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Abstract. Montiel, Ros and Urbano showed a complete characterization of
compact totally real minimal submanifold M of CP"(c¢) with Ricci curvature S of M
satisfying S > 3(n — 2)¢/16. The purpose of this paper is to answer Ogiue’s conjecture
which the above result remains true under the weaker condition of the scalar curvature
p of M satisfying p > 3n(n — 2)c/16.

1. Introduction.

Let CP"(c) be an mn-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature c¢(>0) and let M be an
n-dimensional compact totally real minimal submanifold isometrically immersed in
CP"(¢). Let h be the second fundamental form of M in CP"(c).

Recently, Montiel, Ros and Urbano proved the following: Let M be an
n-dimensional compact totally real minimal submanifold isometrically immersed in
CP"(c). Then the Ricci curvature S of M satisfies

3(n—2)
6 ¢

if and only if one of the following conditions holds: a) S=(n—1)c/4 and M is
totally geodesic, b) S=0, n=2 and M is a finite Riemannian covering of a flat
torus minimally embedded in CP?(c¢) with parallel second fundamental form, ¢) S =
3(n—2)c/16, n>2 and M is an embedded submanifold congruent to the standard
embedding of: SU(3)/SO(3), n=15; SU(6)/Sp(3), n=14; SU(3), n=28; or Es/Fy,
n = 26.

Ogiue conjectured the following: Under the weaker assumption of p >
3n(n—2)c/16, the above result remains true, where p is the scalar curvature of M.

With respect to this conjecture the author and, independently, [ X1] showed:
Let M be an n-dimensional compact totally real minimal submanifold isometrically
immersed in CP"(c). Then

S >

h(v,0)|* < e

CO | =
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for any ve UM if and only if one of the following conditions is satisfied: A)
Ih(v,0)|* =0 and M is totally geodesic, B) |h(v,v)|* = (1/8)c, n =2 and M is a finite
Riemannian covering of a flat torus minimally embedded in CP?(c) with parallel second
fundamental form, C) |h(v,v)|* = (1/8)¢, n>2 and M is an embedded submanifold
congruent to the standard embedding of: SU(3)/SO(3), n=15; SU(6)/Sp(3), n = 14;
SU(3), n=28 or Eg¢/F4, n=26.

Gauchman showed a similar result under the assumption of |h(v,v)|* <
(n+1)c/12n.

The purpose of this paper is to answer Ogiue’s conjecture.

THEOREM. Let M be an n-dimensional compact totally real minimal submanifold
isometrically immersed in CP"(c). Then p = constant and

- 3n(n—2)c
T

if and only if one of the following conditions holds:

A) p=n(n—1)c/4 and M is totally geodesic,

B) p=0,n=2 and M is a finite Riemannian covering of the unique flat torus
minimally embedded in CP>(c) with parallel second fundamental form,

C) p=3n(n—2)c/16, n>2 and M is an embedded submanifold congruent to the
standard embedding of: SU(3)/SO(3), n=35; SU(6)/Sp(3), n=14; SU(3), n=28 or
E6/F4, n = 26.

Xia showed a similar result under the assumption of |h|* < (n+ 1)c/6.

2. Preliminaries.

Let M be a compact Riemannian manifold, UM its unit tangent bundle, and UM,
the fibre of UM over a point x of M.

Now, we suppose that M is isometrically immersed in an (n + p)-dimensional
Riemannian manifold M. We denote by {,> the metric of M as well as the one
induced on M. Let i be the second fundamental form of the immersion and A¢ the
Weingarten endomorphism associated a normal vector &, we define

L:TM — T:M

by the expression

Lv= Z Ah(v,e,-)ei-
i=1

Then, L 1s a self-adjoint linear map.
The first covariant derivative V4 is symmetric and the second covariant derivatives
V2h satisfies

(2.1) (VW) (X,Y,Z, W)= (V*h)(Y,X,Z, W)+ R-(X, Y)h(Z, W)
—h(R(X,Y)Z, W) —h(Z,R(X, V)W),
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where R+ and R are the curvature tensors of the normal and tangent bundles over M,
respectively.

Now let veUM, xeM. If ep,...,e, are orthonormal vectors in UM,
orthogonal to v, then we can consider {e,,...,e,} as an orthonormal basis of
T,(UM,). We remark that {v=-ej,es,...,e,} is an orthonormal basis of T, M. We
denote the Laplacian of UM, =~ S"~! by 4.

If S and p is the Ricci tensor of M and the scalar curvature of M, respectively, and
M is minimally immersed in M, then from the Gauss equation we have

(22) S(U, W) = Z R(U, €, €i, W) - Z <Ah(v,ei)ei7 w),
i=1 i=1
(2.3) p= Z R(ej, e ei,€)) — A%,
ij=1

where R is the curvature operator of M.
Define a function f; on UM,, xe M, by

fl(v) = ‘Ah(v,v)v|2 = Z <h(l), v),h(v,ei)>2.
i=1
Using the minimality of M we can prove that

(24) (Af1)<1)) = —6(1’[ + 4)f1 (U) +38 Z <Ah(v,v)va Ah(v,ei)ei>
i=1

1

n n
+38 Z <Ah(v,v)ei7 Ah(v,e;)v> +38 Z <Ah(v,ef)v7 Ah(v, ei)v>
i=1 i=1

1

+2 Z <Ah(v,v)ei7 Ah(v,v) €i>-
i=1

1

Similarl}’a define .](27](37](47f‘Saf‘67]c77f‘87f97f107f117f12 and f13 by

fz(v) = Z <Ah(v,e,-)vah(v,e,-)U>7
i=1

n
fi%(v> = Z <Ah(v,e,-)va Ah(v,v)ei>a
i=1

n

fa(v) = Z CAn(es,e)€fs An(v,0)€i 2

i, j=1

f5(1)> = Z <Ah(v,v)va Ah(v,e,-)ei>a
i=1

f6<v) = Z <Ah(ej,e,-)ejvAh(v,ei)v>7

i, j=1
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= Z <Ah(ei7v)ei;Ah(u,ej)ej>7

l?j:1

n

fé(U) = Z <Ah(v,l})ei7 Alz(u7v)ei>;

i=1
Jo(v) = (v, v)|*,
Jio(v) = |h(v, U)|27

fll Z<Ahb€ e,,v>|h(v U)’ )

f12 (Z <A/1 (v,e) elav>>

Ji3(0) = B (0, 0) 1%,

respectively. Then we obtain

(2.5)

(2.6)

(2.10)

(2.11)

(2.12)

(Afé)(l)) = —4(” + 2)](‘2( ) +4f6 +4 Z <Ah (ej,en)V Ah(v e )e/>

i,j=1

n n
+2 Z <Ah(ej,ei)va Alz(c{,-7e,-)v> +2 Z <Ah(l’7€’i)ej7 Ah(”:ei)ej>7
ij=1 i,j=1

(413)(v) = —4(n + 2) f3(v) + 2f4(v +4Z {Aneye0s Aniey, vy €i>

i,j=1

n
+4 Z <Ah(v7 e)€s Ah(e,-,v)ei>a
ij=1

(412)(v) = =2nf4(v),
(4f5)(v) = =4(n +2) fs(v) +415(v) + 4f7(v) + 2/4(v),

n

(Afe)(0) = =2nf(0) +2 D {Anie.e)€js Anfer ek

i,j k=1

n

(Af7)(0) = =20f3(0) +2 > {Ap(ey )€/ An(er.e €k

l,]kil

(AfS)(U> ( +2>f8 +8Z<Ahe velaAhe bel>7

i,j=1

(4f5)(v) = —8(n+6) fo(v) + 321 (v) + 162(1‘1/1“ ei, vY|h(v,v)[*,
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213 (4£i0)(0) = —4(n +2) fo(v) + 8 ;‘ Ay i .
Q14)  (Afi)0) = —6(n+ )i, (0) + 16£5(0) + 20h e, 0) + 813, (0),
R15)  (Af)0) = A1+ 2)finl0) + 8F(0) + 4 Z Aoy v,
2.16) (4115)(0) = —4(1-+2) fiz(0) + SJA’ Z Aoy v,
Since

LD fo)enent) = 3 VPh) enr 1), B, )

i=1 i=1

£ 3 R en e, ). (P, ),
i—1

1

we have the following (See [M1], [M2] and [M3]):

LEMMA 1. Let M be an n-dimensional totally real minimal submanifold isometrically
immersed in CP"(c). Then for ve UM, we have

1 <& - 1
(2.17) 5;(V2f10)(€u€u v) = ; (VA (er,v,0)> + 5 I clh(v,v)|?

n

+2 Z <Ah(v,v)ei7 Ah(e,-,u)v>
i=1

-2 Z <Ah(v,e,-)eia Ah(v7 U)U>
i=1

- Z <Ah(v,v)ei7 Ah(v,v)ei>-
i=1

The following lemma will be useful:

Lemma 2 ([C]). Let M be as in Lemma 1. If p is constant and n <3, then M
satisfies

%p —infK(x)=<(n+1)(n—2)c

CO| =

if and only if either:

(1) M is totally geodesic, or

(2) n=3,c=1/4 and M is locally congruent to S3 isometrically immersed in CP?,
where K(x) is the sectional curvature at Xx.
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3. Proof of Theorem.

PROPOSITION.  Let M be an n-dimensional compact totally real minimal submanifold
isometrically immersed in CP"(c). Then
3n(n—-2)
T
if and only if one of the following conditions holds:

A) p=n(n—1)c/4 and M is totally geodesic,

B) p=0,n=2 and M is a finite Riemannian covering of the unique flat torus
minimally embedded in CP?(c) with parallel second fundamental form,

C) p=3n(n—2)c/16,n>2 and M is an embedded submanifold congruent to the
standard embedding of: SU(3)/SO(3), n=15; SU(6)/Sp(3), n=14; SU(3), n=28 or
E6/F4, n — 26.

D) p=n(n—1)c/4—4)* > 3n(n—2)c/16, n +#2 and the second fundamental form
of M takes the following form: h(ej,e)) = AJei, h(ey,ex) = —AJey, h(er,er) = —AJes,
otherwise zero for some non-constant function A.

By we know that we have only to prove the above [Proposition, For if p
i1s constant, then the case of D cannot occur.

Now, from we have

-1
p= n(nT)c — |
Thus we prove under the assumption
2
(3.1) h? < ”<”lg e.

We see the following equations hold for ve UM,, xe M (See [M1] and [ M2]):

(32) <Ah(e,-,e,-)vaAh(e,-,v)ei> = Z <Ah(v,e,-)ej7Ah(v,e,-)ei>7
i,j=1 i, j=1
(3.3) Z <Ah(e/.’el.)l), Ah(g,-,e,-)”> = Z <Ah(v,e,-)ej,Ah(v,ei)ej>.
ij=1 ij=1
In terms of [2.4), (2.5), [2.6), [2.7), [2.8), [2.9), (2.10), (2.11), (2.17), and we
obtain
B4 IS W o) e en) — LR - (Af)0)
. 2 - 10 iy Ciy 6 1 3(n+2) 2

6(nl+2) (473)(0) +3 ! (A1) (v) +6(n1+2) (4f5)(v)
1

n(n+2)
1
- m(ﬁfé)(”) +

+

(417)(v) + (475)(v)

3n(n+2) 6(n+2)

= S I+ efiolo) + (0 11(0) — 450 - 240)

i=1
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Since M is totally real, the following equations also hold for ve UM,, xe M (See

[MV2)):

n n
(35> Z <Ah(e,-,e,-)eja Ah(v,e,-)v> = Z <A§UA3C)]€,', ei>7
ij=1 ij=1
(36) Z <Ah (v,e;) i Ah(v e) ez Z <AJLAJL Apei e,
i, j=1

where J is the complex structure. Combining (2.7), (2.8), [(2.9), [2.10), (2.11), [2.12),
(2.14), (2.15), (2.16), [(3.5), [(3.6) with (3.4), we obtain

(3.) 22 ioenent) = £ (AA)0) = 3 (4RO

1 1 1
+ 6(n+2) (4/13)(v) +m(ﬁf4)(v) +

1 1 1

T 3nn12) (4f6)(v) + m(dﬁ)(v)+6(n+

(Bn+2)(n+4)
6n(n+2)*

_(bn+8)(n—2)
6n2(n +2)*

1 n+4
- m(l’fs)(“) +ﬁ
4(n+1)

_WOMI)(U) erz <(Af12)( ) = %(Z’fw)(l))))

— -1)1)2 n+1 4<n+1)
_;le)(e,, O+ g ehol0) = o

D (o) - o)+ D ) - i)

(3@ + aso)

((415)(v) = (4/7)(v))

(415)(v)

(A1 |h(v,v)|*

Suppose that f}, attains its maximum at u € UM,. We shall call u a maximal direction
at x. We choose an orthonormal basis {u = ej,e,...,¢,} of M at x such that A4y, is
diagonalized. Since u is a maximal direction, we have

n n
h(u—f—th“e“,u—f—th“ea) 1—|—ZZZ ] |h(u,u)| 2
o=2 =2

at x for all £,x2,...,x" € R. Expanding in terms of ¢, we obtain

(3.8)

4tix“<h(u, u), h(u,e,)> + O(t%) < 0.
o=2
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It follows that
(3.9) Ch(uyu), h(uye,)> =0, a=2,...,n.
Expanding again in terms of 7z, we obtain

(3.10) 27| > “(|h(u,u)|* — h(u,u), h(ey, )y — 2lh(u, ;)| ) (x")?

=2
— Z (Ch(uyu), h(ey, ep)y + 2<h(u, e,), h(u, e) )x*xP | + O(£*) = 0.
o0, =2, a4
Since (3.10) must hold for all real x*, we obtain
(3.11) h(u, u)|> — Chlu,u), ey, e,)> — 2|h(u,e,)|* = 0
for « =2,...,n. From we get Ay, = |h(u, u)|*u so that the equalities

fl (u) = f‘9(“)7
fS(U) = Z |h(ua u>‘2<Ah(u.,e,-)ei7 u>
i—1
hold. If fio(u) # 0 at x, then it satisfies that Ju = h(u,u)/|h(u,u)| at x, since {h(u,u),

Jeyy = {Apu,e,» =0, a=2,...,n where we use the property A;w = A0 for v,we
T M. Then it holds that

f8<u) = Z |h(u7 u)’2<Ah(u,e,-)eiv u>
i=1

From (2.13) we also have

(3.12) 0> (4f19)(u) =—4(n+2)f1o(u) +8 ,_i] CAp(u, e)€i U-
Hence

(3.13) Zl {CApu,eny€in Uy < z ; me(u).

Define f;, by

B14) ) = =g hl0) = 53 0+ gz A0+ 33 A0)

1 1 1 1
+ mfs(v) - mfdv) + mﬁ(v) + mfg(v)

N (3n+2)(n —|—24)
on(n+2)

(304 £0))
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(61 +8)(n—2)

(fo(v) = f(v))

6n2(n+2)*
| n+4
—mfs(“) +mﬁ)(v)

4 1 2 1
—%Qﬂ( ) + +2(f12(”)—§f13<v)>)
Combining [3.1) with (3.7), we obtain

n

(3.15) 22 2 fro) (e ersu) + (Af14) ) = Y |(Vh)(ej,uu)|* = 0.

i=1

On the other hand, from (2.4}, [2.5), [(2.6), (2.7), [2.8), [(2.9), [2.10), [2.11}, [2.12), [2.14),
(2.15), (2.16), (3.2), (3.3) and (3.14) we have

(414)(u —4Z<Ahue er, u|h(u,u)|? —22<Amel,Ah(ue> >

- 4n+1) o 2
- ZZI: <Ah(u7u)ei7Ah(u,u)ei> - I’l(l’l + 2) |h| |h(u7 Ll>| :

Assume that (Lu,u) < |h|*/n. Then

(Af14)( = _2Z<Ahuu el:Ahue, u> + <I:’))l 42 1 ;

)|h| ()
Also,
f(u) = |h(u, u)|trace 43,.

By changing Ju by —Ju if necessary, we may assume without loss of generality that
f3(u) > 0. Hence

(3.16) (4f,4) () <0.

Since u is a maximum direction at x, we get
1 n
(3.17) 5lzl:(vzflo)(ei, ei,u) < 0.
Thus from |3.15), and we have
22 2 fro)(ei, ei,u) + (A f14) (u) = 0.
Therefore from [3.15] we obtain (Vh)(e;,u,u) =0 so that |h(u,u)|* = const. # 0 and

h|* = n(n+2)¢/16 or |h(u,u)|* =0. Hence the equalities of (3.12) and (3.13) hold.
Next, from the definition of u# we have

(3.18) —|h(u,u)|* < by < |h(u,u)|*, 0=2,...,n,
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where b, = {h(u,u),h(e,,e,)y. Because of the minimality of the immersion, we have
(3.19) Z Ch(u,u), h(ey, e,)> = —|h(u,u)|*.
=2
Then note that {Aye,,ep) =0, a#p,a,f=2,...,n and
sz Js(w) = |h(u,u))*.

In terms of [3.13) and the equality of [3.12] since the convex function f(bs,...,b,) =
S, b2 of (n— 1) variables by, ..., b, subject to the constraints (3.18) and |3.19) exactly
attains its maximal value (n/2)|h ( u)|*, it holds that

b, = =b=—by1 = =—-by = |h(u=“)|2=

Hence if n is even, then we obtain

Chuyu), h(ey, e,)>? = [h(u,u)|*, o=2,...,n.
By the inequality of Schwarz we see that M is isotropic at x. If n is odd, then we get

Chuyu), h(ey, €)Y = [h(uwu)|*, a=2,...,n—1,
<h(uyu), h(ey,en)y = 0.
Thus each e,,a =2,...,n—1 is also maximal direction. Hence we get
Chien,en),h(en,e)y =0, i#n.

Thus

(hiej e), hei,e))y =0, for any i,j (i # j).
Therefore M is isotropic at x. That is, M is a submanifold of CP"(c) with parallel
second fundamental form ((N]). It remains the case of {Lu,u) > |h|*/n.  Then assume

that f, attains its minimal value at up € UM,. Let {u=ej,ea,...,¢,-1,up = e,} be an
orthonormal basis of M at x. By the similar way with (3.8) and [3.9) we have

(3.20) <h(ug,ug), h(ug,ey)y =0, a=1,....,n—1.

If {Lug,upy > ]hyz/n then {Lu,u)y = |h|2/n Thus we may assume that {(Lug,uy)y <
h|*/n. That is, from [3.11) and [3.13] we have

/l

(3.21) (g, uo)|* — <hug, ug), hiey, e))> = 2|h(ug,e)|* <0, a=1,...,n—1,

2
|4

n+2 h
Jio(uo) < {Lug,upy < L

2

G%WM%MV—<M%W%@WQD—2MW&M22& n=2,....n,

2 h|?
n+ Sro(u) = {Lu,uy > %)
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If n >3, we may assume that there exists o, fixed «,2 <o <n—1 such that e, #u
and e, # up. Let a(s) be any curve in the sphere UM, such that «(0) = e,, a'(0) = e,
1 <p#a<n Then we have

%(flo 0 a)(0) = 4<h(ey, €x), h(es, ep))-

As we can choose an orthonormal basis {u =ej,es,...,€,,...,e,_1,Uy = €,} such that
Ch(ey,ey),hleys,e)y =0, 1 <f #a<n (for example, we may choose an orthonormal
basis such that 4., is diagonalized), f|, attains its critical value at e,. If f}, attains its

n—1 times
critical value with the signature (+,...,+), ie., |h(ea,ea)|2—<h(ea,ea),h(e/g,eﬂ)>—

n—1 times
2/h(es,e)|> <0 for f#a, 1<p<n, (resp. (Z,...,0), ie., |h(ese,)|” — (hleye,),
h(ep,e)> — 2lh(es, ep)|* =0 for B #a, 1 <B<n) at e, then figle,) = fio(uo) (resp.
Jf10(ex) = fio(u)). Now, if necessary, by renumbering, we may consider the case of
{u=ey,ey,...,ey_1,up = e,} which satisfies

(3.22) Soler) = -+ = figlea) = -+ = fio(en),

ptimes  n—1—p times

f1o attains its critical value with the signature (—,...,—, +,...,+), 0<p<n-—1, at
: : pth .
ey, | <a<mn At first, f, attains the signature (—,...,+...) at ¢,. Since we may

assume that Ay, is diagonalized, we can put h(ey, ey,) = <{h(e,, e,),JeyyJe,. Then
(323) <h(eaaeoc)7jeoc>2 - <h(eowed)a‘]ea><h<eluel)7‘]efx> - 2<h(€]7€]),.]€,1>2 = 07

(324) <h(€a, eoc)a']e(x>2 - <h(€a, eoﬂ)a']e:x><h<eﬂae[f)7']etx> - 2</’l(€‘[},€ﬁ>,.]€a>2 <0.

Since <h(el,e1),Jea>2 > <h(e/;,e/;),Jea>2, from h(ei,e,) = <h(e1,e1),Je,yJer, hep,e,) =
Chiep, ep), Je,dJep, (3.23) and (3.24) we obtain |h(er,e,)|> = |h(ep, e,)|>. Thus we may
assume that fj, attains its critical value with the signature (—,...,—) or (4, +,...) at
ey. Next, assume that f}, attains its critical value with the signature (—,...,—) and
(+,+,...) at u and e,, a =2, respectively. Let f(v) = <h(v,v),Je;). If there exists
eg,3 < f <n, at which f attains critical value, then we consider the case with the
signature + at eg. Changing an orthonormal basis, we may choose an orthonormal
basis such that Ay, is diagonalized. Then we may assume that if there exists eg,
2 < f < n, at which f attains critical value, then we consider the case with the signature
+ at ez, and we can put h(er,e;) = {h(ey,er),Je;)Je;. Hence

lh(es, e2)|* — <h(er, 2), hler, er)d — 2|h(er, e2)]> <0,
1e.,
—<h(ea, e2), Jer y<h(er, er), Jery — (h(ea, ), Jer > < 0.
Thus, <h(ey,e;),Je;) = 0. From the above mention

Ch(esyes),Jeyy =0,...,<h(ey,e,),Jery = 0.



62 Y. MATSUYAMA

Thus the case cannot occur. We assume that f, attains the signature (—,...,—) and
(—,...,—) at u and e,, a =2, respectively. If there exists eg,3 < f < n, at which f
attains critical value, then we consider the case with the signature + at eg. Set
h(ex,ez) = {h(ey,ez),JesyJe;. Then since

[h(e2, €2)|* = ez, e2), hen, er) = 2|h(er, e2)]* = 0,
—<h(ea, e),Jery < <h(ey,er),Jer) < %(h(62,62)7162>~

Hence \h(el,el)lz = (h(es,e1),Jer)*. On the other hand, (h(es,e3),Jer> >0, ...,
Chleg,en),Jer) > 0. Thus fiy(e1) = fio(ez) = 2> for some real number 4 and fy(e3)
= ..o =fiole)) =0. Then <(Lu,ud=21*>h*/n (n>2) and |h]* <n(n+2)c/16
for some A. We remark that if A% < (1/8)c (resp. A= const), then M is totally

geodesic ([M1] and (resp. [C])) and that by the similar way with we can show
there exists a non-constant function A which satisfies Gauss, Codazzi and Ricci

equations. It remains the case that f, attains its critical value with the signature
(—eiis=)seees (=, —) at er,...,e,(0 > 3), respectively. If there exists eg,o+ 1 <
p < mn, at which f attains critical value, we consider the case with the signature +
at eg. Put h(ey, e,) = {h(ey,e,), Jey,)Je,. If a=(n+4)/3 (n>=5), then {(Le,,e,) =
(n+2)/2)|h(ey,e,)|* and (Le,,e,> = 2|h(es,e,)|>. Thus the case cannot occur.
Assume that n=4 and o=3. Then #A(ej,e)=—h(es, e3),JezyJes,h(er,er) =
—{h(es,e3), JesyJes and 0 < <h(es,es),Jesy < 1/2{h(e3,e3),Je3) show that M is totally
geodesic. If n=3u—3 or 30—2, then changing an orthonormal basis, put
h(ea+1,€cx+1) = <h(eoc+1a€a+1)ajea+l>~]€oc+l- Then

her,er) = (=1 = fy)<h(ens1, €uv1), Jeur1 )Jens1 + <h(er, er), Jexa)Jey n
+ -+ <h(€1,€1),«]€n>]en7
h(eac—hea—l) = (_1 - ﬁ1)<h(ea+1aeoc+l>7<]eoc+1><]ea+1 + <h(€1, el)"]e“+2>]e“+2
+ . —|— <h(€17€1)7J€n>Jen7
h(eoueoc) = (1 +ﬂl)<h(eoc+l7€u+l)7¢]eoc+l >Jed+1 o <h(el’el)’Je“+2>Jea+2
— . — <h(el,e1>,J€n>Jem
h(eat1; €ar1) = <h(ear1, €av1), Jesr1 YJest,
h(eyy2,€542) = Palhlentt, aq1), Jesri DIt + <h(eain, €442), Jegia ) Jes 1o
+ o+ <h(€a+2,€a+2),«]en>]ena
h(en,en) — ﬁn—a<h(60‘+1’ ea+1),J€a+1>J€a+l + <h(€n7€n)7~]€a¢+2>]€o¢+2
+ -+ (hlen, en), JenyJey,.
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Since
‘h(ela €1)|2 - <h(eaa ea),h(€1,€1)> - 2‘/’[(61, eot)’2 = Ov
(e 1, ex1)|* = Chea, es), hles 1,65 1)) — 2|h(es1,e,)|* = 0([02]),

we have

(1+ B1) Ch(egsts enr1), Jewir 2 + Chler, er), Jeqn > + - - + <h(er, er), Jey»”
= <h(el7ea)ajea+2>2 + -+ <h(el7ea)w]en>27

(14 1) hleyi1, e5s1), Jeyi1 D2 + Chler,er), Jey D + - + Chler, er), Je, )
= (h(ey—1,ex), Jeyiad® + -+ Chey—1, ey), Jen ) .

Also, it holds

|h(ea7 ea) o <h(ea7 ea()a h(eaz+2= ea+2)> - 2|h<eda ea+2)|2 > 0,

|h(es, eoc)|2 — <h(ey, ex), hien, en)) — 2|h(€aaen)|2 > 0.
Hence, we obtain
Ch(er,er), Jegn) = -+ = h(er,er),Jeny ===, ,=0.

Hence M is totally geodesic. This proves [Proposition]
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