical functions of certain
spherical homogeneous spaces for which the dimension of the space of the spherical
functions is not necessarily 1 (cf. Proposition 1.9).

As an application of spherical functions to local densities, we will give explicit
formulae for local densities and primitive local densities along the same lines as in
[HS1]. Formulae here are more explicit than those in alternating forms given in [HS1].

Here we shall explain about local densities and their relation to spherical functions.

Let m > n. For nondegenerate unramified hermitian matrices x, y of size m,n,
respectively, with entries in (U, we consider the congruence

vxv* = y (modp9).

Let Ny(y,x) (resp. NJ(y,x)) be the number of solutions (resp. primitive solutions)
of the congruence above. The local density u(y,x) (resp. the primitive local density
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w’(y,x)) of integral representation of y by x is defined to be the limit

pr
) = fim AL (vesp. () = fim TEO),
In some sense, the spherical functions on X can be regarded as generating functions
of local densities and primitive local densities ((H1, §2 Theorem|, which is quoted as
LCemma 3.0). And we can derive explicit expressions of local densities and primitive
local densities (Theorems 6 and 7) from the explicit formulae for spherical functions on
X and some properties of Hall-Littlewood symmetric polynomials.

The organization of the present paper is as follows. In Section 1, we explain a
method of calculating spherical functions on spherical homogeneous spaces based on
Casselmann. From Section 2 we treat the space of unramified hermitian forms. The
result of Section 1 is applied in Section 2 to obtain an explicit formula for spherical
functions w(x;s) on X. We also prove in Section 2 theorems on the spherical Fourier
transform on (K \X) and parametrization of all spherical functions. An application
to local densities is given in Section 3. We need some notations and results concerning
Hall-Littlewood polynomials, so we collect them as Appendix in Section 4.

NoratioN.  Throughout this paper, we denote by k& a nonarchimedian local field of
characteristic 0. So k is a finite extension of the p-adic number field Q, for some prime
p. Denote by O the ring of integers in k, p the maximal ideal in ¢ and 7; a prime
element of k.

As usual, we denote by C, R, Q, Z and N, respectively, the complex number field,
the real number field, the rational number field, the ring of rational integers, and the set
of natural numbers.

ACKNOWLEDGEMENT. The third summer school on number theory was impressive
for the author, especially she would like to express her gratitude to Professors F. Sato
and S. Kato. This was prepared during her stay at Mannheim University and
Heidelberg University under the support of the Ministry of Education, Science and
Culture of Japan. The author would like to express her gratitude to the referee for his
careful reading and pertinent suggestion.

§1. A formula for spherical functions on spherical homogeneous spaces.

§1.1. Let

G be an algebraic group defined over k, G = G(k)

K be a compact open subgroup of G,

P be a closed subgroup defined over k and P = P(k) for which G = KP = PK,

dg (resp. dk) be the left invariant Haar measure on G (resp. K) normalized by
Jxdg =1 (resp. [, dk =1),

dp be the left invariant Haar measure on P normalized by dg = dpdk corresponding
to G = PK,

0(q) be the character of P for which d(pq) zé(q)_ldp (p,q € P).

Let X be an affine algebraic variety defined over k& which is a G-homogeneous space,
where we write the action as g-x (g€ G,xe X), and set X = X(k).
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Let di(x) (1 <i<r) be nonzero regular functions on X defined over k which are
relative P-invariants, namely

(1.1) di(p-x)=1y;(p)di(x) (peP) for some rational characters y; of P(1 <i<r).

The characters y; are automatically k-rational.

Consider the following integral for xe X and s = (s1,...,5,) e C’
(1.2) o(x;s) = J Hyd (k- x)|"dk.
The right hand side is absolutely convergent if Re( ;)=>0, (1<i<r), and has an
analytic continuation to a rational function in |7x|" (1 < i <r) (cf. Remark 1.1 below).

REMARK 1.1. The theorems on rationality of p-adic integrals ([Denl, Th.3.2, 7.4],
[Den2, Th.3.1], [Des, Part II (2.5.1)]) can be generalized to the following statement,
which can be proved in the same manner as in [Denl, 2, Des|, see also [Sf, Lemma 2.1].

Let fi,...,f, be regular functions on G defined over k and U be the intersection
of G and a semialgebraic subset of M,(k) in the sense of Denef, embedding G into
M, (k) (cf [Den2, §2], [BS, §2]). For s= (s1,...,s,) € C" with Re(s;) > 0, consider the
correspondence

9¢HJH|/ ()" #(g) d.

where S (G) is the Schwartz-Bruhat space on G.  Then it can be analytically continued to
a distribution on G meromorphically depending on si,...,s.(€ C).

It is easy to see that w(x;s) is a K-invariant function on X, so it is contained in the
space € (K\X)={®: X - C|D(k-x)=d(x) (keK,xe X)}.
flkigks) = f(g)(ki, k€K, ,geG
Recall the Hecke algebra #(G,K)={f:G—C )=/19) )
compactly supported

H(G,K) acts on € (K\X) b
(13)  fed(x) = L F@)@(g™ x)dg (f € #(G.K), e 6" (K\X)).

DeFNITION. . We call a nonzero #(G, K)-common eigenfunction in € (K\X) «
spherical function on X.

ProposITION 1.1. When w(x;s) is a nonzero function on X, then w(x;s) is a spherical
function on X, namely there is a C-algebra homomorphism 1. : #(G,K) — C satisfying

(fxo( ;9)(x) =Af)w(x;s) for every fe #(G,K). Indeed, J(f) is given by

1 =] O T d.

where g = p(g)k € G = PK.
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Proor. To simplify the notation we put

r

4P = [ and ()l =] o)
i—1

i=1

8i

Then, we get for every f € #(G,K)

(frol ) =] £ jK d(kg™ - x)|*dkdg

G

- | j F(gh)ld (g™ - x)|*dgdk
JK JG

r

=| fl9)ld(g™" - x)|'dg

JG

r

_ dkj FUp)d(p~ k™ )’ dep (dvp = 5(p) dp)
JK P

— | dk[ FOWE) 10 x) dyp

JK JP

= | S (p)I"o(p)dp - >(x:).

Jp
Put

W) = JP S (p)I~0(p) dp = JG (@)W (p9)~d(p9)) dg,

where g = p(g)k € G = PK.
For f,f, € #(G,K), we see

WS Qolxis) = ((fy % fo) % o 9))()
— (/i * Mool 1))
— M)A Solxs),

hence 1 is a C-algebra homomorphism. O

§1.2. We note here some results from representation theory (cf. [Cas] or [Car]).
Assume that G is connected and reductive, K is a special good maximal bounded
subgroup of G, and P is a minimal parabolic subgroup of G defined over k.

Further let

A be a maximal split torus of G in P defined over k, 4 = A(k),

W be the Weyl group (= Ng(A4)/Zg(A4)),

2 be the roots of G with respect to A,

21t be the set of positive roots with respect to P,

B be the Iwahori subgroup in K which is compatible with P.

Let y be an unramified and regular character of M = Z;(4), i.e. x|y nx =1, and
oy =y implies 0 =1 for every g € W. Here, taking a representative x, € Ng(A) for
o € W through the isomorphism W = Ng(4)/M, we set (oy)(m) = x(x;'mx,).
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Since M =~ P/R,(P), the character y determines a character of P, for which we use
the same symbol. We denote by /() the principal series representation of G induced

by x;

locally constant

1.4 I(y) =Indiy = 4:G—C ’
(14) @) * {¢ #(pg) = 20" (P)h(9) (pePageG)}

with left G-module structure

(1.5) g-9(x) =d(xg), (pel(y), g,x€q).

Let #(G) be the Schwartz-Bruhat space on G, namely the space of locally constant
compactly supported functions on G, and ¥“(G) be the space of locally constant
functions on G. Both spaces are right G-modules by f9(x)= f(gx) (f € €(G),
g, x € G) and left G-module by the same action as in [I.5]. Denote by 2(G) the space
of distributions on G, namely 2(G) = Hom¢(¥(G),C). We write {T,¢) = T(¢) for
T e 2(G) and ¢ € (G). We regard a function f € €*(G) as an element of Z(G) by

S = radads @esa.
The right G-action on ¥ (G) can be extended to Z(G) by

(1.6) (T9.¢y=<T.¢" > (Te(G), pe(G),geG)

There is a surjection 2, : ¥ (G) — I(y) as left G-modules given by

(L.7) 2,(P)(x) = Jpx—la‘”(pw(px) dp.

We set ¢, = P,(chk), where chg is the characteristic function of K.

Let I(x~')" =Homc¢(I(x"),C). Then 2, :%(G)— I(x”") induces an injective
G-morphism
P, — 2(G).

X

LemMmA 1.2, Put
9(G), ={T e 9(G)| " = ©' ()T (peP)}.
Then P ," gives a G-module isomorphism

17" — 2(6),

X

Proor. First we see that the image of #,." is contained in %(G),. Take any
Yyel(x ") and put T =2,.*()). Then for ¢ € #(G) and pe P, we have

(TP, 45 = (T, 4" > = W(2,-(¢")).



Spherical functions 559

Since
P ) )ZLxé”z(Q)f/ﬁ(p '99) dq
#820) | 10" a)ao) da
= 18'2(p)2,($)(9),
we obtain

(TP, ¢> = 50" 2 (p)XT, .

Now we have to prove that every element of Z(G), comes from I (x"1)". To see
this, it is enough to show that every 7T € @(G)x kills Ker 2,.. Take any ¢ € Ker 2,
and take an open compact subgroup K, of G for which

P(kgk') = ¢(g) (k. k'€ Ko, g € G).

Now we see that

(18) 0= Jpxal/%p)«ﬁ(pg) o =vol(Po) S 18" (0)d(po),

pEP()\P

where Py = Ky N P. Since G = PK, there are only a finite number of representatives
{g1,...,9n} of P\G/Ky. Denote by ¢, the function defined by

#(g) if g e PgiKy

o) = { |
0 otherwise.

Then, it is obvious that ¢;’s are in Ker#?,+ and ¢ = ¢, +--- + ¢,. Therefore we may

assume that the support of ¢ is contained in some double coset PgoKp. Since the

support of ¢ is compact, PN supp(4)gy' consists of only a finite number of Py-cosets,

say {Popy,...,Pop,}. Then by [1.8), we have

(1.9) i)cc?‘/z(pf)f/ﬁ(pfgo) =0.

i=1

We will show that

r

(1.10) > 2P (p)¢" =0,

i=1
If g¢ PgyKy, clearly we have Z,.r:1)(51/2(p,-)¢(pig):0. Let g e PgoK, and write

g = pgok (p € P,keKy). Then ¢(p;g) = ¢(pipgok) = ¢(p;pgo). Hence, if ¢(pig) # 0,
then p;p belongs to some Pop; (1 < j<r), and there exists a permutation ¢ € S, and
pi € Py such that

piP=DPibey (1<i<r).
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Since y and J are trivial on Pj, we obtain by that

2151/2 (P)#(P:9) Z@”Z (PPoayp ™ VP(PiPaty 90)
i=1

(p7h ZX(51/2(P0(/))¢(P0(,7)90)
=

=0.
Thus we have proved (1.10}. Applying 7'e 2(G), to the both side of (1.10}, we get

0="> x5"*(p)<T,¢"> 2/651/2 (TP gy = (T, ¢y = (T, 9.
i=1 i=1

This implies that {7',¢) =0 for any ¢ e Ker?,1, which completes a proof. ]
By Cemma 1.2l we see that the representation space of the smooth dual of 7(}7!) is
G (G)NI(x ) =€ (G)N2(G), =1(x).

Hence we can calculate the pairing on I(y) x I(}~!) in the following way. Let
fiel(x), f,elI(x™") and take ¢ € #(G) for which 2,.1(¢) = f,. Then

ifs> = A2 o oyt = oo
- j 1(9)d(g) dg = j dkj F(pk)Hpk) dp
G K P

- jK £1(k) dk j 1V (p)p(pk) dp = j F10) () (k) dic = jK 1) f5 (k) dlk

K
Hence, we get the next corollary.
COROLLARY 1.3. The representation I(y) is isomorphic to the contragredient of

I(x™") and the pairing on I1(y) x I(}~") is given by

iy = jK ARAR d (fel(), fe ().

For g € W, there is a unique G-morphism (intertwining operator) T, : I(x) — I(oy)
which satisfies

(1.11) Ta(¢K,X) - CG(X)¢K,0}57

where

)= [l e

aeXt o0<0

(1.12)

(1= q,3 a5 ' 2(a) (1 + 4, )4 1))

C%(X) = 1— ( O[>2
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For the definition of a, € 4 and the numbers ¢,, ¢,/» (x € ), see [Cas, (9), Remark 1.1
and (12)]. If G is split, each g, = #(CO/p)(= qx,say) and each ¢, =1, and so

1 — g5 ' x(a,)
1.13 Coy) = —H 2
(1.13) ) =—— (@)
The following properties on 7, are known.

ProrosiTiON 1.4 ([Cas, 3.5]).

(i) The operator T, is an isomorphism if and only if c;(y)c,1(oy) # 0.

(1) I(y) is irreducible if and only if ¢y, (x)cw,(wix) # 0, where w; is the longest
element of W.

By T, : I{ox~") — I(x~") we get the adjoint G-morphism T,-* : 2(G), — Z(G),,,
which induces a G-morphism from I(y) to I(oy) by [Lemma 1.2 and [Corollary 1.3,

LEmMmA 1.5. Let ae W. If ¢;(x) #0, then

epi(oxr!)

T %
’ CG(X)

T5.

*

Proor. Since we have assumed that y is regular, 7,
(cf. [Car, Cor.3.3]). We get by [1.11) and [Corollary 1.3,

is a constant multiple of T,

Tl )b = o) | b0 () k= 2).

On the other hand, we get also

<Ta’1 *(¢K,;()7 ¢K,o-;(1> = <¢K,X7 Ta”l (¢K,a){*1)> = CJ*I(UX_I)-
The result follows from this. O
As an immediate consequence of this lemma, we have the next proposition.

PROPOSITION 1.6. Let e W. If co(y)c,—1(ox™') #0, then

T — o (1)

=T g(G), — 9(G
(o ) (6), = 2{6)

X oy
is an extension of T, :1(y) — I(ay).

For a subgroup U of G, we denote I(y)" the fixed subspace by the action of U.

"
v

There exists a basis {f, |oe W} of I (7)® which satisfies
(1.14) I5(f:,,)(1) = do.q,

where J, . is the Kronecker delta ([Cas, p. 402]). For a compact open subgroup U of
G, let Zy be the operator on Z(G) defined by

(Pu(T). $) = [U Cu- T, §y du = [U (T - ¢ du,

where du is the Haar measure on U normalized by [, du=1. Then it is known ([Cas,
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p. 403-4]) that

; __voy)
(1.15) Pk(fo,,)(1) 0 o))’

where

(1= g3 a5 " 2la) ™) (1 + 48 x(a) ™)
-2 Y

(%) = cw,(wiy) = H
(1.16) g = 1= (@)

0= [BoB:B|"".

gelW

The following property will be used in the next subsection.

ProposiTION 1.7. Let U be a compact open subgroup of G and ¢ € W and assume
that c;(y)cy-1(oy) #0. Then PyoTy, =Ts0Py.

Proor. We will show the commutativity of the following diagram

T,

Y = 26), —— 2(0),, =Io")
(2(D),)" (2(G),,)"

1Y —— Iy

For simplicity, we set ¢ = ¢,(x)/c,-1(ox~!). For every Se2(G), and ¢ e L(G), we
get

PuoTS).d = | TASIu g du=c| S(T, ()

_ cJU SG - T, () du = e2u(S)( Ty (4)

= T, 0 20(S)(¢) = T, 0 2u(S)(4).
This completes a proof. ]

§1.3. In general, the group X(P) of k-rational characters of P corresponding to
relative invariants is a free abelian group of finite rank. When {y,|1 <i <r} forms a
basis of X(P), the corresponding set {d;(x)|1 <i <r} is called a set of basic relative
P-invariants defined over k.

We assume that

X has an open P-orbit X' and finite P-orbit decomposition X'(k) = |_|M X,

(A1) {di(x)|1<i<r} forms a set of basic relative P-invariants defined over k,
and k-rank(P) = rank(X(P)).
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Hereafter we fix a G-orbit £ in X (k) and denote by % the set of indices u for which
X, c Q.
For xeQ, ge G and se C" with Re(s;) > 0, put

di(g;x) = chy,(g - x H|d g-x)|",
(1.17)

ig:) = 2a(di(2)(0) = | ditgbs )b

For general se C’, distributions d’(g;x) and dE(g; x) on G are defined by analytic
continuation (cf. Remark 1.1). We set also

(1.18) wm:L@@@&:Jdm@& Pe(d3(:3))(1),

K

then we have
(1.19) o(x; ) Za) X).

We note here that {w](x)|u e %} are linearly independent functions for generic s by the
injectivity of Poisson integral (cf. [K1]).
We define a character y =y, of P by

HW W52 (p)  (cf. (1.1)).
Then it satisfies

d;(pg: x) = 16" (p)d;(g; x)
and we see that d;(g;x) € Z(G), and d s(g;x) e I(x)”. Since z is uniquely determined
by s, we write dX(g;x) = d;}(g;x), dX(g, x) = d3(g;x) and w¥(x) = wi(x).

Setting H = G, for x € X(k), we have X =~ G/H, where we con51del the compatible
action of P x H on G with the original action of P on X. Then by the assumption
(A1), there exists an open (P x H)-orbit Y. For each g € G, denote P, the image of
the stabilizer (P x H), by the projection Px H — P.

We assume that

(i) G\Y decomposes into a finite number of P-orbits,
(A2) (i) for any ge G\Y, there exists i € X(P) whose restriction to
the identity component of P, is nontrivial.

We note here that the condition (A2) is satisfied for every x € X(k), if it is satisfied
for some xy € X(k).

LemMMA 1.8.  For each x € Q and generic s, the set {dJ*(g;x)|ue @} forms a basis
for (@(G)GX)G" for any ae W.
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Proor. Let S be a (P x H)(k)-orbit not contained in Y and let T € (2(D) UX)G"
whose support is contained in S. Then it is known ([Sf, Lemma 2.3]) that, under the
assumption (A2), s must satisfy a finite number of linear relations of type > | ms; —
a e (2nv/—1/log|m|)Z with m; € Z, w e C. Hence, if we avoid such s’s, the support of
nonzero 1T € (2(G),,) @ is contained in ¥(k), and those distributions are spanned by the
linearly independent set {d/(g;x)|ue%}. Since W is a finite group, we obtain the
result. N

We assume that s is generic for which [Lemma 1.8 holds, s is neither a pole nor a
zero of wi(x)(ue), y =y, is regular, and c,(y)c,1(ox~') #0 for any o e W.
For ue %, write

(1.20) dl (g;x Zam X520

oeW
where {f, |oce W} is the basis of I(x)” (cf. Then we obtain
(1.21) uo(x: 1) = To(df(:))(1)

= T, 0 Pp(d}(;x))(1)

= Ppo T,(d*(;x))(1) (by [Proposition 1.7).
By Lemma 1.8, we see that there exists an invertible matrix A,(y) satisfying
(122) (N (dy( 3 X ‘)))uefll =4 ( )(do')(( ) ))ue’ll

Here A,(y) depends only on the G-orbit Q containing x, since T, is G-morphism.
Now we obtain

uel ZQKfO'){ auaxs) byand

ceW

— Z %(Wgo T,(dZ(;x))(1)), (by and [1.21))

y 25(d7(;x)(1)), (by [122)).

aeW

Set B,(x) = ¢s(3) "' 45(y). Then

(@), == 3 3(o0)  Bo()(Zs(d(; x)(1),

Q oeW
and invertible matrices {B,(y)|oc € W} satisfy cocycle relations
(1.23) Boe(x) = Be(1)Bo(tx) (0,7 W)

Hence we obtain, for cach t1e W

=5 > Ao BAe) (Zald ()(1),
ceW

= B.(1)" (@f(x)), (by [T23)).
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The matrix B.(y) is determined by the above relation, since {0 *(x)|u e %} are lincarly
independent for each te W.
We shall summarize the above argument as a proposition.

ProprosITION 1.9.  For x e Q, generic s and y = y,, we have

(@F(x)) e = Ejoy D(Z5(d(52))(1)) 00
where
Q=) [BoB: B

geW

1- /2 a, “Ha 1,/“ ay
. %ﬂ%x<>x+wwx<>>§

gx€2+ 1 _X(aa)_z

1 — g 'y(a, B
H 9 x(az) if Gis Split>,

oext I_X(aa)_l
and By (y) is the invertible matrix determined by

(a)l)l{(x))uef?/ - BU(X) (a)gX(X))”e%-

ReEMARK 1.2. We can apply [Proposition 1.9 to the spaces of hermitian forms and
symmetric forms.

§2. Spherical functions on the space of hermitian forms.

§2.1. Hereafter we fix an involution * on k£ and assume that & is unramified over
the fixed field ko by *. We take a prime element 7 of k in k¢ and let ¢*> = # (0/n0).
Denote by | | the absolute value on k¢ normalized by |z| = ¢!

For a matrix 4 = (a;) in M,,(k), we denote by A* the matrix (a;) in My,(k).

The group G = GL,(k) can be regarded as the kj-rational points of the algebraic
group G = Ry, (GL,) defined over ko, where Ry i, is the restriction functor of the base
field (cf. §2.2 below). Let P be the parabolic subgroup of G defined over k; for which

P =P(ko) ={g€ Glg;j=0 unless i > j}. Then

" Pro0
_ H |pi|—2(n—2[+1) fOI‘ p= . . e P.
=1 *
Pn
Further set
K=GL,(0) and B={(b;)eK|b;e 0, for Vi, byep if i< j}.

Let : be the involution on G given by i(x) = (x*)"'. Then i can be extended to an
involution on G defined over ky, which we denote by the same symbol . Now set

X=X,={xeG|i(x)=x""},
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then we sce that
X =X(ko) ={xeG|x"=x}.
The group G acts on X by g-x:gxz(g)_l (ge G,xeX).

For g € G, let di(g) be the determinant of the upper left 7 by i block of g. We shall
consider the following integral:

(2.1 o(x;s) = J ﬁ |di(k - x)|"dk (xe X, s=(s1,...,5,) € C").
K=

This has been introduced in [H1], where w(x;s) = {(x;s/2) in the notation of [H1]. The
right hand side of is absolutely convergent if Re(s;),...,Re(s,_1) are non negative,

and has an analytic continuation to a rational function in ¢*,...,¢".
We introduce a new variable z € C" which is related to s by
V=1
Sj:—Zj—|—Zi+]—1—n (ISZSI’I—I)
log g
(2.2)
n—1 nv-1
Sp = —zZp + - ,
2 log ¢

and we write o(x;z) = o(x;s).

We note that the results in [H1-3] are still valid for p = 2, since we have assumed
that k/ky is unramified. We have to take notice that w(x;z) = {(x;z/2) = {(x;s/2) in
the previous notation. Especially we have known the following:

[1] w(x;s) is an #(G, K)-common eigenfunction ((H1]), more precisely

(f *o(:2)(x) =f(D)o(x;2), feH(GK),

where
H (G, K) = Clg 2 g iZZ,,}Sn
(2.3) N
f §) = | ftoito)da
Here the right hand side is the ring of symmetric Laurent polynomials in ¢**,...,¢*

with complex coefficients and

P "
n
%(9) _ H ’pi‘ZanHl*(l’l*zH“l)’ g= k . . with k e K.
i=1

0 Pn

[2] As for functional equations and the location of poles of w(x;z), we have ([H3,

§2])

qzj + qu z Z n
(2.4) H 5 _ zi—l'w(XQZ)ec[qila“-aqi"]S-
1<i<j<n q q

By the property [1], w(x;z) is a spherical function on X. We will give an explicit

formula for w(x;z) in [Theorem 1. Since w(x;z) is K-invariant, it suffices to consider
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the values at representatives of K-orbits in X. A complete set of representatives of K-
orbits in X is given as follows (cf. [Ja]):

nt = Ledy, y,

where
Ay={i=,....m)eZ" |21 = -+ = In}.

§2.2. We will apply the results in §1 to this X.
Denote by k the algebraic closure of k. Let k = ko(u) with u” € ko, and consider
the map

pP: k —>M2(k())

a bu?
a+ bu — .
b a

Then we can identify k& with the image of p, and a realization of G and X are given by

ay by’ — .
gij—( C )EMz(k) (Vl»])}

b,’j Cl,’j

xzy:((l) _01>in<(1) _01> (Vl}j)}-

For g€ G, let c/l\,(g) be the determinant of the upper left 2 by 2i block of g.
First, we show that the assumption (Al) is satisfied. The set X'={xe X|
[T, di(x) # 0} is a Zariski open P-orbit,

X' =X'(ky) = {xeX’ ﬁdi(x) # 0},
i—1

and the P-orbit decomposition of X' is

G = {(gij)l <ij<n€ GLa (k)

X= {(xij)l <ij<n €0

X'= || X, with X, ={xeX'|v,(d(x)) =u +-+u (mod2)},
ue{0,1}"

where v,( ) is the additive value on ky. There are two G-orbits Qy, Q; in X with Q; =
{x e X|vy(detx) = j (mod2)}, and the corresponding set %; of indices is given by %; =

{ue{0,1}"| 3" u;=j (mod2)}.
The corresponding character y of P to d*(g;x) is given by

)4 0

n .

1) =1]p™ r=
i=1

Pu
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and the Weyl group W =S, acts on y by permuting Z1,...,Zy. We see that
22—

> —¢q
¢o(2) = 11 Eo g (e

i>j

a(i)<a(j)

We see that X =~ G/H with H ={he G|i(h) =h}. We consider the following
action on G of P x H

(p,h)-g=pgh™ (peP, heH, geG),

then ¥ =¥, ={geG|gi(g)"" €X'} is an open (P x H)-orbit.

Now we show that the assumption (A2) is satisfied by mductlon on n. The case
n=11is clear, so let n>1. Take any ge G,\Y,. If dl(gz( )" #0, then PgH
contains an clement g; of the form

L 0
g1 = y 9o € Gn—l\yrﬁl-
0 go

L 0 L 0 .
(P X H)ql - 5 Xgoy ~ =4do ¢
0 X 0 y
hence it reduces to the induction hypothesis.

Next, let (/1\1 (99%) =0, then PgH contains an element g, satisfying for some / with
2<l<n

It is ecasy to see that

L if G, j) = (1,0), (1
(i, j)-block of gigr =14 ° ()= (L0, (L1)
0, ifior j=1,/but (i,j) # (1,1),(l,1).

Then it is easy to see that

( & 0 \
o)) a 0 _

= GLy(k
- “ (0 a> € GLa(K)

g1)

QD>

12(”—1) / J

Hence we stand the position to apply [Proposition 1.9 to X.

LEMMA 2.1. For xe Q; (j=0,1), generic s and y = y,, we have

H — Z 7(02)Bo(2) (Z5(d2(:))(1),.

gesS,

where u runs over U; and

2z
l<j<i<n q- q

B,(z) € GLyu1(C(g™, ..., q™)) is determined by (w;(x)), = Bs(z)(wg (x)),.



Spherical functions 569

1
0 .
LEmmaA 2.2, Set J = . € K. Then for each i€ A,, we get the fol-
lowing identity: 1
P (3] 7)) (1) = chy, (] - ) (—1) 20 P ey 2D,

where
{z,)) = Zz, and  j(z) = (zp,...,21)-

Proor. It is easy to see that B=(BNP)N=(KNP)N with N =
{(bj) e B|b; =1 for Vi, b; =0 if i> j}. By the definition of 25, we see that, with
suitably normalized measures db on BN P and dn on N,

Zala (57 nﬂ))(l) B JN JBOP chy, (bn - J - 75/1) H |di(bn - J - ni)‘&"dbdn
i—1
N J chy, (- J - ”;L)H \di(n - J - 7*)|¥dn
N i1

= chy (J - 7" H|d] )",

and we obtain the result. L]

§2.3. Now we state our main results on spherical functions on X. As for the
combinatorial notations and Hall-Littlewood polynomials, we refer to Appendix.

THEOREM 1. For each J. € A,, we have

: ity S : ¢ ¢ =g
w(n;z) = (—I)Zz g > (n=2it1) ”/2H NN H e

I<i<j<n
- g7 +q7!
X Zd<q<’;> H Z _ g7 )
cesS, 1<i<j<n q q
where 6 €S, acts on z=(z1,...,2,) by (2) = (Z5(1)s -+ -+ Zo(m))-

PrOOF. Let y = (y1,...,x,) € {(k§/N(k*))"}", namely y; is the trivial character

or the character y* on k; determined by y*(x) = (—l)””(x). As a matter of conve-
nience, we put y,;(0) = 0.
Define

L(x; z58) = L(x; 13 2)

[ e

(di(k - x)) dk.
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Then, clearly we have, for x e Q;

Lixvizis) = » zWoi(x) =Y zwo)(x), with z Hx,

ue{0,1}" uel;

Determine e, € {0,1} by y;(n) = (=1)%, and set S0 = 5 + (e, mv/=T)/logq. We de-
note z(*) the corresponding variable to s under the relation (22, so we have zlm =
zi + 2 (e mv=1)/logg.
Then we see that

L(x;x52) = co(x;s(X)) = (D(x;z(l)),

and hence we obtain a functional equation of L(x;y;z) by using [2.4], which is expressed
in the following way. By the relation of variables s and z, we see that for o € S, and y,
there exists a character  for which we get w(x;a(z)) = L(x;¥;0(z)). We denote this
Y by o(y). Then we obtain the following identity for each o =S,

L(x;a(x);0(2)) = f,(0:2)L(x; 13 2),

where

D irzaiy LgPeu — {(—l)zrzm) “rygien !

{(=
g ( 1)2’ 1} q = {(—1)2eras g

Now setting
F(0,2) = Diag(f,(0:2)),, A= (xW),,., od=(a()®),,

which are matrices of size 2", we obtain

u

By and Lemma 2.2, we get, for e 4,

tiz) = z 1(u)w) (n”

A(w;(x)), = Fl(o; 2) oA (cog(z) (x)),

ik W B -1
xY o Hﬁ g% fi(o; 2)

ceS,

1

n n 1 — Zj __ Zi—
il — (n— )Ai | | q | | q q
= (—I)Zz 1 q i 7l+1 /2 _21

SICEREE

qu<r 25 [o ( "Z+q‘f >

i<j

This completes a proof. Ll
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ReEMarRK 2.1. Employing the notation of Hall-Littlewood polynomial (cf. Ap-
pendix), we can rewrite the formula in as follows:

1
(2.5) (% 2) = (—1)MHH =072 _ g1y e (24

z -1
q/_q z z —1
X Py{qg™,...,q" — .
[ ] R i(q " —q")

1<1<]<n
Now we consider the following subspace of ™ (K\X):
p(k - x) = p(x) (XGXJCGK)}

F(K\X)=¢p: X —-C|
@ 1s compactly supported

Set ¥.(x) = w(x;z)/w(1,;z), then by (2.5) we get for each e 4,
o W(”)(_ -1y
(26) y/—/(ﬂ/l) _ (_1)n(A)-H/L\qn(/l)_((n—l)/z)w # P)L(qzl, L ’qzn; _q—l).
) wa(=q~")
We define the spherical Fourier transform on % (K\X) as follows:

AL (K\X) — C(q7,...,q%)

000 = | plovic)ar
Jx
where dx is the G-invariant measure on X normalized by J"K‘lﬂ dx = 1.

THEOREM 2. The spherical Fourier transform A gives an (G, K)-module
isomorphism

S(K\X) — Clg™™,....gF)™,

where the right hand side is regarded as # (G, K)-module through the C-algebra iso-
morphism (2.3).  Especially, & (K\X) is a free # (G, K)-module of rank 2".

ProoF. We have shown in that the spherical Fourier transform A:
F(K\X) — C(¢?,...,q*) is an A (G, K)-module monomorphism. By [Theorem 1, we
see that the image coincides with Clg*=, ... ¢ %] 0

REMARK 2.2. is the affirmative answer of our conjecture proposed in
H3, 2]

Since the G-invariant measure dx is normalized by jK] dx =1, we see that

U(K . n),) — J dx = qnw M(ln, ln) .
K-k ‘u(nﬂ’ 71"1) s
and so we obtain, by [H1, (2.3)]
-1
(27) oK - 1) = g Yl Z67)

W (—g~1)
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Employing the explicit expression of spherical functions in and 2.7}, we can
prove the following theorem on Plancherel formula by the same argument as in [M1, C5

(5.1)].

THEOREM 3. (Plancherel formula)

2 n
Let o = {\/—1<R/ " Z>} , and define the measure du(z) on a* by

log ¢
1 w(—q7 ) dz
du(z) = —- ne ’
,U( ) n! (1 ‘I‘q_l) |C(Z)|2

where dz is the Haar measure on a* normalized by | .dz =1, and

-1 ¢ +q7

g — z
I<i<j<n q

Then for any ¢, Yy € S(K\X), we have

| o0 av= | perite) duta),

a*

THEOREM 4. (inversion formula)
For each ¢ € ¥(K\X), we have

p(x) = (1) (et J () P-(x)du(z) (xeX).

a*

Proor. Let pe ¥ (K\X). Take any xe X and denote by i the characteristic
function of K-x. Then we see that

o) = s | PP ) = [ P dut).

By (2.6), we have
m _ (_1)(n+l)v,,(detx) TZ(X),

and the result follows from this. OJ

THEOREM 5. Eigenvalues for spherical functions are parametrized by ze C"/S,
through #(G,K) — C, f +— f(z). The set {¥...(x)|ee{0,nv—1/logq}"} forms a
basis of the space of spherical functions on X corresponding to ze C"/S,,.

Proor. Put & = {0,7v—1/logg}". Then by (2.5), we see that {¥.,.(x)|e€ &}
are linearly independent over C, and since f(z +¢) =f(z), we get

(f + Vor) (¥) = F () Weral¥) [ € H(G,K).
Now we obtain the result, since ¥ (K\X) is a free #(G,K)-module of rank 2". []
§3. Local densities.

Hereafter let m, ne N with m >n. We set

X = {x € GLm(k) ‘X* - x}, /Ym((/ﬂ) = X an(€>~ K, = CLm((Q)a
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we also set for X, X,(0), K, in a similar way. For x € X,(¢) and y € X,(0), and we
define local density u(y,x) and primitive local density p?"(y,x) by

Nd<yvx)

lu(y7 X) = dh—>nol<, qdn(ZI’n—n) s
(3.1) )
r 1 Ndr(y7 x)
’up (y X) o dh—{g; qdn(Zm—n) ’
where

Na(y,x) = #{ve Mﬂ,n1<@/13d) loxv* =y (mod pd)}:

NP (y,x) = #{v = (1,000 € Myn(CO/p") |3 € GL,(0/p"), vxv* =y (mod p“)}.

It is easy to see by definition that u(y',x") = u(y,x) and p’"(y' x') =@’ (y,x) if
x' €K, -x and y' €K,-y. So it suffices to consider densities only for the repre-
sentatives of K,,-orbits and Kj,-orbits. A complete set of representatives of K,,-orbits in
X,(0) is given by the set {n<|Ee A}, where AT = {&e 4,,|&, > 0}.

To describe our results, we need some notations concerning Hall-Littlewood
polynomials which are listed in Appendix. First we recall the following fact ([H1, §2
Theorem|), which gives a close relation between spherical functions and local densities.

+

e we have

LemMma 3.1. For every (e A

o(n°;s1,. .. ,8.,0,...,0)

pr 71,')’. 7.[5 B B )
= Cm,n Z Lﬁ) -q 2n(2) WCO(E/L, Slyenn ,Sn)
Ledt Wn(/b)

n

’ ' ; ﬂfl, ni . .
= C H(l _ q72‘s[7..4725,1*2117+2172) Z :u(—;) . qun(ﬂ)*‘ﬂ‘w(n)L?Sl’ o 7Sn),
2wl

where
Wa(q ) Win—n(q™)
Wi (¢72)

Cm,n =

I

wu(1) = w(;)(—q_l) for Le Af.

THEOREM 6. For every &€ A and ) e A, we have

1
primt &\ _ -1 n(&)+n(d)  n(E)+n(A) Wm(é)b/l(_q )
p"(n*, %) = (-1) q T —

(=1) =kl g=(m=n=1)ld

X;{ b~ )

X Pf/,u(la _q_17 ceey (_q—l)m—n—l; _q_l)
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where u runs A satisfying 0 <'&;—'y, <m—n and 0 <'J;—'y; <m—n for every
i>1.

ProoF. Let (zj,...,z,) be the variable corresponding to (si,...,s,) by [2.2), and

2™ .z be the one corresponding to (si,...,sn,0,...,0). Then we have
1
- V=1
Ai—l———l—(n—nfz)?z fl<i<n
) 2 log g
’ —2i41 VAT
_moa —(n—i—l—l)ﬂ if n<i<m,
2 log g
and so
(3.2 o [ (=)l g ifl<i<n
. ) q - (_1)n—mq(n_m)/z(_l)j—lq(n+2j—1)/2 if ] —i—n> 1.

By and (2.6), we get the following identity.
a)(né;sl,...,sm,O,...,0)/a)(1m;sl,...,sm)

(33) Cm.n r n(A)+|4A —n(D)—((n A
: — Z w? (n*, 7 H(=1) (A)+Wq A=(D/2)12 P, (),
M’ <_q ))G/ﬁ—

where we use the abbreviation P;(z) for P;(¢™,...,q"; —q~!). We set [4] the left hand
side of (3.3). Then, by (2.5), we obtain

(3.4) 4] = (—1)"OFElgn@=(m=1/2)lel (] _ g=Tym=n

1_|_q~"’i—3j
x[Bx[Pelx ] ==

— qZi—Z
I<i<j<nt 477
where we set
) __(m)
l—qg7 5~ (m) (m)
z :m . _1
[B] = H (my _(m) ? I:Pi] = Pﬁ(q ! yrc 7q ) _q )'

I1<i<j<m 14q% 75

To simplify notations, we set for &, ue A+ with £ > u and r (1 <r < m)
P:(t;m) = Pe(1,t,...,.t™ 1 0),
Pe(tsr) = Pey(Lit,.. 077 0) (cf. (AL5)).
By (3.2) and (A.11), we obtain
[Pg] _ (_1)(n—m)\f\q((n—m)/Z)\é\

« Pé<qk qﬂ,, q(n-l—l)/z q(n+3)/2 , (_1)m—n—lqm—((n+l)/2); _q—l)

PRI

— (-1 1€l (m=1)/2)1¢ Z (m—n—1)|u| (m—(”“)/z)'/“Pé/ﬂ(—q_l;m—n)Pﬂ(Z).
uedr
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We also get, by (3.2)

H l—qz’li‘f ml_nll 11’1]:[11 1 —j—1
B = —— = X -
I<i<j<n 1+ql 7 =1 j=i+l C] -
— 1 - qu_Zj_l B’ Wi— n(q_z)
= 1l Trg B —mn oy
1<i<j<n m-—n
where we set
1 B q [(m] jm)_l
[B/] = _m)  _(m) "
l<i<n 1+ q 5

n<j<m

And we obtain by using (3.2) and (A.9)

B I = (=¢ (=g ") (=)
izizn 1= (=g 0FD2)gr (=g~

Il <j<m—n

= > (g™ (—gT P (=g m = n)P,(2).

vedinat

m—n

By these calculation together with (A.4) and (A.10), we rewrite in the following
way.

] = (—1)" O g, Win(€) 3 {(_w g2 p, )

W= IWp_n(=q7") it

> Z /):V(_qfl)(_1)(mfn)\ﬂ|q(*m+n+l)|ﬂ\Pé/ﬂ(_qfl m — I’l)bv(—qfl)Pv(—qfl;m N n)}

v

= (=), - Wm(£) { g e D2MH gy (g2
( ) ,n M}ﬂ(_q_l)m)m_n(_q_l);LEZAJr ( ) ( ) ( )

1yl q<-m+n+1>|m

’ Z 7 ") 5/"(_(]_13’"_”)Pi/u(—q_l;in—”)},

where u runs A,J{ satlsfylng 0<% —'w<m-nand 0<');— 'y, <m—n for every
i >1. Comparing the coefficient of P;(z) above with the one in the right hand side of
(3.3), we obtain the result. ]

THEOREM 7. For every e At and ) e A, we have

no

A& n(E) +n(A)+(m=n)|2|  n(&)+n(2)—(m—-n—1)|A] win (&)
nt ) = (=1 X ——22
lu( ) ) ( ) q Vmen(_q_l)

v Z { +(m—n)|v \q—n(v)-i-(m—n—l)h’\ (Z(_l)(m—n—l)K|q(m—n)icN}:(_q—l)>

K

— —1\m—n—1 —
(Z ,m g/,u(L_q 17"'7(_q 1) y =4 1))}7
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where p,v and k run A} satisfying u <2, k cvel, [A=p+|v] and 0 <& — "y <
m—n for every i > 1.

PrOOF. By and (2.6), we get the following identity:

n

: S50, 80,0,...,0)
3.5 1— —25—=28,—2m+2i-2\—1 CO(TL' 3515 38y Uy ooy
(33) H< 1 ) (L 81,...,8,)

Cm,n n(A — — A |, d
= Z (1) ())+|/1\q nA=(ED2 y(7 79) P (2).
wa(—q7") 7

We denote by [4’] the left hand side of [3.5). Recalling the calculation in the proof of
Theorem 6, we have

e A = (1) @m0l ()
( ) [ ] ( ) q Cm,n Wn(—q_l)wmfn(_q_l)

n

« [B’} x H(l _ q—ZS;—'-~—2s,, —2m+2i— ) > [P }
i=1

Now we modify [B’] as follows.

i—((n+2j+1)/2) 1+ (_1)m—ﬂq:,-+((n—2m—l)/2)

-1 /q
=11 11 ) (2172 11 1+ g7~ (m+1)/2),

I<i<n l<j<m— n q- I<i<n

Then we obtain, by using (A.4), (A.6) and (A.8)

n

[B’] X H(l _ q—2s,~—.”_2sn_2m+2i_2)_1

i=1

1
- H (1 4 gz +D/D)(1 — (=1)" " gzt ((n=2m=1)/2))

1<i<n
—1\n(A)+n(k —(n 25 |4 m—n _(n=2m—1)/2\|k

DI G R G o I (G e At S W ACTNE)

Axedr
_Z H—n+1/2)IV\p(>

vedS

% Z +(m—n— 1)|l€\ —n(K)—(m—n)|x]| Z _q—l)
_Z (v)+v] —n (v)— ((n+l)/2)\v\Pv(Z)Z(_l)(Iﬂ—il—l)lk\q(—m—i-n)\x\Nl_l(_q—l).

Then, employing the calculation of [P;] in the proof of together with (A.4),
we obtain
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_ W (&)
(=g YWn(—g71)

v Z { (m—n—1) M\q(—m—l—(n—H)/Z)M\Pl(Z) Z {(_l)n(t’)-ﬁ-(m—n)vq—n(v)—i—(m—n—])v

ledf 4

[4'] = (-1) n(5)+(n—m+l)\é\qn(aj)+(n—m+1) ¢

X (Z L= VPeu(—q " sm — n>> (Z(—l)“‘"‘”"‘q<-'”+">KN;(—w‘)) }}

K

where g, v and x run A satisfying p= 2, k cve d, |A| = |y +|v] and 0 < /& — 'y, <
m —n for every i > 1. Comparing the coefficient of P,;(z) above with the one in the
right hand side of [3.5)], we obtain the result. O

The next corollary follows easily from Theorems 6 and 7.

COROLLARY 3.2. Let (e Al and Je AT,
(1) wl(n*,7¢) =0 unless —m+n<'&— "2 <m—n for every i > 1.

(i) w(n*,7%) =0 unless '&;— '2; <m—n for every i > 1.

REMARK 3.1. A classical result of Johnson [Jo] asserts that the condition in (ii) is
necessary and sufficient to be u(zn*,7¢) #0. He proved it by using lattices.

COROLLARY 3.3. Ler Le A}.

. g Wm(_q_ )
1 P! n/bﬂ ]‘nl — - 7 1\
) il ) Wz(;.)(—qfl)

where [(2) = #{i|2; =0,i<m— n}

(i) ulw? 1y) = A 1 x Y ()R (=g,
wm a(—q A
Kedy;
Kcﬂ

ReEmMARK 3.2. The formulae in Theorems 6 and 7 are more explicit than those for
alternating forms given in [HS1]. Along the same line, we can obtain similar results for
alternating forms, which we shall note down in the following.

Let k be a nonarchimedian local field of characteristic 0 with prime element 7 and
q = #(Ox/p;). Foreach ne N, let X, be the set of nondegenerate alternating matrices
of size 2n with entries in k. For Ae4,, we set

)»1 )Ln
77:;‘:< 0 & )J_---J_< OA & >eXn.
-7 0 -zt 0

T, AedAl with m >n. Then

ey WA o
Wm— n(q H) yz bﬂ(q_z)

— m—n—1 2\m-n—1 —
XPf//l(lvq 27"'7((] 7)’ g )Pl//l(lqzv"'v(q 2) ! ' q 2)}7

Let £e4

Wzt nt) = ¢q
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where p runs A satisfying 0 < '&; — 'y <m—n and 0 <'J; — ‘u; <m —n for every
i>1.

‘l,t(TL';L,ﬂié) _ q2n(§)+2n(7,)—(2m—2n D2

« Z{ +(2m—2n—1)|v| (Zqu 2n— I)MN (q—2)>
X (Zf,fv(qz)l’g/u(l,qz, o (612)’”_”_1;612)> }
[

where 4, v and x run A satisfying u < 2, k cve A, |4 = |/ +|v] and 0 < & — 'y, <
m —n for every i > 1.

The formula for local density u(n”, 7<) given in is more explicit, which does
not contain terms such as f w OF Py, but not every term of summand is positive. On
the other hand, the above expressions are useful, since every term is positive. For
example, a necessary and sufficient condition to be u”(n*,7¢) #0 or u(n*,n¢) #0
(Theorem 9 in [HST]) is easily seen. Finally, it is easy to obtain

re i Win(q?)
‘u[? o, J) = o\
( ) Wi(2) (a72)

-2
A Wm\gq _) —(2m—2n K| ATV 4~
W ) = LS g ),
Wm—n(q )lce/ﬁ

K<A

where /(1) = #{i|4; =0,i <m—n} and
;o 0 1 Lol 0 1 ¥
m — _1 0 _1 O € n-

We collect some notation and known properties of Hall-Littlewood polynomials
used in §2 and §3.
For ne N, we put

§4. Appendix.

Ay ={2=1,.- s Jn) €ZL" |11 = -+ = I},
AN ={2=1,..., /) € Ay | Ay = 0}.

For /e 4,, set

n n

(A1) 2= "2 n(h) =Y (i—1)A

i=1 i=1

For me N, set wy(t) = [[",;(1 —¢') and set wo(¢) =1, and for A€ 4,, put
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Wl /1 H Winy(4)

(A.2) e

= H Wini(5) (t)

P>
where m;(A) = #{j|l <j<n, Ay =i}. In §3, we set for ie A,
(A.2) wa(2) = wl (=g7h).
For m,n with m < n, through the map
AE 57 (Mg 0,...,0) € AT,

we regard A7 as a subset of 4. Then WEI")(Z) depends on n, though |2|, n(7) and b,(¢)
are not. Put A" ={) _yA4 and let 2, ue AT. We define

def | .
Ious= iz (Vizl),

INpe AT with (ANy), =min{A, 1} (Vi>1),
[;» € AT with t/ll' = #{] | /AL]' = l} (Vl = 1)
For J € A,, Hall-Littlewood polynomial P;(x;t) it defined by

Pi(x;t) :Pl(xl,...,xn;t)

(A3) 1_ n X — )
s e T 52)

w; (1) ses, I<i<j<n N

Here the symmetric group S, acts on the set of indeterminates xi,...,x, by permu-
tations. If 4 is in A, P;(x;¢) is actually a polynomial in xi,...,x, and 7, and the
set {Pi(x;1)|2e A} forms a Z[f]-basis of the ring Z[A[x1,...,x,)>" of symmetric
polynomials in xj,...,x, with coefficients in Z[z]. In general, P,(x;?) is a Laurent
polynomial in xi,...,x,, and the set {P,(x;¢)| A€ 4,} forms a Z[f]-basis of the ring
VAR ,xnil]s" of symmetric Laurent polynomials in xi,...,x, with coefficients in
Z[1.

Denote by w( ) the structure constants with respect to the basis {P;(x;7)| 1€ A},
namely
(A.4) P,(x;t)P Z (O Pi(x;1).

redf

Calculation of these structure functions is carried out in [M2, I1I-§3], especially we note
here that

f/fv(t) =0 unless [A|=|u|+|v, A>u and Ao

For J, pe A", . — u is called a horizontal strip if and only if 0 < ‘2; — ‘u; < 1 for
every i > 1; and then we set
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Vi@ = 11 Q=" T = e NIy =, 1 > w1}
/

JE J/l//l

A sequence T : u= 0 =W <ot =29 is called a tableau of shape 2. — u of length r if
and only if A7 — A=Y is a horizontal strip for all i (1 <i<r); and then we set

[40]- |4
H% H

For J, pe A" with ) o u, we define a polynomial Piju(y;t) in yy,...,y, and t by
(A5> P)./ﬂ(y; t) - Pi//t(yl yee ey Vs t) = Z l/’T(t)yTv
T

where T runs over all tableaux 7 of shape 4 — u of length ». We note here that
Pyu(y;1) #0 if and only if 0<% — 'y, <r for Vi>1.

For J,ue A, we set

) —n(4 n
(A.6) N (1) = =Dy = s

vedt
then it is known ((HS2, Lemma 5]) that
i ' t/l' — t,u-
=12 1 i+1
Nj(t) = 1o (0 H[r : ](t),
- i — Hipy
where
m Wi (1)
) =———— >r).
[ r ] (2 Wi ()W () (m 2 1)

We list several identities concerning theses polynomials which are used in §3. For
le A,

n(A)

(A7) Pi(1,t,...,t" Y1) _ () (M2, 111-§ 2 Ex.1]).
w(f)(t)

(A.8) 1T _1 =Y "IPy(xi,.. . xit) (M2,I0§4 Ex.1)).

lsiﬁnl Xi ledr

=Xy eArNAF

m

— Ix;

(A9) H L/ . Z D)Xt s X 0P (V1s ooy 13 0) (M2, TTI-(4.4))).
1
1

<i<n
SS

For 2, ue A},

(A.10) bilt) p Z I(0) (x;1)  ([M2,111-(5.2), (5.4))).

() 0= 2
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For /e A*

m—+r>

(A1) Pu(X1, .oy Xy Viyeony Vi)

= > Py 2 OPU(xr, Xy 1) ([M2,TT-(5.57)]).

uedt
0<'2i="w;<r

References

[BS] S. Bocherer and F. Sato: Rationality of certain formal power series related to local densities,
Commen. Math. Univ. St. Pauli 36 (1987), 53-86.

[Car]  P. Cartier: Representations of p-adic groups—A survey, Proc. Symp. Pure Math. 33-1 (1979),
111-156.

[Cas] W. Casselman: The unramified principal series of p-adic groups I. The spherical functions,
Compositio Math. 40 (1980), 387-406.

[CasS] W. Casselman and J. Shalika: The unramified principal series of p-adic groups II. The Whittaker
function, Compositio Math. 41 (1980), 207-231.

[Denl] J. Denef: The rationality of the Poincaré series associated to p-adic points on a variety, Invent.
Math. 77 (1984), 1-23.

[Den2] J. Denef: On the evaluation of certain p-adic integrals, Sém. de Théorie des Nombres, Paris 1983/
84, Progress in Math. 59, 25-47.

[Des]  B. Deshommes: Critéres de rationalité et application a la série génératorice d'un systéeme d’équations
a coeflicients dans un corps local, J. Number Theory 22 (1986), 75-114.

[H1] Y. Hironaka: Spherical functions of hermitian and symmetric forms I, Japan. J. Math. 14 (1988),
203-223.

[H2] Y. Hironaka: Spherical functions of hermitian and symmetric forms II, Japan. J. Math. 15 (1989),
15-51.

[H3] Y. Hironaka: Spherical functions of hermitian and symmetric forms III, Tohoku Math. J. 40
(1988), 651-671.

[H4] Y. Hironaka: Spherical functions of hermitian and symmetric forms over 2-adic fields, Comment.
Math. Univ. St. Pauli 39 (1990), 157-193.

[HS1] Y. Hironaka and F. Sato: Spherical functions and local densities of alternating forms, Amer. J.
Math. 110 (1988), 473-512.

[HS2] Y. Hironaka and F. Sato: Local densities of alternating forms, J. Number Theory 33 (1989), 32-52.

[K1] S. Kato: On eigenspaces of the Hecke algebra with respect to a good maximal compact subgroup of
a p-adic reductive group, Math. Ann. 257 (1981), 1-7.
[K2] S. Kato: Spherical functions on spherical homogeneous spaces (in Japanese), Proc. Third Summer

School on Number Theory (1995), 54-77.

[KMS] S. Kato, A. Murase and T. Sugano: Spherical functions on certain spherical homogeneous spaces
and Rankin-Selberg convolution (in Japanese), RIMS Kokyuroku, Kyoto Univ. 956 (1996), 12-22.

[Ja] R. Jacobowitz: Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441-465.

[Jo] A. A. Johnson: Integral representations of hermitian forms over local fields, Bull. Amer. Math.
Soc. 72 (1966), 118-121.

[M1] I. G. Macdonald: Spherical functions on a group of p-adic type, Univ. Madras, 1971.

[M2] I. G. Macdonald: Symmetric Functions and Hall Polynomials, Oxford Math. Monographs, 1979.

[Si] I. Satake: Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ.
Math. L.H.E.S. 18 (1963), 5-70.

[Sf] F. Sato: On functional equations of zeta distributions, Advanced Studies in Pure Math. 15 (1989),

465-508.
Yumiko HIRONAKA Current address
Department of Mathematics Department of Mathematics
Faculty of Science School of Education
Shinshu University Waseda University
Matsumoto, 390-8621 Japan Nishi-Waseda Tokyo, 169-8050 Japan

E-mail: hironaka@math.shinshu-u.ac.jp E-mail: hironaka@edu.waseda.ac.jp



	\S 0. Introduction.
	\S 1. A formula for spherical ...
	\S 2. Spherical functions ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...

	\S 3. Local densities.
	THEOREM 6. ...
	THEOREM 7. ...

	\S 4. Appendix.
	References

