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A note on a conjecture of Xiao
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Abstract. We prove that the image of the relative dualizing sheaf of a

®bration from a smooth projective surface onto a smooth projective curve is

ample under some extra conditions.

When f : S ! B is a surjective morphism of a complex, smooth surface S onto

a complex, smooth, genus b curve B, such that the ®bre F of f has genus g, it is

well known that f�oS=B � E is a locally free sheaf of rank g and degree d � XOS ÿ

�bÿ 1��gÿ 1� and that f is not an holomorphic ®bre bundle if and only if d > 0. In

this case the slope, l� f � � fK 2
S ÿ 8�bÿ 1��gÿ 1�g=d, is a natural invariant associated

by Xiao to f (cf. [7]). In [7, Conjecture 2] he conjectured that E has no locally free

quotient of degree zero (i.e., E is ample) if l� f � < 4. We give a partial a½rmative

answer to this conjecture:

Theorem 1. Let f : S ! B be a relatively minimal ®bration with general ®bre F.

Let b � g�B� and assume that g � g�F�V 2 and that f is not locally trivial.

If l� f � < 4 then E � f�oS=B is ample provided one of the following conditions hold.

(i) F is non hyperelliptic.

(ii) bU 1.

(iii) g�F�U 3.

Proof. (i) If q�S� > b the result follows from [7, Corollary 2.1]. Now assume

q�S� � b. By Fujita's decomposition theorem (see [3], [4] and also [5] for a proof )

E � AlF1 l � � � lFr

where h0�B; �AlF1 l � � � lFr�
�� � 0, A is an ample sheaf and Fi are non trivial

stable degree zero sheaves. Then we only must prove that Fi � 0. If F is not

hyperelliptic and rank �Fi�V 2 the claim is the content of [7, Proposition 3.1]. If
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rank�Fi� � 1 we can use [2, §4.2] or [1, Theorem 3.4] to conclude that Fi is torsion in

Pic0�B�. Hence it induces an eÂtale base change:
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By ¯atness ~f�o ~S= ~B � s�� f�oS=B�. Since s is eÂtale l� f � � l� ~f � and s��Fi� � O~B is a

direct summand of ~f�o ~S= ~B. In particular by [3] q� ~S� > ~b � g� ~B� hence l� ~f �V 4 by [7,

Theorem 3.3]: a contradiction.

(ii) If b � 0 the claim is trivial. If b � 1, any stable degree zero sheaf has rank one,

then as in (i) we conclude.

(iii) If g � 2 and E0A, then E � AlL where L torsion and we are done.

The only non trivial case if g � 3 is E � AlF where A an ample line bundle and F

a stable, degree zero, rank two vector bundle. Then K 2
S=B V �2gÿ 2� degA � 4d and we

are done by [7, Theorem 2]. r

Theorem 3.3 of [7] Xiao says that if q�S� > b and l� f � � 4 then E � FlOB,

where F is a semistable sheaf. We have the following improvement:

Theorem 2. Let f : S ! B be a relatively minimal non locally trivial ®bration. If

l� f � � 4 then E � f�oS=B has at most one degree zero, rank one quotient L.

Moreover, in this case E � AlL with A semistable and L torsion.

Proof. As in the previous theorem the torsion subsheaf L becomes the trivial one

after an eÂtale base change; thus

~f�o ~S= ~B � ~AlO~B;
~A � s

�
A:

By [7, Theorem 3.3], ~A is semistable. Then A is also semistable by [6, Proposition

3.2]. r
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